JP5472584B2 - 撮像装置 - Google Patents

撮像装置 Download PDF

Info

Publication number
JP5472584B2
JP5472584B2 JP2009113942A JP2009113942A JP5472584B2 JP 5472584 B2 JP5472584 B2 JP 5472584B2 JP 2009113942 A JP2009113942 A JP 2009113942A JP 2009113942 A JP2009113942 A JP 2009113942A JP 5472584 B2 JP5472584 B2 JP 5472584B2
Authority
JP
Japan
Prior art keywords
filter
pixels
imaging
image
color
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009113942A
Other languages
English (en)
Other versions
JP2010154493A (ja
Inventor
健吾 早坂
健二 山本
功 市村
功 広田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2009113942A priority Critical patent/JP5472584B2/ja
Priority to US12/588,795 priority patent/US8451352B2/en
Priority to DE200960000570 priority patent/DE602009000570D1/de
Priority to AT09252560T priority patent/ATE495550T1/de
Priority to EP20090252560 priority patent/EP2190019B1/en
Priority to CN2009102228971A priority patent/CN101738840B/zh
Publication of JP2010154493A publication Critical patent/JP2010154493A/ja
Application granted granted Critical
Publication of JP5472584B2 publication Critical patent/JP5472584B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/0056Arrays characterized by the distribution or form of lenses arranged along two different directions in a plane, e.g. honeycomb arrangement of lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0075Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means for altering, e.g. increasing, the depth of field or depth of focus
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/201Filters in the form of arrays
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B35/00Stereoscopic photography
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • H01L27/14627Microlenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • H01L27/14621Colour filter arrangements

Description

本発明は、マイクロレンズを用いた撮像装置に関する。
従来、様々な撮像装置が提案され、開発されている。また、撮像して得られた撮像データに対し、所定の画像処理を施して出力するようにした撮像装置も提案されている。
例えば、特許文献1および非特許文献1には、「Light Field Photography」と呼ばれる手法を用いた撮像装置が提案されている。この撮像装置では、撮像レンズによる撮像対象物の結像面にマイクロレンズアレイが配置され、更にこのマイクロレンズアレイの焦点位置に撮像素子が設けられた構成となっている。これにより、撮像対象物からの光線は、撮像素子において強度分布だけでなく進行方向についての情報をも保持した光線ベクトルとして取得される。このため、撮像素子において取得された撮像データは、視差についての情報を含んでおり、所定の画像処理が施されることによって、例えば3次元表示や距離情報抽出への応用が可能である。
国際公開第06/039486号パンフレット
Ren.Ng、他7名,「Light Field Photography with a Hand-Held Plenoptic Camera」,Stanford Tech Report CTSR 2005-02
ここで、上記手法を用いて取得した撮像データに基づいて、例えば3次元表示用の視差画像を生成した場合、この視差画像の画素数(2次元解像度)は、マイクロレンズアレイのレンズ数と等しくなる。言い換えると、視差画像の画素数は、撮像素子の全画素数を各マイクロレンズに割り当てられる画素数で割った数値となる。このため、上記のような視差画像を生成すべくマイクロレンズアレイを用いた撮像装置では、最終的に得られる視差画像の解像度が、マイクロレンズ数の制約を受けて低くなり易い。
本発明はかかる問題点に鑑みてなされたもので、その目的は、見かけの解像度の低下を抑制しつつ視差情報を取得することが可能な撮像装置を提供することにある。
本発明の撮像装置は、開口絞りを有する撮像レンズと、複数の画素が横方向および縦方向からそれぞれ45°回転した2方向に沿って、全体としてマトリクス状に配列されてなると共に、複数の画素において受光した光に基づいて撮像データを取得する撮像素子と、撮像レンズと撮像素子との間に、撮像素子のm×m(mは2以上の整数)の画素からなる画素領域に対して1つのマイクロレンズが割り当てられるように配置されたマイクロレンズアレイと、撮像素子で取得された撮像データに基づいて画像処理を行う画像処理部とを備えたものである。画像処理部は、各画素領域のうち縦方向または横方向に沿って配置された2画素から得られる画素データを用いて、左右もしくは上下の視差画像を生成する。
本発明の撮像装置では、撮像レンズと撮像素子との間に、一つのマイクロレンズに撮像素子のm×m(mは2以上の整数)の画素が割り当てられたマイクロレンズアレイが配置されている。これにより、各マイクロレンズを通過した光線は、撮像素子において、光線の強度分布に加えて進行方向の情報をも保持して受光される。ここで、撮像素子において、複数の画素が横および縦方向に対して45°をなす2方向に沿って全体としてマトリクス状に配列していることにより、横および縦方向における画素ピッチは、画素の一辺の長さよりも短くなる。このため、上記のような画素配列により、横および縦方向を基準にした場合、同一サイズの画素を横および縦方向に沿って2次元配列させた場合に比べ、画素ピッチが狭くなる。
本発明の撮像装置によれば、撮像レンズと撮像素子との間にマイクロレンズアレイを設け、各マイクロレンズにm×m(mは2以上の整数)の画素を割り当てるようにしたので、撮像対象物からの光線を互いに視点の異なる光線ベクトルとして受光することができる。ここで、撮像素子の複数の画素を、横および縦方向とそれぞれ45°をなす2方向に沿って、全体としてマトリクス状に配列させるようにしたので、同一サイズの画素を横、縦方向に沿って配列させた場合に比べ、画素ピッチを狭くすることができる。一般に、画像の解像度は、斜め方向よりも横および縦方向において人間の眼によって認識され易いため、上記のような画素配列とすることで、見かけの解像度を向上させることができる。よって、見かけの解像度の低下を抑制しつつ視差情報を取得することが可能となる。
また、画像処理部を設け、上記撮像データに基づいて、各マイクロレンズに割り当てられた4つの画素のうち、互いに同一の位置の画素から抽出された画素データを合成すれば、左右もしくは上下の視差画像を生成することができる。このような視差画像は、例えばステレオ方式による3次元表示に適用可能である。
本発明の第1の実施の形態に係る撮像装置の全体構成を表す図である。 図1に示した撮像素子の画素配列を説明するための平面図である。 図1に示した撮像素子上のカラーフィルタの平面構成を表す模式図である。 撮像素子上で受光される光線について説明するための図である。 図1に示した画像処理部の構成を表す機能ブロック図である。 カラー補間処理動作の一例を説明するための概念図である。 比較例に係る撮像素子の画素配列を説明するための平面図である。 図1に示した撮像素子における読み出し動作を説明するための概念図である。 変形例1に係るカラーフィルタの平面構成を表す模式図である。 変形例2に係るカラーフィルタの平面構成を表す模式図である。 変形例3に係るカラーフィルタの平面構成を表す模式図である。 本発明の第2の実施の形態に係るカラーフィルタの平面構成を表す模式図である。 カラー補間処理動作の一例を表す概念図である。 図12に示した撮像素子における読み出し動作を説明するための概念図である。 変形例4に係るカラーフィルタの平面構成を表す模式図である。
以下、本発明の実施の形態について、図面を参照して詳細に説明する。
<第1の実施の形態>
(撮像装置の構成例)
図1は、本発明の第1の実施の形態に係る撮像装置1の全体構成を表すものである。撮像装置1は、撮像対象物2を撮像して、所定の画像処理を施すことにより、画像データDoutを出力するものである。この撮像装置1は、撮像レンズ11と、マイクロレンズアレイ12と、撮像素子13と、画像処理部14と、撮像素子駆動部15と、制御部16とから構成されている。
撮像レンズ11は、撮像対象物2を撮像するためのメインレンズであり、例えば、ビデオカメラやスチルカメラ等で使用される一般的な撮像レンズにより構成されている。この撮像レンズ11の光入射側または光出射側には、開口絞りが配設されている。この開口絞りの開口形状(例えば円形状)に相似形となる撮像対象物2の像が、撮像素子13上に、マイクロレンズアレイ12の各マイクロレンズの結像領域(後述)ごとに形成される。
マイクロレンズアレイ12は、例えばガラスなどの基板上に複数のマイクロレンズが形成されたものである。マイクロレンズアレイ12は、撮像レンズ11の焦点面(結像面)に配置され、このマイクロレンズの焦点位置に撮像素子13が配設されている。各マイクロレンズ12Aは、例えば固体レンズや液晶レンズ、回折レンズなどにより構成されている。詳細は後述するが、このマイクロレンズアレイ12におけるマイクロレンズの2次元配列は、撮像素子13における画素配列に対応している。
撮像素子13は、マイクロレンズアレイ12からの光線を受光して撮像データD0を取得するものである。この撮像素子13は、複数の画素がマトリクス状に配列してなり、各画素は、CCD(Charge Coupled Device:電荷結合素子)またはCMOS(Complementary Metal-Oxide Semiconductor)などの2次元固体撮像素子により構成されている。
上記複数の画素のうち、m×n個(ここでは、2×2=4個)の画素に、上記マイクロレンズアレイ12における一つのマイクロレンズが割り当てられている。すなわち、各マイクロレンズを通過した光線は、撮像素子13の2×2個の画素で受光されるようになっている。なお、一つのマイクロレンズに割り当てられる画素数m×nの値が大きくなるに従って、例えば後述する視差画像における角度分解能(視点の数)が高くなる。一方、画素数m×nの値が小さくなるに従って、視差画像における2次元解像度が高くなる。このように、視差画像の角度分解能と2次元解像度とはトレードオフの関係にある。
この撮像素子13の受光面上には、画素の配列に対応して複数色のフィルタが規則的に配列してなるカラーフィルタ(図1には図示せず)が設けられている。このようなカラーフィルタとしては、例えば、赤(R:Red)、緑(G:Green)および青(B:Blue)の原色のフィルタが所定の比率で配列されたものが用いられる。この各色フィルタの配列を含めた撮像素子13の具体的な平面構成については後述する。
画像処理部14は、視差画像生成部143(詳細は後述)を備え、撮像素子13で得られた撮像データD0に対して、所定の画像処理を施し、例えば視差画像としての画像データDoutを出力するものである。この画像処理部14の具体的な画像処理動作については
後述する。
撮像素子駆動部15は、撮像素子13を駆動してその受光動作の制御を行うものである。
制御部16は、画像処理部14および撮像素子駆動部15の動作を制御するものであり、例えばマイクロコンピュータなどにより構成されている。
(撮像装置における画素配列例)
ここで、図2を参照して、撮像素子13における画素配列について説明する。但し、図2では、簡便化のため、一つのマイクロレンズに割り当てられる2×2個の画素Pについてのみ示している。また、水平方向A(横方向)および垂直方向B(縦方向)は、撮像データDoutに基づく画
像の視認時における水平および垂直方向である。
撮像素子13は、水平方向Aおよび垂直方向Bのそれぞれに対して斜めとなる2方向、例えば45°をなす方向C,Dに沿って、一辺の長さaの正方形状の画素Pが2次元配列(以下、単に斜め配列という)したものである。言い換えると、水平方向Aおよび垂直方向Bに沿って格子状に配列(正方配列)した複数の画素Pを、受光面内において所定の角度、例えば45°回転した状態で配設したものである。このような撮像素子13における斜め配列に対応して、上記マイクロレンズアレイ12についても、水平方向Aおよび垂直方向Bに対して例えば45°回転した2方向に沿ってマイクロレンズが2次元配列した平面構成となる。
このような撮像素子13の受光面側には、上述したようにカラーフィルタが配設されるが、このカラーフィルタは例えば次のような色配列で構成されている。図3に、撮像素子13上のカラーフィルタ130の平面構成を模式的に示す。なお、図3には、マイクロレンズごとに2×2の画素領域に結像する単位結像領域12Dも模式的に示している。
カラーフィルタ130は、2×2の画素領域ごとに色分けされており、例えば赤色フィルタ130R,緑色フィルタ130Gおよび青色フィルタ130Bの原色フィルタにより構成されている。これらの赤色フィルタ130R,緑色フィルタ130Gおよび青色フィルタ130Bは、画素Pの斜め配列に対応して、水平方向Aおよび垂直方向Bからそれぞれ45°回転した2方向に沿って2次元配置されている。本実施の形態では、各色のうち、緑色フィルタ130Gが最も多く、例えばR:G:B=1:6:1の比率で配置されている。具体的には、赤色フィルタ130Rおよび青色フィルタ130Bのそれぞれを9つの緑色フィルタ130Gが取り囲むような配列となっており、図3中の2点鎖線で囲った領域が単位配列U1となっている。
次に、上記のような撮像装置1の作用、効果について図面を参照して説明する。
(撮像動作)
まず、図1〜図4を参照して、撮像装置1における撮像動作について説明する。撮像装置1では、撮像レンズ11による撮像対象物2の像は、マイクロレンズアレイ12を介して撮像素子13上に結像する。このとき、マイクロレンズアレイ12の一つのマイクロレンズに対して、例えば2×2=4個の画素が割り当てられていることにより、撮像素子13では、図3に示したように、撮像対象物2の像として単位結像領域12Dが2×2の画素領域ごとに形成される。
このようにして撮像素子13で受光がなされると、撮像素子駆動部15による駆動動作に従って撮像データD0が取得される。ここで、図4を参照して、撮像素子13において取得される撮像データD0に含まれる情報について説明する。図4は、撮像素子13における受光光線について模式的に表したものである。このように、撮像レンズ11のレンズ面上において直交座標系(u,v)を、撮像素子13の撮像面上において直交座標系(x,y)をそれぞれ考えると、撮像レンズ11および撮像素子13を通る光線L1は、4次元関数LF(x,y,u,v)で表される。すなわち、撮像対象物2からの光線は、光線の強度分布に加え進行方向についての情報が保持された光線ベクトルとして撮像素子13に記録される。
また、本実施の形態では、撮像素子13の受光面側に、各マイクロレンズに割り当てられた画素単位、すなわち2×2=4個の画素ごとに色分けされたカラーフィルタ130が配置されている。このため、撮像データD0は、カラーフィルタ130の赤色フィルタ130R,緑色フィルタ130Gおよび青色フィルタ130Bの配列に対応してカラーの撮像データとして取得される。このようにして得られた撮像データD0は、画像処理部14へ出力される。
(画像処理動作)
続いて、図5および図6を参照して、撮像装置1における画像処理動作について説明する。上記のような撮像データD0が画像処理部14へ入力されると、画像処理部14では、撮像データD0に対して所定の画像処理が施され、視差画像としての画像データDoutが出力される。図5は、画像処理部14の全体構成を表す機能ブロック図である。画像処理部14は、例えば、欠陥検出部141、クランプ処理部142、視差画像生成部143、欠陥補正処理部144、カラー補間処理部145、ノイズ低減処理部146、輪郭強調処理部147、ホワイトバランス調整処理部148およびガンマ補正処理部149から構成されている。
画像処理部14では、入力された撮像データD0に対し、まず、欠陥検出部141が撮像データD0に含まれる黒とび等の欠陥(撮像素子13の素子自体の異常に起因した欠陥)を検出する。続いて、クランプ処理部142が、欠陥検出部141によって欠陥検出がなされた撮像データに対し、黒レベルの設定処理(クランプ処理)を行う。これにより、撮像データD1が得られ、視差画像生成部143へ出力される。
視差画像生成部143は、撮像データD1に基づいて、互いに視点の異なる複数の視差画像を生成する。上述したように、撮像データD1では、単位結像領域12Dごとに、光線の強度分布に加えて進行方向の情報をも含んでいるため、各光線を分離して検出することができる。具体的には、撮像データD1において、単位結像領域12Dごとに、互いに同一の位置の画素における画素データをそれぞれ抽出し、これら抽出した画素データ同士(図3に示した同一の番号が付された画素の画素データ同士)を合成する。これにより、視差画像としての画像データD2が得られる。得られた画像データD2は、欠陥補正処理部144へ出力される。
但し、このとき、一つのマイクロレンズに割り当てられた画素数(ここでは2×2=4個)が、位相差の異なる視点の数となる。よって、上記抽出動作および合成動作により、計4つの視点、具体的には左方向(図3中の番号2に対応)、右方向(図3中の番号3に対応)、上方向(図3中の番号1に対応)および下方向(図3中の番号4に対応)の各視点における視差画像が生成される。
欠陥補正処理部144は、画像データD2の欠陥(前段の欠陥検出部141で検出された欠陥)を例えば周辺画素を用いた補間により補正する。
カラー補間処理部145は、欠陥補正処理後の画像データD2に対して、例えばデモザイク処理などのカラー補間処理を施し、3原色のカラー画像を生成する。ここで、図6(A)〜(D)を参照して、カラー補間処理部145におけるカラー補間処理動作について説明する。図6(A)は、視差画像生成部143により得られた画像データD2のうち、上方向(図3中の番号1)の視差画像データD21について模式的に示したものである。なお、簡便化のため、カラーフィルタ130の単位配列U1に対応する部分のみ示している。
ここで、上述したように、撮像素子13で取得された撮像データD0(またはクランプ処理後の撮像データD1)は、カラーフィルタ130の色配列に対応して、単位結像領域12Dごとに色分けされている。このため、図6(A)に示したように、単位結像領域U1ごとに同一の位置にある画素(例えば番号1の画素)からそれぞれ抽出した画素データ同士を合成して生成した視差画像データD21の色配列についても、カラーフィルタ130と同一となる。他の位置にある画素(例えば番号2〜3の画素)からそれぞれ抽出した画素データ同士を合成した場合も同様である。
このような視差画像データD21に対し、R,G,Bごとにそれぞれ補間処理を施すことにより、図6(B)〜(D)に示したように、赤色の視差画像データD31R、緑色の視差画像データD31Gおよび青色の視差画像データD31Bが得られる。得られた各色の視差画像データD31R,D31G,D31Bは、画像データD3として、ノイズ低減処理部146へ出力される。
ノイズ低減処理部146は、画像データD3に含まれるノイズ(例えば、暗い場所や感度の足りない場所で撮像したときに発生するノイズ)を低減する処理を施す。続いて、ノイズ低減処理部146によるノイズ低減処理後の画像データに対し、輪郭強調処理部147が画像の輪郭を強調する輪郭強調処理、ホワイトバランス調整処理部148がホワイトバランス調整処理、ガンマ補正処理部149がガンマ補正処理を順次施す。これにより、視差画像としての画像データDoutが得られる。なお、ホワイトバランス調整処理部148におけるホワイトバランス調整処理は、カラーフィルタ130の通過特性や撮像素子13の分光感度などのデバイスの個体差や照明条件などの影響に起因した色バランスを調整する処理である。また、ガンマ補正処理部149におけるガンマ補正処理は、明暗やコントラストを補正する処理である。
上記のようにして、画像処理部14から、視差画像としての画像データDoutが出力される。
(撮像素子13における画素配列の作用、効果)
ところで、上記撮像装置1では、図2に示したように、撮像素子13における画素Pの配列が、水平方向Aおよび垂直方向Bからそれぞれ45°回転した2方向C,Dに沿って配置された斜め配列となっている。ここで、図7に、比較例として、一辺の長さaの正方形状の画素P100を水平方向Aおよび垂直方向Bに沿って2次元配置させた画素配列について示す。この比較例に係る画素配列では、画素P100のピッチd1が、画素P100の一辺の長さaと等しくなる(d1=a)。但し、ピッチd1は、隣り合う画素P100の中心M1同士の間の水平方向Aおよび垂直方向Bにおける距離とする。
一方、本実施の形態では、上記比較例に係る画素P100と画素サイズそのものは同一であるが、水平方向Aおよび垂直方向Bを基準にした場合、画素Pのピッチdは、上記比較例の場合の1/√2倍に縮小される。これにより、水平方向Aおよび垂直方向Bにおける画素ピッチが狭くなる(d<d1)。但し、ピッチdは、隣り合う画素Pの中心M同士の間の水平方向Aおよび垂直方向Bにおける距離とする。
以上のように、本実施の形態では、撮像レンズ11と撮像素子13との間に、各マイクロレンズに2×2個の画素を割り当てたマイクロレンズアレイ12を配置したので、撮像対象物2の光線を、互いに視点の異なる光線ベクトルとして受光することができる。また、撮像素子13における画素Pの配列を、上述したような斜め配列としたことで、同一サイズの画素を水平方向Aおよび垂直方向Bに沿って2次元配列した場合と比べ、水平方向Aおよび垂直方向Bにおける画素ピッチを狭くすることができる。ここで、一般に、画像の解像度は、斜め方向よりも水平、垂直方向において人間の眼によって認識され易いため、本実施の形態のような斜め配列とすることで、正方配列とする場合に比べ、見かけの画素数(2次元解像度)を向上させることができる。よって、見かけの解像度の低下を抑制しつつ、視差についての情報を取得することが可能となる。
また、撮像素子13の受光面側にカラーフィルタ130を設け、このカラーフィルタ130が緑色フィルタ130Gを最も多く含むようにしている。このように、人間の眼にとって最も感度の高い緑色を多く配置することで、見かけの解像度を高めることができる。特に本実施の形態では、撮像素子13における画素Pの配列を上記のような斜め配列とすることで、赤色フィルタ130Rおよび青色フィルタ130Bを取り囲むように緑色フィルタ130Gを配置することができる。すなわち、一般的なベイヤー配列(R:G:B=1:2:1)よりも、緑色の比率が大きいR:G:B=1:6:1の比率で単位配列U1を形成することができる。よって、上記撮像素子13における斜め配列によって、見かけの解像度を高め易くなる。
また、斜め配列において、画素サイズ(画素面積)を拡大することも可能である。撮像素子13自体のサイズが同じである場合には、画素サイズを拡大した分、実画素数は少なくなるものの、上述した斜め配列による効果と、画素面積の拡大によって感度が向上することにより、見かけの解像度を高めることができる。例えば、図2において、画素Pの一辺の長さaを例えば√2aに拡大した場合、画素Pのピッチdはaに等しくなり、画素面積は2倍となる。
更に、上記のようにして取得した視差画像としての画像データD3は、例えばステレオ方式の3次元画像表示に好適に用いられる。ここで、一般的なステレオ方式の3次元画像表示は、例えば次のようにして実現される。例えば、人間の眼に相当する2台のカメラで撮影した左眼用および右眼用の2枚の画像(2枚の視差画像)を、2台のプロジェクタを用いてスクリーン上に同時に投影し、このスクリーン上の映像を視聴者が偏光眼鏡をかけて観ることにより実現される。このとき、2台のプロジェクタには、左眼用および右眼用の各投射光として互いに直交する偏光が用いられ、偏光眼鏡として、左眼と右眼とにおいて互いに直交する偏光のみをそれぞれ透過するものが用いられる。これにより、左眼用の画像を左眼、右眼用の画像を右眼でそれぞれ観察することにより、観察者には、奥行き感のある立体画像として認識される。
本実施の形態で得られた視差画像を、このようなステレオ方式の3次元表示に用いる場合には、左右2枚の視差画像を生成し、生成した視差画像を上記のようなプロジェクタを用いてスクリーン上に投影し、これを偏光眼鏡で観察することで実現できる。このように、左眼用および右眼用の視差画像を、2台のカメラを用いることなく取得することができる。またこのとき、上述したように各視差画像では解像度の低下も少ない。よって、簡易な構成で十分な表示品質を有する3次元表示システムを実現することができる。
また、このようなステレオ方式の3次元表示用途として、左右(または上下)における2つの視差画像を生成する場合には、本実施の形態のように、レンズ割り当て画素数を2×2とすることにより、正方配列に比べ、画素データを高速に読み出すことが可能となる。以下、図8(A)〜(C)を参照してその理由について説明する。図8(A)は斜め配列の場合の読み出しについての説明図、図8(B)は、比較例として正方配列の場合の読み出しについての説明図である。2×2のレンズ割り当て画素には、便宜上1〜4の番号を付す。
図8(B)に示した正方配列の場合には、光軸対称となる左右の視差画像を得るために、上下の画素間、即ち図8(B)中の1と3同士および2と4同士)を積分して視差画像を生成する。このため、レンズ割り当て画素1〜4の全てのデータを読み出す必要があり、レンズごとに2つの読み出しライン(Rb1,Rb2)を要する。これに対し、図8(A)に示した斜め配列の場合には、図8(A)中の画素2,3のデータをレンズごとに読み出すことにより、光軸対称となる左右の視差画像を生成することができる。即ち、レンズ割り当て画素を2×2とする斜め配列では、レンズごとに1つの読み出しライン(Ra)において読み出しを行えばよく、これにより、正方配列に比べ高速に画素データを読み出すことが可能となる。また、斜め配列の場合には、積分処理が不要であるため、被写界深度の深い視差画像を得ることができる。ここでは、左右の視差画像を例に挙げて説明したが、上下2つの視差画像を生成する場合についても同様である。この場合には、画素1,4のデータを、レンズごとに1つのラインで読み出せばよい。
次に、上記第1の実施の形態の撮像装置1の撮像素子13上に設けられたカラーフィルタの変形例について説明する。以下、上記実施の形態と同様の構成要素については、同一の符号を付し、適宜説明を省略する。なお、いずれの変形例においても、カラーフィルタは、2×2の画素領域ごとに(レンズ単位で)色分けされると共に、その色配列が、画素Pの斜め配列に対応して45°回転した2次元配列となっている。
(変形例1)
図9は、変形例1に係る撮像素子13上のカラーフィルタの平面構成について模式的に表すものである。変形例1のカラーフィルタは、上記実施の形態のカラーフィルタ130と同様、赤色フィルタ130R,緑色フィルタ130Gおよび青色フィルタ130Bの3原色のフィルタから構成されている。但し、本変形例では、各色の比率がR:G:B=1:2:1となっている。
(変形例2)
図10は、変形例2に係る撮像素子13上のカラーフィルタの平面構成について模式的に表すものである。変形例2のカラーフィルタは、上記実施の形態のカラーフィルタ130と同様、赤色フィルタ130R,緑色フィルタ130Gおよび青色フィルタ130Bの3原色のフィルタから構成されている。但し、本変形例では、各色の比率がR:G:B=1:2:1となっている。この色配列は、従来一般的に用いられているベイヤー配列を、画素Pの斜め配列に対応させて45°回転させたものに等しい。
上記変形例1,2のように、カラーフィルタの各色の比率は、R:G:B=1:6:1に限らず、他の比率、例えば1:2:1であってもよい。このように構成した場合であっても、緑色が他の色よりも多くなるように配置すれば、見かけの解像度の向上に有利となる。
(変形例3)
図11は、変形例3に係る撮像素子13上のカラーフィルタの平面構成について模式的に表すものである。変形例3のカラーフィルタは、赤色フィルタ130R,緑色フィルタ130Gおよび青色フィルタ130Bの3原色のフィルタの他に、白色フィルタ130Wを有している。本変形例では、各色の比率がR:G:B:W=1:4:1:2となっている。
本変形例のように、赤色フィルタ130R,緑色フィルタ130Gおよび青色フィルタ130Bに加えて白色フィルタ130Wが配置されていてもよい。このように構成した場合、撮像素子13において取得された撮像データのうち、例えば白色成分から以下の式(1)を用いてRGB成分を復元することができる。具体的には、G成分を重視する場合、周辺画素データからの補間により得られるR,B成分を以下の式(1)に代入することにより、G成分を算出することが可能である(G=(W−a・R−c・B)/b)。
W=a・R+b・G+c・B(a,b,cは係数) ………(1)
なお、上記変形例3において、緑色の一部を白色に入れ替えて、R:G:B:W=1:2:1:4の比率となるように配列してもよい。
<第2の実施の形態>
図12は、本発明の第2の実施の形態に係るカラーフィルタ(カラーフィルタ140)の平面構成を模式的に表すものである。カラーフィルタ140は、上記第1の実施の形態と同様、撮像素子13上に配設されるものである。但し、本実施の形態では、撮像素子13におけるレンズ割り当て画素数が3×3(9つ)となっており、カラーフィルタ140では画素単位で色分けがなされている。カラーフィルタ140は、例えば赤色フィルタ140R,緑色フィルタ140G,青色フィルタ140Bおよび白色フィルタ140Wが規則的に配列してなり、色配列としては例えば図12のようなベイヤー配列を用いることができる。白色フィルタ140Wは、高解像度画素に割り当てられる。以下では、上記第1の実施の形態と同様の構成要素については同一の符号を付し、適宜説明を省略する。
本実施の形態では、上記第1の実施の形態と同様、撮像素子13において得られた撮像データD0に対し、画像処理部14において所定の画像処理が施されることにより、視差画像データが生成される。カラーフィルタ140では、上記第1の実施の形態と異なり、画素単位で色分けがなされているが、レンズ割り当て画素が3×3の場合には、生成した視差画像についても、カラーフィルタ140と同様の色配列となる。このように、本実施の形態においても、画素の斜め配列により、見かけの解像度の低下を抑制しつつ視差画像を得ることができる。
ここで、斜め配列の画素に基づいて視差画像を生成した場合、その視差画像における画素データについても斜め配列となる。このため、最終的には正方配列となるように変換することが望ましい。そこで、斜め配列から正方配列への変換処理について、撮像素子13上の一部の画素領域を例に挙げて説明する。この変換処理はカラー補間処理の前段階で行う。
図12の構成において、3×3の画素領域のうち互いに同一の位置にある画素(例えば、図12中の斜線部分)から抽出したデータを合成して視差画像を生成すると、生成された視差画像は、図13(A)に示したように、画素の斜め配列に対応したものとなる。そこで、各画素データ間を補間することにより、正方配列に対応した視差画像を生成する。具体的には、図13(B)に示したように、各画素データ間にブランク(空白)データを挿入する。このように、斜め配列から正方配列への変換処理を行うことにより、視差画像の解像度を向上させることができる。この変換処理は、上記第1の実施の形態で説明したレンズ割り当て画素が2×2の場合にも勿論、適用し得る。このようにして生成された正方配列の視差画像データに対して、デモザイク処理等のカラー補間処理を施すことにより、図13(C)に示したような3原色の視差画像データを生成する。このとき、白色フィルタ140Wに対応する画素データについては、R,G,Bのいずれかの色に置換する。
また、本実施の形態では、ステレオ方式の3次元表示用途として左右2つの視差画像を生成する場合には、正方配列の場合よりも左右の基線長を長くすることが可能である。例えば、図14(A),(B)に示したように、3×3の画素領域において画素4,6のデータを用いて左右の視差画像を生成する場合、画素面積が同じであれば、斜め配列における基線長Taは正方配列における基線長Tbよりも長くなる。同様に、上下の基線長についても正方配列に比べて長くなる。
(変形例4)
図15は、変形例4に係るカラーフィルタ150の平面構成について模式的に表すものである。カラーフィルタ150では、上記第2の実施の形態と同様のベイヤー配列が用いられているが、マイクロレンズに割り当てられた3×3の画素領域ごとに(レンズ単位で)、色分けがなされている。このように、レンズ単位で色分けがなされていてもよい。このようなカラーフィルタ150を用い、レンズごとに互いに同一の位置にある画素のデータを合成して生成した視差画像は、カラーフィルタ150と同様の色配列となる。即ち、レンズ割り当て画素数が、3×3のような奇数×奇数である場合には、カラーフィルタの色分けは画素単位でなされていてもよいし、レンズ単位でなされていてもよい。
以上、実施の形態および変形例を挙げて本発明を説明したが、本発明は上記実施の形態に限定されるものではなく、種々の変形が可能である。例えば、上記実施の形態では、一つのマイクロレンズに2×2=4つあるいは3×3=9つの画素が割り当てられた構成を例に挙げて説明したが、マイクロレンズへの割り当て画素数は、少なくとも2つあればよく、4つや9つに限定されない。割り当て画素数が2以上であれば、例えば左右の2つの視差画像を生成することができる。これにより、上述したようなステレオ方式の3次元表示への応用が可能となる。但し、上記実施の形態等のように、割り当て画素数を4つとした場合には、上記2つよりも視点の数が増える分、各視差画像の角度分解能を高めることができる。一方で、割り当て画素数が例えば3×3、4×4…と増大していくと、視差画像の角度分解能は向上するが、逆に2次元解像度が低下してしまう。このため、ステレオ方式の3次元表示用途としては、2×2の画素を割り当てた上記実施の形態等の構成が好ましい。
また、上記実施の形態等では、撮像素子13における複数の画素が水平方向および垂直方向からそれぞれ45°回転した2方向に沿って2次元配列した構成を例に挙げて説明したが、複数の画素の配列方向の回転角度は上記45°に限定されない。複数の画素の配列方向が、水平方向および垂直方向に対して一定の角度をなしていれば、水平方向および垂直方向における画素ピッチは狭くなるからである。従って、本発明と同等の効果を得ることができる。
更に、上記実施の形態等では、撮像素子13上のカラーフィルタとして、赤色、緑色、青色あるいは白色のフィルタを配置した構成を例に挙げて説明したが、カラーフィルタの色配列は、上記のような原色や白色に限らず、イエロー(Y)、マゼンダ(M)およびシアン(C)などの補色系を用いるようにしてもよい。
加えて、上記実施の形態等では、撮像素子13において取得した撮像データから生成した視差画像を、ステレオ方式の3次元表示に適用する場合を例に挙げて説明したが、本発明で得られる視差情報は、上記3次元表示に限らず、他の用途にも用いることができる。例えば、撮像データに基づいて、上述したような手法により左右上下に対応する4枚の視差画像を生成し、これらのうち少なくとも2枚の視差画像に基づいて相関演算処理を施すことにより、測定対象までの距離情報を得ることが可能である。
また、上記実施の形態等では、R,G,Bの3原色のフィルタの他に、高解像度画素に対応して白色フィルタを割り当てる構成についても説明したが、高解像度画素に対応する領域には、特にフィルタが配設されていなくともよい。また、白色フィルタに対応する画素データをR,G,Bのいずれの色に置換するのか、またその置換数等により、カラーフィルタの色配列については、上記実施の形態等で挙げた配列に限らず、様々な態様をとり得る。
1…撮像装置、11…撮像レンズ、12…マイクロレンズアレイ、13…撮像素子、14…画像処理部、15…撮像素子駆動部、16…制御部、130…カラーフィルタ、2…撮像対象物、12D…単位結像領域、D0…撮像データ、Dout…画像データ。

Claims (9)

  1. 開口絞りを有する撮像レンズと、
    複数の画素が、横方向および縦方向からそれぞれ45°回転した2方向に沿って、全体としてマトリクス状に配列されてなると共に、前記複数の画素において受光した光に基づいて撮像データを取得する撮像素子と、
    前記撮像レンズと前記撮像素子との間に、前記撮像素子のm×m(mは2以上の整数)の画素からなる画素領域に対して1つのマイクロレンズが割り当てられるように配置されたマイクロレンズアレイと、
    前記撮像素子で取得された撮像データに基づいて画像処理を行う画像処理部とを備え、
    前記画像処理部は、
    各画素領域のうち前記縦方向または前記横方向に沿って配置された2画素から得られる画素データを用いて、左右もしくは上下の視差画像を生成する
    撮像装置。
  2. 前記mは2である
    請求項1に記載の撮像装置。
  3. 前記mは3であり、
    前記画像処理部は、前記画素領域のうちの前記縦方向または前記横方向における両端に配置された2画素から得られる画素データを用いて、前記視差画像を生成する
    請求項1に記載の撮像装置。
  4. 前記画像処理部は、
    各画素領域のうち互いに同一の位置の画素から得られた画素データを合成して、前記視差画像を生成する
    請求項1ないし請求項3のいずれか1項に記載の撮像装置。
  5. 前記撮像素子の受光面上に設けられ、前記画素領域ごとに色分けされると共に、前記撮像素子における画素の2次元配列に対応して色が配置されたカラーフィルタ
    を備えた請求項1に記載の撮像装置。
  6. 前記カラーフィルタは、少なくとも緑色(G:Green)を含む複数色のフィルタが規則的に配列したものである
    請求項5に記載の撮像装置。
  7. 前記カラーフィルタは、赤色(R:Red)フィルタ、緑色フィルタおよび青色(B:Blue)フィルタを有し、各フィルタの個数比がR:G:B=1:6:1である
    請求項6に記載の撮像装置。
  8. 前記カラーフィルタは、赤色(R:Red)フィルタ、緑色フィルタおよび青色(B:Blue)フィルタを有し、各フィルタの個数比がR:G:B=1:2:1である
    請求項6に記載の撮像装置。
  9. 前記カラーフィルタは、赤色(R:Red)フィルタ、緑色フィルタ、青色(B:Blue)
    フィルタおよび白色(W:White)フィルタを有する
    請求項6に記載の撮像装置。
JP2009113942A 2008-11-21 2009-05-08 撮像装置 Expired - Fee Related JP5472584B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2009113942A JP5472584B2 (ja) 2008-11-21 2009-05-08 撮像装置
US12/588,795 US8451352B2 (en) 2008-11-21 2009-10-28 Image pickup apparatus
DE200960000570 DE602009000570D1 (de) 2008-11-21 2009-11-05 Bildaufnahmevorrichtung
AT09252560T ATE495550T1 (de) 2008-11-21 2009-11-05 Bildaufnahmevorrichtung
EP20090252560 EP2190019B1 (en) 2008-11-21 2009-11-05 Image pickup apparatus
CN2009102228971A CN101738840B (zh) 2008-11-21 2009-11-20 图像摄取设备

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008298339 2008-11-21
JP2008298339 2008-11-21
JP2009113942A JP5472584B2 (ja) 2008-11-21 2009-05-08 撮像装置

Publications (2)

Publication Number Publication Date
JP2010154493A JP2010154493A (ja) 2010-07-08
JP5472584B2 true JP5472584B2 (ja) 2014-04-16

Family

ID=41490351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009113942A Expired - Fee Related JP5472584B2 (ja) 2008-11-21 2009-05-08 撮像装置

Country Status (6)

Country Link
US (1) US8451352B2 (ja)
EP (1) EP2190019B1 (ja)
JP (1) JP5472584B2 (ja)
CN (1) CN101738840B (ja)
AT (1) ATE495550T1 (ja)
DE (1) DE602009000570D1 (ja)

Families Citing this family (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI422020B (zh) * 2008-12-08 2014-01-01 Sony Corp 固態成像裝置
KR20110040402A (ko) * 2009-10-14 2011-04-20 삼성전자주식회사 필터 어레이, 이를 포함하는 이미지 센서, 및 신호 보간 방법
JP2011223562A (ja) * 2010-03-23 2011-11-04 Fujifilm Corp 撮像装置
WO2012026292A1 (ja) * 2010-08-24 2012-03-01 富士フイルム株式会社 固体撮像装置
JP5461343B2 (ja) * 2010-08-24 2014-04-02 富士フイルム株式会社 撮像素子及び撮像装置
JP5406151B2 (ja) 2010-09-24 2014-02-05 パナソニック株式会社 3次元撮像装置
JP5406163B2 (ja) 2010-10-21 2014-02-05 パナソニック株式会社 3次元撮像装置および画像処理装置
US20120147247A1 (en) * 2010-12-14 2012-06-14 Samsung Electronics Co., Ltd. Optical system and imaging apparatus including the same
JP5728928B2 (ja) * 2010-12-17 2015-06-03 株式会社ニコン 受光装置
WO2012111757A1 (ja) 2011-02-18 2012-08-23 ソニー株式会社 画像処理装置および画像処理方法
JP5954964B2 (ja) * 2011-02-18 2016-07-20 キヤノン株式会社 撮像装置およびその制御方法
WO2012124181A1 (ja) * 2011-03-11 2012-09-20 富士フイルム株式会社 撮像装置及び撮像プログラム
JP6259492B2 (ja) * 2011-03-24 2018-01-10 キヤノン株式会社 画像処理装置及び画像処理方法
EP2690874A4 (en) * 2011-03-24 2014-09-03 Fujifilm Corp COLOR IMAGE SENSOR, IMAGING DEVICE AND CONTROL PLAN FOR THE IMAGING APPARATUS
JP6041495B2 (ja) * 2011-03-24 2016-12-07 キヤノン株式会社 撮像装置及び欠陥画素の判定方法
WO2012128153A1 (ja) * 2011-03-24 2012-09-27 富士フイルム株式会社 カラー撮像素子、撮像装置、及び撮像装置の制御プログラム
TW201245768A (en) * 2011-03-29 2012-11-16 Sony Corp Image pickup apparatus, image pickup device, image processing method, aperture control method, and program
JP5377797B2 (ja) * 2011-03-31 2013-12-25 富士フイルム株式会社 固体撮像素子及びその駆動方法並びに撮影装置
CN103636199B (zh) * 2011-04-07 2015-12-23 松下电器产业株式会社 三维摄像装置、图像处理装置、图像处理方法
US8988512B2 (en) * 2011-04-14 2015-03-24 Mediatek Inc. Method for adjusting playback of multimedia content according to detection result of user status and related apparatus thereof
US10104324B2 (en) 2011-05-24 2018-10-16 Sony Semiconductor Solutions Corporation Solid-state image pickup device and camera system
CN102209254B (zh) * 2011-05-30 2012-12-05 四川大学 一种一维集成成像方法和装置
JP2013055500A (ja) * 2011-09-02 2013-03-21 Sony Corp 固体撮像素子およびカメラシステム
JP5950520B2 (ja) * 2011-09-05 2016-07-13 キヤノン株式会社 光源装置
JP5864990B2 (ja) 2011-10-03 2016-02-17 キヤノン株式会社 固体撮像装置およびカメラ
JP6019568B2 (ja) 2011-11-28 2016-11-02 ソニー株式会社 画像処理装置および方法、記録媒体、並びに、プログラム
US8928969B2 (en) 2011-12-06 2015-01-06 Ostendo Technologies, Inc. Spatio-optical directional light modulator
US8854724B2 (en) 2012-03-27 2014-10-07 Ostendo Technologies, Inc. Spatio-temporal directional light modulator
JP5917125B2 (ja) * 2011-12-16 2016-05-11 キヤノン株式会社 画像処理装置、画像処理方法、撮像装置および表示装置
US9979950B2 (en) 2011-12-21 2018-05-22 Sharp Kabushiki Kaisha Imaging device and electronic information instrument
WO2013100036A1 (ja) * 2011-12-27 2013-07-04 富士フイルム株式会社 カラー撮像素子
WO2013099910A1 (ja) * 2011-12-27 2013-07-04 富士フイルム株式会社 固体撮像装置
WO2013099638A1 (ja) * 2011-12-28 2013-07-04 富士フイルム株式会社 撮像素子及び撮像装置
JPWO2013108656A1 (ja) 2012-01-16 2015-05-11 ソニー株式会社 固体撮像素子およびカメラシステム
WO2013114888A1 (ja) 2012-02-02 2013-08-08 パナソニック株式会社 撮像装置
JP5932626B2 (ja) * 2012-03-16 2016-06-08 本田技研工業株式会社 3次元空間の粒子画像流速測定装置
JP5542250B2 (ja) * 2012-03-28 2014-07-09 富士フイルム株式会社 固体撮像素子、撮像装置、及び固体撮像素子の駆動方法
KR20130112541A (ko) * 2012-04-04 2013-10-14 삼성전자주식회사 플레놉틱 카메라 장치
US9179126B2 (en) 2012-06-01 2015-11-03 Ostendo Technologies, Inc. Spatio-temporal light field cameras
JP5702894B2 (ja) 2012-07-06 2015-04-15 富士フイルム株式会社 カラー撮像素子および撮像装置
JP6071333B2 (ja) * 2012-08-27 2017-02-01 キヤノン株式会社 画像処理装置、方法およびプログラム、並びに画像処理装置を有する撮像装置
JP6222908B2 (ja) * 2012-09-11 2017-11-01 キヤノン株式会社 画像処理装置、方法およびプログラム、並びに画像処理装置を有する撮像装置
JP6231741B2 (ja) 2012-12-10 2017-11-15 キヤノン株式会社 固体撮像装置およびその製造方法
KR20140094395A (ko) * 2013-01-22 2014-07-30 삼성전자주식회사 복수 개의 마이크로렌즈를 사용하여 촬영하는 촬영 장치 및 그 촬영 방법
WO2014124743A1 (en) * 2013-02-18 2014-08-21 Sony Corporation Electronic device, method for generating an image and filter arrangement
US9939164B2 (en) * 2013-05-17 2018-04-10 Panasonic Intellectual Property Corporation Of America Thermal image sensor and user interface
JP6137941B2 (ja) * 2013-05-23 2017-05-31 キヤノン株式会社 画像処理システム、画像処理方法およびプログラム、並びに撮像装置
CN109246339B (zh) * 2013-08-01 2020-10-23 核心光电有限公司 用于对对象或场景进行成像的双孔径数字摄影机
EP2871830A1 (en) * 2013-11-08 2015-05-13 Thomson Licensing Optical assembly for plenoptic camera
US20150185308A1 (en) * 2014-01-02 2015-07-02 Katsuhiro Wada Image processing apparatus and image processing method, image pickup apparatus and control method thereof, and program
JP2015207815A (ja) * 2014-04-17 2015-11-19 キヤノン株式会社 撮像素子および撮像素子を備えた撮像装置
JP6545997B2 (ja) * 2015-04-24 2019-07-17 日立オートモティブシステムズ株式会社 画像処理装置
JP6579859B2 (ja) * 2015-08-11 2019-09-25 キヤノン株式会社 撮像装置、画像処理装置、画像処理方法およびプログラム
JP6746301B2 (ja) 2015-11-30 2020-08-26 キヤノン株式会社 撮像装置の駆動方法、撮像装置、撮像システム
CN110235441B (zh) * 2017-03-24 2021-01-15 华为技术有限公司 用于低照度的多摄像头系统
JP6526115B2 (ja) * 2017-07-13 2019-06-05 キヤノン株式会社 固体撮像装置
JP2019096988A (ja) * 2017-11-21 2019-06-20 日本放送協会 撮像デバイス、撮像装置、画像処理方法、およびプログラム
CN111316634A (zh) * 2018-12-28 2020-06-19 合刃科技(深圳)有限公司 Hdr图像成像方法、装置及系统
CN114647092A (zh) * 2020-12-18 2022-06-21 深圳光峰科技股份有限公司 一种立体显示装置与立体投影显示系统
US11665330B2 (en) 2021-01-27 2023-05-30 Dell Products L.P. Dynamic-baseline imaging array with real-time spatial data capture and fusion

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3971065A (en) * 1975-03-05 1976-07-20 Eastman Kodak Company Color imaging array
US5076687A (en) * 1990-08-28 1991-12-31 Massachusetts Institute Of Technology Optical ranging apparatus
US5805217A (en) * 1996-06-14 1998-09-08 Iterated Systems, Inc. Method and system for interpolating missing picture elements in a single color component array obtained from a single color sensor
US20080079748A1 (en) 1997-09-13 2008-04-03 Phan Gia C Image sensor and image data processing system
NO305728B1 (no) 1997-11-14 1999-07-12 Reidar E Tangen Optoelektronisk kamera og fremgangsmÕte ved bildeformatering i samme
JPH11168688A (ja) * 1997-12-02 1999-06-22 Fuji Photo Film Co Ltd ディジタルカメラ装置ならびにその記録および/または再生処理方法
US6396873B1 (en) * 1999-02-25 2002-05-28 Envision Advanced Medical Systems Optical device
US7834927B2 (en) * 2001-08-22 2010-11-16 Florida Atlantic University Apparatus and method for producing video signals
US7593597B2 (en) * 2003-08-06 2009-09-22 Eastman Kodak Company Alignment of lens array images using autocorrelation
US7405761B2 (en) * 2003-10-01 2008-07-29 Tessera North America, Inc. Thin camera having sub-pixel resolution
JP4322921B2 (ja) 2004-09-27 2009-09-02 パナソニック株式会社 カメラモジュールおよびそれを備えた電子機器
CN100546345C (zh) * 2004-09-27 2009-09-30 松下电器产业株式会社 摄像机模组以及具有其的电子设备
CN100556076C (zh) * 2004-10-01 2009-10-28 利兰·斯坦福青年大学托管委员会 成像装置及其方法
KR101134208B1 (ko) * 2004-10-01 2012-04-09 더 보드 어브 트러스티스 어브 더 리랜드 스탠포드 주니어 유니버시티 촬상 장치 및 그 방법
JP2006211631A (ja) * 2004-12-27 2006-08-10 Sony Corp 固体撮像装置および撮像装置
JP4826152B2 (ja) * 2005-06-23 2011-11-30 株式会社ニコン 画像合成方法及び撮像装置
US7522341B2 (en) * 2005-07-12 2009-04-21 Micron Technology, Inc. Sharing of microlenses among pixels in image sensors
US7718940B2 (en) * 2005-07-26 2010-05-18 Panasonic Corporation Compound-eye imaging apparatus
JP2007065330A (ja) * 2005-08-31 2007-03-15 Canon Inc カメラ
US7723662B2 (en) * 2005-10-07 2010-05-25 The Board Of Trustees Of The Leland Stanford Junior University Microscopy arrangements and approaches
JP4449936B2 (ja) * 2006-03-31 2010-04-14 ソニー株式会社 撮像装置、カメラシステムおよびその駆動方法
JP4915126B2 (ja) * 2006-04-10 2012-04-11 株式会社ニコン 固体撮像装置、および電子カメラ
JP5011814B2 (ja) * 2006-05-15 2012-08-29 ソニー株式会社 撮像装置、および画像処理方法、並びにコンピュータ・プログラム
JP5106870B2 (ja) * 2006-06-14 2012-12-26 株式会社東芝 固体撮像素子
JP5066851B2 (ja) * 2006-07-05 2012-11-07 株式会社ニコン 撮像装置
JP4826507B2 (ja) * 2007-02-27 2011-11-30 株式会社ニコン 焦点検出装置および撮像装置
JP5380782B2 (ja) * 2007-03-26 2014-01-08 株式会社ニコン 撮像装置
JP4715811B2 (ja) 2007-05-30 2011-07-06 パナソニック電工株式会社 加熱装置付きミスト発生装置
JP4967873B2 (ja) * 2007-07-13 2012-07-04 ソニー株式会社 撮像装置
JP2009113942A (ja) 2007-11-07 2009-05-28 Hokusho Co Ltd 垂直搬送機
US7962033B2 (en) * 2008-01-23 2011-06-14 Adobe Systems Incorporated Methods and apparatus for full-resolution light-field capture and rendering
JP5272565B2 (ja) * 2008-08-05 2013-08-28 株式会社ニコン 焦点検出装置および撮像装置

Also Published As

Publication number Publication date
US20100128152A1 (en) 2010-05-27
CN101738840B (zh) 2012-10-03
CN101738840A (zh) 2010-06-16
EP2190019B1 (en) 2011-01-12
ATE495550T1 (de) 2011-01-15
DE602009000570D1 (de) 2011-02-24
EP2190019A1 (en) 2010-05-26
US8451352B2 (en) 2013-05-28
JP2010154493A (ja) 2010-07-08

Similar Documents

Publication Publication Date Title
JP5472584B2 (ja) 撮像装置
JP5515396B2 (ja) 撮像装置
JP4706882B2 (ja) 撮像装置
JP4941332B2 (ja) 撮像装置
CN104081245B (zh) 固体摄像装置以及电子相机
JP4538766B2 (ja) 撮像装置、表示装置および画像処理装置
JP6417809B2 (ja) 撮像装置
JP5463718B2 (ja) 撮像装置
JP4483951B2 (ja) 撮像装置
JP5672989B2 (ja) 撮像装置
US9851483B2 (en) Stereoscopic imaging method and system that divides a pixel matrix into subgroups
US8078048B2 (en) Imaging device and video recording/reproducing system
CN103688536B (zh) 图像处理装置、图像处理方法
JP2015521411A (ja) πフィルタ群を用いてパターン化されたカメラモジュール
CN103597811B (zh) 拍摄立体移动图像和平面移动图像的图像拍摄元件以及装配有其的图像拍摄装置
CN102917235A (zh) 图像处理装置、图像处理方法和程序
JP2010068018A (ja) 画像処理装置、撮像装置および表示装置
JP2012191351A (ja) 撮像装置および画像処理方法
JP2009290268A (ja) 撮像装置
JPWO2013100039A1 (ja) カラー撮像素子及び撮像装置
JP2015185943A (ja) フィルタアレイ付マイクロレンズおよび固体撮像装置
US20140307060A1 (en) Image sensor
JP2015060121A (ja) カラーフィルタアレイおよび固体撮像素子

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140121

R151 Written notification of patent or utility model registration

Ref document number: 5472584

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees