JP5444439B2 - 焼却プラント - Google Patents

焼却プラント Download PDF

Info

Publication number
JP5444439B2
JP5444439B2 JP2012233457A JP2012233457A JP5444439B2 JP 5444439 B2 JP5444439 B2 JP 5444439B2 JP 2012233457 A JP2012233457 A JP 2012233457A JP 2012233457 A JP2012233457 A JP 2012233457A JP 5444439 B2 JP5444439 B2 JP 5444439B2
Authority
JP
Japan
Prior art keywords
heat
power generation
temperature
exhaust
incinerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012233457A
Other languages
English (en)
Other versions
JP2013032905A (ja
Inventor
俊一 三島
孝司 木本
Original Assignee
メタウォーター株式会社
国立大学法人佐賀大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by メタウォーター株式会社, 国立大学法人佐賀大学 filed Critical メタウォーター株式会社
Priority to JP2012233457A priority Critical patent/JP5444439B2/ja
Publication of JP2013032905A publication Critical patent/JP2013032905A/ja
Application granted granted Critical
Publication of JP5444439B2 publication Critical patent/JP5444439B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/12Heat utilisation in combustion or incineration of waste

Description

本発明は、下水汚泥焼却炉やごみ焼却炉などの焼却炉から排出される高温の排ガスの保有熱を利用して、排熱発電を行う焼却プラントに関するものである。
下水汚泥焼却炉等の焼却炉の排ガスは800〜850℃程度の高温の排ガスである。このため特許文献1に示すようにこの高温の排ガスを廃熱ボイラに導いて水蒸気を発生させ、蒸気タービンにより発電機を回転させて排熱発電を行わせることが提案されている。しかし設備投資額に見合う発電量が得られず、十分に実用化されているとはいえない。
そこで一般的な焼却プラントにおいては、焼却炉から排出される高温の排ガスを、白煙防止空気予熱器やその他の熱交換器に通して排熱の一部を回収したうえ、集塵装置においてダストを分離除去し、更に排煙洗浄塔に通して水洗浄を行い、排ガス中のNO,SO等の成分を除去する排ガス処理のみが行われているのが普通である。
なお焼却炉が流動焼却炉である場合には白煙防止空気予熱器の前段に流動空気予熱器が設置されることがある。また集塵装置がセラミックフィルタである場合には高温集塵が可能であるが、バグフィルタである場合には冷却塔において300℃以下にまで降温したうえで集塵を行っている。
このような通常の排ガス処理システムにおいては、排煙洗浄塔において200〜400℃の排ガスが約40℃にまで冷却される一方、洗煙排水は60〜70℃で排出される。この洗煙排水は比較的低温ではあるが水の比熱が大きいために熱量は大きく、排ガスの持つ熱量の50%を超える。このエネルギーは従来は温水プール等に利用する以外にはほとんど無駄に排出されており、その有効利用が期待されている。しかしながら温度域が60〜70℃の低レベルであるため、有効利用は困難とされてきた。
特開2005−321131号公報
従って本発明の目的は、従来は無駄に排出されていた排煙洗浄塔の洗煙排水の保有熱を有効に利用し、電力としてエネルギーを回収することができる焼却プラントを提供することである。
上記の課題を解決するためになされた本発明は、焼却炉と、熱交換器と、集塵装置と、排煙洗浄塔と、前記排煙洗浄塔から排出される洗煙排水を供給して排熱発電を行う排熱発電システムと、を備えた焼却プラントであって、前記熱交換器が空気予熱器であり、この空気予熱器により回収された前記焼却炉の排ガスの保有熱を前記排熱発電システムに供給することにより、発電量を向上させたことを特徴とするものである。
なお請求項2のように、前記熱交換器を白煙防止空気予熱器とすることができる。
本発明によれば、単に排煙洗浄塔から排出される洗煙排水を排熱発電システムに供給して排熱発電を行うだけではなく、熱交換器である空気予熱器により回収された焼却炉の排ガスの保有熱を排熱発電システムに供給することにより発電量を向上させる。このため洗煙排水の温度域が60〜70℃の低レベルであっても、有効に電力エネルギーを得ることができる。この場合、熱交換器により回収された焼却炉の排ガスの保有熱により排煙洗浄塔から排出される洗煙排水を昇温させても、あるいは排熱発電システム中の流体を昇温させてもよい。
特に排熱発電システムとして、アンモニアまたはフロンもしくはアンモニア/水混合流体を作動流体とする温度差発電システムを用いれば、温度域が低レベルの洗煙排水から有効に電力を取り出すことができる。また低温熱源として利用された凝縮器冷却水を排煙洗浄塔の給水とすれば、水使用量を減少させることができる。
本発明の第1の実施形態を示すフローチャートである。 本発明の第2の実施形態を示すフローチャートである。
以下に本発明の実施形態を示す。
第1の実施形態を示す図1において、1は焼却炉であり、この実施形態では下水汚泥脱水ケーキを焼却するための流動焼却炉である。しかし本発明において流動炉1はこれに限定されるものではなく、ごみ焼却炉であってもよい。その排ガスは通常は800〜850℃程度の高温排ガスである。2はこの高温排ガスが導入される流動空気予熱器であり、流動空気を例えば650℃に予熱して炉底部の分散管に供給している。焼却炉1が流動炉でない場合には流動空気予熱器2は省略される。
流動空気予熱器2の後段には熱交換器3が設置されている。この実施形態では熱交換器3は白煙防止空気予熱器である。これは煙突から放出される排ガス中の水蒸気が白煙として見えることを防止する白煙防止空気を得るための熱交換器であり、約300℃の加熱空気(白煙防止空気)が得られる。一方、排ガスは熱交換器3を通過すると250〜400℃にまで温度が低下し、次の集塵機4に導かれてダストを除去される。
集塵機4はこの実施形態では耐熱性に優れたセラミック集塵機であり、熱交換器3を通過した250〜400℃の排ガスをそのまま集塵することができる。しかし集塵機4としてはバグフィルタを使用することもでき、その場合にはその前段に冷却塔を配置してバグフィルタの耐熱温度まで降温することが必要である。集塵機4における排ガスの温度降下は小さく、排ガスは200〜400℃で次の排煙洗浄塔5に入る。
排煙洗浄塔5は塔の下部から排ガスを導入し、上部のノズル6から散水される水と接触させることによって排ガス中のNO,SO等の成分を除去する装置である。従来と同様に、塔内水はポンプ7によりノズル6に送水されて循環使用される。この実施形態の排煙洗浄塔5は塔の上部に煙突8が接続されており、塔内で洗浄された排ガスは煙突8から放出される。なお排煙洗浄塔5と煙突8との中間部分には複数段の棚板部9が形成されており、その上部から給水された清浄水と排ガスとを十分に接触させることにより、水洗が十分に行われるように工夫されている。
この排煙洗浄塔5においては排ガスが水と接触するため、200〜400℃の排ガスの保有熱の大半は水側に移動し、前記したように排煙洗浄塔5から排出される洗煙排水は60〜70℃の温水となる。本発明ではこの洗煙排水の保有熱を利用して排熱発電を行うのであるが、これとともに熱交換器3により回収された焼却炉1の排ガスの保有熱を、排熱発電システムに供給する。
このため本実施形態においては、排煙洗浄塔5から出る洗煙排水を排水加熱器10に導き、約300℃の白煙防止空気との熱交換によって昇温させたうえ、排熱発電システム20に供給している。その昇温幅は設備や運転方法によって様々であるが、通常は5〜15℃の範囲である。このように熱交換器3で回収された焼却炉1の排ガスの保有熱を洗煙排水の昇温に用いることは従来に例がない。本実施形態においては、排水加熱器10を通過した白煙防止空気は100℃以上の温度を保持しているので、煙突8に送られて白煙防止空気としての本来の機能を発揮することができる。なお洗煙排水の昇温量を増加させようとすると排水加熱器10を通過した白煙防止空気の温度が低下するが、100℃程度まで低下しても、大気温度が20℃、湿度100%の気候条件においては白煙は生じないが、冬場の条件である大気温度が0℃、湿度100%では、白煙が生じる。ただし、白煙の発生について法的規制は無く、冬場でもこの条件となるのは、数日程度である。
このようにして熱交換によって昇温された洗煙排水は70〜85℃程度の温水となり、排熱発電システム20に供給される。排熱発電システム20としては、アンモニアまたはフロンもしくはアンモニア/水混合流体を作動流体とする温度差発電システムを用いることが好ましい。このような温度差発電システム自体は、例えば佐賀大学の出願に係る特開平7−91361号公報に記載のように既に知られたものであり、例えば比較的温度の高い表層海水と深層の冷海水との温度差を利用した温度差発電を行うことができるシステムである。
この排熱発電システム20は、図1中に示すように蒸発器21と蒸気タービン22と凝縮器23と循環ポンプ24とを備え、アンモニアまたはフロンもしくはアンモニア/水混合流体のような低沸点流体を作動流体として循環させる。高温熱源である洗煙排水が蒸発器21に供給されて作動流体を加熱して蒸発させ、その蒸気によって蒸気タービン22を回転させて発電機25により発電する。蒸気タービン22を通過した作動流体は凝縮器23において低温熱源である冷却水により冷却されて液化し、循環ポンプ24により再び蒸発器21に戻るクローズドサイクルを繰り返す。
発電量を決定する蒸気タービン22の出力は、いうまでもなく高温熱源と低温熱源との温度差が大きいほど増加する。このため後記する実施例のデータに示すように、本発明により洗煙排水を昇温することによって、昇温しない場合よりも発電量を50〜60%程度増加させることができる。また低温熱源である冷却水としては常温の水を用いることができる。凝縮器23を通過した冷却水は清浄水であり、排煙洗浄塔5の上部に給水することによって使用水量を抑制することができる。なお冷却水も凝縮器23により加温されることとなるため、排煙洗浄塔5への給水に利用すれば塔内温度の上昇に寄与し、洗煙排水の温度を高める効果がある。
上記した第1の実施形態においては、熱交換器3で加熱された白煙防止空気の保有熱によって排煙洗浄塔5から排出される洗煙排水を昇温させたうえで排熱発電システム20に供給した。しかし図2に示す第2の実施形態に示すように、排熱発電システム20中に熱交換器26を設け、熱交換器3で加熱された空気によって作動流体を昇温させるようにしてもよい。この場合、熱交換器26を循環ポンプ24と蒸発器21との間に設け、液体状態にある作動流体を加熱するようにしても、あるいは熱交換器26を蒸発器21と蒸気タービン22との間に設け、作動流体の蒸気を加熱するようにしてもよい。
上記したように、本発明によれば焼却炉の排ガスを従来と同様にガス処理することができるとともに、従来は無駄に放出されていた洗煙排水を利用して排熱発電を行うことができる。さらに本発明では白煙防止空気の保有熱をも排熱発電に利用することによって、発電量を50〜60%程度も増加させることができる。次に本発明の実施例を示す。
処理量が100トン/日の下水汚泥焼却炉において、排煙洗浄塔から排出される温度が70℃の洗煙排水をアンモニアを作動流体とする排熱発電システムに導き、排熱発電を行った。焼却炉は流動焼却炉であり、水分が80%、発熱量が18840kJ/kg-DSの下水汚泥脱水ケーキを850℃で焼却した。排煙洗浄塔からの洗煙排水の流量は63m/hであり、白煙防止空気の保有熱を利用しない場合に、42.1kWの発電量が得られた。
また上記と同一条件で、温度が300℃の白煙防止空気を図1に示したように排水加熱器に導いて洗煙排水を79℃まで昇温させた場合には、発電量は69.2kWにまで増加した。このように白煙防止空気の保有熱の利用によって、発電量を約60%増加させることができた。排水加熱器を通過した白煙防止空気は約100℃にまで降温することとなるが、煙突に導いたところ気温20℃、湿度100%の条件において白煙防止効果を維持していることが確認された。
1 焼却炉
2 流動空気予熱器
3 熱交換器
4 集塵機
5 排煙洗浄塔
6 ノズル
7 ポンプ
8 煙突
9 棚板部
10 排水加熱器
20 排熱発電システム
21 蒸発器
22 蒸気タービン
23 凝縮器
24 循環ポンプ
25 発電機
26 熱交換器

Claims (2)

  1. 焼却炉と、熱交換器と、集塵装置と、排煙洗浄塔と、前記排煙洗浄塔から排出される洗煙排水を供給して排熱発電を行う排熱発電システムと、を備えた焼却プラントであって、
    前記熱交換器が空気予熱器であり、この空気予熱器により回収された前記焼却炉の排ガスの保有熱を前記排熱発電システムに供給することにより、発電量を向上させたことを特徴とする焼却プラント。
  2. 前記熱交換器が、白煙防止空気予熱器であることを特徴とする請求項1記載の焼却プラント。
JP2012233457A 2012-10-23 2012-10-23 焼却プラント Active JP5444439B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012233457A JP5444439B2 (ja) 2012-10-23 2012-10-23 焼却プラント

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012233457A JP5444439B2 (ja) 2012-10-23 2012-10-23 焼却プラント

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009021281 Division 2009-02-02

Publications (2)

Publication Number Publication Date
JP2013032905A JP2013032905A (ja) 2013-02-14
JP5444439B2 true JP5444439B2 (ja) 2014-03-19

Family

ID=47788911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012233457A Active JP5444439B2 (ja) 2012-10-23 2012-10-23 焼却プラント

Country Status (1)

Country Link
JP (1) JP5444439B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6334270B2 (ja) * 2013-05-31 2018-05-30 メタウォーター株式会社 有機性廃棄物燃焼プラントの制御方法。
CN106705064B (zh) * 2016-12-20 2019-07-26 航天凯天环保科技股份有限公司 一种降低生活垃圾焚烧烟气二噁英的方法
CN106678805B (zh) * 2016-12-20 2019-07-26 航天凯天环保科技股份有限公司 一种降低生活垃圾焚烧烟气二噁英的处理系统及应用方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51108145A (ja) * 1975-03-19 1976-09-25 Hashimoto Gomu Kogyo Kk Netsukaishuhatsudengatahaigasusenjoho
JP2877734B2 (ja) * 1995-07-13 1999-03-31 日本碍子株式会社 洗煙排水発電システム
JPH10317918A (ja) * 1997-05-20 1998-12-02 Ebara Corp 可燃物からのエネルギ回収方法
JP2001065840A (ja) * 1999-08-31 2001-03-16 Mitsubishi Heavy Ind Ltd ごみ焼却設備における燃焼ガス処理方法
JP4155898B2 (ja) * 2003-09-22 2008-09-24 稔 守田 ガスタービンが備わる高水分廃棄物の焼却設備

Also Published As

Publication number Publication date
JP2013032905A (ja) 2013-02-14

Similar Documents

Publication Publication Date Title
FI82767C (fi) Foerfarande och anordning foer roekgaskondensering.
RU2237172C1 (ru) Способ использования отводимой теплоты в процессе восстановления диоксида углерода
US8904789B2 (en) Method for generating energy by means of thermal cycles with high pressure and moderate temperature steam
US4441437A (en) Process for thermic treatment of sludges, particularly treatment of clarification sludges
US20050022981A1 (en) Pressurized direct contact heat exchange process
Elminshawy et al. Development of a desalination system driven by solar energy and low grade waste heat
DK3064841T3 (da) COMBINED GAS STEAM CYCLE CENTRAL HEATER
WO2011121852A1 (ja) 蒸気発生装置及びこれを用いたエネルギ供給システム
CN102656407B (zh) 用于从底灰回收热量的方法和装置
JP4542190B1 (ja) 廃棄物の燃焼発電方法及びその燃焼設備
US9453432B2 (en) Power generation system
CN1708659A (zh) 利用富氧燃烧改进锅炉以提高效率并降低排放物
JP2011140021A (ja) ガス化プロセスからのエネルギーを用いた塩水脱塩システム及びプロセス
KR101879471B1 (ko) 석탄 화력 발전 설비 및 석탄 화력 발전 방법
CN106605042B (zh) 结合热力水处理装置运行汽轮机装置的方法和设备
JP6009009B2 (ja) 燃焼排ガスからの熱回収発電設備
JP2005279331A (ja) 汚泥焼却設備および汚泥焼却方法
JPH11207102A (ja) 排水の蒸発濃縮装置
EA200800912A1 (ru) Способ и система для нагревания воды на базе горячих газов
CN102285748A (zh) 一种废热烟气/太阳能干化污泥方法和设备
US20130305554A1 (en) Non-contact Sludge Drying System With Flue Gas Heat
JP4780538B2 (ja) 硫酸製造設備における熱回収方法
KR101050770B1 (ko) 열펌프를 이용한 발전소의 열회수 장치
CN102770709B (zh) 废热发电方法以及废热发电系统
CN103408213A (zh) 一种节能型尾气自惰式循环污泥干燥系统及其应用方法

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20130513

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20130528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130604

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131220

R150 Certificate of patent or registration of utility model

Ref document number: 5444439

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250