JP5423150B2 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP5423150B2
JP5423150B2 JP2009129424A JP2009129424A JP5423150B2 JP 5423150 B2 JP5423150 B2 JP 5423150B2 JP 2009129424 A JP2009129424 A JP 2009129424A JP 2009129424 A JP2009129424 A JP 2009129424A JP 5423150 B2 JP5423150 B2 JP 5423150B2
Authority
JP
Japan
Prior art keywords
air conditioning
conditioning load
rotational speed
upper limit
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009129424A
Other languages
Japanese (ja)
Other versions
JP2010276276A (en
Inventor
秀行 末廣
雅人 土浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Aisin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd, Aisin Corp filed Critical Aisin Seiki Co Ltd
Priority to JP2009129424A priority Critical patent/JP5423150B2/en
Priority to KR1020100025729A priority patent/KR101088948B1/en
Publication of JP2010276276A publication Critical patent/JP2010276276A/en
Application granted granted Critical
Publication of JP5423150B2 publication Critical patent/JP5423150B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/54Control or safety arrangements characterised by user interfaces or communication using one central controller connected to several sub-controllers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/50Load
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0251Compressor control by controlling speed with on-off operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1932Oil pressures

Description

本発明は、空気調和装置に関するものである。   The present invention relates to an air conditioner.

従来、制御上の空調負荷を算出して、該空調負荷に基づき空調能力(出力)に相関する圧縮機の回転速度を制御する空気調和装置が知られている。
例えば特許文献1の空気調和装置では、制御上の空調負荷を「室内吸込空気温度と室内設定温度の差」として算出し、その値が予め定められている複数の温度領域のいずれに該当するかにより、圧縮機の駆動周波数(回転速度)の上限周波数を段階的に変化させることが提案されている。例えば空調負荷が予め設定されている温度領域のうちで最も大きい領域に属する場合には、圧縮機の上限周波数を増加させるようにしている。これにより、空調能力即ち圧縮機の実駆動周波数のハンチング幅を抑制することができ、結果としてサーモオフ及びサーモオンの回数を減らすことができ省エネルギ性の向上が図れるとしている。
2. Description of the Related Art Conventionally, an air conditioner that calculates a control air conditioning load and controls the rotational speed of a compressor that correlates with the air conditioning capability (output) based on the air conditioning load is known.
For example, in the air conditioner of Patent Document 1, the air conditioning load on control is calculated as “the difference between the indoor intake air temperature and the indoor set temperature”, and the value corresponds to one of a plurality of predetermined temperature ranges. Thus, it has been proposed to change the upper limit frequency of the drive frequency (rotational speed) of the compressor stepwise. For example, when the air conditioning load belongs to the largest region among preset temperature regions, the upper limit frequency of the compressor is increased. As a result, the air conditioning capability, that is, the hunting width of the actual drive frequency of the compressor can be suppressed, and as a result, the number of thermo-offs and thermo-ons can be reduced, and energy saving can be improved.

また、特許文献2の空気調和装置では、制御上の空調負荷を「室内温度とリモコン設定温度の差」として算出し、その空調負荷によって圧縮機の運転周波数(回転速度)を予め設定されている周波数割付条件に当てはめて決定することが提案されている。周波数割付条件としては、空調負荷が高負荷傾向であるか低負荷傾向であるかに応じて選択可能な2種類(高負荷用割付条件、低負荷用割付条件)が設けられている。なお、周波数割付条件の適用を始めるのは室外機を始動した後すぐではなく、前述の態様で算出される空調負荷が一定値以内に収まってから(即ち安定域に入ってから)としている。そして、それまでは、圧縮機の運転周波数を1分ごとに積算しており、空調負荷が一定値以内に収まった時点における積算値によって前述の高負荷傾向又は低負荷傾向の周波数割付条件を使い分けている。これにより、空調負荷に対応する最適な空調能力を確実且つ迅速に得ることができ、快適性及び省エネルギ性の向上が図れるとしている。   Further, in the air conditioner of Patent Document 2, the control air conditioning load is calculated as “difference between room temperature and remote control set temperature”, and the compressor operating frequency (rotational speed) is set in advance by the air conditioning load. It has been proposed to make a determination by applying to frequency allocation conditions. As frequency allocation conditions, two types (high load allocation conditions and low load allocation conditions) that can be selected depending on whether the air conditioning load tends to be high or low are provided. The application of the frequency allocation condition is not started immediately after the outdoor unit is started, but after the air conditioning load calculated in the above-described manner falls within a certain value (that is, after entering the stable range). Until then, the operating frequency of the compressor is integrated every minute, and the frequency allocation condition of the above-mentioned high load tendency or low load tendency is properly used depending on the integrated value when the air conditioning load falls within a certain value. ing. Thereby, the optimal air-conditioning capability corresponding to an air-conditioning load can be obtained reliably and promptly, and the comfort and energy saving can be improved.

さらに、特許文献3の空気調和装置では、インバータ駆動等の複数の圧縮機を搭載しており、室内温度とリモコン設定温度との差の総和(全室内ユニットの総和)を制御上の空調負荷として算出し、その空調負荷によって各圧縮機の運転周波数(回転速度)等を複数のパターンに制御することが提案されている。これにより、実際の空調負荷に見合った運転周波数等で各圧縮機が運転され、最適な空調能力を確保できるとともに、不要な運転停止を回避することができるとしている。   Furthermore, in the air conditioner of Patent Document 3, a plurality of compressors such as inverter drives are mounted, and the sum of the differences between the room temperature and the remote controller set temperature (the sum of all indoor units) is used as an air conditioning load for control. It has been proposed to calculate and control the operation frequency (rotational speed) of each compressor in a plurality of patterns according to the air conditioning load. As a result, each compressor is operated at an operation frequency or the like corresponding to the actual air conditioning load, and it is possible to ensure optimum air conditioning capacity and to avoid unnecessary operation stop.

特開2007−10200号公報JP 2007-10200 A 特開平5−346259号公報JP-A-5-346259 特開平5−157374号公報JP-A-5-157374

ところで、特許文献1〜3の空気調和装置では、制御上の空調負荷の計算に室内機の運転容量(馬力)が盛り込まれていないため、例えば小容量室内機のみが設置されている空間(部屋)と大容量室内機が設置されている空間が混在する場合には、本来、空調負荷としては相違ある状態であるにも関わらず、前述の態様で算出される制御上の空調負荷は同一と見なされてしまう。このため、特に大容量室内機が設置されている空間では快適性に支障を来たす可能性がある。   By the way, in the air conditioning apparatus of patent documents 1-3, since the operation capacity (horsepower) of the indoor unit is not included in the calculation of the control air conditioning load, for example, a space (room) in which only the small capacity indoor unit is installed. ) And the space where large-capacity indoor units are installed, the control air-conditioning load calculated in the above-described manner is the same even though the air-conditioning load is originally different. It will be considered. For this reason, comfort may be hindered especially in a space where a large-capacity indoor unit is installed.

本発明の目的は、省エネルギ性を向上しつつ、各室内機が設置されている空間での快適性を向上することができる空気調和装置を提供することにある。   The objective of this invention is providing the air conditioning apparatus which can improve the comfort in the space in which each indoor unit is installed, improving energy saving.

上記問題点を解決するために、請求項1に記載の発明は、回転に伴い冷媒を圧縮する圧縮機及び冷房運転時は冷媒の凝縮器として機能し暖房運転時は冷媒の蒸発器として機能する室外機熱交換器を有する室外機と、冷房運転時は冷媒の蒸発器として機能し暖房運転時は冷媒の凝縮器として機能する室内機熱交換器を有する複数の室内機とを備える空気調和装置において、前記複数の室内機のうち運転中の全ての容量をそれぞれ取得する容量取得手段と、前記複数の室内機のうち運転中の全てにおける実際の空気温度及び目標空気温度の温度差をそれぞれ取得する温度差取得手段と、前記各室内機に対して取得された前記容量及び前記温度差の乗算値を全ての前記室内機で合計した値を、前記各室内機に対して取得された前記容量を全ての前記室内機で合計した値で除して空調負荷温度差を演算する演算手段と、前記演算された空調負荷温度差に基づき前記圧縮機の回転速度の上限を制御する回転速度制御手段とを備えたことを要旨とする。   In order to solve the above problems, the invention described in claim 1 functions as a compressor that compresses refrigerant as it rotates and a condenser for refrigerant during cooling operation, and as a refrigerant evaporator during heating operation. An air conditioner comprising: an outdoor unit having an outdoor unit heat exchanger; and a plurality of indoor units having an indoor unit heat exchanger that functions as a refrigerant evaporator during cooling operation and functions as a refrigerant condenser during heating operation In the above, the capacity acquisition means for acquiring all the operating capacities of the plurality of indoor units, respectively, and the temperature difference between the actual air temperature and the target air temperature in all the operating of the plurality of indoor units, respectively. Temperature difference acquisition means, and the capacity acquired for each indoor unit, a value obtained by summing up the capacity acquired for each indoor unit and the multiplication value of the temperature difference in all the indoor units. All the above Computation means for computing the air conditioning load temperature difference by dividing by the total value in the internal unit, and rotational speed control means for controlling the upper limit of the rotational speed of the compressor based on the computed air conditioning load temperature difference This is the gist.

同構成によれば、制御上の空調負荷としての前記空調負荷温度差の計算に、運転中の各室内機の容量(馬力)が盛り込まれる。そして、前記圧縮機の回転速度の上限は、前記演算された空調負荷温度差に基づいて制御される。従って、例えば小容量室内機のみが設置されている空間(部屋)と大容量室内機が設置されている空間とが混在する場合であっても、各室内機において空調負荷に対応する最適な空調能力を確保することができ、該各室内機が設置されている空間での快適性を向上することができる。また、前記圧縮機の不要な運転停止を回避することができ、省エネルギ性を向上することができる。   According to this configuration, the capacity (horsepower) of each indoor unit in operation is included in the calculation of the air conditioning load temperature difference as the air conditioning load for control. The upper limit of the rotation speed of the compressor is controlled based on the calculated air conditioning load temperature difference. Therefore, for example, even when a space (room) where only a small-capacity indoor unit is installed and a space where a large-capacity indoor unit is installed are mixed, optimum air conditioning corresponding to the air conditioning load in each indoor unit Capability can be ensured, and comfort in the space where each indoor unit is installed can be improved. Moreover, unnecessary operation stop of the compressor can be avoided, and energy saving can be improved.

更に、前記回転速度制御手段は、システムの安定状態を表す所定条件の成立後、一定期間ごとに更新される空調負荷上限回転速度に基づいて前記圧縮機の回転速度の上限を制御してなり、前記演算手段により演算された前々回の空調負荷温度差から前回の空調負荷温度差を減じて制御効果量を演算する制御効果量演算手段と、前回の空調負荷上限回転速度から前々回の空調負荷上限回転速度を減じて前回制御量を演算する制御量演算手段と、前回の空調負荷上限回転速度に、前回制御量を制御効果量で除した値に現在の空調負荷温度差を乗じた値を加えて次回の空調負荷上限回転速度を演算する空調負荷上限回転速度演算手段とを備える。 Furthermore, the rotational speed control means controls the upper limit of the rotational speed of the compressor based on the air conditioning load upper limit rotational speed that is updated every predetermined period after the establishment of a predetermined condition representing the stable state of the system, Control effect amount calculation means for calculating the control effect amount by subtracting the previous air conditioning load temperature difference from the previous air conditioning load temperature difference calculated by the arithmetic means, and the previous air conditioning load upper limit rotation from the previous air conditioning load upper limit rotation speed. The control amount calculation means that calculates the previous control amount by reducing the speed, and the value obtained by multiplying the previous air conditioning load upper limit rotation speed by the control effect amount multiplied by the current air conditioning load temperature difference It computes the next air conditioning load upper limit rotation speed Ru and a air-conditioning load upper limit rotation speed calculation means.

同構成によれば、前記圧縮機の回転速度の上限である空調負荷上限回転速度は、前回の空調負荷上限回転速度に、前回制御量を制御効果量で除した値に現在の空調負荷温度差を乗じた値を加えることで演算される。つまり、次回の制御量(次回の空調負荷上限回転速度から前回の空調負荷上限回転速度を減じた値)は、前回制御量とその制御量を与えたときの空調負荷変動量(制御効果量)に基づいて決定される。このように、空調負荷上限回転速度の演算に際し、前回制御量とその制御量を与えたときの空調負荷変動量(制御効果量)が反映されることで、空調負荷から本来要求されている前記圧縮機の回転速度の上限をより正確に計算することができ、前記圧縮機の発停回数の抑制により省エネルギ性を向上しつつも、各室内機が設置されている空間の空気温度を目標空気温度により迅速に到達させることができる。   According to this configuration, the air conditioning load upper limit rotational speed, which is the upper limit of the rotational speed of the compressor, is calculated by dividing the previous air conditioning load upper limit rotational speed by a value obtained by dividing the previous control amount by the control effect amount. It is calculated by adding the value multiplied by. That is, the next control amount (the value obtained by subtracting the previous air conditioning load upper limit rotation speed from the next air conditioning load upper limit rotation speed) is the previous control amount and the air conditioning load fluctuation amount (control effect amount) when the control amount is given. To be determined. Thus, in calculating the air conditioning load upper limit rotation speed, the control amount and the air conditioning load fluctuation amount (control effect amount) when the control amount is given are reflected, so that the air conditioning load is originally requested. The upper limit of the rotation speed of the compressor can be calculated more accurately, and the air temperature in the space in which each indoor unit is installed is targeted while improving energy saving by suppressing the number of start and stop of the compressor. It can be quickly reached by the air temperature.

請求項に記載の発明は、請求項に記載の空気調和装置において、前記演算された空調負荷温度差が所定空調負荷温度差を超えたときに、前記回転速度制御手段による前記圧縮機の回転速度の上限制御を停止させる停止手段を備えたことを要旨とする。 According to a second aspect of the present invention, in the air conditioner according to the first aspect , when the calculated air conditioning load temperature difference exceeds a predetermined air conditioning load temperature difference, the compressor of the compressor by the rotational speed control means is provided. The gist of the invention is that a stopping means for stopping the upper limit control of the rotational speed is provided.

同構成によれば、例えば冷房運転時における外気温度の上昇又は暖房運転時における外気温度の下降、あるいは運転中の室内機数の増加などに伴う運転容量の増加等で、制御上の空調負荷である前記空調負荷温度差が所定空調負荷温度差を超えたときは、前記停止手段により前記空調負荷温度差に基づく前記圧縮機の回転速度の上限制御が停止される。従って、空調負荷の高い状態において、前記圧縮機の回転速度即ち空調能力が徒に下げられることを防止することができ、各室内機が設置されている空間での快適性を維持することができる。   According to this configuration, for example, the control air conditioning load is increased due to an increase in the operating capacity accompanying an increase in the outside air temperature during cooling operation, a decrease in the outside air temperature during heating operation, or an increase in the number of indoor units during operation. When a certain air conditioning load temperature difference exceeds a predetermined air conditioning load temperature difference, the upper limit control of the rotation speed of the compressor based on the air conditioning load temperature difference is stopped by the stopping means. Therefore, it is possible to prevent the rotation speed of the compressor, that is, the air conditioning capability, from being lowered suddenly in a state where the air conditioning load is high, and it is possible to maintain comfort in the space where each indoor unit is installed. .

請求項に記載の発明は、請求項に記載の空気調和装置において、前記圧縮機の吸入管の圧力及び吐出管の圧力をそれぞれ検出する低側圧力センサ及び高側圧力センサを備え、前記停止手段は、冷房運転時にあっては前記吸入管の圧力が低側所定圧力を超えたときに、暖房運転時にあっては前記吐出管の圧力が高側所定圧力を下回ったときに、前記回転速度制御手段による前記圧縮機の回転速度の上限制御を停止させることを要旨とする。 A third aspect of the present invention is the air conditioner according to the second aspect , further comprising a low-side pressure sensor and a high-side pressure sensor that respectively detect a pressure of a suction pipe and a pressure of a discharge pipe of the compressor, The stopping means is configured to rotate when the pressure of the suction pipe exceeds a low-side predetermined pressure during cooling operation, or when the pressure of the discharge pipe falls below a high-side predetermined pressure during heating operation. The gist is to stop the upper limit control of the rotational speed of the compressor by the speed control means.

同構成によれば、例えば冷房運転時において、外気温度の上昇や運転中の室内機数の増加などに伴う運転容量の増加等で、前記吸入管の圧力が低側所定圧力を超えるとき、即ち該圧力に相関する冷媒の蒸発温度が高く空調負荷(冷房負荷)の高い状態では、前記停止手段により前記圧縮機の回転速度の上限制御が停止される。同様に、暖房運転時において、外気温度の下降や運転中の室内機数の増加などに伴う運転容量の増加等で、前記吐出管の圧力が高側所定圧力を下回るとき、即ち該圧力に相関する冷媒の凝縮温度が低く空調負荷(暖房負荷)の高い状態では、前記停止手段により前記圧縮機の回転速度の上限制御が停止される。従って、空調負荷の高い状態において、前記圧縮機の回転速度即ち空調能力が徒に下げられることを防止することができ、各室内機が設置されている空間での快適性を維持することができる。   According to the same configuration, for example, in the cooling operation, when the pressure of the suction pipe exceeds the low side predetermined pressure due to an increase in the operating capacity accompanying an increase in the outside air temperature or an increase in the number of indoor units during operation, that is, In a state where the evaporation temperature of the refrigerant correlated with the pressure is high and the air conditioning load (cooling load) is high, the upper limit control of the rotation speed of the compressor is stopped by the stop means. Similarly, during heating operation, when the discharge pipe pressure falls below the high-side predetermined pressure due to a decrease in outside air temperature or an increase in operating capacity accompanying an increase in the number of indoor units during operation, etc. In a state where the condensation temperature of the refrigerant to be performed is low and the air conditioning load (heating load) is high, the upper limit control of the rotation speed of the compressor is stopped by the stop means. Therefore, it is possible to prevent the rotation speed of the compressor, that is, the air conditioning capability, from being lowered suddenly in a state where the air conditioning load is high, and it is possible to maintain comfort in the space where each indoor unit is installed. .

本発明では、省エネルギ性を向上しつつ、各室内機が設置されている空間での快適性を向上することができる空気調和装置を提供することができる。   In the present invention, it is possible to provide an air conditioner that can improve comfort in a space where each indoor unit is installed while improving energy saving.

本発明の一実施形態を示す冷媒回路図。The refrigerant circuit diagram which shows one Embodiment of this invention. 凝縮又は蒸発時の温度と圧力との関係を示すグラフ。The graph which shows the relationship between the temperature and pressure at the time of condensation or evaporation. 同実施形態の制御態様を示すフローチャート。The flowchart which shows the control aspect of the embodiment.

以下、本発明を具体化した一実施形態を図面に従って説明する。
図1は、本実施形態に係るヒートポンプ式の空気調和装置1を示す回路図である。同図に示されるように、空気調和装置1は、室外機10と、複数の室内機30とを備えて構成されている。なお、複数の室内機30の各々は、その設置される空間(部屋)のサイズ等に合わせてその容量が選択・設定されており、少なくとも一つの室内機30の容量がその他の室内機30の容量と異なっていてもよい。
DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, an embodiment of the invention will be described with reference to the drawings.
FIG. 1 is a circuit diagram showing a heat pump type air conditioner 1 according to the present embodiment. As shown in the figure, the air conditioner 1 includes an outdoor unit 10 and a plurality of indoor units 30. Note that the capacity of each of the plurality of indoor units 30 is selected and set according to the size of the space (room) in which they are installed, and the capacity of at least one indoor unit 30 is that of the other indoor units 30. It may be different from the capacity.

室外機10には、回転に伴い冷媒を圧縮する圧縮機12が設置されている。この圧縮機12は、その吸入管12aから吸入した冷媒を圧縮するとともに、その吐出管12bに冷媒配管13aを介して接続された四方弁14に冷媒を送り出す。四方弁14は、冷媒配管13bを介して室外機熱交換器15に接続されるとともに、冷媒配管13dを介して各室内機30(室内機熱交換器31)に接続されている。また、四方弁14は、冷媒配管13fを介してアキュームレータ18に接続されるとともに、該アキュームレータ18は、冷媒配管13gを介して圧縮機12の吸入管12aに接続されている。   The outdoor unit 10 is provided with a compressor 12 that compresses the refrigerant as it rotates. The compressor 12 compresses the refrigerant sucked from the suction pipe 12a and sends the refrigerant to a four-way valve 14 connected to the discharge pipe 12b via the refrigerant pipe 13a. The four-way valve 14 is connected to the outdoor unit heat exchanger 15 through the refrigerant pipe 13b, and is connected to each indoor unit 30 (indoor unit heat exchanger 31) through the refrigerant pipe 13d. The four-way valve 14 is connected to an accumulator 18 through a refrigerant pipe 13f, and the accumulator 18 is connected to the suction pipe 12a of the compressor 12 through a refrigerant pipe 13g.

前記室外機熱交換器15は、冷房運転時は冷媒の凝縮器として機能し暖房運転時は冷媒の蒸発器として機能するもので、冷媒配管13hを介して室内機30(電子膨張弁32)に接続されている。そして、冷媒配管13hには、室内機30側への冷媒の流れを許容する逆止弁21が配置されるとともに、該逆止弁21と並列で電子膨張弁22が配置されている。   The outdoor unit heat exchanger 15 functions as a refrigerant condenser during cooling operation and functions as a refrigerant evaporator during heating operation, and is connected to the indoor unit 30 (electronic expansion valve 32) via the refrigerant pipe 13h. It is connected. A check valve 21 that allows the refrigerant to flow toward the indoor unit 30 is disposed in the refrigerant pipe 13h, and an electronic expansion valve 22 is disposed in parallel with the check valve 21.

各室内機30に設置された室内機熱交換器31は、前記冷媒配管13dに接続されるとともに、電子膨張弁32に接続されている。そして、電子膨張弁32は、前記冷媒配管13hに接続されている。室内機熱交換器31は、冷房運転時は冷媒の蒸発器として機能し暖房運転時は冷媒の凝縮器として機能する。   The indoor unit heat exchanger 31 installed in each indoor unit 30 is connected to the refrigerant pipe 13d and to the electronic expansion valve 32. The electronic expansion valve 32 is connected to the refrigerant pipe 13h. The indoor unit heat exchanger 31 functions as a refrigerant evaporator during cooling operation and functions as a refrigerant condenser during heating operation.

次に、空気調和装置1の空気調和に係る動作について説明する。なお、冷房及び暖房の各運転時における冷媒の流れを実線矢印及び破線矢印にて表している。
まず、冷房運転時において、圧縮機12の吐出管12bを出た冷媒は、四方弁14を通過した後、凝縮器として機能する室外機熱交換器15に導かれる。室外機熱交換器15において、冷媒は室外の空気(外気)により熱を奪われ、凝縮・液化する。その後、逆止弁21を介して室内機30に導かれた冷媒は、電子膨張弁32において減圧されるとともに、蒸発器として機能する室内機熱交換器31において、室内の空気の熱を奪い気化する。その後、冷媒は、四方弁14及びアキュームレータ18を介して圧縮機12の吸入管12aに戻る。以上の過程を経ることで、室内が冷房される。
Next, the operation | movement which concerns on the air conditioning of the air conditioning apparatus 1 is demonstrated. In addition, the flow of the refrigerant | coolant at the time of each operation | movement of cooling and heating is represented by the solid line arrow and the broken line arrow.
First, during the cooling operation, the refrigerant that has exited the discharge pipe 12b of the compressor 12 passes through the four-way valve 14, and is then guided to the outdoor unit heat exchanger 15 that functions as a condenser. In the outdoor unit heat exchanger 15, the refrigerant is deprived of heat by outdoor air (outside air), and condensed and liquefied. Thereafter, the refrigerant guided to the indoor unit 30 via the check valve 21 is depressurized by the electronic expansion valve 32, and in the indoor unit heat exchanger 31 functioning as an evaporator, the heat of the indoor air is taken and vaporized. To do. Thereafter, the refrigerant returns to the suction pipe 12 a of the compressor 12 through the four-way valve 14 and the accumulator 18. Through the above process, the room is cooled.

一方、暖房運転時において、圧縮機12の吐出管12bを出た冷媒は、四方弁14を通過した後、室内機30に導かれる。そして、冷媒は、凝縮器として機能する室内機熱交換器31において、室内の空気に熱を放出し、凝縮・液化する。その後、電子膨張弁32において減圧された冷媒は、電子膨張弁22において更に減圧されて室外機熱交換器15に導かれる。そして、冷媒は、蒸発器として機能する室外機熱交換器15において、室外の空気の熱を吸収・気化する。その後、室外機熱交換器15からの四方弁14を介した冷媒が、アキュームレータ18を介して圧縮機12の吸入管12aに戻る。以上の過程を経ることで、室内が暖房される。   On the other hand, during the heating operation, the refrigerant that has exited the discharge pipe 12 b of the compressor 12 passes through the four-way valve 14 and is then guided to the indoor unit 30. The refrigerant releases heat into the indoor air in the indoor unit heat exchanger 31 functioning as a condenser, and condenses and liquefies. Thereafter, the refrigerant decompressed by the electronic expansion valve 32 is further decompressed by the electronic expansion valve 22 and guided to the outdoor unit heat exchanger 15. The refrigerant absorbs and vaporizes the heat of the outdoor air in the outdoor unit heat exchanger 15 that functions as an evaporator. Thereafter, the refrigerant from the outdoor unit heat exchanger 15 through the four-way valve 14 returns to the suction pipe 12 a of the compressor 12 through the accumulator 18. Through the above process, the room is heated.

ここで、室外機10には、圧縮機12等を駆動制御する制御装置41が設けられている。この制御装置41は、マイコンを主体に構成されており、前記吸入管12aの冷媒圧力PLを検出する低側圧力センサ42及び前記吐出管12bの冷媒圧力PHを検出する高側圧力センサ43にそれぞれ電気的に接続されている。   Here, the outdoor unit 10 is provided with a control device 41 for driving and controlling the compressor 12 and the like. The control device 41 is mainly composed of a microcomputer, and includes a low side pressure sensor 42 for detecting the refrigerant pressure PL of the suction pipe 12a and a high side pressure sensor 43 for detecting the refrigerant pressure PH of the discharge pipe 12b. Electrically connected.

一方、各室内機30には、電子膨張弁32等を駆動制御する制御装置46が設けられている。この制御装置46は、マイコンを主体に構成されており、当該室内機30の空気温度としての吸込温度Tsを検出する温度センサ47に電気的に接続されている。また、制御装置46は、当該室内機30に設定されている目標空気温度としての温度調整の設定温度(操作パネルやリモコン等の設定温度)Tm及び当該室内機30の容量(馬力)PWを、その内蔵する記憶手段に記憶する。   On the other hand, each indoor unit 30 is provided with a control device 46 that drives and controls the electronic expansion valve 32 and the like. The control device 46 is mainly composed of a microcomputer, and is electrically connected to a temperature sensor 47 that detects a suction temperature Ts as an air temperature of the indoor unit 30. Further, the control device 46 sets the temperature adjustment set temperature (set temperature of the operation panel, remote controller, etc.) Tm as the target air temperature set for the indoor unit 30 and the capacity (horsepower) PW of the indoor unit 30. Store in the built-in storage means.

そして、制御装置41は、運転中の各室内機30の吸込温度Ts、設定温度Tm及び容量PW等を適宜の通信手段を通じて取得可能に構成されており(容量取得手段、温度差取得手段)、これら吸込温度Ts、設定温度Tm及び容量PWに基づいて装置全体の空調負荷(全室内機30で合計した空調負荷)を算出する(演算手段)。そして、制御装置41は、例えば装置全体の空調負荷に基づいて、圧縮機12の回転速度の上限を制御する(回転速度制御手段)。この制御(以下、「空調負荷上限回転速度制御」ともいう)は、省エネルギー性の向上を目的に圧縮機12の回転速度を低下させるためのものである。   And the control apparatus 41 is comprised so that the suction temperature Ts of each indoor unit 30 under operation, setting temperature Tm, capacity | capacitance PW, etc. can be acquired through a suitable communication means (a capacity | capacitance acquisition means, a temperature difference acquisition means), Based on the suction temperature Ts, the set temperature Tm, and the capacity PW, the air conditioning load of the entire apparatus (the air conditioning load totaled by all the indoor units 30) is calculated (calculation means). And the control apparatus 41 controls the upper limit of the rotational speed of the compressor 12 based on the air-conditioning load of the whole apparatus, for example (rotational speed control means). This control (hereinafter also referred to as “air conditioning load upper limit rotational speed control”) is for reducing the rotational speed of the compressor 12 for the purpose of improving energy saving.

あるいは、制御装置41は、冷房運転時にあっては吸入管12aの冷媒圧力PLに基づく要求回転速度に基づいて圧縮機12の回転速度を制御(以下、「冷房時蒸発圧力要求制御」ともいう)し、暖房運転時にあっては吐出管12bの冷媒圧力PHに基づく要求回転速度に基づいて圧縮機12の回転速度を制御(以下、「暖房時凝縮圧力要求制御」ともいう)する。なお、冷房時蒸発圧力要求制御又は暖房時凝縮圧力要求制御(以下、「要求回転速度制御」ともいう)の実施時は、圧縮機12の上限回転速度として使用領域最大回転速度Nmaxが設定される。この使用領域最大回転速度Nmaxは、例えば制御装置41等の異常過熱や圧縮機12の過負荷運転等を回避し得る規格上(システム)の上限回転速度である。従って、要求回転速度制御の実施時は、圧縮機12の回転速度即ち空調能力が十分に確保され、各室内機30が設置されている空間での快適性が迅速に向上される。   Alternatively, the control device 41 controls the rotational speed of the compressor 12 based on the required rotational speed based on the refrigerant pressure PL of the suction pipe 12a during the cooling operation (hereinafter also referred to as “cooling evaporation pressure request control”). During the heating operation, the rotation speed of the compressor 12 is controlled based on the required rotation speed based on the refrigerant pressure PH of the discharge pipe 12b (hereinafter also referred to as “condensing pressure request control during heating”). When the cooling evaporation pressure request control or the heating condensing pressure request control (hereinafter also referred to as “required rotation speed control”) is performed, the use region maximum rotation speed Nmax is set as the upper limit rotation speed of the compressor 12. . This use region maximum rotation speed Nmax is a standard (system) upper limit rotation speed that can avoid, for example, abnormal overheating of the control device 41 or the like, overload operation of the compressor 12, and the like. Therefore, when the required rotational speed control is performed, the rotational speed of the compressor 12, that is, the air conditioning capability is sufficiently ensured, and the comfort in the space where each indoor unit 30 is installed is quickly improved.

ここで、制御装置41による冷房運転時の圧縮機12の回転速度制御態様についてより具体的に説明する。室内機30の操作パネルやリモコンのオンにより室外機10(圧縮機12)を始動すると、制御装置41は、圧縮機12の前述の要求回転速度制御(冷房時蒸発圧力要求制御)を行う。そして、室外機10を始動してから所定時間(例えば5分)以上を経過すると、制御装置41は、下式(1)に従って空調負荷温度差ΔTsの演算を開始する。つまり、制御装置41は、室外機10を始動してから前記所定時間以上を経過するまでは要求回転速度制御を継続して、空調負荷温度差ΔTsを演算しない。これは、前述の圧縮機12の回転速度の上限制御に先立って、システムを最低限安定させておくためである。   Here, the rotational speed control mode of the compressor 12 during the cooling operation by the control device 41 will be described more specifically. When the outdoor unit 10 (compressor 12) is started by turning on the operation panel of the indoor unit 30 or the remote controller, the control device 41 performs the above-described required rotational speed control (cooling evaporation pressure request control) of the compressor 12. And if predetermined time (for example, 5 minutes) or more passes after starting the outdoor unit 10, the control apparatus 41 will start the calculation of air-conditioning load temperature difference (DELTA) Ts according to the following Formula (1). That is, the control device 41 does not calculate the air conditioning load temperature difference ΔTs by continuing the required rotation speed control until the predetermined time or more has elapsed since the outdoor unit 10 was started. This is to keep the system at least stable prior to the upper limit control of the rotational speed of the compressor 12 described above.

空調負荷温度差ΔTs=(運転中の各室内機30の(容量PW×(吸込温度Ts−設定温度Tm))を運転中の全ての室内機30で合計した値)÷(運転中の各室内機30の容量PWを運転中の全ての室内機30で合計した値)
…(1)
このように演算された空調負荷温度差ΔTsには、運転中の各室内機30の容量PWが盛り込まれている。そして、制御装置41は、空調負荷温度差ΔTsが所定温度差DTc(例えば2°C)を下回り、且つ、冷媒の蒸発温度VTが所定温度VTc(例えば6°C)を下回ることで、前述の空調負荷上限回転速度制御を開始する。図2に示すように、蒸発温度VTは、吸入管12aの冷媒圧力PL(蒸発圧力)に相関するもので、前記低側圧力センサ42により検出される。
Air-conditioning load temperature difference ΔTs = (the value of (capacity PW × (suction temperature Ts−set temperature Tm)) of all the indoor units 30 in operation) / (each indoor unit 30 in operation) (The total value of the capacity PW of the unit 30 for all indoor units 30 in operation)
... (1)
The air conditioning load temperature difference ΔTs calculated in this way includes the capacity PW of each indoor unit 30 in operation. The control device 41 determines that the air conditioning load temperature difference ΔTs is less than a predetermined temperature difference DTc (for example, 2 ° C.) and the refrigerant evaporation temperature VT is lower than the predetermined temperature VTc (for example, 6 ° C.). Start air conditioning load upper limit rotation speed control. As shown in FIG. 2, the evaporation temperature VT correlates with the refrigerant pressure PL (evaporation pressure) of the suction pipe 12a and is detected by the low-side pressure sensor.

つまり、制御装置41は、室外機10を始動してから前記所定時間以上を経過しても、空調負荷温度差ΔTsが大きく装置全体としての空調負荷が大きいと見なせる運転領域では、圧縮機12の回転速度を下げる必要がないことから空調負荷上限回転速度制御を開始しない(待機する)。あるいは、制御装置41は、室外機10を始動してから前記所定時間以上を経過しても、冷媒の蒸発温度VTが高く装置全体としての室内機30の吹出し温度が高いと見なせる運転領域では、圧縮機12の回転速度を下げることで更に蒸発温度VTが高くなり、室内機30の吹出し温度が上昇して快適性を損なう可能性があることから空調負荷上限回転速度制御を開始しない(待機する)。   That is, the control device 41 does not operate the compressor 12 in the operation region where the air conditioning load temperature difference ΔTs is large and the air conditioning load as a whole device is large even after the predetermined time has elapsed since the outdoor unit 10 is started. The air conditioning load upper limit rotational speed control is not started (standby) because there is no need to lower the rotational speed. Alternatively, the control device 41, in the operation region where the refrigerant evaporating temperature VT is high and the blowout temperature of the indoor unit 30 as a whole device is high even after the predetermined time has elapsed since the outdoor unit 10 was started, Lowering the rotational speed of the compressor 12 further increases the evaporation temperature VT, and the blowout temperature of the indoor unit 30 may rise to impair comfort. Therefore, the air conditioning load upper limit rotational speed control is not started (standby). ).

システムが安定し、装置全体としての空調負荷が下がり、快適性を損なう可能性もないと判断されると、制御装置41は、空調負荷上限回転速度制御を開始する。すなわち、制御装置41は、当該制御の初期回転速度(初期値)として圧縮機12の現在の回転速度に「0.9」を乗じた値を与える。そして、制御装置41は、前記初期回転速度で圧縮機12の回転速度の上限制御を実施後、回転速度制御周期である所定時間T(例えば30秒)の経過後まで待機する。所定時間Tを経過した次回の制御周期時、制御装置41は制御量ΔN及び制御効果量Eに基づき下式(2)に従って空調負荷上限回転速度Nを演算する(空調負荷上限回転速度演算手段、制御効果量演算手段、制御量演算手段)。   When it is determined that the system is stable, the air conditioning load of the entire apparatus is reduced, and there is no possibility of impairing comfort, the control device 41 starts the air conditioning load upper limit rotational speed control. That is, the control device 41 gives a value obtained by multiplying the current rotational speed of the compressor 12 by “0.9” as the initial rotational speed (initial value) of the control. Then, the control device 41 waits until a predetermined time T (for example, 30 seconds), which is a rotation speed control cycle, has elapsed after performing the upper limit control of the rotation speed of the compressor 12 at the initial rotation speed. At the next control cycle after the predetermined time T has elapsed, the control device 41 calculates the air conditioning load upper limit rotational speed N according to the following equation (2) based on the control amount ΔN and the control effect amount E (air conditioning load upper limit rotational speed calculating means, Control effect amount calculation means, control amount calculation means).

空調負荷上限回転速度N(i)=前回の空調負荷上限回転速度N(i−1)+(前回制御量ΔN(i−1)/制御効果量E(i))×空調負荷温度差ΔTs(i)
(iは制御周期の回数)
ただし、
前回制御量ΔN(i−1)=前回の空調負荷上限回転速度N(i−1)−前々回の空調負荷上限回転速度N(i−2)
制御効果量E(i)=前々回の空調負荷温度差ΔTs(i−2)−前回の空調負荷温度差ΔTs(i−1)
…(2)
なお、空調負荷上限回転速度制御の開始時、初期回転速度として圧縮機12の回転速度に「0.9」を乗じた値を与えたとき、前回制御量の初期値として圧縮機12の回転速度に「0.1」を乗じた値が採用される。
Air conditioning load upper limit rotational speed N (i) = previous air conditioning load upper limit rotational speed N (i−1) + (previous control amount ΔN (i−1) / control effect amount E (i)) × air conditioning load temperature difference ΔTs ( i)
(I is the number of control cycles)
However,
Previous control amount ΔN (i−1) = previous air conditioning load upper limit rotational speed N (i−1) −previous air conditioning load upper limit rotational speed N (i−2)
Control effect amount E (i) = previous air conditioning load temperature difference ΔTs (i−2) −previous air conditioning load temperature difference ΔTs (i−1)
... (2)
At the start of the air conditioning load upper limit rotational speed control, when a value obtained by multiplying the rotational speed of the compressor 12 by “0.9” is given as the initial rotational speed, the rotational speed of the compressor 12 is set as the initial value of the previous control amount. A value obtained by multiplying by “0.1” is adopted.

つまり、圧縮機12の回転速度を下げるための次回の制御量ΔN(i)(=空調負荷上限回転速度N(i)−前回の空調負荷上限回転速度N(i−1))は、前回制御量ΔN(i−1)とその制御量ΔN(i−1)を与えたときの空調負荷変動量(制御効果量E(i))に基づいて決定される。このように、空調負荷上限回転速度の演算に際し、前回制御量とその制御量を与えたときの空調負荷変動量(制御効果量)が反映されることで、空調負荷から本来要求されている圧縮機12の回転速度の上限がより正確に計算される。   That is, the next control amount ΔN (i) (= the air conditioning load upper limit rotational speed N (i) −the previous air conditioning load upper limit rotational speed N (i−1)) for lowering the rotational speed of the compressor 12 is the previous control. It is determined based on the air conditioning load fluctuation amount (control effect amount E (i)) when the amount ΔN (i-1) and the control amount ΔN (i-1) are given. Thus, in calculating the air conditioning load upper limit rotational speed, the compression amount originally requested from the air conditioning load is reflected by reflecting the previous control amount and the air conditioning load fluctuation amount (control effect amount) when the control amount is given. The upper limit of the rotational speed of the machine 12 is calculated more accurately.

以後、制御装置41は、所定時間Tの経過ごとに同様の制御(空調負荷上限回転速度制御)を繰り返す。
また、前述の態様で空調負荷上限回転速度制御を繰り返しているとき、外気温度の上昇や運転中の室内機数の増加などに伴う運転容量の増加等で空調負荷が増加した場合には、制御装置41は、圧縮機12の回転速度を再び上昇させる必要があることから、空調負荷上限回転速度制御を停止して(停止手段)、前述の要求回転速度制御(冷房時蒸発圧力要求制御)を再開する。
Thereafter, the control device 41 repeats the same control (air conditioning load upper limit rotational speed control) every time the predetermined time T elapses.
In addition, when the air conditioning load upper limit rotational speed control is repeated in the above-described manner, if the air conditioning load increases due to an increase in operating capacity due to an increase in the outside air temperature or an increase in the number of indoor units during operation, etc. Since the apparatus 41 needs to increase the rotational speed of the compressor 12 again, it stops the air conditioning load upper limit rotational speed control (stopping means), and performs the above-mentioned required rotational speed control (cooling evaporation pressure request control). Resume.

具体的には、制御装置41は、空調負荷温度差ΔTsが所定空調負荷温度差としての所定温度差DTc1(例えば3°C)以上になり、あるいは吸入管12aの冷媒圧力PLが低側所定圧力を超え、これに相関する冷媒の蒸発温度VTが所定温度VTc1(例えば10°C)以上になると、空調負荷上限回転速度制御を停止して、要求回転速度制御を再開する。これにより、空調負荷温度差ΔTsが大きく装置全体としての空調負荷が大きいと見なせる運転領域において、圧縮機12の回転速度が徒に下げられることを防止することができる。あるいは冷媒の蒸発温度VTが高く装置全体としての室内機30の吹出し温度が高いと見なせる運転領域において、圧縮機12の回転速度が徒に下げられることを防止することができ、室内機30の吹出し温度が上昇して快適性を損なう可能性を低減することができる。なお、空調負荷上限回転速度制御から要求回転速度制御に切り替える際に圧縮機12の回転速度が急増することを回避するため、該回転速度の上限を漸増させていくことがより好ましい。   Specifically, the control device 41 determines that the air conditioning load temperature difference ΔTs is equal to or greater than a predetermined temperature difference DTc1 (for example, 3 ° C.) as the predetermined air conditioning load temperature difference, or the refrigerant pressure PL of the suction pipe 12a is the low side predetermined pressure. If the refrigerant evaporating temperature VT, which correlates with the temperature exceeds a predetermined temperature VTc1 (for example, 10 ° C.), the air-conditioning load upper limit rotational speed control is stopped and the required rotational speed control is restarted. Thereby, it is possible to prevent the rotational speed of the compressor 12 from being lowered in an operation region where the air conditioning load temperature difference ΔTs is large and the air conditioning load of the entire apparatus can be considered large. Alternatively, it is possible to prevent the rotational speed of the compressor 12 from being lowered in an operation region where the evaporation temperature VT of the refrigerant is high and the blowout temperature of the indoor unit 30 as the whole apparatus is high, and the blowout of the indoor unit 30 can be prevented. The possibility that the temperature rises and the comfort is impaired can be reduced. In order to avoid a sudden increase in the rotational speed of the compressor 12 when switching from the air conditioning load upper limit rotational speed control to the required rotational speed control, it is more preferable to gradually increase the upper limit of the rotational speed.

次に、制御装置41による暖房運転時の圧縮機12の回転速度制御態様について説明する。なお、暖房運転時の上記制御は、基本的に前述の冷房運転時に準じて行われるため、ここでは冷房運転時との相違点のみを抽出して説明する。   Next, the rotation speed control mode of the compressor 12 during the heating operation by the control device 41 will be described. Since the above control during the heating operation is basically performed according to the above-described cooling operation, only differences from the cooling operation are extracted and described here.

室外機10を始動すると、制御装置41は、圧縮機12の前述の要求回転速度制御(暖房時凝縮圧力要求制御)を行う。そして、室外機10を始動してから所定時間(例えば5分)以上を経過すると、制御装置41は、下式(3)に従って空調負荷温度差ΔTsの演算を開始する。   When the outdoor unit 10 is started, the control device 41 performs the above-described required rotational speed control (heating-time condensation pressure request control) of the compressor 12. And if predetermined time (for example, 5 minutes) or more passes after starting the outdoor unit 10, the control apparatus 41 will start the calculation of air-conditioning load temperature difference (DELTA) Ts according to the following Formula (3).

空調負荷温度差ΔTs=(運転中の各室内機30の(容量PW×(設定温度Tm−吸込温度Ts))を運転中の全ての室内機30で合計した値)÷(運転中の各室内機30の容量PWを運転中の全ての室内機30で合計した値)
…(3)
そして、制御装置41は、空調負荷温度差ΔTsが所定温度差DTh(例えば2°C)を下回り、且つ、冷媒の凝縮温度CTが所定温度CTh(例えば40°C)以上になることで、前述の空調負荷上限回転速度制御を開始する。図2に示すように、凝縮温度CTは、吐出管12bの圧力(凝縮圧力)に相関するもので、前記高側圧力センサ43により検出される。
Air-conditioning load temperature difference ΔTs = (the value of (capacity PW × (set temperature Tm−suction temperature Ts)) of all operating indoor units 30 for all the operating indoor units 30) ÷ (each operating room (The total value of the capacity PW of the unit 30 for all indoor units 30 in operation)
... (3)
The control device 41 determines that the air conditioning load temperature difference ΔTs is less than a predetermined temperature difference DTh (for example, 2 ° C.) and the refrigerant condensing temperature CT is equal to or higher than the predetermined temperature CTh (for example, 40 ° C.). The air conditioning load upper limit rotation speed control is started. As shown in FIG. 2, the condensation temperature CT correlates with the pressure (condensation pressure) of the discharge pipe 12 b and is detected by the high-side pressure sensor 43.

システムが安定し、装置全体としての空調負荷が下がり、快適性を損なう可能性もないと判断されると、制御装置41は、空調負荷上限回転速度制御を開始する。この際、制御装置41は、式(3)に基づき演算された空調負荷温度差ΔTsを前記式(2)に適用して空調負荷上限回転速度Nを演算する(空調負荷上限回転速度演算手段、制御効果量演算手段、制御量演算手段)。空調負荷上限回転速度の演算に際し、前回制御量とその制御量を与えたときの空調負荷変動量(制御効果量)が反映されることで、空調負荷から本来要求されている圧縮機12の回転速度の上限がより正確に計算されることは既述のとおりである。   When it is determined that the system is stable, the air conditioning load of the entire apparatus is reduced, and there is no possibility of impairing comfort, the control device 41 starts the air conditioning load upper limit rotational speed control. At this time, the control device 41 calculates the air conditioning load upper limit rotation speed N by applying the air conditioning load temperature difference ΔTs calculated based on the expression (3) to the expression (2) (air conditioning load upper limit rotation speed calculating means, Control effect amount calculation means, control amount calculation means). When calculating the air conditioning load upper limit rotational speed, the control amount of the compressor 12 that is originally requested by the air conditioning load is reflected by reflecting the previous control amount and the air conditioning load fluctuation amount (control effect amount) when the control amount is given. As described above, the upper limit of speed is calculated more accurately.

所定時間Tの経過ごとに空調負荷上限回転速度制御を繰り返しているとき、外気温度の下降や運転中の室内機数の増加などに伴う運転容量の増加等で空調負荷が増加した場合には、制御装置41は、圧縮機12の回転速度を再び上昇させる必要があることから、空調負荷上限回転速度制御を停止して(停止手段)、前述の要求回転速度制御(暖房時凝縮圧力要求制御)を再開する。具体的には、制御装置41は、空調負荷温度差ΔTsが所定温度差DTh1(例えば3°C)以上になり、あるいは吐出管12bの冷媒圧力PHが高側所定圧力を超え、これに相関する冷媒の凝縮温度CTが所定温度CTh1(例えば35°C)を下回ると、空調負荷上限回転速度制御を停止して、要求回転速度制御を再開する。これにより、空調負荷温度差ΔTsが大きく装置全体としての空調負荷が大きいと見なせる運転領域において、圧縮機12の回転速度が徒に下げられることを防止することができる。あるいは冷媒の凝縮温度CTが低く装置全体としての室内機30の吹出し温度が低いと見なせる運転領域において、圧縮機12の回転速度が徒に下げられることを防止することができ、室内機30の吹出し温度が下降して快適性を損なう可能性を低減することができる。   When the air conditioning load upper limit rotational speed control is repeated at every elapse of the predetermined time T, if the air conditioning load increases due to an increase in operating capacity due to a decrease in the outside air temperature or an increase in the number of indoor units during operation, Since the control device 41 needs to increase the rotational speed of the compressor 12 again, the control device 41 stops the air conditioning load upper limit rotational speed control (stop means), and the above-mentioned required rotational speed control (heating condensation pressure request control). To resume. Specifically, in the control device 41, the air conditioning load temperature difference ΔTs is equal to or greater than a predetermined temperature difference DTh1 (for example, 3 ° C.), or the refrigerant pressure PH of the discharge pipe 12b exceeds the predetermined high pressure and correlates with this. When the refrigerant condensing temperature CT falls below a predetermined temperature CTh1 (for example, 35 ° C.), the air conditioning load upper limit rotational speed control is stopped and the required rotational speed control is resumed. Thereby, it is possible to prevent the rotational speed of the compressor 12 from being lowered in an operation region where the air conditioning load temperature difference ΔTs is large and the air conditioning load of the entire apparatus can be considered large. Alternatively, it is possible to prevent the rotation speed of the compressor 12 from being lowered in an operation region where the refrigerant condensing temperature CT is low and the blowing temperature of the indoor unit 30 as a whole apparatus can be regarded as low. It is possible to reduce the possibility that the temperature decreases and the comfort is impaired.

次に、制御装置41による冷房運転時の圧縮機12の回転速度制御態様について、図3のフローチャートに基づき総括して説明する。室内機30の操作パネルやリモコンのオンにより処理がこのルーチンに移行すると、室外機10が始動される(S1)。そして、圧縮機12の前述の要求回転速度制御(冷房時蒸発圧力要求制御)が行われる(S2)。続いて、室外機10が始動されてから前記所定時間以上の経過を待って(S3)、前記式(1)に従って空調負荷温度差ΔTsの演算が開始されるとともに、該空調負荷温度差ΔTsが前記所定温度差DTcを下回るか否かが判断される(S4)。そして、空調負荷温度差ΔTsが前記所定温度差DTcを下回ると判断されるのを待って、冷媒の蒸発温度VTが前記所定温度VTcを下回るか否かが判断される(S5)。   Next, the rotational speed control mode of the compressor 12 during the cooling operation by the control device 41 will be described based on the flowchart of FIG. When the process shifts to this routine due to the operation panel of the indoor unit 30 or the remote control being turned on, the outdoor unit 10 is started (S1). Then, the required rotational speed control (cooling evaporation pressure request control) of the compressor 12 is performed (S2). Subsequently, after the outdoor unit 10 is started, the elapse of the predetermined time or more is waited (S3), and the calculation of the air conditioning load temperature difference ΔTs is started according to the equation (1), and the air conditioning load temperature difference ΔTs is It is determined whether or not the temperature difference is less than the predetermined temperature difference DTc (S4). Then, after it is determined that the air conditioning load temperature difference ΔTs is less than the predetermined temperature difference DTc, it is determined whether or not the refrigerant evaporation temperature VT is lower than the predetermined temperature VTc (S5).

続いて、冷媒の蒸発温度VTが前記所定温度VTcを下回ると判断されるのを待って、前述の空調負荷上限回転速度の演算が開始される(S6)。すなわち、当該制御の初期回転速度として圧縮機12の現在の回転速度に「0.9」を乗じた値が設定される(S7)。そして、この初期回転速度で空調負荷上限回転速度制御を実施後、前記所定時間T以上の経過を待って(S8)、前記式(2)に従って空調負荷上限回転速度Nが演算される(S9)。   Subsequently, after the evaporating temperature VT of the refrigerant is determined to be lower than the predetermined temperature VTc, the calculation of the air conditioning load upper limit rotational speed is started (S6). That is, a value obtained by multiplying the current rotational speed of the compressor 12 by “0.9” is set as the initial rotational speed of the control (S7). Then, after the air conditioning load upper limit rotational speed control is performed at this initial rotational speed, the passage of the predetermined time T or longer is waited (S8), and the air conditioning load upper limit rotational speed N is calculated according to the equation (2) (S9). .

次いで、空調負荷温度差ΔTsが前記所定温度差DTc1以上か否かが判断される(S10)。ここで、空調負荷温度差ΔTsが所定温度差DTc1未満と判断されると、更に冷媒の蒸発温度VTが前記所定温度VTc1以上か否かが判断される(S11)。ここで、冷媒の蒸発温度VTが前記所定温度VTc1未満と判断されると、S8に戻って同様の制御(空調負荷上限回転速度制御)が繰り返される。すなわち、S9で更新・設定された空調負荷上限回転速度Nで空調負荷上限回転速度制御を実施後、前記所定時間T以上の経過を待って、次回の空調負荷上限回転速度Nが演算等される。   Next, it is determined whether or not the air conditioning load temperature difference ΔTs is equal to or greater than the predetermined temperature difference DTc1 (S10). Here, if it is determined that the air conditioning load temperature difference ΔTs is less than the predetermined temperature difference DTc1, it is further determined whether or not the refrigerant evaporation temperature VT is equal to or higher than the predetermined temperature VTc1 (S11). If it is determined that the refrigerant evaporation temperature VT is lower than the predetermined temperature VTc1, the process returns to S8 and the same control (air conditioning load upper limit rotational speed control) is repeated. That is, after the air conditioning load upper limit rotational speed control is performed with the air conditioning load upper limit rotational speed N updated / set in S9, the next air conditioning load upper limit rotational speed N is calculated after waiting for the predetermined time T or more. .

また、S10において空調負荷温度差ΔTsが前記所定温度差DTc1以上と判断され、あるいは冷媒の蒸発温度VTが前記所定温度VTc1以上と判断されると、空調負荷上限回転速度の演算が停止される(S12)。そして、圧縮機12の上限回転速度を使用領域最大回転速度とする前述の要求回転速度制御(冷房時蒸発圧力要求制御)が行われる。   If the air conditioning load temperature difference ΔTs is determined to be equal to or greater than the predetermined temperature difference DTc1 in S10, or the refrigerant evaporation temperature VT is determined to be equal to or greater than the predetermined temperature VTc1, the calculation of the air conditioning load upper limit rotational speed is stopped ( S12). Then, the above-described required rotation speed control (cooling evaporation pressure request control) is performed in which the upper limit rotation speed of the compressor 12 is set to the maximum use area rotation speed.

以上詳述したように、本実施形態によれば、以下に示す効果が得られるようになる。
(1)本実施形態では、制御上の空調負荷としての空調負荷温度差ΔTsの計算に、運転中の各室内機30の容量PWが盛り込まれる。そして、圧縮機12の回転速度の上限は、空調負荷温度差ΔTsに基づいて制御される。従って、例えば小容量室内機のみが設置されている空間(部屋)と大容量室内機が設置されている空間とが混在する場合(ビル用マルチシステムなどで異容量室内機が接続されている場合)であっても、各室内機30において空調負荷に対応する最適な空調能力を確保することができ、該各室内機30が設置されている空間での快適性を向上することができる。
As described above in detail, according to the present embodiment, the following effects can be obtained.
(1) In this embodiment, the capacity PW of each indoor unit 30 during operation is included in the calculation of the air conditioning load temperature difference ΔTs as the air conditioning load for control. The upper limit of the rotational speed of the compressor 12 is controlled based on the air conditioning load temperature difference ΔTs. Therefore, for example, when a space (room) where only small-capacity indoor units are installed and a space where large-capacity indoor units are installed are mixed (when different-capacity indoor units are connected in a multi-system for buildings, etc.) ), It is possible to ensure the optimum air conditioning capacity corresponding to the air conditioning load in each indoor unit 30 and to improve the comfort in the space in which each indoor unit 30 is installed.

すなわち、例えば大容量室内機のみが設置されている空間(A空間)と小容量室内機のみが設置されている空間(B空間)があり、A空間の設定温度と室内温度の差が2°Cから変化せず、B空間の設定温度と室内温度の差が2°Cから0°Cに変化した場合を考える。制御上の空調負荷を単に「設定温度と室内温度の差」又は「設定温度と室内温度の差の合計」で計算している場合には、制御上の空調負荷が減少していると見なされ、圧縮機12の回転速度が下げられてしまう。一方、本実施形態では、A空間の室内温度が設定温度から離れた状態のまま変化していないことから、制御上の空調負荷としての空調負荷温度差ΔTsが依然として大きいままとなる。従って、圧縮機12の回転速度の過剰な低下を抑えることができ、本来要求されている運転能力で圧縮機12の回転速度を制御することができる。また、圧縮機12の不要な運転停止を回避することができ、省エネルギ性を向上することができる。   That is, for example, there are a space where only a large capacity indoor unit is installed (A space) and a space where only a small capacity indoor unit is installed (B space), and the difference between the set temperature of the A space and the room temperature is 2 °. Consider a case where the difference between the set temperature of the B space and the room temperature does not change from C but changes from 2 ° C to 0 ° C. If the control air conditioning load is simply calculated as “difference between set temperature and room temperature” or “total difference between set temperature and room temperature”, it is considered that the control air conditioning load is decreasing. The rotational speed of the compressor 12 will be lowered. On the other hand, in this embodiment, since the indoor temperature of the A space remains unchanged from the set temperature, the air conditioning load temperature difference ΔTs as the control air conditioning load remains large. Accordingly, an excessive decrease in the rotational speed of the compressor 12 can be suppressed, and the rotational speed of the compressor 12 can be controlled with the originally required operating capacity. Further, unnecessary operation stop of the compressor 12 can be avoided, and energy saving can be improved.

(2)本実施形態では、圧縮機12の回転速度の上限である空調負荷上限回転速度N(i)は、前回の空調負荷上限回転速度N(i−1)に、前回制御量ΔN(i−1)を制御効果量E(i)で除した値に現在の空調負荷温度差ΔTs(i)を乗じた値を加えることで演算される。つまり、次回の制御量ΔN(次回の空調負荷上限回転速度N(i)から前回の空調負荷上限回転速度N(i−1)を減じた値)は、前回制御量ΔN(i−1)とその制御量ΔN(i−1)を与えたときの空調負荷変動量(制御効果量E(i))に基づいて決定される。このように、空調負荷上限回転速度N(i)の演算に際し、前回制御量ΔN(i−1)とその制御量ΔN(i−1)を与えたときの空調負荷変動量(制御効果量E(i))が反映されることで、空調負荷から本来要求されている圧縮機12の回転速度の上限をより正確に計算することができ、圧縮機12の発停回数の抑制により省エネルギ性を向上しつつも、各室内機30が設置されている空間の吸込温度Tsを設定温度Tmにより迅速に到達させることができる。   (2) In the present embodiment, the air conditioning load upper limit rotational speed N (i) that is the upper limit of the rotational speed of the compressor 12 is set to the previous control amount ΔN (i) to the previous air conditioning load upper limit rotational speed N (i−1). It is calculated by adding a value obtained by multiplying the value obtained by dividing -1) by the control effect amount E (i) by the current air conditioning load temperature difference ΔTs (i). That is, the next control amount ΔN (a value obtained by subtracting the previous air conditioning load upper limit rotational speed N (i−1) from the next air conditioning load upper limit rotational speed N (i)) is the previous control amount ΔN (i−1). It is determined based on the air conditioning load fluctuation amount (control effect amount E (i)) when the control amount ΔN (i−1) is given. Thus, in calculating the air conditioning load upper limit rotational speed N (i), the air conditioning load fluctuation amount (control effect amount E when the previous control amount ΔN (i−1) and the control amount ΔN (i−1) are given. By reflecting (i)), the upper limit of the rotational speed of the compressor 12 originally required from the air conditioning load can be calculated more accurately, and energy saving is achieved by suppressing the number of times the compressor 12 is started and stopped. The suction temperature Ts of the space in which each indoor unit 30 is installed can be quickly reached by the set temperature Tm while improving the temperature.

すなわち、例えば吸込温度Tsと設定温度Tmの差が2°Cの状態で圧縮機12の回転速度を下げた場合に次回制御時も同じ回転速度を与えていると、空調負荷が減少してもある温度領域の間は圧縮機12の回転速度を変動させないため、設定温度Tmまでの追従性が悪くなって発停回数を抑制しきれない場合がある。一方、本実施形態では、空調負荷から与えた制御変動幅(制御量)が空調負荷変動量(制御効果量)にどう影響を与えたかを考慮するとともに、吸込温度Tsと設定温度Tmの差(空調負荷温度差ΔTs)に基づいて次回制御変動幅を計算することにより、設定温度Tmまでの追従性を向上し発停回数を抑制することができる。   That is, for example, if the rotational speed of the compressor 12 is lowered while the difference between the suction temperature Ts and the set temperature Tm is 2 ° C., and the same rotational speed is given during the next control, the air conditioning load decreases. Since the rotational speed of the compressor 12 is not fluctuated during a certain temperature region, the followability to the set temperature Tm is deteriorated, and the number of start / stop operations may not be suppressed. On the other hand, in the present embodiment, the influence of the control fluctuation range (control amount) given from the air conditioning load on the air conditioning load fluctuation amount (control effect amount) is considered, and the difference between the suction temperature Ts and the set temperature Tm ( By calculating the next control fluctuation range based on the air conditioning load temperature difference ΔTs), it is possible to improve the followability up to the set temperature Tm and to suppress the number of start / stop times.

(3)本実施形態では、例えば冷房運転時における外気温度の上昇又は暖房運転時における外気温度の下降、あるいは運転中の室内機数の増加などに伴う運転容量の増加等で、制御上の空調負荷である空調負荷温度差ΔTsが所定温度差DTc1,DTh1を超えたときは、空調負荷温度差ΔTsに基づく圧縮機12の回転速度の上限制御が停止される。従って、空調負荷の高い状態において、圧縮機12の回転速度即ち空調能力が徒に下げられることを防止することができ、各室内機30が設置されている空間での快適性を維持することができる。   (3) In the present embodiment, for example, the control air conditioning is performed due to an increase in the operating capacity accompanying an increase in the outside air temperature during the cooling operation, a decrease in the outside air temperature during the heating operation, or an increase in the number of indoor units during operation. When the air conditioning load temperature difference ΔTs, which is a load, exceeds the predetermined temperature differences DTc1, DTh1, the upper limit control of the rotational speed of the compressor 12 based on the air conditioning load temperature difference ΔTs is stopped. Therefore, it is possible to prevent the rotational speed of the compressor 12, that is, the air conditioning capability, from being lowered suddenly under a high air conditioning load, and to maintain comfort in the space where each indoor unit 30 is installed. it can.

(4)本実施形態では、例えば冷房運転時において、外気温度の上昇や運転中の室内機数の増加などに伴う運転容量の増加等で、吸入管12aの冷媒圧力PLが低側所定圧力を超えるとき、即ち該冷媒圧力PLに相関する冷媒の蒸発温度VTが前記所定温度VTc1を超えて空調負荷(冷房負荷)の高い状態では、空調負荷温度差ΔTsに基づく圧縮機12の回転速度の上限制御が停止される。同様に、暖房運転時において、外気温度の下降や運転中の室内機数の増加などに伴う運転容量の増加等で、吐出管12bの冷媒圧力PHが高側所定圧力を下回るとき、即ち該冷媒圧力PHに相関する冷媒の凝縮温度CTが前記所定温度CTh1を超えて空調負荷(暖房負荷)の高い状態では、空調負荷温度差ΔTsに基づく圧縮機12の回転速度の上限制御が停止される。従って、空調負荷の高い状態において、圧縮機12の回転速度即ち空調能力が徒に下げられることを防止することができ、各室内機30が設置されている空間での快適性を維持することができる。   (4) In the present embodiment, for example, during the cooling operation, the refrigerant pressure PL of the suction pipe 12a decreases to a predetermined value on the low side due to an increase in the operating capacity accompanying an increase in the outside air temperature or an increase in the number of indoor units during operation. If the refrigerant evaporating temperature VT correlated with the refrigerant pressure PL exceeds the predetermined temperature VTc1 and the air conditioning load (cooling load) is high, the upper limit of the rotational speed of the compressor 12 based on the air conditioning load temperature difference ΔTs. Control is stopped. Similarly, during the heating operation, when the refrigerant pressure PH of the discharge pipe 12b falls below the high-side predetermined pressure due to a decrease in the outside air temperature or an increase in the operating capacity accompanying an increase in the number of indoor units during operation, that is, the refrigerant When the refrigerant condensation temperature CT correlated with the pressure PH exceeds the predetermined temperature CTh1 and the air conditioning load (heating load) is high, the upper limit control of the rotational speed of the compressor 12 based on the air conditioning load temperature difference ΔTs is stopped. Therefore, it is possible to prevent the rotational speed of the compressor 12, that is, the air conditioning capability, from being lowered suddenly under a high air conditioning load, and to maintain comfort in the space where each indoor unit 30 is installed. it can.

(5)本実施形態では、空調負荷温度差ΔTsに基づく圧縮機12の回転速度の上限制御が停止されるとき、冷房運転時にあっては吸入管12aの冷媒圧力PL(蒸発圧力)に基づく要求回転速度に基づいて、暖房運転時にあっては吐出管12bの冷媒圧力PH(凝縮圧力)に基づく要求回転速度に基づいて圧縮機12の回転速度が制御されることで、空調負荷の高い状態においても空調能力を好適に確保することができる。   (5) In the present embodiment, when the upper limit control of the rotational speed of the compressor 12 based on the air conditioning load temperature difference ΔTs is stopped, the request based on the refrigerant pressure PL (evaporation pressure) of the suction pipe 12a during the cooling operation. Based on the rotational speed, during the heating operation, the rotational speed of the compressor 12 is controlled based on the required rotational speed based on the refrigerant pressure PH (condensation pressure) of the discharge pipe 12b. The air conditioning capability can be suitably secured.

なお、上記実施形態は以下のように変更してもよい。
・本発明は、電動モータによって圧縮機12が回転駆動される電気ヒートポンプ(EHP)式の空気調和装置や、ガスエンジンにより圧縮機12が回転駆動されるガスヒートポンプ(GHP)式の空気調和装置、灯油エンジンにより圧縮機12が回転駆動される灯油ヒートポンプ(KHP)式の空気調和装置に適用してもよい。また、これらの各場合、圧縮機12の回転速度を、電動モータや、ガスエンジン、灯油エンジンの回転速度を介して間接的に制御してもよい。
In addition, you may change the said embodiment as follows.
The present invention includes an electric heat pump (EHP) type air conditioner in which the compressor 12 is rotationally driven by an electric motor, a gas heat pump (GHP) type air conditioner in which the compressor 12 is rotationally driven by a gas engine, The present invention may be applied to a kerosene heat pump (KHP) type air conditioner in which the compressor 12 is rotationally driven by a kerosene engine. In each of these cases, the rotational speed of the compressor 12 may be indirectly controlled via the rotational speed of an electric motor, a gas engine, or a kerosene engine.

・特に、エンジン駆動式の空気調和装置を採用する場合、例えば暖房運転時にエンジンの冷却液回路と連係させてその排熱を利用するようにしてもよい。
次に、上記実施形態及び別例から把握できる技術的思想について以下に追記する。
In particular, when an engine-driven air conditioner is employed, for example, the exhaust heat may be used in conjunction with the engine coolant circuit during heating operation.
Next, the technical idea that can be grasped from the above embodiment and other examples will be described below.

・請求項に記載の空気調和装置において、前記停止手段により前記圧縮機の回転速度の上限制御が停止されるとき、使用領域最大回転速度を上限に、冷房運転時にあっては前記吸入管の圧力に基づく要求回転速度に基づいて、暖房運転時にあっては前記吐出管の圧力に基づく要求回転速度に基づいて前記圧縮機の回転速度を制御することを特徴とする空気調和装置。同構成によれば、前記圧縮機の回転速度の上限制御が停止されるとき、冷房運転時にあっては前記吸入管の圧力(蒸発圧力)に基づく要求回転速度に基づいて、暖房運転時にあっては前記吐出管の圧力(凝縮圧力)に基づく要求回転速度に基づいて前記圧縮機の回転速度が制御されることで、空調負荷の高い状態においても空調能力を好適に確保することができる。 In the air conditioner according to claim 3 , when the upper limit control of the rotation speed of the compressor is stopped by the stop means, the maximum rotation speed in the use region is set as the upper limit, and during the cooling operation, the suction pipe An air conditioner that controls the rotational speed of the compressor based on a required rotational speed based on a pressure, based on a required rotational speed based on a pressure in the discharge pipe during heating operation. According to this configuration, when the upper limit control of the rotation speed of the compressor is stopped, during the cooling operation, based on the required rotation speed based on the pressure (evaporation pressure) of the suction pipe, during the heating operation. Since the rotation speed of the compressor is controlled based on the required rotation speed based on the pressure of the discharge pipe (condensation pressure), the air conditioning capability can be suitably ensured even in a high air conditioning load state.

1…空気調和装置、10…室外機、12…圧縮機、12a…吸入管、12b…吐出管、15…室外機熱交換器、30…室内機、31…室内機熱交換器、41…制御装置(容量取得手段、温度差取得手段、演算手段、回転速度制御手段、制御効果量演算手段、制御量演算手段、空調負荷上限回転速度演算手段、停止手段)、42…低側圧力センサ、43…高側圧力センサ。   DESCRIPTION OF SYMBOLS 1 ... Air conditioning apparatus, 10 ... Outdoor unit, 12 ... Compressor, 12a ... Intake pipe, 12b ... Discharge pipe, 15 ... Outdoor unit heat exchanger, 30 ... Indoor unit, 31 ... Indoor unit heat exchanger, 41 ... Control Apparatus (capacity acquisition means, temperature difference acquisition means, calculation means, rotation speed control means, control effect amount calculation means, control amount calculation means, air conditioning load upper limit rotation speed calculation means, stop means), 42 ... low side pressure sensor, 43 ... High side pressure sensor.

Claims (3)

回転に伴い冷媒を圧縮する圧縮機及び冷房運転時は冷媒の凝縮器として機能し暖房運転時は冷媒の蒸発器として機能する室外機熱交換器を有する室外機と、冷房運転時は冷媒の蒸発器として機能し暖房運転時は冷媒の凝縮器として機能する室内機熱交換器を有する複数の室内機とを備える空気調和装置において、
前記複数の室内機のうち運転中の全ての容量をそれぞれ取得する容量取得手段と、
前記複数の室内機のうち運転中の全てにおける実際の空気温度及び目標空気温度の温度差をそれぞれ取得する温度差取得手段と、
前記各室内機に対して取得された前記容量及び前記温度差の乗算値を全ての前記室内機で合計した値を、前記各室内機に対して取得された前記容量を全ての前記室内機で合計した値で除して空調負荷温度差を演算する演算手段と、
前記演算された空調負荷温度差に基づき前記圧縮機の回転速度の上限を制御する回転速度制御手段とを備え
前記回転速度制御手段は、システムの安定状態を表す所定条件の成立後、一定期間ごとに更新される空調負荷上限回転速度に基づいて前記圧縮機の回転速度の上限を制御してなり、
前記演算手段により演算された前々回の空調負荷温度差から前回の空調負荷温度差を減じて制御効果量を演算する制御効果量演算手段と、
前回の空調負荷上限回転速度から前々回の空調負荷上限回転速度を減じて前回制御量を演算する制御量演算手段と、
前回の空調負荷上限回転速度に、前回制御量を制御効果量で除した値に現在の空調負荷温度差を乗じた値を加えて次回の空調負荷上限回転速度を演算する空調負荷上限回転速度演算手段とを備えたことを特徴とする空気調和装置。
A compressor that compresses refrigerant as it rotates and an outdoor unit that has an outdoor unit heat exchanger that functions as a refrigerant condenser during cooling operation and a refrigerant evaporator during heating operation, and refrigerant evaporation during cooling operation In an air conditioner comprising a plurality of indoor units having an indoor unit heat exchanger that functions as a condenser and functions as a refrigerant condenser during heating operation,
Capacity acquisition means for respectively acquiring all the capacity during operation among the plurality of indoor units;
A temperature difference acquisition means for acquiring a temperature difference between an actual air temperature and a target air temperature in all of the plurality of indoor units during operation; and
A value obtained by summing the multiplication value of the capacity acquired for each indoor unit and the temperature difference in all the indoor units is used, and the capacity acquired for each indoor unit is calculated for all the indoor units. An arithmetic means for calculating an air conditioning load temperature difference by dividing by the total value;
A rotational speed control means for controlling an upper limit of the rotational speed of the compressor based on the calculated air conditioning load temperature difference ;
The rotational speed control means controls an upper limit of the rotational speed of the compressor based on an air conditioning load upper limit rotational speed that is updated every predetermined period after a predetermined condition representing a stable state of the system is established,
Control effect amount calculating means for calculating the control effect amount by subtracting the previous air conditioning load temperature difference from the previous air conditioning load temperature difference calculated by the calculating means;
A control amount calculation means for calculating the previous control amount by subtracting the previous air conditioning load upper limit rotation speed from the previous air conditioning load upper limit rotation speed;
Calculate the next air conditioning load upper limit rotational speed by adding the previous air conditioning load upper limit rotational speed to the value obtained by dividing the previous control amount by the control effect amount and the current air conditioning load temperature difference to calculate the next air conditioning load upper limit rotational speed. an air conditioning apparatus characterized by comprising a means.
請求項に記載の空気調和装置において、
前記演算された空調負荷温度差が所定空調負荷温度差を超えたときに、前記回転速度制御手段による前記圧縮機の回転速度の上限制御を停止させる停止手段を備えたことを特徴とする空気調和装置。
In the air conditioning apparatus according to claim 1 ,
Air conditioning characterized by comprising stop means for stopping upper limit control of the rotational speed of the compressor by the rotational speed control means when the calculated air conditioning load temperature difference exceeds a predetermined air conditioning load temperature difference. apparatus.
請求項に記載の空気調和装置において、
前記圧縮機の吸入管の圧力及び吐出管の圧力をそれぞれ検出する低側圧力センサ及び高側圧力センサを備え、
前記停止手段は、冷房運転時にあっては前記吸入管の圧力が低側所定圧力を超えたときに、暖房運転時にあっては前記吐出管の圧力が高側所定圧力を下回ったときに、前記回転速度制御手段による前記圧縮機の回転速度の上限制御を停止させることを特徴とする空気調和装置。
In the air conditioning apparatus according to claim 2 ,
A low-side pressure sensor and a high-side pressure sensor that respectively detect the pressure of the suction pipe and the pressure of the discharge pipe of the compressor;
When the pressure of the suction pipe exceeds the low side predetermined pressure during the cooling operation, and when the pressure of the discharge pipe falls below the high side predetermined pressure during the heating operation, the stop means An air conditioner that stops upper limit control of the rotational speed of the compressor by the rotational speed control means.
JP2009129424A 2009-05-28 2009-05-28 Air conditioner Active JP5423150B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009129424A JP5423150B2 (en) 2009-05-28 2009-05-28 Air conditioner
KR1020100025729A KR101088948B1 (en) 2009-05-28 2010-03-23 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009129424A JP5423150B2 (en) 2009-05-28 2009-05-28 Air conditioner

Publications (2)

Publication Number Publication Date
JP2010276276A JP2010276276A (en) 2010-12-09
JP5423150B2 true JP5423150B2 (en) 2014-02-19

Family

ID=43423396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009129424A Active JP5423150B2 (en) 2009-05-28 2009-05-28 Air conditioner

Country Status (2)

Country Link
JP (1) JP5423150B2 (en)
KR (1) KR101088948B1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101157498B1 (en) 2011-06-02 2012-06-21 주식회사 나라컨트롤 Heat pump for energy saving type clean-room in hvac system
EP2863139B1 (en) * 2012-04-23 2020-07-08 Mitsubishi Electric Corporation Air conditioning system
JP5920027B2 (en) * 2012-05-28 2016-05-18 アイシン精機株式会社 Air conditioner
WO2014203311A1 (en) * 2013-06-17 2014-12-24 三菱電機株式会社 Air conditioning system control device and air conditioning system control method
KR102136881B1 (en) 2013-11-20 2020-07-23 엘지전자 주식회사 Air conditioner and a method controlling the same
CN106052025B (en) * 2016-06-01 2019-02-15 青岛海信日立空调系统有限公司 A kind of air conditioning control method and control device
CN106247500A (en) * 2016-07-27 2016-12-21 中国联合网络通信集团有限公司 A kind of heat pipe air conditioner device and control method thereof
CN107152822B (en) * 2017-06-23 2019-10-25 广东美的暖通设备有限公司 Control method, air conditioner and the storage medium of outdoor unit
CN107726554B (en) * 2017-09-19 2020-01-17 青岛海尔空调电子有限公司 Multi-split comfort level balance control method and system
JP7035584B2 (en) * 2018-02-07 2022-03-15 株式会社富士通ゼネラル Air conditioner
JP7095419B2 (en) * 2018-06-08 2022-07-05 株式会社デンソー Air conditioner
CN109059201B (en) * 2018-06-19 2021-04-20 广东美的制冷设备有限公司 Control method and device of air conditioner and air conditioner with control device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62258943A (en) * 1986-03-08 1987-11-11 Daikin Ind Ltd Air-conditioning machine
JP3096527B2 (en) * 1992-07-30 2000-10-10 三洋電機株式会社 Operation control method for air conditioner
JP3290306B2 (en) * 1994-07-14 2002-06-10 東芝キヤリア株式会社 Air conditioner
JP2955278B2 (en) 1997-09-30 1999-10-04 松下電器産業株式会社 Multi-room air conditioning system
JP2000018685A (en) 1998-07-02 2000-01-18 Matsushita Refrig Co Ltd Multi-room type air conditioner
JP2000292020A (en) * 1999-04-02 2000-10-20 Mitsubishi Electric Corp Multi-chamber air conditioner
JP3815199B2 (en) * 2000-09-26 2006-08-30 ダイキン工業株式会社 Air conditioner
JP3868265B2 (en) * 2001-10-31 2007-01-17 ダイキン工業株式会社 Air conditioner
JP4799252B2 (en) * 2006-04-06 2011-10-26 サンデン株式会社 Air conditioner

Also Published As

Publication number Publication date
KR20100129137A (en) 2010-12-08
JP2010276276A (en) 2010-12-09
KR101088948B1 (en) 2011-12-01

Similar Documents

Publication Publication Date Title
JP5423150B2 (en) Air conditioner
WO2009119023A1 (en) Freezing apparatus
WO2010137344A1 (en) Air-conditioning device
RU2488047C2 (en) Conditioner
CN102032704B (en) Heat pump apparatus
KR101970522B1 (en) Air conditioner and starting control method of thereof
JP5481937B2 (en) Air conditioner
US10197307B2 (en) Air conditioner with oil level control for both gas and electric heat pump cycles
JP2012072920A (en) Refrigeration apparatus
KR20100115757A (en) A method and an apparatus for protecting a compressor of an air-conditoning system
JP5633335B2 (en) Air conditioner
JP2007192422A (en) Multi-room type air conditioner
JP5920027B2 (en) Air conditioner
US10443901B2 (en) Indoor unit of air conditioner
KR20170092812A (en) Air conditioner and a method for controlling the same
JP2018169105A (en) Air conditioning device
JP6083276B2 (en) Air conditioner
KR20060082456A (en) Inverter air-conditioner and its controlling method
JP2001141323A (en) Air conditioner
JP2015059708A (en) Refrigeration device
JP5748549B2 (en) Air conditioner and control method of air conditioner
JP5753977B2 (en) Refrigeration cycle equipment
JPH10153179A (en) Device for protecting compressor from abnormality, and refrigerating cycle device
JP5594095B2 (en) Air conditioner
JP2009236398A (en) Air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120416

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130611

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131111

R151 Written notification of patent or utility model registration

Ref document number: 5423150

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151