JP5417735B2 - Method for growing silicon single crystal - Google Patents

Method for growing silicon single crystal Download PDF

Info

Publication number
JP5417735B2
JP5417735B2 JP2008110268A JP2008110268A JP5417735B2 JP 5417735 B2 JP5417735 B2 JP 5417735B2 JP 2008110268 A JP2008110268 A JP 2008110268A JP 2008110268 A JP2008110268 A JP 2008110268A JP 5417735 B2 JP5417735 B2 JP 5417735B2
Authority
JP
Japan
Prior art keywords
single crystal
silicon single
silicon
dislocation
growing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008110268A
Other languages
Japanese (ja)
Other versions
JP2009256156A (en
Inventor
正彦 奥井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Corp
Original Assignee
Sumco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumco Corp filed Critical Sumco Corp
Priority to JP2008110268A priority Critical patent/JP5417735B2/en
Publication of JP2009256156A publication Critical patent/JP2009256156A/en
Application granted granted Critical
Publication of JP5417735B2 publication Critical patent/JP5417735B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

本発明は、チョクラルスキー法(以下、「CZ法」という)によりルツボ内のシリコン融液からシリコン単結晶を引き上げて育成する方法に関し、特に、シリコン単結晶の直胴部の育成過程で有転位化が生じたときのシリコン単結晶の育成方法に関する。   The present invention relates to a method of pulling and growing a silicon single crystal from a silicon melt in a crucible by the Czochralski method (hereinafter referred to as “CZ method”), and particularly, in the process of growing a straight body portion of a silicon single crystal. The present invention relates to a method for growing a silicon single crystal when dislocation occurs.

半導体材料のシリコンウェーハの素材であるシリコン単結晶の製造には、CZ法による単結晶育成方法が広く採用されている。このCZ法によるシリコン単結晶の育成は、一般に、以下のように行われる。減圧雰囲気にされた引き上げ装置内において、石英ルツボ内に充填された多結晶シリコン原料を、石英ルツボを囲繞するヒータにより加熱し溶融させる。石英ルツボ内にシリコン融液が形成されると、石英ルツボの上方に吊り下げられた種結晶を下降させシリコン融液に浸漬する。この状態から種結晶および石英ルツボを所定の方向に回転させながら種結晶を徐々に引き上げ、これにより、種結晶の下方にシリコン単結晶が育成される。   A single crystal growth method based on the CZ method is widely used to manufacture a silicon single crystal that is a material of a semiconductor material silicon wafer. The growth of a silicon single crystal by this CZ method is generally performed as follows. In the pulling apparatus in a reduced pressure atmosphere, the polycrystalline silicon raw material filled in the quartz crucible is heated and melted by a heater surrounding the quartz crucible. When the silicon melt is formed in the quartz crucible, the seed crystal suspended above the quartz crucible is lowered and immersed in the silicon melt. From this state, the seed crystal and the quartz crucible are rotated in a predetermined direction, and the seed crystal is gradually pulled up, whereby a silicon single crystal is grown below the seed crystal.

また、近年では、COPや転位クラスターといったGrown−in欠陥のないシリコン単結晶を効率良く育成するため、ルツボの上方に、引き上げ中のシリコン単結晶の周囲を囲繞する熱遮蔽体を備えるとともに、この熱遮蔽体の内側でその単結晶の周囲を囲繞する水冷体を備えた引き上げ装置が多く用いられる(例えば、特許文献1、2参照)。   Further, in recent years, in order to efficiently grow a silicon single crystal having no grown-in defects such as COP and dislocation clusters, a heat shield surrounding the periphery of the silicon single crystal being pulled is provided above the crucible. A pulling device having a water-cooled body that surrounds the periphery of the single crystal inside the heat shield is often used (see, for example, Patent Documents 1 and 2).

シリコン単結晶の育成では、種結晶の直下に形成されたネック部から所望の直径まで逐次直径を増加させた円錐状のショルダー部が形成され、次いで、シリコンウェーハ用に製品として取り扱われる所望の直径の直胴部が形成され、さらに、育成の最終段階で転位の導入を防止するために直胴部から逐次直径を減少させた逆円錐状のテイル部が形成され、テイル部の下端でシリコン単結晶がシリコン融液から切り離される。そして、シリコン単結晶を引き上げた後の石英ルツボ内には、結晶化されなかったシリコン融液が残存する。   In the growth of a silicon single crystal, a conical shoulder portion having a diameter gradually increased from a neck portion formed immediately below the seed crystal to a desired diameter is formed, and then a desired diameter to be handled as a product for a silicon wafer. In addition, an inverted conical tail portion having a diameter gradually decreased from the straight body portion to prevent introduction of dislocations at the final stage of growth is formed, and a silicon single unit is formed at the lower end of the tail portion. The crystal is separated from the silicon melt. And the silicon melt which was not crystallized remains in the quartz crucible after pulling up the silicon single crystal.

このとき、石英ルツボ内に残存するシリコン融液(以下、「残存融液」という)が多量であると、シリコンと石英ルツボの熱膨張係数の差異に起因して、その後に表面から固化する残存融液の凝固膨張により、石英ルツボが割損したり、石英ルツボを収容するカーボンルツボやその外側に配置されるヒータなどが損傷するおそれがある。このため、実操業では、石英ルツボ内の残存融液が極力少量となるように、シリコン単結晶の育成が行われる(例えば、特許文献3参照)。   At this time, if there is a large amount of silicon melt remaining in the quartz crucible (hereinafter referred to as “residual melt”), due to the difference in coefficient of thermal expansion between silicon and the quartz crucible, the remaining solidified from the surface thereafter. Due to the solidification and expansion of the melt, the quartz crucible may be damaged, or the carbon crucible containing the quartz crucible and the heater disposed on the outside thereof may be damaged. For this reason, in actual operation, the silicon single crystal is grown so that the residual melt in the quartz crucible is as small as possible (see, for example, Patent Document 3).

特開2002−128589号公報JP 2002-128589 A 特開2001−220289号公報JP 2001-220289 A 特開平5−70280号公報(段落[0004]〜[0005])JP-A-5-70280 (paragraphs [0004] to [0005])

ところで、シリコン単結晶の育成では、結晶中に異物が混入したり、引き上げ操作パラメータの制御不良などに起因して、有転位化を生じることがある。   By the way, in the growth of a silicon single crystal, dislocation may occur due to foreign matters mixed in the crystal or poor control of pulling operation parameters.

一般的に、育成中のシリコン単結晶に有転位化を生じた場合、有転位化が発生した以降の結晶部位は多結晶化することが知られており、また、有転位化が発生した部位から上方の有転位化していない結晶部位に向けてスリップ転位が伸展し、その伸展長さは概ね引き上げるシリコン単結晶の直径長さまで伸展することが知られている。このため、通常、有転位化していないシリコン単結晶をテイル絞りする際は、テイル絞り時に有転位化が発生する場合を想定して、引き上げる単結晶直径以上の長さを有するテイル部の形成が行われている。   In general, when dislocations occur in the growing silicon single crystal, it is known that the crystal part after the dislocations occurs will be polycrystallized, and the dislocations occur It is known that slip dislocations extend from above to a crystal part that is not dislocated and the extension length extends to the diameter of the silicon single crystal that is generally pulled up. For this reason, normally, when tailing a silicon single crystal that is not dislocation-oriented, the tail portion having a length longer than the diameter of the single crystal to be pulled up is assumed, assuming that dislocation formation occurs during tail-drawing. Has been done.

一方、育成中の単結晶に有転位化が発生した場合は、それまでに育成した健全な結晶部位(直胴部)を生かすとともに、上述した石英ルツボの割損やカーボンルツボなどの損傷を防止するため、有転位化発生後も単結晶の育成を継続し、石英ルツボ内の残存融液が極力少量となるようにシリコン単結晶を育成することが行われている。   On the other hand, when dislocations occur in the growing single crystal, the healthy crystal part (straight barrel part) grown up to that point is utilized, and the above-mentioned quartz crucible breakage and carbon crucible damage are prevented. For this reason, the growth of a single crystal is continued even after the occurrence of dislocations, and the silicon single crystal is grown so that the remaining melt in the quartz crucible becomes as small as possible.

ところが、有転位化したシリコン単結晶は、引き上げ装置内での引き上げ時、引き上げ装置からの取り出し時、または切断加工時に、有転位化の発生により生じたスリップ転位伸展領域、および有転位化が発生した以降の多結晶化部位に亀裂が発生しやすく、特にスリップ転位伸展部位に亀裂が発生しやすい。これは、これらの結晶部位は正常な単結晶部位に比べて強度が低く、水冷体による急冷を受けることにより結晶中の残留応力が大きくなっていることによるものと考えられる。亀裂の発生したシリコン単結晶は、亀裂の進展により破断したり破裂し、重大事故を引き起こすという問題がある。   However, dislocation-induced silicon single crystals cause slip dislocation extension regions caused by dislocations and dislocations during pulling in the pulling device, removal from the pulling device, or during cutting. Thereafter, cracks are likely to occur in the polycrystallized sites, and cracks are particularly likely to occur in the slip dislocation extension sites. This is presumably because these crystal parts are lower in strength than normal single crystal parts, and the residual stress in the crystal is increased by being rapidly cooled by a water-cooled body. The cracked silicon single crystal breaks or ruptures due to the progress of the crack, causing a serious accident.

本発明は、上記の問題に鑑みてなされたものであり、直胴部の育成過程で有転位化が生じても、引き上げ装置内での引き上げ時、引き上げ装置からの取り出し時、または切断加工時にシリコン単結晶の破断や破裂を防止できるシリコン単結晶の育成方法を提供することを目的とする。   The present invention has been made in view of the above problems, and even when dislocation is generated in the process of growing the straight body portion, at the time of lifting in the lifting device, at the time of taking out from the lifting device, or at the time of cutting processing An object of the present invention is to provide a method for growing a silicon single crystal that can prevent the silicon single crystal from being broken or ruptured.

本発明者は、上記目的を達成するため、シリコン単結晶の育成状況を詳細に検討し、その結果、従来の操業と異なり、直胴部で有転位化が発生した場合に、直ちに、先窄まり形状で、外周が丸みを帯びた逆円錐台状のテイル部の形成に移行し、テイル部を、結晶育成中に有転位化が生じない場合に比して短く形成してシリコン融液から切り離せば、有転位化が発生したシリコン単結晶には亀裂は発生せず、シリコン単結晶の破断や破裂の防止に有効であることを知見した。
In order to achieve the above object, the present inventor has examined the growth state of the silicon single crystal in detail, and as a result, unlike the conventional operation, when dislocation occurs in the straight body portion, the constriction is immediately performed. Transition to the formation of an inverted frustoconical tail having a round shape and a rounded outer periphery, and the tail is formed shorter than when no dislocation occurs during crystal growth. It was found that the silicon single crystal in which dislocations are generated does not crack when separated, and is effective in preventing the silicon single crystal from being broken or ruptured.

本発明は、このような知見に基づくものであり、CZ法によるシリコン単結晶の育成方法において、シリコン単結晶の直胴部の育成過程で有転位化が生じたとき、直ちに、先窄まり形状で、外周が丸みを帯びた逆円錐台状のテイル部の形成を行い、テイル部の形成長さを、結晶育成中に有転位化が生じない場合に比して短くしてシリコン単結晶をルツボ内のシリコン融液から切り離すことを特徴とする。
The present invention is based on such knowledge, and in the method for growing a silicon single crystal by the CZ method, when dislocation occurs in the process of growing the straight body of the silicon single crystal, the tapered shape is immediately formed. Then, the inverted frustoconical tail portion with a rounded outer periphery is formed, and the length of the tail portion is shortened compared to the case where dislocation does not occur during crystal growth. It is characterized by being separated from the silicon melt in the crucible.

ここでいう「有転位化が生じたとき」とは、育成中の単結晶を目視または光学的に監視して有転位化を見い出したとき、例えば、実操業で育成中の単結晶に発生する晶癖線を監視する場合、その晶癖線に多結晶化に伴う消失が認められたときなどを意味する。さらに、「直ちに」とは、単結晶育成中の監視で有転位化を見い出すと直ぐにということを意味する。   “When dislocations occur” as used herein refers to occurrence of dislocations by visually or optically monitoring a growing single crystal, for example, occurring in a single crystal growing in actual operation When the crystal habit line is monitored, it means when the crystal habit line disappears due to polycrystallization. Further, “immediately” means that as soon as a dislocation is found in monitoring during the growth of a single crystal.

このとき、前記直胴部における有転位化の発生位置から前記テイル部の下端までの長さを100mm以下にすることが好ましい。また、前記テイル部の形状を先窄まり形状で、外周が丸みを帯びた逆円錐台状とすることにより、テイル部の総量を可及的に低減することができ、シリコン単結晶への亀裂の発生を防止することができる。また、前記テイル部の形成は、前記ルツボを加熱するヒータの出力を高めることにより前記シリコン融液の温度を上昇させ、引き上げ速度の上昇量を抑制しながら行うことが好ましい。なお、本発明では、既に有転位化したシリコン単結晶をテイル絞りするものであることから、テイル絞り時の有転位化発生を考慮する必要はなく、テイル部の長さを短くしても何も問題は生じない。
At this time, it is preferable that the length from the generation | occurrence | production position of dislocation in the said straight body part to the lower end of the said tail part shall be 100 mm or less. In addition, by making the tail part into a tapered shape and an inverted frustoconical shape with a rounded outer periphery , the total amount of the tail part can be reduced as much as possible, and cracks in the silicon single crystal Can be prevented . Also, formation of the tail portion increases the temperature of the silicon melt by increasing the output of the heater for heating the crucible, it is preferably carried out while suppressing an increase of pulling speed. In the present invention, since the silicon single crystal that has already undergone dislocation is tail-squeezed, it is not necessary to consider the occurrence of dislocation during tail-squeezing, and no matter what the length of the tail portion is reduced. Does not cause any problems.

特に、このような構成は、引き上げ中のシリコン単結晶を、これを囲繞するように配置された水冷体により冷却する単結晶育成に用いることができる。   In particular, such a configuration can be used for single crystal growth in which a silicon single crystal being pulled is cooled by a water-cooled body disposed so as to surround it.

本発明のシリコン単結晶の育成方法によれば、シリコン単結晶内に残留する熱応力の緩和が図れ、シリコン単結晶への亀裂の発生を防止できる。その結果、シリコン単結晶の破断や破裂を防止することが可能になる。   According to the method for growing a silicon single crystal of the present invention, the thermal stress remaining in the silicon single crystal can be relaxed, and the generation of cracks in the silicon single crystal can be prevented. As a result, it becomes possible to prevent the silicon single crystal from being broken or ruptured.

以下に、本発明のシリコン単結晶の育成方法について、その一実施形態を詳述する。
図1は、本発明の一実施形態であるシリコン単結晶の育成方法が適用される引き上げ装置の構成を示す縦断面図である。同図に示すように、引き上げ装置の外郭を構成するチャンバ1の内部には、その中心部にルツボ2が配置されている。ルツボ2は二重構造になっており、内側の石英ルツボ2aと、その外側に嵌合される黒鉛ルツボ2bとから構成される。このルツボ2は、支持軸3の上端部に黒鉛ルツボ2bを固定され、その支持軸3の回転駆動、昇降駆動に従って、周方向に回転したり軸方向に昇降する。
Hereinafter, an embodiment of the method for growing a silicon single crystal of the present invention will be described in detail.
FIG. 1 is a longitudinal sectional view showing a configuration of a pulling apparatus to which a method for growing a silicon single crystal according to an embodiment of the present invention is applied. As shown in the figure, a crucible 2 is disposed in the center of a chamber 1 that forms the outline of the lifting device. The crucible 2 has a double structure, and is composed of an inner quartz crucible 2a and a graphite crucible 2b fitted on the outer side. The crucible 2 has a graphite crucible 2b fixed to the upper end portion of the support shaft 3, and rotates in the circumferential direction or moves up and down in the axial direction in accordance with the rotational drive and lift drive of the support shaft 3.

ルツボ2の外側には、ルツボ2を囲繞する抵抗加熱式のヒータ4が配置され、そのさらに外側には、チャンバ1の内面に沿って保温筒5が配置されている。ヒータ4はルツボ2内に充填された多結晶シリコン原料を溶融させ、これにより、ルツボ2内にシリコン融液6が形成される。   A resistance heating type heater 4 surrounding the crucible 2 is arranged outside the crucible 2, and a heat insulating cylinder 5 is arranged along the inner surface of the chamber 1 further outside. The heater 4 melts the polycrystalline silicon raw material filled in the crucible 2, whereby a silicon melt 6 is formed in the crucible 2.

一方、ルツボ2の上方には、引き上げ軸としてのワイヤ7が吊り下げられている。ワイヤ7は、チャンバ1の上端部に設けられた図示しない引き上げ機構により回転駆動されるとともに、軸方向に昇降駆動される。ワイヤ7の下端部には、種結晶8が取り付けられている。種結晶8をルツボ2内のシリコン融液6に浸漬し、その種結晶8を回転させながら徐々に上昇させるべくワイヤ7を駆動することにより、種結晶8の下方にシリコン単結晶9が育成される。   On the other hand, a wire 7 as a lifting shaft is suspended above the crucible 2. The wire 7 is rotationally driven by a pulling mechanism (not shown) provided at the upper end of the chamber 1 and is driven up and down in the axial direction. A seed crystal 8 is attached to the lower end of the wire 7. By immersing the seed crystal 8 in the silicon melt 6 in the crucible 2 and driving the wire 7 to gradually raise the seed crystal 8 while rotating it, a silicon single crystal 9 is grown below the seed crystal 8. The

また、ルツボ2の上方には、引き上げ中のシリコン単結晶9の周囲を囲繞する円筒状の黒鉛製の熱遮蔽体10が設けられている。この熱遮蔽体10は、内部に断熱材を備え、引き上げ中のシリコン単結晶9に対し、ルツボ2内のシリコン融液6やヒータ4からの輻射熱を遮断する役割を担う。   Above the crucible 2, a cylindrical graphite heat shield 10 surrounding the periphery of the silicon single crystal 9 being pulled is provided. The heat shield 10 includes a heat insulating material inside, and plays a role of blocking radiant heat from the silicon melt 6 and the heater 4 in the crucible 2 with respect to the silicon single crystal 9 being pulled up.

熱遮蔽体10の下部の内側には、引き上げ中のシリコン単結晶9の周囲を囲繞する円筒状の水冷体11が設けられている。水冷体11は、例えば、銅などの熱伝導性の良好な金属からなり、内部に流通される冷却水により強制的に冷却される。この水冷体11は、引き上げ中のシリコン単結晶9の凝固直後の高温部位を囲繞するように配置することにより、その高温部位の冷却を促進する役割を担う。   A cylindrical water-cooled body 11 surrounding the periphery of the silicon single crystal 9 being pulled is provided inside the lower part of the heat shield 10. The water-cooled body 11 is made of, for example, a metal having good thermal conductivity such as copper, and is forcibly cooled by cooling water that is circulated inside. The water-cooled body 11 plays a role of accelerating the cooling of the high-temperature portion by disposing it so as to surround the high-temperature portion immediately after solidification of the silicon single crystal 9 being pulled.

次に、このような引き上げ装置を用いた単結晶育成において、直胴部の育成過程で有転位化が発生したときの操業例を説明する。   Next, in the single crystal growth using such a pulling apparatus, an example of operation when dislocation occurs in the straight body growth process will be described.

図2は、本発明の一実施形態であるシリコン単結晶の育成方法における工程を模式的に示す図である。同図(a)に示すように、ルツボ2内のシリコン融液6からシリコン単結晶9を育成している際、ショルダー部9aを形成した後の直胴部9bの育成過程で有転位化が発生したとする。同図中、有転位化の発生位置Dを破線で示す。本実施形態では、直胴部9bの育成中に晶癖線を目視または光学的に監視することにより、有転位化の発生を判断することができる。   FIG. 2 is a diagram schematically showing steps in the method for growing a silicon single crystal according to an embodiment of the present invention. As shown in FIG. 5A, when growing the silicon single crystal 9 from the silicon melt 6 in the crucible 2, dislocations are formed in the growing process of the straight body portion 9b after the shoulder portion 9a is formed. Suppose that it occurred. In the figure, the dislocation generation position D is indicated by a broken line. In the present embodiment, the occurrence of dislocation can be determined by visually or optically monitoring the crystal habit line during the growth of the straight body portion 9b.

引き上げ中のシリコン単結晶9の直胴部9bに有転位化が発生したことを判断すると、直ちに育成条件を切り替えることにより、テイル部9cの形成に移行し、テイル部9cを形成する(同図(b)参照)。このとき、テイル部9cの形成へ移行するために、ヒータ4の出力(パワー)を瞬時に大幅に高める操作を行う。これにより、ヒータ4の発熱量が急増するため、ルツボ2内のシリコン融液6の温度が短時間で上昇する。このような操作により、シリコン単結晶9は、逐次直径が減少しテイル部9cが形成される。   When it is determined that dislocations have occurred in the straight body portion 9b of the silicon single crystal 9 being pulled, the growth conditions are immediately switched to move to the formation of the tail portion 9c to form the tail portion 9c (see FIG. (See (b)). At this time, in order to shift to the formation of the tail portion 9c, an operation of instantaneously and greatly increasing the output (power) of the heater 4 is performed. Thereby, since the emitted-heat amount of the heater 4 increases rapidly, the temperature of the silicon melt 6 in the crucible 2 rises in a short time. By such an operation, the silicon single crystal 9 is successively reduced in diameter and a tail portion 9c is formed.

そして、同図(c)に示すように、シリコン単結晶9は、テイル部9cの形成に移行してから短時間に、ルツボ2内のシリコン融液6から自然に切り離れ、外周が丸みを帯びた概ね逆円錐台状の先窄まりのテイル部9cが形成される。   Then, as shown in FIG. 5C, the silicon single crystal 9 is naturally separated from the silicon melt 6 in the crucible 2 in a short time after the transition to the formation of the tail portion 9c, and the outer periphery is rounded. A tapered tail portion 9c having a generally inverted truncated cone shape is formed.

こうして得られたシリコン単結晶9は、直胴部9bにおける有転位化の発生位置Dよりも上方の結晶部位に向けてスリップ転位が伸展しており、有転位化の発生位置Dからテイル部9cの下端までの長さLの領域が多結晶化しているものの、これらの結晶部位に亀裂は発生しない。これは、有転位化の発生位置からテイル部の下端までの長さLが短くなるため、この結晶部位の体積が低減することにより、スリップ転位発生領域および多結晶化領域に残留する熱応力が緩和されることによる。その結果、シリコン単結晶9の破断や破裂を防止することができる。   In the silicon single crystal 9 obtained in this way, slip dislocations extend toward the crystal portion above the dislocation occurrence position D in the straight body portion 9b, and the tail portion 9c extends from the dislocation formation occurrence position D. Although the region of the length L to the lower end of the film is polycrystallized, no cracks are generated in these crystal parts. This is because the length L from the position of occurrence of dislocation to the lower end of the tail portion is shortened, so that the volume of this crystal part is reduced, so that the thermal stress remaining in the slip dislocation generation region and the polycrystalline region is reduced. By being relaxed. As a result, breakage and rupture of the silicon single crystal 9 can be prevented.

なお、ルツボ2内には残存融液が多量に残る場合は、これを放置しておくと、ルツボ2(石英ルツボ2a)が割損するおそれがある。このような事態に対しては、例えば、残存融液が固化する前に、再度、単結晶育成を行うか、または残存融液が残るルツボ2内に多結晶シリコン原料を追加投入して溶融させ、残存融液と多結晶シリコン原料に基づくシリコン融液から単結晶育成を行う、いわゆるマルチプリング法を適用することにより、解決することができる。   If a large amount of residual melt remains in the crucible 2, the crucible 2 (quartz crucible 2a) may be damaged if it is left as it is. For such a situation, for example, before the residual melt is solidified, the single crystal is grown again, or the polycrystalline silicon raw material is additionally charged into the crucible 2 where the residual melt remains to be melted. This can be solved by applying a so-called multiple pulling method in which a single crystal is grown from a silicon melt based on the residual melt and the polycrystalline silicon raw material.

図3は、テイル部の形成時間および形成長さとヒータの出力との相関を模式的に示す図であり、図4は、テイル部の形成時間および形成長さとシリコン融液の温度との相関を模式的に示す図である。これら図3、図4は、直胴部に有転位化が発生したことにより本実施形態におけるテイル部を形成する際の状況を実線で示し、通常のテイル部を形成する際の状況を点線で示している。また、これら図3、図4中、テイル部の形成に移行した時点を白抜き丸印で示し、シリコン単結晶がシリコン融液から切り離れた時点を黒抜き丸印で示す。   FIG. 3 is a diagram schematically showing the correlation between the formation time and formation length of the tail portion and the output of the heater, and FIG. 4 shows the correlation between the formation time and formation length of the tail portion and the temperature of the silicon melt. It is a figure shown typically. These FIG. 3 and FIG. 4 show the situation when forming the tail part in this embodiment due to the occurrence of dislocation in the straight body part by a solid line, and the situation when forming a normal tail part by a dotted line. Show. 3 and 4, the time when the transition to the formation of the tail portion is indicated by a white circle, and the time when the silicon single crystal is separated from the silicon melt is indicated by a black circle.

上記図3および図4に示すように、直胴部に有転位化が発生したことによりテイル部を形成する際は、テイル部形成の移行時にヒータの出力を瞬時に大幅に高め、これにより、ルツボ内のシリコン融液の温度が短時間で上昇する。このため、シリコン単結晶は短時間(例えば、20〜60min程度)でシリコン融液から切り離されることから、テイル部の形成長さが短くなる。   As shown in FIGS. 3 and 4 above, when forming the tail portion due to the occurrence of dislocation in the straight body portion, the output of the heater is greatly increased instantaneously during the transition of the tail portion formation, The temperature of the silicon melt in the crucible rises in a short time. For this reason, since the silicon single crystal is separated from the silicon melt in a short time (for example, about 20 to 60 minutes), the formation length of the tail portion is shortened.

一方、通常の単結晶育成でテイル部を形成する際は、テイル部形成の移行時から徐々にヒータの出力を高め、これにより、ルツボ内のシリコン融液の温度が長時間にわたって徐々に上昇する。このため、シリコン単結晶は長時間(例えば、2〜8hr程度)が経過した後にシリコン融液から切り離されることから、テイル部の形成長さが長くなる。   On the other hand, when the tail portion is formed by normal single crystal growth, the output of the heater is gradually increased from the transition to the tail portion formation, thereby gradually increasing the temperature of the silicon melt in the crucible over a long period of time. . For this reason, since the silicon single crystal is separated from the silicon melt after a long time (for example, about 2 to 8 hours) has elapsed, the formation length of the tail portion becomes long.

図5は、直胴部の育成過程で有転位化が発生したシリコン単結晶について、直胴部における有転位化の発生位置Dからテイル部の下端までの長さLと亀裂の発生状況の関係をまとめた図である。同図は、直径が200mmのシリコン単結晶を育成する場合に、有転位化の発生位置Dからテイル部の下端までの長さLを変化させ、有転位化により生じたスリップ伸展部位および多結晶部位を目視で観察した結果を示している。同図に示す結果から、有転位化の発生位置Dからテイル部の下端までの長さLが100mm以下であると、有転位化により生じたスリップ伸展部位および多結晶部位に亀裂が発生しない。   FIG. 5 shows the relationship between the length L from the occurrence position D of dislocations to the lower end of the tail portion and the occurrence of cracks in a silicon single crystal in which dislocations occurred during the growth process of the straight barrel portion. FIG. This figure shows that when a silicon single crystal having a diameter of 200 mm is grown, the length L from the occurrence position D of the dislocation to the lower end of the tail portion is changed, and the slip extension site and polycrystal produced by the dislocation The result of having observed the site | part visually is shown. From the results shown in the figure, when the length L from the dislocation occurrence position D to the lower end of the tail portion is 100 mm or less, cracks do not occur in the slip extension portion and the polycrystalline portion caused by the dislocation.

したがって、本実施形態では、直胴部の育成過程で有転位化が発生し、直ちにテイル部を形成する際、有転位化の発生位置Dからテイル部の下端までの長さLが100mm以下となるように、ヒータの出力を調整する。特に、直径が200mmのシリコン単結晶を育成する場合は、安全性に配慮して、有転位化の発生位置Dからテイル部の下端までの長さLを70〜80mm以下にすることが好ましい。これよりも大径で直径が300mmのシリコン単結晶を育成する場合は、体積が増大することから、一層安全性に配慮して、有転位化の発生位置Dからテイル部の下端までの長さLを50mm以下にするのが好ましい。   Therefore, in the present embodiment, dislocation occurs in the process of growing the straight body portion, and when the tail portion is immediately formed, the length L from the occurrence position D of the dislocation to the lower end of the tail portion is 100 mm or less. The output of the heater is adjusted so that In particular, when a silicon single crystal having a diameter of 200 mm is grown, in consideration of safety, the length L from the dislocation generation position D to the lower end of the tail portion is preferably set to 70 to 80 mm or less. When growing a silicon single crystal having a larger diameter and a diameter of 300 mm, since the volume increases, the length from the dislocation occurrence position D to the lower end of the tail portion is further considered in consideration of safety. L is preferably 50 mm or less.

さらに、テイル部を形成する際は、ヒータ出力の調整に加え、シリコン単結晶の引き上げ速度を逐次上昇させ、結晶直径を減少させる調整も可能である。ただし、引き上げ速度を上昇させすぎると、テイル部が長くなって有転位化の発生位置Dからテイル部の下端までの長さLが長くなり、亀裂発生のおそれがあるため、テイル部形成の移行前の引き上げ速度から僅かずつ上昇させることが好ましい。   Furthermore, when forming the tail portion, in addition to the adjustment of the heater output, it is possible to adjust the pulling rate of the silicon single crystal sequentially to decrease the crystal diameter. However, if the pulling speed is increased too much, the tail portion becomes longer and the length L from the dislocation generation position D to the lower end of the tail portion becomes longer, which may cause cracking. It is preferable to raise it little by little from the previous pulling speed.

また、水冷体を用いた単結晶育成において、シリコン単結晶をシリコン融液から切り離した後に高速で引き上げを行うと、有転位化により生じたスリップ伸展部位および多結晶部位が水冷体の配置された領域を高速で通過することから、これらの結晶部位に残留する熱応力が増加し、亀裂が発生しやすい状態になる。このため、シリコン単結晶のテイル部の下端が水冷体の配置領域を超えるまでは、引き上げ速度を7mm/min以下に抑え、水冷体の配置領域を超えた後は、引き上げ速度を12mm/min以下に確保することが好ましい。   Also, in single crystal growth using a water-cooled body, when the silicon single crystal was separated from the silicon melt and then pulled up at a high speed, the slip-extended portion and the polycrystalline portion caused by dislocation were placed in the water-cooled body. Since it passes through the region at high speed, the thermal stress remaining in these crystal parts increases, and cracks are likely to occur. For this reason, until the lower end of the tail part of the silicon single crystal exceeds the arrangement area of the water-cooled body, the pulling speed is suppressed to 7 mm / min or less, and after exceeding the arrangement area of the water-cooled body, the pulling speed is set to 12 mm / min or less. It is preferable to ensure the above.

本発明のシリコン単結晶の育成方法による効果を確認するため、下記の実施例に示す試験を行った。   In order to confirm the effect of the method for growing a silicon single crystal of the present invention, tests shown in the following examples were conducted.

実施例1の試験では、前記図1に示す引き上げ装置を用い、直胴部の目標直径を200mm、直胴部の目標長さを1700mmとするシリコン単結晶の育成を行った。その際、ルツボ内にシリコン原料を充填するとともに、p型の電気抵抗率となるように、ドーパントとしてのボロン(B)を添加した。引き上げ装置内をアルゴンの減圧雰囲気にし、ヒータによる加熱により、両原料を溶融させシリコン融液を形成した。種結晶をシリコン融液になじませ、ルツボと引き上げ軸を回転させながら引き上げを開始した。結晶方位を<100>としてネック部の形成を行った後、ショルダー部を形成し、その後肩変えして目標直径の直胴部を育成した。   In the test of Example 1, a silicon single crystal was grown using the pulling apparatus shown in FIG. 1 so that the target diameter of the straight body portion was 200 mm and the target length of the straight body portion was 1700 mm. At that time, the crucible was filled with a silicon raw material, and boron (B) as a dopant was added so as to obtain a p-type electrical resistivity. The inside of the pulling apparatus was put under a reduced-pressure atmosphere of argon, and both raw materials were melted by heating with a heater to form a silicon melt. The seed crystal was adjusted to the silicon melt, and the pulling was started while rotating the crucible and the pulling shaft. After forming the neck portion with the crystal orientation of <100>, the shoulder portion was formed, and then the shoulder was changed to grow the straight body portion of the target diameter.

実施例1では、直胴部の長さが目標長さに達する前の1110mmの位置で有転位化が発生したため、直ちにテイル部の形成に移行した。このとき、ヒータの出力を瞬時に15kW増加させた。引き上げ速度はテイル部形成の移行前の速度のまま保持した。これにより、シリコン融液の温度が上昇し、徐々に単結晶の直径が縮小し、外周が丸みを帯びた先窄まり形状の短いテイル部が形成された。テイル部の形成に移行してから30min程度で、有転位化の発生位置からテイル部の下端までの長さが30mm程度になり、この段階で引き上げ速度を上昇させることにより、シリコン単結晶がシリコン融液から自然に切り離された。   In Example 1, since the dislocation occurred at the position of 1110 mm before the length of the straight body part reached the target length, the process immediately shifted to the formation of the tail part. At this time, the heater output was instantaneously increased by 15 kW. The pulling speed was maintained as it was before the transition to tail portion formation. As a result, the temperature of the silicon melt increased, the diameter of the single crystal gradually decreased, and a narrow tail portion with a rounded outer periphery was formed. In about 30 minutes after the transition to the formation of the tail portion, the length from the dislocation generation position to the lower end of the tail portion is about 30 mm, and by raising the pulling speed at this stage, the silicon single crystal becomes silicon. Naturally separated from the melt.

こうして得られたシリコン単結晶について、有転位化により生じたスリップ伸展部位および多結晶部位を観察した。その結果、これらの結晶部位に亀裂はなく、シリコン単結晶の破断や破裂は起こらなかった。   With respect to the silicon single crystal thus obtained, slip extension sites and polycrystalline sites caused by dislocation were observed. As a result, there was no crack in these crystal parts, and the silicon single crystal was not broken or ruptured.

実施例2の試験では、上記実施例1と同様の引き上げ装置および試験条件を用い、直胴部の目標直径を200mm、直胴部の目標長さを1700mmとするシリコン単結晶の育成を行った。   In the test of Example 2, the same pulling apparatus and test conditions as those of Example 1 were used, and a silicon single crystal was grown with the target diameter of the straight body part being 200 mm and the target length of the straight body part being 1700 mm. .

実施例2では、直胴部の長さが目標長さに達する前の1270mmの位置で有転位化が発生したため、直ちにテイル部の形成に移行した。このとき、シリコン融液の温度は上記実施例1のときよりも僅かに低くなっており、ヒータの出力を瞬時に15kW増加させた。引き上げ速度は、テイル部形成の移行前の速度から僅かずつ上昇させた。これにより、テイル部の形成に移行してから40min程度で、有転位化の発生位置からテイル部の下端までの長さが35mm程度になり、シリコン単結晶がシリコン融液から自然に切り離された。   In Example 2, since the dislocation occurred at the position of 1270 mm before the length of the straight body part reached the target length, the process immediately shifted to the formation of the tail part. At this time, the temperature of the silicon melt was slightly lower than that in Example 1, and the output of the heater was instantaneously increased by 15 kW. The pulling speed was slightly increased from the speed before the transition to tail portion formation. As a result, in about 40 minutes after the transition to the formation of the tail portion, the length from the dislocation generation position to the lower end of the tail portion is about 35 mm, and the silicon single crystal was naturally separated from the silicon melt. .

こうして得られたシリコン単結晶も亀裂はなく、シリコン単結晶の破断や破裂は起こらなかった。   The silicon single crystal thus obtained was not cracked, and the silicon single crystal was not broken or ruptured.

実施例3の試験では、上記実施例1と同様の引き上げ装置および試験条件を用いてシリコン単結晶の育成を行った。   In the test of Example 3, a silicon single crystal was grown using the same pulling apparatus and test conditions as in Example 1 above.

実施例3では、直胴部の長さが目標長さに達する前の1150mmの位置で有転位化が発生したため、直ちにテイル部の形成に移行し、テイル部を形成した。そして、シリコン融液から切り離されたシリコン単結晶を、その下端が水冷体の配置領域を超えるまで5mm/minの引き上げ速度で継続して引き上げ、さらに、取り出し域まで9mm/minの引き上げ速度で引き上げた。   In Example 3, since the dislocation occurred at the position of 1150 mm before the length of the straight body part reached the target length, the process immediately shifted to formation of the tail part to form the tail part. Then, the silicon single crystal separated from the silicon melt is continuously pulled up at a pulling speed of 5 mm / min until the lower end of the silicon crystal exceeds the arrangement area of the water-cooled body, and further pulled up to the take-out area at a pulling speed of 9 mm / min. It was.

こうして得られたシリコン単結晶も亀裂はなく、シリコン単結晶の破断や破裂は起こらなかった。   The silicon single crystal thus obtained was not cracked, and the silicon single crystal was not broken or ruptured.

本発明のシリコン単結晶の育成方法は、有転位化したシリコン単結晶に亀裂を発生させることがなく、シリコン単結晶の破断や破裂を防止することが可能になる。したがって、本発明は、CZ法によるシリコン単結晶の製造に極めて有用な技術である。   The method for growing a silicon single crystal according to the present invention does not cause a crack in a dislocation silicon single crystal, and can prevent the silicon single crystal from being broken or ruptured. Therefore, the present invention is an extremely useful technique for producing a silicon single crystal by the CZ method.

本発明の一実施形態であるシリコン単結晶の育成方法が適用される引き上げ装置の構成を示す縦断面図である。It is a longitudinal cross-sectional view which shows the structure of the pulling apparatus with which the growth method of the silicon single crystal which is one Embodiment of this invention is applied. 本発明の一実施形態であるシリコン単結晶の育成方法における工程を模式的に示す図である。It is a figure which shows typically the process in the growth method of the silicon single crystal which is one Embodiment of this invention. テイル部の形成時間および形成長さとヒータの出力との相関を模式的に示す図である。It is a figure which shows typically the correlation with the formation time and formation length of a tail part, and the output of a heater. テイル部の形成時間および形成長さとシリコン融液の温度との相関を模式的に示す図である。It is a figure which shows typically the correlation with the formation time and formation length of a tail part, and the temperature of a silicon melt. 直胴部の育成過程で有転位化が発生したシリコン単結晶について、直胴部における有転位化の発生位置Dからテイル部の下端までの長さLと亀裂の発生状況の関係をまとめた図である。The figure which summarized the relationship between the length L from the occurrence position D of dislocations in the straight body part to the lower end of the tail part and the occurrence of cracks for silicon single crystals in which dislocations occurred during the growth process of the straight body part It is.

符号の説明Explanation of symbols

1 チャンバ
2 ルツボ
2a 石英ルツボ
2b 黒鉛ルツボ
3 支持軸
4 ヒータ
5 保温筒
6 シリコン融液
7 ワイヤ(引き上げ軸)
8 種結晶
9 シリコン単結晶
9a ショルダー部
9b 直胴部
9c テイル部
10 熱遮蔽体
11 水冷体
D 有転位化の発生位置
L 有転位化の発生位置からテイル部の下端までの長さ
DESCRIPTION OF SYMBOLS 1 Chamber 2 Crucible 2a Quartz crucible 2b Graphite crucible 3 Support axis | shaft 4 Heater 5 Thermal insulation cylinder 6 Silicon melt 7 Wire (lifting axis)
8 Seed crystal 9 Silicon single crystal 9a Shoulder portion 9b Straight body portion 9c Tail portion 10 Thermal shield 11 Water-cooled body D Position of occurrence of dislocation L Length from the position of occurrence of dislocation to the lower end of tail portion

Claims (4)

チョクラルスキー法によるシリコン単結晶の育成方法において、
シリコン単結晶の直胴部の育成過程で有転位化が生じたとき、直ちに、先窄まり形状で、外周が丸みを帯びた逆円錐台状のテイル部の形成を行い、テイル部の形成長さを、結晶育成中に有転位化が生じない場合に比して短くしてシリコン単結晶をルツボ内のシリコン融液から切り離すことを特徴とするシリコン単結晶の育成方法。
In the method of growing a silicon single crystal by the Czochralski method,
When dislocations occur in the growth process of the straight body of a silicon single crystal, immediately form a tapered portion with an inverted truncated cone shape with a rounded outer periphery , and the formation length of the tail portion A method for growing a silicon single crystal, wherein the silicon single crystal is separated from the silicon melt in the crucible by shortening the length compared to the case where dislocations do not occur during crystal growth.
前記直胴部における有転位化の発生位置から前記テイル部の下端までの長さを100mm以下にすることを特徴とする請求項1に記載のシリコン単結晶の育成方法。   2. The method for growing a silicon single crystal according to claim 1, wherein the length from the occurrence of dislocation in the straight body portion to the lower end of the tail portion is 100 mm or less. 前記テイル部の形成は、前記ルツボを加熱するヒータの出力を高めることにより前記シリコン融液の温度を上昇させ、引き上げ速度の上昇量を抑制しながら行うことを特徴とする請求項1または2に記載のシリコン単結晶の育成方法。 Formation of the tail portion increases the temperature of the silicon melt by increasing the output of the heater for heating the crucible, to claim 1 or 2, characterized in that while suppressing the amount of increase of pulling speed A method for growing a silicon single crystal as described. 引き上げ中のシリコン単結晶を、これを囲繞するように配置された水冷体により冷却することを特徴とする請求項1からのいずれかに記載のシリコン単結晶の育成方法。 The silicon in the pulled single crystal, the method for growing a silicon single crystal according to any one of claims 1 to 3, characterized in that cooling by arranged water-cooling structure so as to surround it.
JP2008110268A 2008-04-21 2008-04-21 Method for growing silicon single crystal Active JP5417735B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008110268A JP5417735B2 (en) 2008-04-21 2008-04-21 Method for growing silicon single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008110268A JP5417735B2 (en) 2008-04-21 2008-04-21 Method for growing silicon single crystal

Publications (2)

Publication Number Publication Date
JP2009256156A JP2009256156A (en) 2009-11-05
JP5417735B2 true JP5417735B2 (en) 2014-02-19

Family

ID=41384089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008110268A Active JP5417735B2 (en) 2008-04-21 2008-04-21 Method for growing silicon single crystal

Country Status (1)

Country Link
JP (1) JP5417735B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101105546B1 (en) 2009-12-18 2012-01-17 주식회사 엘지실트론 Method of cooling process for silicon single crystal
KR101193678B1 (en) 2010-10-18 2012-10-22 주식회사 엘지실트론 Method for Manufacturing large Diameter Single Crystal Ingot
JP6202119B2 (en) * 2016-03-14 2017-09-27 株式会社Sumco Method for producing silicon single crystal
JP6699620B2 (en) * 2017-05-26 2020-05-27 株式会社Sumco Method for producing silicon single crystal

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58194797A (en) * 1982-05-07 1983-11-12 Toshiba Corp Preparation of silicon single crystal
JPH03112885A (en) * 1989-09-26 1991-05-14 Kawasaki Steel Corp Method for sensing crystal dying in pulling up single crystal
JPH09194290A (en) * 1996-01-19 1997-07-29 Sumitomo Sitix Corp Method for pulling up single crystal and apparatus for pulling up single crystal used for this method
JPH09227280A (en) * 1996-02-28 1997-09-02 Sumitomo Sitix Corp Method for growing single crystal
JP4357068B2 (en) * 1999-05-11 2009-11-04 Sumco Techxiv株式会社 Single crystal ingot manufacturing apparatus and method
JP4867173B2 (en) * 2005-02-07 2012-02-01 株式会社Sumco Method for manufacturing silicon crystal and apparatus for manufacturing the same
JP2007022865A (en) * 2005-07-19 2007-02-01 Sumco Corp Method for manufacturing silicon single crystal
JP4784401B2 (en) * 2006-05-30 2011-10-05 株式会社Sumco Molten liquid level monitoring device in silicon single crystal growth process

Also Published As

Publication number Publication date
JP2009256156A (en) 2009-11-05

Similar Documents

Publication Publication Date Title
CN106715765B (en) Method for producing single crystal and method for producing silicon wafer
EP1158076A1 (en) Production method for silicon single crystal and production device for single crystal ingot, and heat treating method for silicon single crystal wafer
JP2001278694A (en) Manufacturing equipment and method of single crystal ingot
JP5417735B2 (en) Method for growing silicon single crystal
JP2012513950A (en) Method and pull assembly for pulling a polycrystalline silicon ingot from a silicon melt
KR100717237B1 (en) Process for preparing single crystal silicon having uniform thermal history
JP5176915B2 (en) Method for growing silicon single crystal
JP6579046B2 (en) Method for producing silicon single crystal
KR102413304B1 (en) Epitaxial silicon wafer production method
US20090293803A1 (en) Method of growing silicon single crystals
JP2004315258A (en) Production method for single crystal
JPH09221380A (en) Device for producing crystal by czochralski method, production of crystal and crystal produced thereby
US20090293802A1 (en) Method of growing silicon single crystals
JP5229017B2 (en) Single crystal manufacturing method
CN114232075A (en) RCZ Czochralski method large thermal field polycrystalline pulling process
CN113862791A (en) Crystal pulling furnace for pulling monocrystalline silicon rod
WO1999037833A1 (en) Single crystal pull-up apparatus
JP2011219300A (en) Method of manufacturing silicon single crystal, and apparatus for pulling silicon single crystal for use for the method
JP2004315263A (en) Production method for single crystal
US20240018689A1 (en) Crystal Puller for Pulling Monocrystalline Silicon Ingots
JP2011225408A (en) Method for manufacturing silicon single crystal
JP5018670B2 (en) Single crystal growth method
JPH09208379A (en) Pulling up of single crystal
WO2021162046A1 (en) Method for producing silicon single crystal
JP7452314B2 (en) Method for producing silicon raw material crystal for FZ and production system for silicon raw material crystal for FZ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110404

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130423

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20130604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130605

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130716

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130920

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131022

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131104

R150 Certificate of patent or registration of utility model

Ref document number: 5417735

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250