JP5413871B2 - Lighting device - Google Patents

Lighting device Download PDF

Info

Publication number
JP5413871B2
JP5413871B2 JP2008066516A JP2008066516A JP5413871B2 JP 5413871 B2 JP5413871 B2 JP 5413871B2 JP 2008066516 A JP2008066516 A JP 2008066516A JP 2008066516 A JP2008066516 A JP 2008066516A JP 5413871 B2 JP5413871 B2 JP 5413871B2
Authority
JP
Japan
Prior art keywords
light emitting
light
emitting element
emitting elements
lighting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008066516A
Other languages
Japanese (ja)
Other versions
JP2009224148A (en
Inventor
勝 釜野
良輔 椎崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of National Colleges of Technologies Japan
Original Assignee
Institute of National Colleges of Technologies Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of National Colleges of Technologies Japan filed Critical Institute of National Colleges of Technologies Japan
Priority to JP2008066516A priority Critical patent/JP5413871B2/en
Publication of JP2009224148A publication Critical patent/JP2009224148A/en
Application granted granted Critical
Publication of JP5413871B2 publication Critical patent/JP5413871B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)

Description

本発明は、照明装置に関するものであって、詳しくは虫に対して忌避効果のある照明装置に関する。   The present invention relates to a lighting device, and more particularly, to a lighting device having a repellent effect against insects.

生物がある外界刺激に対して、一定の方向をもった運動をする現象を走性と言う。例えば、蛾やその他の虫は光に向かって飛ぶ走光性を備える。したがって夜間に自動販売機、街灯などの光にたくさんの虫が群がることがある。誘蛾灯は昆虫のこの走光性を利用した照明装置であり、例えば害虫を誘引し殺滅する蛍光灯、ブラックライト、高圧水銀灯などが開発されている。この誘蛾灯を店舗の入り口近傍に設置し夜に点灯すれば、これに蛾や螟虫などを誘い集めて捕殺することができる。この結果、誘蛾灯へ虫を誘引し店舗内へ虫が進入するのを回避できる。   A phenomenon in which an organism moves in a certain direction against an external stimulus is called chemotaxis. For example, moths and other insects have the ability to fly toward the light. Therefore, many insects may gather in the light of vending machines and street lights at night. A kidnapping lamp is a lighting device that utilizes this light-walking property of insects. For example, fluorescent lamps, black lights, high-pressure mercury lamps, and the like that attract and kill pests have been developed. If this kidnapping lamp is installed in the vicinity of the entrance of the store and lights up at night, moths and worms can be attracted and killed. As a result, it is possible to avoid the insect from entering the store by attracting the insect to the kidnapping lamp.

ところで照明装置に昆虫が群がる理由は以下の通りである。虫は一般的に360nm〜380nmの紫外線に反応する。例えば蛍光灯は熱陰極をもつ低圧水銀蒸気放電ランプであり、その放電により発生する紫外線をガラス管内壁に塗られた蛍光物質によって可視光に変換して利用するものである。つまり蛍光灯において蛍光物質を励起するための紫外線の波長域が、虫の視覚ピークに重なって虫を寄せ集めてしまう。   By the way, the reason why insects gather in the lighting device is as follows. Insects generally respond to ultraviolet radiation between 360 nm and 380 nm. For example, a fluorescent lamp is a low-pressure mercury vapor discharge lamp having a hot cathode, and ultraviolet light generated by the discharge is converted into visible light by a fluorescent material applied to the inner wall of a glass tube. That is, the wavelength range of the ultraviolet light for exciting the fluorescent substance in the fluorescent lamp overlaps with the visual peak of the insect and gathers the insect.

つまり照明器具としての蛍光灯と誘蛾灯は共に虫が反応する紫外線の光を放出するため双方の照明器具とも虫を誘引する。したがって誘蛾灯を設置するときは、屋外から屋内の蛍光灯までの間に誘蛾灯を設置し、すなわち虫の飛来径路において誘蛾灯を経由して蛍光灯に到達するよう双方の照明器具を位置決めすれば、先に虫を誘蛾灯へ誘い込んで捕殺することができ、虫が屋内に進行するのを回避できるる。しかし中には誘蛾灯に誘引されず虫が室内の蛍光灯側へ到達する虞もあり、また、一端室内に進行した虫は蛍光灯近傍から離れず不快である。一方で、誘蛾灯に虫が群がる光景も不快感を招くことが多い。   In other words, since both fluorescent lamps and kidnapping lamps as luminaires emit ultraviolet light that reacts with insects, both luminaires attract insects. Therefore, when installing a kidnapping lamp, place a kidnapping lamp between the outdoor and indoor fluorescent lamps, that is, if both lighting fixtures are positioned so that they reach the fluorescent lamp via the kidnapping lamp in the insect flying path, Insects can be attracted to a kidnap lamp and killed, and insects can be prevented from proceeding indoors. However, some insects may not reach the fluorescent lamp in the room without being attracted by the kidnapping lamp, and the insect that has advanced into the room is uncomfortable without leaving the vicinity of the fluorescent lamp. On the other hand, scenes of insects crowding on kidnapping lights often cause discomfort.

一方で上記と逆に虫を寄せ付けない、つまり虫に対して忌避効果のある照明装置が開発されている。例えば特許文献1の発光装置および照明装置は、害虫類に対して忌避効果が高いことが開示されている。図9にこの照明装置800の側面図を示す。照明装置800は基板805に第1の発光ダイオード801及び第2の発光ダイオード802を搭載している。第1の発光ダイオード801は波長700nm〜800nmに発光ピークを有する光を放射する。さらに第2の発光ダイオード802は、第1の発光ダイオード801よりも短波長域でかつ波長580nm以上の波長域に発光ピークを有する光を放射する。   On the other hand, a lighting device has been developed that does not attract insects, that is, has a repellent effect against insects. For example, it is disclosed that the light emitting device and the lighting device of Patent Document 1 have a high repellent effect against pests. FIG. 9 shows a side view of the lighting device 800. The lighting device 800 includes a first light emitting diode 801 and a second light emitting diode 802 mounted on a substrate 805. The first light emitting diode 801 emits light having an emission peak at a wavelength of 700 nm to 800 nm. Further, the second light emitting diode 802 emits light having a light emission peak in a shorter wavelength range than the first light emitting diode 801 and in a wavelength range of 580 nm or more.

図9の照明装置800であれば、第1の発光ダイオード801からの出射光により、植物の開花や生長を調節する色素蛋白質の反応を制御する。さらに第2の発光ダイオード802の出射光域は夜蛾の嫌う光波長域であるため、夜蛾の活動を低下させて植物を夜蛾から忌避することができる。すなわち1つの照明装置で夜蛾の忌避効果と植物の成長促進効果を得ることができる。   In the lighting device 800 of FIG. 9, the reaction of the chromoprotein that regulates flowering and growth of plants is controlled by the light emitted from the first light emitting diode 801. Furthermore, since the emission light region of the second light emitting diode 802 is a light wavelength region that a night owl dislikes, the activity of the night mist can be reduced to avoid the plant from the night mist. That is, it is possible to obtain a night owl repellent effect and a plant growth promoting effect with a single lighting device.

また、図10は照明装置800における波長と相対放射強度の関係を示すグラフである。図10に示すように、照明装置800は虫の誘引に起因する短波長側の波長域にはスペクトルを有しておらず、出射される波長は上記防虫効果が顕著な波長域に限定されている。したがってスペクトル形状は急峻であって半値幅の狭い線状のスペクトルとなり、この結果演色性の低い波長光となってしまう。例えばこのような波長域を備える照明装置800を屋内用の一般的な照明装置に適用しようとすれば、出射光が単色光となり白色光を再現できない。したがってこのような光源下では物の色が不自然に見えるため屋内用の白色用の照明光源としては利用できないという問題があった。   FIG. 10 is a graph showing the relationship between the wavelength and the relative radiation intensity in the illumination device 800. As shown in FIG. 10, the lighting device 800 does not have a spectrum in the wavelength region on the short wavelength side caused by attracting insects, and the emitted wavelength is limited to the wavelength region in which the above insect-proof effect is remarkable. Yes. Accordingly, the spectrum shape is steep and a linear spectrum with a narrow half-value width is obtained, and as a result, light having a low color rendering property is obtained. For example, if an illumination device 800 having such a wavelength range is applied to a general indoor illumination device, the emitted light becomes monochromatic light and white light cannot be reproduced. Therefore, there is a problem that under such a light source, the color of the object looks unnatural and cannot be used as an indoor white illumination light source.

すなわち、一般的な照明器具である蛍光灯は虫を誘引する虞があり、これに対して虫の視覚反応領域を外した波長光を放出する特許文献1のような照明装置であれば、防虫効果は高まるものの演色性が著しく低いためこれを室内用の照明器具としては使用し難い。
特開2004−93号公報
That is, a fluorescent lamp, which is a general lighting fixture, may attract insects. On the other hand, if it is a lighting device such as Patent Document 1 that emits light having a wavelength that excludes the visual reaction area of insects, insect repellent Although the effect is enhanced, the color rendering property is remarkably low, so that it is difficult to use it as an indoor lighting fixture.
JP 2004-93 A

本発明は、従来のこのような問題点を解消するためになされたものである。本発明の主な目的は、虫に対する有効な忌避効果を備えつつ、室内での使用に適した白色光を発光可能な照明装置を提供することにある。   The present invention has been made to solve the conventional problems. A main object of the present invention is to provide an illumination device capable of emitting white light suitable for indoor use while having an effective repellent effect against insects.

上記の目的を達成するために、本発明の第1の照明装置は、400nm〜500nmにピーク波長を有する光を出射可能な複数の第1の発光素子11と、第1の発光素子11からの光の少なくとも一部を吸収して黄色の光を蛍光可能な蛍光体と、を有する、虫に対して忌避効果のある白色光を発光可能な照明装置であって、さらに500nmよりも長波長側にピーク波長を有する複数の第2の発光素子21を備える。また第1の発光素子11は第2の発光素子21よりも搭載数または相対発光強度の点で大きく、第1の発光素子11は略等間隔に配列されて、かつ第2の発光素子21が第1の発光素子11に対して略均等に分散されて配置されており、さらに第2の発光素子21同士の間には第1の発光素子11が配置されており、第2の発光素子21のピーク波長の相対放射強度が第1の発光素子11のピーク波長の相対放射強度に対して5%以上20%以下であることを特徴とする。 In order to achieve the above object, a first lighting device of the present invention includes a plurality of first light emitting elements 11 capable of emitting light having a peak wavelength of 400 nm to 500 nm, and the first light emitting elements 11. A lighting device capable of emitting white light that has an effect of repelling insects and that absorbs at least part of the light and can fluoresce yellow light, and has a wavelength longer than 500 nm Are provided with a plurality of second light emitting elements 21 having a peak wavelength. The first light-emitting elements 11 are larger than the second light-emitting elements 21 in terms of the number of mounted light sources or the relative light emission intensity. The first light-emitting elements 11 are arranged at substantially equal intervals, and the second light-emitting elements 21 are The first light emitting elements 11 are arranged so as to be distributed substantially evenly, and the first light emitting elements 11 are arranged between the second light emitting elements 21, and the second light emitting elements 21. The relative radiant intensity at the peak wavelength is 5% or more and 20% or less with respect to the relative radiant intensity at the peak wavelength of the first light emitting element 11 .

また第2の照明装置は、第2の発光素子21同士の離間距離が略一定であり、さらに第2の発光素子21の間には第1の発光素子11が複数配置されており、この第2の発光素子21同士の間に配置される第1の発光素子11の搭載数が略一定であることを特徴とする。   In the second lighting device, the distance between the second light emitting elements 21 is substantially constant, and a plurality of first light emitting elements 11 are arranged between the second light emitting elements 21. The number of mounted first light emitting elements 11 arranged between the two light emitting elements 21 is substantially constant.

また第3の照明装置は、第2の発光素子21が可視光の内黄色又は赤色、或いは赤外域からなる群より選択される少なくとも一の波長域にピーク波長を有することを特徴とする。   The third lighting device is characterized in that the second light emitting element 21 has a peak wavelength in at least one wavelength region selected from the group consisting of visible light yellow or red, or infrared region.

さらに第の照明装置は、第2の発光素子21の総数が第1の発光素子11の総数に対して5%以上14%以下であることを特徴とする。 Further, the fourth lighting device is characterized in that the total number of the second light emitting elements 21 is 5% or more and 14% or less with respect to the total number of the first light emitting elements 11.

また第の照明装置は、第1の発光素子11または/かつ第2の発光素子21が発光ダイオードで構成されていることを特徴とする。 Further, the fifth lighting device is characterized in that the first light emitting element 11 and / or the second light emitting element 21 is formed of a light emitting diode.

さらに第の照明装置は、第1の発光素子11及び第2の発光素子21上を被覆して光を散乱させる透過部材13を備えることを特徴とする。 Furthermore, the sixth lighting device includes a transmissive member 13 that covers the first light emitting element 11 and the second light emitting element 21 and scatters light.

また第の照明装置は、さらに、複数の第1の発光素子11をドットマトリックス状に配列した状態で、第2の発光素子21を所定の位置に少なくとも一以上搭載した基板3を有しており、各第2の発光素子21の離間距離が略等しく、かつ第2の発光素子21は基板3上の発光領域の中心を基準として略対称に位置していることを特徴とする。 The seventh illumination device further includes a substrate 3 on which at least one second light emitting element 21 is mounted at a predetermined position in a state where the plurality of first light emitting elements 11 are arranged in a dot matrix. In addition, the second light emitting elements 21 have substantially the same separation distance, and the second light emitting elements 21 are positioned substantially symmetrically with respect to the center of the light emitting region on the substrate 3.

本発明の照明装置は、虫に対して誘引作用のある波長域を低減するのではなく、この波長域を積極的に利用しつつ、さらに特定の波長光を所定の割合で混色することにより虫に対する忌避効果を高めることができる。加えて光源下においても物の見え方が自然な演色性に優れた照明装置とできる。また、第2の発光素子の間に第1の発光素子が搭載される配置パターンにより、第2の発光素子が過度に近接することを回避でき、第2の発光素子からの発光強度が互いに強められることがない。つまり第1の発光素子からの発光色と、これと色相の異なる第2の発光素子からの発光色の均質性を高めて、混色光における色ムラを低減できる。特に、第2の発光素子間に配置される第1の発光素子の搭載数を複数とすることで、第2の発光素子に係る発光色の成分比率を相対的に低減させることができ、全体の混色における色ムラを一層回避できる。   The illuminating device of the present invention does not reduce the wavelength region that has an attracting action on insects, but actively utilizes this wavelength region and further mixes light of a specific wavelength at a predetermined ratio. The repellent effect for can be enhanced. In addition, it is possible to provide an illuminating device that has a natural color rendering with a natural appearance even under a light source. In addition, the arrangement pattern in which the first light emitting element is mounted between the second light emitting elements can avoid the second light emitting element from being excessively close to each other, and the light emission intensity from the second light emitting element is increased. It is never done. That is, it is possible to improve the uniformity of the emission color from the first light-emitting element and the emission color from the second light-emitting element having a hue different from that of the first light-emitting element, thereby reducing color unevenness in the mixed color light. In particular, by providing a plurality of the first light emitting elements arranged between the second light emitting elements, it is possible to relatively reduce the component ratio of the emission color related to the second light emitting elements, The color unevenness in the mixed colors can be further avoided.

また第3の発明によれば、虫に対する忌避効果を向上させると共に、第1及び第2の発光素子から出射される各成分光の混色による色相を照明光として適したものとできる。特に第2の発光素子によるピーク波長を可視光の長波長側とすれば、混色光を暖色系の白色光とでき演色性に一層優れた照明光となる。   According to the third aspect of the invention, the repellent effect against insects can be improved, and the hue due to the color mixture of each component light emitted from the first and second light emitting elements can be made suitable as illumination light. In particular, if the peak wavelength of the second light emitting element is set to the long wavelength side of visible light, the mixed color light can be converted into warm white light, and illumination light with further excellent color rendering can be obtained.

さらに第1、4の発明によれば、上記の効果を享受すると共に混色光を構成する各成分光の配合比率を特定することで、発光領域における単位面積あたりの成分光の混色率を略一定とできる。この結果、照明装置からの出射光の色ムラを低減することができる。 Further, according to the first and fourth inventions, the color mixing ratio of the component light per unit area in the light emitting region is substantially constant by specifying the blending ratio of each component light constituting the mixed color light while enjoying the above effect. And can. As a result, color unevenness of light emitted from the illumination device can be reduced.

また第の発明によれば、発光素子を発光ダイオードで構成することで、小型で電力効率が良く鮮やかな色の発光を実現できる。さらに球切れの心配がない上、初期駆動特性が優れており、振動やオン・オフ点灯の繰り返しに強い効果を奏する。 According to the fifth aspect of the present invention, the light emitting element is formed of a light emitting diode, so that light emission with a small size, high power efficiency, and vivid color can be realized. In addition, there is no fear of running out of the ball, and the initial drive characteristics are excellent, and it has a strong effect on vibration and repeated on / off lighting.

さらに第の発明によれば、発光素子からの出射光が透過部材を透過することで光を散乱させて拡散性を高めることができ、これにより各成分光の混色性が高まる結果、照明装置からの放出光の色ムラを低減することができる。 Furthermore, according to the sixth aspect of the invention, the light emitted from the light emitting element is transmitted through the transmissive member, so that the light can be scattered and the diffusibility can be increased. As a result, the color mixing property of each component light is increased. The color unevenness of the emitted light from can be reduced.

また第の発明によれば、単位面積あたりの各成分光の混色性を略一定とでき、さらに基板を連結することで種々のサイズの発光面積に対応できる。 Further, according to the seventh invention, the color mixing property of each component light per unit area can be made substantially constant, and the light emitting areas of various sizes can be dealt with by connecting the substrates.

以下、本発明の実施の形態を図面に基づいて説明する。ただし、以下に示す実施の形態は、本発明の技術思想を具体化するための、照明装置を例示するものであって、本発明は、照明装置を以下のものに特定しない。さらに、本明細書は、特許請求の範囲を理解しやすいように、実施例に示される部材に対応する番号を、「特許請求の範囲」、及び「課題を解決するための手段の欄」に示される部材に付記している。ただ、特許請求の範囲に示される部材を、実施例の部材に特定するものでは決してない。特に実施の形態に記載されている構成部品の寸法、材質、形状、その相対的配置等は特に特定的な記載がない限りは、本発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例にすぎない。なお、各図面が示す部材の大きさや位置関係等は、説明を明確にするため誇張していることがある。さらに以下の説明において、同一の名称、符号については同一もしくは同質の部材を示しており、詳細説明を適宜省略する。さらに、本発明を構成する各要素は、複数の要素を同一の部材で構成して一の部材で複数の要素を兼用する態様としてもよいし、逆に一の部材の機能を複数の部材で分担して実現することもできる。また、一部の実施例、実施形態において説明された内容は、他の実施例、実施形態等に利用可能なものもある。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the embodiment described below exemplifies a lighting device for embodying the technical idea of the present invention, and the present invention does not specify the lighting device as follows. Further, in this specification, in order to facilitate understanding of the scope of claims, numbers corresponding to the members shown in the embodiments are indicated in the “claims” and “means for solving problems” sections. It is appended to the members shown. However, the members shown in the claims are not limited to the members in the embodiments. In particular, the dimensions, materials, shapes, relative arrangements, and the like of the component parts described in the embodiments are not intended to limit the scope of the present invention unless otherwise specified, and are merely explanations. It is just an example. Note that the size, positional relationship, and the like of the members shown in each drawing may be exaggerated for clarity of explanation. Furthermore, in the following description, the same name and symbol indicate the same or the same members, and detailed description thereof will be omitted as appropriate. Furthermore, each element constituting the present invention may be configured such that a plurality of elements are constituted by the same member and the plurality of elements are shared by one member, and conversely, the function of one member is constituted by a plurality of members. It can also be realized by sharing. In addition, the contents described in some examples and embodiments may be used in other examples and embodiments.

(実施の形態1)
図1は実施の形態1に係る照明装置1の分解斜視図である。また外部電源やコントローラとの接続状態を示すブロック図でもある。図1の照明装置1は、光を放出する複数の発光素子10で構成された光源2と、この光源2の上方を被覆する透過部材13を備える。また光源2はコントローラ5を介して電源PSと接続されており、ここから駆動電力の供給を受ける。電源PSからの電力をコントローラ5で受けて、発光素子10を通電させると光源2の出射光が上方へと進行し、透過部材13を透過して照明装置1の外部へと放出される。
(Embodiment 1)
FIG. 1 is an exploded perspective view of a lighting device 1 according to Embodiment 1. FIG. It is also a block diagram showing a connection state with an external power supply or a controller. The illuminating device 1 shown in FIG. 1 includes a light source 2 composed of a plurality of light emitting elements 10 that emit light, and a transmissive member 13 that covers the light source 2. The light source 2 is connected to the power source PS via the controller 5 and receives supply of driving power therefrom. When the controller 5 receives power from the power source PS and energizes the light emitting element 10, the light emitted from the light source 2 travels upward, passes through the transmission member 13, and is emitted to the outside of the illumination device 1.

また発光素子10は出射光のピーク波長が異なる第1の発光素子11と第2の発光素子21とを備える。この照明装置1に搭載される第1の発光素子11の数は、第2の発光素子21の搭載数よりも多い。さらに第1の発光素子11は400nm〜500nmにピーク波長を有する光を出射可能であり、さらに、この出射光の少なくとも一部を吸収して励起され黄色に蛍光可能な蛍光体を含有する。一方、第2の発光素子21は500nmよりも長波長側にピーク波長を有する。また第1の発光素子11は、第2の発光素子21よりも相対発光強度の点で大きい。以下、各部材について詳細に説明する。   The light emitting element 10 includes a first light emitting element 11 and a second light emitting element 21 having different peak wavelengths of emitted light. The number of the first light emitting elements 11 mounted on the lighting device 1 is larger than the number of the second light emitting elements 21 mounted. Further, the first light emitting element 11 can emit light having a peak wavelength in the range of 400 nm to 500 nm, and further contains a phosphor that is excited by absorbing at least a part of the emitted light and can be fluorescent in yellow. On the other hand, the second light emitting element 21 has a peak wavelength on the longer wavelength side than 500 nm. The first light emitting element 11 is larger in relative light emission intensity than the second light emitting element 21. Hereinafter, each member will be described in detail.

(光源)
実施の形態1に係る光源2は複数の点光源である発光素子10を集合させたものであり、この発光素子10としては放電発光、電界発光など種々の照明光が利用できる。具体的には、LEDやLDなどの半導体素子、有機EL、ルミネセンスによる蛍光ランプなどが挙げられる。図1の例では発光素子10として発光ダイオード(light emitting diode:LED)を採用した。これにより低電圧、低電流で駆動できるため、消費電力を抑え耐久性、信頼性を向上できる。さらに電力消費量も低減できるためランニングコスト削減に加え地球環境にも配慮できる。また、LEDは堅牢で耐衝撃性に優れ機械的衝撃にも強く安定して使用できる他、長寿命であるため光源を取り替える手間やコストを低減でき、メンテナンスフリーを実現できる。さらに、発熱量が小さいため周囲の部材への熱的影響が比較的小さい。
(light source)
The light source 2 according to Embodiment 1 is a collection of a plurality of light emitting elements 10 which are point light sources. As the light emitting element 10, various illumination lights such as discharge light emission and electroluminescence can be used. Specific examples include semiconductor elements such as LEDs and LDs, organic EL, and fluorescent lamps using luminescence. In the example of FIG. 1, a light emitting diode (LED) is employed as the light emitting element 10. As a result, it can be driven at a low voltage and a low current, so that power consumption can be suppressed and durability and reliability can be improved. In addition, since power consumption can be reduced, it is possible to consider the global environment in addition to reducing running costs. In addition, the LED is robust and excellent in impact resistance, and can be used stably and strongly against mechanical impacts, and since it has a long life, it can reduce labor and cost of replacing the light source, and can realize maintenance-free. Furthermore, since the calorific value is small, the thermal influence on the surrounding members is relatively small.

加えて、LEDは電流制御素子であるため、電流量によって発光量を調整できる上、出力のリニアリティにも優れ好ましい。実施の形態1に係るLEDの形状は特に限定されず、砲弾型、表面実装型(SMD型)等、種々のLEDを採用できる。例えば表面実装型を使用すれば薄型の照明装置を実現できる。   In addition, since the LED is a current control element, the amount of light emission can be adjusted by the amount of current, and the output linearity is excellent and preferable. The shape of the LED according to Embodiment 1 is not particularly limited, and various LEDs such as a shell type and a surface mount type (SMD type) can be employed. For example, if a surface mount type is used, a thin lighting device can be realized.

また、第1の発光素子11は400nm〜500nm、特に450nm〜480nm、一層好ましくは460nm〜470nmに発光ピーク波長を有し、蛍光物質を効率よく励起可能な発光波長を有する光を発光できる発光層を有することが好ましい。当該範囲の励起光源を用いることにより、蛍光体の発光効率を高めることができるからである。また、上記の波長範囲の光は主に青色光領域となる。   The first light-emitting element 11 has a light emission layer having a light emission peak wavelength of 400 nm to 500 nm, particularly 450 nm to 480 nm, more preferably 460 nm to 470 nm, and capable of emitting light having a light emission wavelength capable of efficiently exciting the fluorescent substance. It is preferable to have. This is because the luminous efficiency of the phosphor can be increased by using an excitation light source in this range. The light in the above wavelength range is mainly in the blue light region.

そして第1の発光素子11内の蛍光体に吸収された青色光は励起源として働き、黄色の蛍光を発する。この黄色光と青色光が混ぜ合わされて人間の目には白色として見える。例えば、発光素子にInGaN系材料を使った青色系発光素子を用い、この青色系発光素子表面に蛍光体を薄くコーティングする。この蛍光体は、(Y,Gd)3(Al,Ga)512:Ceの組成式で表されるYAG系蛍光体等を利用できる。 The blue light absorbed by the phosphor in the first light emitting element 11 serves as an excitation source and emits yellow fluorescence. This yellow light and blue light are mixed and appear as white to the human eye. For example, a blue light emitting element using an InGaN-based material is used as the light emitting element, and a phosphor is thinly coated on the surface of the blue light emitting element. As this phosphor, a YAG phosphor represented by a composition formula of (Y, Gd) 3 (Al, Ga) 5 O 12 : Ce can be used.

図2は第1の発光素子10に係る出射光の波長を示すスペクトル図である。図2に示すように第1の発光素子11は発光ダイオードによる400nm〜500nmの青色波長域と、蛍光体による500nm〜600nmの黄色波長域にピーク波長を備える。すなわち第1の発光素子11はこれらの色相が混色することで発光素子11全体からは白色に呈した出射光が放出される。   FIG. 2 is a spectrum diagram showing the wavelength of the emitted light related to the first light emitting element 10. As shown in FIG. 2, the first light emitting element 11 has a peak wavelength in a blue wavelength range of 400 nm to 500 nm by a light emitting diode and a yellow wavelength range of 500 nm to 600 nm by a phosphor. In other words, the first light emitting element 11 emits the emitted light having a white color from the entire light emitting element 11 by mixing these hues.

ところで、この第1の発光素子11の青色発光領域に相当する波長と、虫の誘引率に関するデータを図3に示す。具体的に図3は青色光を単独に出射するLED光と、他の単色を呈する各LED光(紫色、緑色、黄色、赤黄色、赤色)に誘引される虫の数を比較したグラフである。また白色のLED光に関しても同様の観測を施し、その結果を図3に併記する。図3から、虫は長波長の光に誘引されにくい傾向が見られる。一方、短波長側の光は虫の誘引作用が顕著であり、特に紫色、続いて青色光が他の単色光と比較して誘引率が高い。   Incidentally, FIG. 3 shows data relating to the wavelength corresponding to the blue light emitting region of the first light emitting element 11 and the insect attracting rate. Specifically, FIG. 3 is a graph comparing the number of insects attracted by LED light emitting blue light alone and each LED light (purple, green, yellow, red yellow, red) exhibiting another single color. . Similar observations are made for white LED light, and the results are also shown in FIG. FIG. 3 shows that insects tend not to be attracted by long-wavelength light. On the other hand, light on the short wavelength side has a remarkable insect attracting action, and in particular, purple and blue light have a higher attracting rate than other monochromatic lights.

実施の形態1の照明装置は、この虫の誘引率が高い青色光を出射する第1の発光素子11を積極的に利用しつつ、さらに所定の割合の光量でもって第2のピーク波長域を混合することを特長とする。すなわち、虫の誘引率が高い波長域を低減させる従来の方法とは異なり、この波長域をそのまま出射光の成分光とし、さらに他の色相の波長光を特定の配合割合で混色付加することで忌避効果を高めており、これは全く新しい知見に基づくものである。   The illuminating device of the first embodiment actively uses the first light emitting element 11 that emits blue light having a high attracting rate of insects, and further sets the second peak wavelength region with a predetermined amount of light. It is characterized by mixing. In other words, unlike the conventional method of reducing the wavelength region where the insect attracting rate is high, this wavelength region is used as the component light of the emitted light as it is, and the wavelength light of other hues is mixed and added at a specific blending ratio. The repellent effect is enhanced, which is based on completely new knowledge.

具体的に図4は、図2の光波長に付加される光波長の一例であって、それぞれの波長は第2の発光素子21の出射光により構成される。図では一例として580nm(黄色)、620nm(赤色)または700nm(赤外線)にピーク波長を備えるそれぞれの波形を示しているが、第2の発光素子21は500nmよりも長波長側に少なくとも一のピーク波長を有していればよく、図の波形に限定されない。   Specifically, FIG. 4 is an example of a light wavelength added to the light wavelength of FIG. 2, and each wavelength is constituted by light emitted from the second light emitting element 21. In the drawing, each waveform having a peak wavelength at 580 nm (yellow), 620 nm (red), or 700 nm (infrared) is shown as an example, but the second light emitting element 21 has at least one peak on the longer wavelength side than 500 nm. As long as it has a wavelength, it is not limited to the waveform in the figure.

また、第1の発光素子11のピーク波長の相対放射強度は第2の発光素子21のピーク波長における相対放射強度よりも大きい。具体的には図2及び図4に示すように、第2の発光素子21のピーク波長の相対放射強度P2(図4参照)は、第1の発光素子11のピーク波長の相対放射強度P1(図2参照)に対して5%以上20%以下であることが好ましい。第1の発光素子11及び第2の発光素子21からの各成分光による混色の割合をこの範囲に特定することで、有効な防虫効果を発揮しつつ、照明装置1からの全体の放出光の演色性を向上させ、さらに混色光の色ムラを低減でき好ましい。すなわち室内での使用に際しても光源下で物の色を自然に見ることができ、かつ虫に対する忌避効果の双方を満足する照明装置とできる。   Further, the relative radiation intensity at the peak wavelength of the first light emitting element 11 is larger than the relative radiation intensity at the peak wavelength of the second light emitting element 21. Specifically, as shown in FIGS. 2 and 4, the relative radiant intensity P2 (see FIG. 4) of the peak wavelength of the second light emitting element 21 is the relative radiant intensity P1 (see FIG. 4) of the first light emitting element 11. It is preferable that it is 5% or more and 20% or less with respect to FIG. By specifying the ratio of the color mixture by each component light from the first light-emitting element 11 and the second light-emitting element 21 within this range, an effective insect-proofing effect is exhibited and the entire emitted light from the lighting device 1 is reduced. Color rendering properties are improved, and color unevenness of mixed color light can be reduced, which is preferable. That is, even when used indoors, it is possible to provide a lighting device that can naturally see the color of an object under a light source and that satisfies both the insect repellent effect.

また第2の発光素子21は500nmよりも長波長側に少なくとも一のピーク波長を有していればよい。ただこれに加えて2以上のピーク波長を備えていてもよい。あるいは第2の発光素子とは異なる波長域であって、500nm以上にピーク波長を備える第3の発光素子を追加してもよい。   The second light emitting element 21 only needs to have at least one peak wavelength on the longer wavelength side than 500 nm. However, in addition to this, two or more peak wavelengths may be provided. Alternatively, a third light-emitting element having a wavelength range different from that of the second light-emitting element and having a peak wavelength of 500 nm or more may be added.

(発光素子の配列と載置個数の割合)
発光素子10の配列状態について以下に説明する。第1の発光素子11及び第2の発光素子21は、それぞれの発光素子の配列パターンにおいて、隣接する発光素子同士を等間隔として、これにより配置の均等性を高めている。具体的には第1の発光素子11を略等間隔に配列して、かつ第2の発光素子21を、この第1の発光素子11に対して略均等に分散して配置している。すなわち、発光素子の全集合体で構成される発光領域内において、第2の発光素子同士の離間距離が略一定となり、単位面積当たりの両発光素子の搭載数の比率を略一定とできる。
(Ratio of light emitting element array and number of mounted elements)
The arrangement state of the light emitting elements 10 will be described below. The first light emitting element 11 and the second light emitting element 21 are arranged at equal intervals between adjacent light emitting elements in the arrangement pattern of the respective light emitting elements, thereby improving the uniformity of arrangement. Specifically, the first light emitting elements 11 are arranged at substantially equal intervals, and the second light emitting elements 21 are arranged so as to be distributed substantially evenly with respect to the first light emitting elements 11. That is, in the light emitting region constituted by the entire assembly of light emitting elements, the distance between the second light emitting elements is substantially constant, and the ratio of the number of both light emitting elements mounted per unit area can be substantially constant.

さらに詳しくは、任意の第2の発光素子21同士の間には第1の発光素子が介在されており、つまり第2の発光素子21同士が隣接して配置されない。また、この第2の発光素子21同士の間に位置する第1の発光素子11の配置数は、任意の第2の発光素子21間においてそれぞれ略一定である。言い換えると、第1の発光素子群は第2の発光素子により配置領域または配置数を略均等に分割されている。   More specifically, the first light emitting element is interposed between the arbitrary second light emitting elements 21, that is, the second light emitting elements 21 are not adjacently arranged. In addition, the number of the first light emitting elements 11 disposed between the second light emitting elements 21 is substantially constant between any second light emitting elements 21. In other words, the first light emitting element group is divided substantially evenly by the second light emitting element in the arrangement region or the arrangement number.

このように発光素子の配列の均等性を高めることで、各発光素子からの出射光が寄与する各色相の混色性を向上させ、この結果、全体の混合色における色ムラを低減させることができ好ましい。ただし、本明細書でいう「等間隔」とは、隣接する同種の発光素子間における離間距離が等しいことを意味しており、この場合の離間距離とは異種の発光素子間の距離には適用されない。また、「同種」とはスペクトル波長の形状が類似していることを指す。   Thus, by increasing the uniformity of the arrangement of the light emitting elements, the color mixing property of each hue contributed by the light emitted from each light emitting element can be improved, and as a result, the color unevenness in the entire mixed color can be reduced. preferable. However, “equal intervals” in this specification means that the distances between adjacent light emitting elements of the same type are equal, and the distance in this case is applicable to the distance between different types of light emitting elements. Not. “Same type” means that the spectral wavelength shapes are similar.

図1の例では基板3上の発光素子の載置領域を矩形状の発光領域とし、この発光領域内に複数の第1の発光素子11をドットマトリックス状に配列している。また隣接する第1の発光素子11は略等間隔である。さらに、基板3上に第2の発光素子21を搭載しており、この第2の発光素子21の総数は、第1の発光素子11の総数の5%以上14%以下とする。第1及び第2の発光素子において発光ピーク値を基準とした上記光量の割合に加えて、載置総数の割合をこの範囲に規定することで、照明装置の演色性及び防虫効果を一層高めると共に、照明装置1からの全体光の色ムラをより低減することができる。   In the example of FIG. 1, the mounting region of the light emitting elements on the substrate 3 is a rectangular light emitting region, and a plurality of first light emitting elements 11 are arranged in a dot matrix within this light emitting region. Adjacent first light emitting elements 11 are substantially equally spaced. Further, the second light emitting elements 21 are mounted on the substrate 3, and the total number of the second light emitting elements 21 is 5% to 14% of the total number of the first light emitting elements 11. In the first and second light emitting elements, in addition to the ratio of the light amount based on the emission peak value, by defining the ratio of the total number of mounted elements within this range, the color rendering property and insect-proof effect of the lighting device can be further enhanced. The color unevenness of the whole light from the lighting device 1 can be further reduced.

さらに任意の第2の発光素子2間同士を等間隔とし、かつ配置位置を略対称にして、第2の発光素子21を発光領域内に均等に分散することが好ましい。具体的に図5は発光素子10の配列の一例を示す説明図である。具体的に図5(a)は3行×3列の計9個の第1の発光素子11をマトリックス状に配列してこれを便宜上、発光素子群4(図中の矩形破線部)と呼称する。第2の発光素子21はこの発光素子群4の間に配置されており、さらに図5(a)の一点鎖線に示すように、隣接する第2の発光素子21同士を連結した線がジグザグに屈曲するように搭載している。さらに詳しくは、第2の発光素子21は発光領域の中心を通る中心線を基準として略対称に位置する。   Furthermore, it is preferable that the second light-emitting elements 21 are evenly distributed in the light-emitting region so that the arbitrary second light-emitting elements 2 are equally spaced from each other and the arrangement positions are substantially symmetrical. Specifically, FIG. 5 is an explanatory diagram showing an example of the arrangement of the light emitting elements 10. Specifically, FIG. 5A shows a total of nine first light emitting elements 11 of 3 rows × 3 columns arranged in a matrix and is referred to as a light emitting element group 4 (rectangular broken line portion in the figure) for convenience. To do. The second light-emitting elements 21 are arranged between the light-emitting element groups 4, and as shown by the alternate long and short dash line in FIG. 5A, the line connecting the adjacent second light-emitting elements 21 is zigzag. It is mounted to bend. More specifically, the second light emitting element 21 is positioned substantially symmetrically with respect to a center line passing through the center of the light emitting region.

また発光素子10の搭載領域に相当する光源の発光領域において、単位面積あたりに搭載される第1の発光素子11と第2の発光素子21の搭載個数の比率を略一定とする。これにより第1の発光素子11からの出射光における第2の光量の配合比率を偏在なく略一定とでき、この結果混色光の色ムラを低減でき好ましい。   Further, in the light emitting region of the light source corresponding to the mounting region of the light emitting element 10, the ratio of the number of mounted first light emitting elements 11 and second light emitting elements 21 per unit area is made substantially constant. Thereby, the blending ratio of the second light quantity in the emitted light from the first light emitting element 11 can be made substantially constant without uneven distribution, and as a result, the color unevenness of the mixed color light can be reduced, which is preferable.

例えば図1の例では、第1の発光素子11で構成される白色ベースの発光領域に、第2の発光素子21の赤色光が略一定の配分でさらに略等間隔にちりばめられた光源2とできる。これにより発光領域の大きい白色光に赤色光が均等に散在し、赤色光の偏在を回避して、全体の混色光における色ムラを低減できる。   For example, in the example of FIG. 1, the light source 2 in which the red light of the second light emitting element 21 is further distributed at a substantially constant interval in a white base light emitting region constituted by the first light emitting element 11. it can. As a result, the red light is evenly scattered in the white light having a large light emitting area, and the uneven distribution of the red light can be avoided and the color unevenness in the entire mixed color light can be reduced.

また、図5(a)の配置形態であれば、白色用の第1の発光素子11の間をぬうように第2の発光素子21を配列するため、第2の発光素子21の搭載箇所は第1の発光素子11に依存せず種々とできる。あるいは、既存の白色用照明装置を利用して第2の発光素子21のみを追加して対応できるため、従来の照明装置に防虫機能を容易に付与することができる。   5A, since the second light emitting elements 21 are arranged so as to pass between the first light emitting elements 11 for white, the mounting location of the second light emitting elements 21 is It can be various without depending on the first light emitting element 11. Alternatively, since it is possible to add only the second light emitting element 21 using an existing white lighting device, it is possible to easily impart an insect-proof function to the conventional lighting device.

また、図5(b)は発光素子群4の一部を第2の発光素子21に置換した配列形態である。具体的には発光素子群4の矩形状において、縁側の中央部に位置する第1の発光素子11を第2の発光素子21と置換している。第2の発光素子21の全体の配置位置は一点鎖線で示すように、図5(a)と同様ジグザグ形状となり配置の均等性が高まる。また、全ての発光素子群4は互いに同一の素子配置であり、かつ隣接する発光素子群4を上下逆になる姿勢で連結している。したがって図5(b)の配置形態であれば発光素子群4を一のユニットとし、ひとつおきに上下逆にした状態でこれらを数珠繋ぎに接続してユニット数を変更することで、単位面積当たりの第2の発光素子21の配置位置を均等にしつつ、様々なサイズの発光面積に対応できる。また、ユニットの接続状態は直線状に限定せず面状、あるいは立体状としてもよい。   FIG. 5B shows an arrangement in which a part of the light emitting element group 4 is replaced with the second light emitting element 21. Specifically, in the rectangular shape of the light emitting element group 4, the first light emitting element 11 located in the center part on the edge side is replaced with the second light emitting element 21. As shown by the alternate long and short dash line, the entire arrangement position of the second light-emitting elements 21 becomes a zigzag shape as in FIG. All the light emitting element groups 4 have the same element arrangement, and the adjacent light emitting element groups 4 are connected in an upside down posture. Therefore, in the arrangement form of FIG. 5B, the light emitting element group 4 is set as one unit, and the unit number is changed by connecting them in a daisy chain in a state where every other unit is turned upside down. While the arrangement positions of the second light emitting elements 21 are made uniform, the light emitting areas of various sizes can be handled. Further, the connection state of the units is not limited to a linear shape, and may be a planar shape or a three-dimensional shape.

また発光素子群4における発光素子10の搭載個数は上記に限定されない。例えば図5(c)に示すように、一のユニット内における発光素子10の総数を5行×5列の計25個としてマトリックス状に配列し、この矩形状の一辺の両端と、対向する対辺の中央に第2の発光素子21を搭載し、残りは第1の発光素子11とする。図5(c)の例では一のユニット内に複数の第2発光素子21を備えており、一のユニットで発光領域を稼ぐことができる。このように各発光素子における全体の搭載個数と光量の比率が上記の範囲を満たしていればその配列方法は限定されない。   The number of the light emitting elements 10 mounted in the light emitting element group 4 is not limited to the above. For example, as shown in FIG. 5 (c), the total number of light emitting elements 10 in one unit is arranged in a matrix form with a total of 25 rows of 5 rows × 5 columns, and both ends of one side of this rectangular shape are opposed to opposite sides. The second light-emitting element 21 is mounted in the center of the first, and the rest is the first light-emitting element 11. In the example of FIG. 5C, a plurality of second light emitting elements 21 are provided in one unit, and a light emitting area can be earned with one unit. As described above, the arrangement method is not limited as long as the ratio between the total number of mounted light emitting elements and the amount of light satisfies the above range.

(透過部材)
さらに、光源2の上部を被覆する透過部材13は、図1に示すように発光素子10の出射光の少なくとも一部を透過可能に構成されている。透過部材13の形状は特に限定しないが少なくとも発光素子10の出射面が露出しないよう光源2の発光領域側に対向して、かつ発光領域の上方を包含するよう被覆することが好ましい。
(Transparent member)
Further, the transmissive member 13 covering the upper part of the light source 2 is configured to transmit at least a part of the emitted light of the light emitting element 10 as shown in FIG. Although the shape of the transmissive member 13 is not particularly limited, it is preferable to cover the light-emitting element 10 so as to face at least the light-emitting area side of the light source 2 and to cover the upper side of the light-emitting area so that at least the emission surface of the light-emitting element 10 is not exposed.

図1の例では透明部材でなる例えばアクリル(PMMA樹脂)を射出成形して断面半円形状に形成しており、この円弧面状を光の進行方向として光源2と固定している。ただし透過部材13の材質はこれに限定されない。また、本明細書中でいう「透明」とは無色に限らず、少なくとも光の一部を透過可能な半透明や透過性を含むものとする。   In the example of FIG. 1, for example, acrylic (PMMA resin) made of a transparent member is injection-molded to form a semicircular cross section, and this circular arc surface is fixed to the light source 2 as the light traveling direction. However, the material of the transmissive member 13 is not limited to this. In addition, the term “transparent” in the present specification is not limited to colorless, and includes at least translucent and translucent that can transmit part of light.

さらに透過部材13は高い光の拡散性を兼ね備えることが好ましい。これにより透過部材13を経由する各成分光の指向性を低減し、すなわち光の散乱性が向上されて一層の混色性が高まる結果、色ムラが極減される。また視野角を増大でき好ましい。一例として透過部材13の少なくとも出射面側に梨地面(シボ面)等の無数の凹凸を一定のピッチで、あるいはランダムに形成し光散乱面としてもよい。あるいは透過部材13に炭酸マグネシウム、酸化チタン等を顔料にしてなる光散乱性のインクを付着してもよい。また、発光素子10自体に拡散材を含有させることもできる。   Further, the transmissive member 13 preferably has high light diffusibility. As a result, the directivity of each component light passing through the transmission member 13 is reduced, that is, the light scattering property is improved and the color mixing property is further increased. As a result, the color unevenness is extremely reduced. In addition, the viewing angle can be increased. As an example, an infinite number of irregularities such as a textured surface (texture surface) may be formed at a constant pitch or randomly on at least the emission surface side of the transmission member 13 to form a light scattering surface. Alternatively, light scattering ink made of magnesium carbonate, titanium oxide or the like as a pigment may be attached to the transmissive member 13. Further, the light emitting element 10 itself can contain a diffusing material.

(電気系統)
図1のコントローラ5は発光素子10のON/OFFを切り替えることができるスイッチを備える。さらにコントローラ5には可変抵抗器を併設でき、これにより発光素子10への供給電流の電流量、ONデューティやOFFデューティ、点灯パルス数、点灯周期(周波数)などを調整できる。この結果、発光素子10の発光形態や光量、輝度などの発光特性を変化させ、第1の発光素子11と第2の発光素子21との成分光の比率を制御できる。図の例ではコントローラ5を電源PSとの電源コネクタとして併用しているが、この構成に限定されるものではなく、別個にスイッチを設ける形態でもよい。また、コントローラ5は供給された電流をLED駆動電流に変換可能なコンバータや変圧器を内蔵してもよい。
(Electrical system)
The controller 5 in FIG. 1 includes a switch that can switch ON / OFF of the light emitting element 10. Further, the controller 5 can be provided with a variable resistor, whereby the amount of current supplied to the light emitting element 10, the ON duty or OFF duty, the number of lighting pulses, the lighting cycle (frequency), and the like can be adjusted. As a result, it is possible to control the ratio of the component light between the first light emitting element 11 and the second light emitting element 21 by changing the light emission characteristics of the light emitting element 10 such as the light emission form, the amount of light, and the luminance. In the illustrated example, the controller 5 is used together as a power connector with the power source PS, but the configuration is not limited to this configuration, and a mode in which a switch is separately provided may be used. Further, the controller 5 may incorporate a converter or a transformer that can convert the supplied current into the LED driving current.

またコントローラ5は外部の電源PSと連結して電力が供給されるよう構成されている。この電源PSとしてはAC100V等の商用電源や電池などのバッテリーを利用できる。特に充電池を利用すれば、コードレスで光源2に電力供給できるので好ましい。また、充電池の充電には、電源PSとの電源線を接続する優先接続方式の他、電磁誘導などを利用した無接点充電式とすることもできる。   The controller 5 is configured to be connected to an external power source PS to be supplied with power. As the power source PS, a commercial power source such as AC100V or a battery such as a battery can be used. In particular, the use of a rechargeable battery is preferable because it can supply power to the light source 2 cordlessly. The rechargeable battery can be charged by a contactless charging method using electromagnetic induction or the like, in addition to a priority connection method in which a power line is connected to the power source PS.

以下の実施例1〜4は、第1の発光素子11を上記図2のスペクトルを持つ白色発光の第1のLED11aとして共通に使用し、これに種々のピーク波長を備える第2の発光素子21として第2のLED21aをそれぞれ組み合わせ、虫の誘引率を測定した。また第2のLED21aのピーク波長における相対強度は第1のLED11aのピーク波長における相対強度の約20%である。また比較例1は蛍光灯を使用した従来の照明装置を、さらに比較例2に使用した白色発光のLEDは、実施例1〜4の第1のLED11aとは異なり、すなわち赤、緑、青の各色をLEDで構成し各発光色を混色させて白色を得るフルカラーLED11bを利用した。   In the following Examples 1 to 4, the first light-emitting element 11 is commonly used as the first LED 11a that emits white light having the spectrum shown in FIG. 2, and the second light-emitting element 21 having various peak wavelengths is used. The second LED 21a was combined with each other, and the insect attracting rate was measured. The relative intensity at the peak wavelength of the second LED 21a is about 20% of the relative intensity at the peak wavelength of the first LED 11a. Moreover, the comparative example 1 is different from the 1st LED 11a of Examples 1-4 in the white light emission LED used for the conventional illuminating device which used the fluorescent lamp for the comparative example 2, and is red, green, and blue. A full color LED 11b is used in which each color is composed of LEDs and each emission color is mixed to obtain white.

LEDを使用した実施例1〜4及び比較例2では、図6に示すように、白色光を放出する第1のLED11aまたはフルカラーLED11bをドットマトリックス状に4行×4列の計16個配列させ、この中央域に第2のLED21aを適宜組み合わせた。具体的に、実施例1の第2のLED21aは赤色発光であってピーク波長が620nmである。また実施例2では第2のLED21aを使用せず、第1のLED11aのみとした。さらに実施例3では第2のLED21aを緑色発光であって528nmにピーク波長を有するものを、また実施例4の第2のLED21aは青色発光であって468nmにピーク波長を有するものをそれぞれ使用した。比較例1〜2及び実施例1〜4の各発光波長域における単位時間当たりの虫の誘引数を図7に示す。   In Examples 1 to 4 and Comparative Example 2 using LEDs, as shown in FIG. 6, a total of 16 first LEDs 11a or full color LEDs 11b that emit white light are arranged in a 4 × 4 column in a dot matrix. The second LED 21a was appropriately combined with this central area. Specifically, the second LED 21a of Example 1 emits red light and has a peak wavelength of 620 nm. In Example 2, the second LED 21a is not used, and only the first LED 11a is used. Further, in Example 3, the second LED 21a is green light emitting and has a peak wavelength at 528 nm, and the second LED 21a in Example 4 is blue light emitting and has a peak wavelength at 468 nm. . FIG. 7 shows the attracting arguments of insects per unit time in the respective emission wavelength ranges of Comparative Examples 1-2 and Examples 1-4.

図7より、蛍光灯(比較例1)と比べてLED(比較例2、実施例1〜4)であれば、虫の誘引数を65%以上低減できることが判明した。さらに第1のLED11a(実施例1〜4)では、フルカラーLED11b(比較例2)と比較して一層の忌避効果を発揮している。これを考慮してさらに特定の波長域を混色させる(実施例1)ことで虫の忌避効果が顕著に高まることが確認できた。   From FIG. 7, it was found that the LED attracting argument can be reduced by 65% or more in the case of the LED (Comparative Example 2, Examples 1 to 4) compared to the fluorescent lamp (Comparative Example 1). Further, the first LED 11a (Examples 1 to 4) exhibits a further repellent effect as compared with the full-color LED 11b (Comparative Example 2). In consideration of this, it was confirmed that the repellent effect of insects was remarkably increased by mixing specific wavelengths (Example 1).

また図8は、白色光源に加えて忌避効果の高い500nm以上の波長域を付加した照明装置より放出される光のスペクトルデータである。具体的にこの照明装置は、白色を呈する88個の第1のLED11aに、実施例1に相当する赤色の第2のLED21aを11個だけ略均等に離間して配置した。さらに詳しくは3行×3列にマトリックス状に配置したLED群を1グループとし、中央部には1個の第2のLED21aを搭載し、さらにこの第2のLED21aを包囲するよう8個の第1のLED11aを配置した。すなわち各LEDの搭載比率において、第2のLED21aの搭載数は、第1のLED11aの搭載数に対して12.5%の割合(第2のLED21a:第1のLED11a=1:8)になるよう構成し、これを11グループだけ一方向に並列させて照明装置とした。また白色光に寄与する第1のLED11aの1個当たりの定格出力は0.036W(3.6V、10mA)でデューティ比50%とし、赤色光を構成する第2のLED21aの1個当たりの定格出力は約0.02W(2.0V、10mA)でデューティ比50%とした。   FIG. 8 shows spectral data of light emitted from a lighting device to which a wavelength region of 500 nm or more having a high repelling effect is added in addition to a white light source. Specifically, in this illuminating device, 11 red second LEDs 21a corresponding to Example 1 are arranged substantially equally spaced from 88 first LEDs 11a exhibiting white. More specifically, a group of LEDs arranged in a matrix of 3 rows × 3 columns is made into one group, and one second LED 21a is mounted at the center, and eight second LEDs 21a are surrounded so as to surround the second LED 21a. 1 LED 11a was arranged. That is, in the mounting ratio of each LED, the number of mounted second LEDs 21a is 12.5% of the number of mounted first LEDs 11a (second LED 21a: first LED 11a = 1: 8). The lighting device was configured by arranging 11 groups in parallel in one direction. Further, the rated output per one of the first LEDs 11a contributing to white light is 0.036 W (3.6 V, 10 mA) and the duty ratio is 50%, and the rated per one of the second LEDs 21 a constituting the red light. The output was about 0.02 W (2.0 V, 10 mA) and the duty ratio was 50%.

この照明装置において、第1のLED21aへ定格電圧を供給し、一方第2のLED21aに対しては定格電圧の20%の電圧供給とした条件での、照明装置から放出されるスペクトルを図8(a)に示す。スペクトル測定はLEDを搭載した基板より2.2m離間した位置で測定した。図8(a)に示すように白色光を構成する第1のLED11aの波長域に、第2のLED21aの波長域の放射強度が加重されている。詳しくは、第2のLED21aの波長域に相当する620nm近傍において、付加された相対放射強度(P2)は、第1のLED11aのピーク波長の相対強度(P1)に対して約12.1%であった。   In this illuminating device, the spectrum emitted from the illuminating device under the condition that the rated voltage is supplied to the first LED 21a while the second LED 21a is supplied with a voltage of 20% of the rated voltage is shown in FIG. Shown in a). The spectrum was measured at a position 2.2 m away from the substrate on which the LED was mounted. As shown to Fig.8 (a), the radiation intensity of the wavelength range of 2nd LED21a is weighted to the wavelength range of 1st LED11a which comprises white light. Specifically, in the vicinity of 620 nm corresponding to the wavelength region of the second LED 21a, the added relative radiation intensity (P2) is about 12.1% with respect to the relative intensity (P1) of the peak wavelength of the first LED 11a. there were.

さらに図8(b)は、第1のLED11a及び第2のLED21aの双方へ定格電力を供給した際の、照明装置から放出される光のスペクトルを示す。つまり図8(a)の第2のLED21aへの供給平均電力を定格電圧の20%とした状態から100%に上昇させた際の、照明装置における放出光の波長を示す。図8(b)のスペクトルは、図8(a)と同様に、付加された第2の発光素子における波長域の強度が上昇したことが確認できた。具体的に、付加された相対放射強度(P2)は、第1のLED11aのピーク波長の相対強度(P1)に対して約18.9%であった。加えて、蛍光体の波長域に相当する黄色発光域においても相対放射強度の上昇が観測された。この結果400nmないし500nmに位置する第1のLED11aのピーク波長(P1)は、蛍光体の波長域(500nmないし600nm)に位置するピーク波長と比較して、相対放射強度の割合が減少している。この短波長側の青色波長域の成分光における比率の減少が、虫に対する忌避効果に有効であると考えられる。   Furthermore, FIG.8 (b) shows the spectrum of the light discharge | released from an illuminating device at the time of supplying rated power to both 1st LED11a and 2nd LED21a. That is, the wavelength of the emitted light in the illumination device when the average power supplied to the second LED 21a in FIG. 8A is increased from 100% to 100% from the rated voltage is shown. In the spectrum of FIG. 8B, it was confirmed that the intensity of the wavelength region in the added second light emitting element was increased as in FIG. 8A. Specifically, the added relative radiation intensity (P2) was about 18.9% with respect to the relative intensity (P1) of the peak wavelength of the first LED 11a. In addition, an increase in relative radiation intensity was observed also in the yellow emission region corresponding to the wavelength region of the phosphor. As a result, the peak wavelength (P1) of the first LED 11a located at 400 nm to 500 nm has a reduced ratio of relative radiation intensity compared to the peak wavelength located at the wavelength range (500 nm to 600 nm) of the phosphor. . This reduction in the ratio of component light in the blue wavelength region on the short wavelength side is considered to be effective for the repellent effect against insects.

ただ照明装置からの放出光は色相の異なる成分光の混合体であるため、測定箇所によって波長形状が多少相違することがある。したがって放出光を図8の波長形状に限定しない。また、付加される第2のLED21aの放射強度が高いほど忌避効果を増強できる。一方で付加する波長強度の割合が高ければ、白色光との混色による色ムラが発生する可能性が高まるため、発光色の均質の観点からは、第2の発光素子21のピーク波長の相対放射強度(P2)が、第1の発光素子11のピーク波長(P1)に対して5%以上20%以下であることが好ましい。あるいは第2の発光素子(21)の総数が第1の発光素子(11)の総数に対して5%以上14%以下とすることが好ましい。   However, since the emitted light from the illumination device is a mixture of component lights having different hues, the wavelength shape may be slightly different depending on the measurement location. Therefore, the emitted light is not limited to the wavelength shape of FIG. Further, the higher the radiation intensity of the added second LED 21a, the stronger the repelling effect. On the other hand, if the ratio of the wavelength intensity to be added is high, the possibility of color unevenness due to color mixing with white light increases. From the viewpoint of uniform emission color, the relative emission of the peak wavelength of the second light emitting element 21 is achieved. The intensity (P2) is preferably 5% or more and 20% or less with respect to the peak wavelength (P1) of the first light emitting element 11. Alternatively, the total number of second light emitting elements (21) is preferably 5% or more and 14% or less with respect to the total number of first light emitting elements (11).

このように、本実施の形態に係る照明装置は虫の誘引率が高い波長域を有していながら、特定の波長域の発光を所定の割合だけ混合させることで有効な忌避効果を生み出すと共に、白色発光を実現できる。この結果、演色性を維持しつつ高い防虫作用を備える照明装置とできる。特に従来の防虫効果を備える照明装置では、虫の視覚反応に対応する波長域のピークを低減させる、あるいは皆無とすることで虫が寄せ集まるのを防止していた。いいかえると虫の反応域の波長域に相当するスペクトルを排除していた。しかしながら、虫に対する忌避効果の高い波長域により構成される光源は演色性が低く、一般の照明装置として使用し難く、利用範囲が著しく限定されるという問題があった。これに対して上述した本実施の形態に係る照明装置では、演色性の高いスペクトル域を排除することなく、新たなスペクトルを付加することで忌避効果を高めているため、演色性を犠牲にすることなく防虫作用を発揮でき、広い用途での照明として好適に利用できる。   Thus, while the lighting device according to the present embodiment has a wavelength range where the attracting rate of insects is high, it produces an effective repellent effect by mixing the light emission of a specific wavelength range by a predetermined ratio, White light emission can be realized. As a result, it is possible to provide an illuminating device having a high insect repellent action while maintaining color rendering. In particular, in a conventional lighting device having an insect-repellent effect, insects are prevented from gathering by reducing or eliminating the peak of the wavelength region corresponding to the visual reaction of insects. In other words, the spectrum corresponding to the wavelength range of the insect reaction zone was excluded. However, a light source composed of a wavelength region having a high repellent effect against insects has low color rendering properties, is difficult to use as a general lighting device, and has a problem that the range of use is remarkably limited. On the other hand, in the lighting device according to the present embodiment described above, the repelling effect is enhanced by adding a new spectrum without eliminating the spectral region having high color rendering properties, so the color rendering properties are sacrificed. Insect repellent action can be exhibited without any problems, and it can be suitably used as lighting for a wide range of applications.

本発明の照明装置は、室内用の照明装置、自動販売機用の照明に好適に利用できる。   The lighting device of the present invention can be suitably used for indoor lighting devices and lighting for vending machines.

実施例1に係る照明装置の分解斜視図及びブロック図である。It is the disassembled perspective view and block diagram of the illuminating device which concern on Example 1. FIG. 第1の発光素子に係る出射光の波長を示すスペクトル図である。It is a spectrum figure which shows the wavelength of the emitted light which concerns on a 1st light emitting element. 波長と虫の誘引率に関するグラフである。It is a graph regarding an attractive rate of a wavelength and an insect. 第2の発光素子のスペクトルの例を示す。An example of a spectrum of the second light-emitting element is shown. 発光素子の配列形態を示す説明図である。It is explanatory drawing which shows the arrangement | sequence form of a light emitting element. 比較例及び実施例に係るLEDの配列形態を示す簡略図である。It is a simplified diagram which shows the arrangement | sequence form of LED which concerns on a comparative example and an Example. 比較例及び実施例に係る発光波長域と虫の誘引数の関係を示すグラフである。It is a graph which shows the relationship between the light emission wavelength range which concerns on a comparative example, and an Example, and the attracting argument of an insect. 実施例1に係る照明装置より放出される光のスペクトルを示すグラフである。3 is a graph showing a spectrum of light emitted from the illumination device according to Example 1. 従来の照明装置の側面図を示す。The side view of the conventional illuminating device is shown. 従来の照明装置における波長と相対放射強度の関係を示すグラフである。It is a graph which shows the relationship between the wavelength and relative radiation intensity in the conventional illuminating device.

符号の説明Explanation of symbols

1…照明装置
2…光源
3…基板
4…発光素子群
5…コントローラ
10…発光素子
11…第1の発光素子
11a…第2のLED
11b…フルカラーLED
13…透過部材
21…第2の発光素子
21a…第2のLED
800…照明装置
801…第1の発光ダイオード
802…第2の発光ダイオード
805…基板
P1、P2…相対放射強度
PS…電源
DESCRIPTION OF SYMBOLS 1 ... Illuminating device 2 ... Light source 3 ... Board | substrate 4 ... Light emitting element group 5 ... Controller 10 ... Light emitting element 11 ... 1st light emitting element 11a ... 2nd LED
11b ... Full color LED
13 ... Transparent member 21 ... Second light emitting element 21a ... Second LED
DESCRIPTION OF SYMBOLS 800 ... Illuminating device 801 ... 1st light emitting diode 802 ... 2nd light emitting diode 805 ... Board | substrate P1, P2 ... Relative radiation intensity PS ... Power supply

Claims (7)

400nm〜500nmにピーク波長を有する光を出射可能な複数の第1の発光素子(11)と、
前記第1の発光素子(11)からの光の少なくとも一部を吸収して黄色の光を蛍光可能な蛍光体と、
を有する、虫に対して忌避効果のある白色光を発光可能な照明装置であって、
さらに500nmよりも長波長側にピーク波長を有する複数の第2の発光素子(21)を備えており、
前記第1の発光素子(11)は前記第2の発光素子(21)よりも搭載数または相対発光強度の点で大きく、
前記第1の発光素子(11)は略等間隔に配列されて、かつ前記第2の発光素子(21)は、該第1の発光素子(11)に対して略均等に分散されて配置されており、
さらに前記第2の発光素子(21)同士の間には前記第1の発光素子(11)が配置されており、
前記第2の発光素子(21)のピーク波長の相対放射強度が前記第1の発光素子(11)のピーク波長の相対放射強度に対して5%以上20%以下であることを特徴とする照明装置。
A plurality of first light emitting elements (11) capable of emitting light having a peak wavelength at 400 nm to 500 nm;
A phosphor capable of absorbing yellow light by absorbing at least part of the light from the first light emitting element (11);
An illuminating device capable of emitting white light having a repellent effect against insects,
And a plurality of second light emitting elements (21) having a peak wavelength longer than 500 nm.
The first light emitting element (11) is larger than the second light emitting element (21) in terms of the number of mounted or relative light emission intensity,
The first light emitting elements (11) are arranged at substantially equal intervals, and the second light emitting elements (21) are arranged substantially evenly distributed with respect to the first light emitting elements (11). And
Further, the first light emitting element (11) is disposed between the second light emitting elements (21) ,
Illumination characterized in that the relative radiant intensity at the peak wavelength of the second light emitting element (21) is not less than 5% and not more than 20% with respect to the relative radiant intensity at the peak wavelength of the first light emitting element (11). apparatus.
請求項1に記載の照明装置において、
前記第2の発光素子(21)同士の離間距離が略一定であり、
さらに前記第2の発光素子(21)の間には第1の発光素子(11)が複数配置されており、
前記第2の発光素子(21)同士の間に配置される第1の発光素子(11)の搭載数が略一定であることを特徴とする照明装置。
The lighting device according to claim 1.
The separation distance between the second light emitting elements (21) is substantially constant,
Furthermore, a plurality of first light emitting elements (11) are arranged between the second light emitting elements (21),
The lighting device, wherein the number of mounted first light emitting elements (11) disposed between the second light emitting elements (21) is substantially constant.
請求項1または2に記載の照明装置において、
前記第2の発光素子(21)が可視光の内黄色又は赤色、或いは赤外域からなる群より選択される少なくとも一の波長域にピーク波長を有することを特徴とする照明装置。
The lighting device according to claim 1 or 2,
The lighting device, wherein the second light emitting element (21) has a peak wavelength in at least one wavelength region selected from the group consisting of visible light yellow or red or infrared region.
請求項1ないしのいずれか一に記載の照明装置において、
前記第2の発光素子(21)の総数は前記第1の発光素子(11)の総数に対して5%以上14%以下であることを特徴とする照明装置。
In the illuminating device as described in any one of Claim 1 thru | or 3 ,
The total number of the second light emitting elements (21) is 5% or more and 14% or less with respect to the total number of the first light emitting elements (11).
請求項1ないしのいずれか一に記載の照明装置において、
前記第1の発光素子(11)または/かつ第2の発光素子(21)が発光ダイオードで構成されていることを特徴とする照明装置。
In the illuminating device as described in any one of Claims 1 thru | or 4 ,
The lighting device, wherein the first light emitting element (11) and / or the second light emitting element (21) is formed of a light emitting diode.
請求項1ないしのいずれか一に記載の照明装置において、さらに
前記第1の発光素子(11)及び第2の発光素子(21)上を被覆して光を散乱させる透過部材(13)を備えることを特徴とする照明装置。
The lighting device according to any one of claims 1 to 5 , further comprising: a transmissive member (13) that covers the first light emitting element (11) and the second light emitting element (21) to scatter light. A lighting device comprising:
請求項1ないしのいずれか一に記載の照明装置において、
さらに、複数の前記第1の発光素子(11)をドットマトリックス状に配列した状態で、前記第2の発光素子(21)を所定の位置に少なくとも一以上搭載した基板(3)を有しており、
該第2の発光素子(21)は前記基板(3)上の発光領域の中心を基準として略対称に位置していることを特徴とする照明装置。
In the illuminating device as described in any one of Claims 1 thru | or 6 ,
And a substrate (3) on which a plurality of the first light emitting elements (11) are arranged in a dot matrix and at least one of the second light emitting elements (21) is mounted at a predetermined position. And
The illuminating device, wherein the second light emitting element (21) is positioned substantially symmetrically with respect to the center of the light emitting region on the substrate (3).
JP2008066516A 2008-03-14 2008-03-14 Lighting device Expired - Fee Related JP5413871B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008066516A JP5413871B2 (en) 2008-03-14 2008-03-14 Lighting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008066516A JP5413871B2 (en) 2008-03-14 2008-03-14 Lighting device

Publications (2)

Publication Number Publication Date
JP2009224148A JP2009224148A (en) 2009-10-01
JP5413871B2 true JP5413871B2 (en) 2014-02-12

Family

ID=41240716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008066516A Expired - Fee Related JP5413871B2 (en) 2008-03-14 2008-03-14 Lighting device

Country Status (1)

Country Link
JP (1) JP5413871B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101152939B1 (en) * 2009-12-24 2012-07-11 경기도 Led package for plant growth-promoting
JP2012174538A (en) * 2011-02-22 2012-09-10 Panasonic Corp Lighting system with low insect-inducing property
JP5696980B2 (en) * 2011-06-03 2015-04-08 東芝ライテック株式会社 lighting equipment
JP5380498B2 (en) * 2011-07-25 2014-01-08 シャープ株式会社 Light source device, lighting device, vehicle headlamp, and vehicle
JP5906433B2 (en) 2011-12-19 2016-04-20 パナソニックIpマネジメント株式会社 Lighting device
US9310032B2 (en) * 2012-01-19 2016-04-12 Phoseon Technology, Inc. Edge weighted spacing of LEDs for improved uniformity range
JP2013239272A (en) 2012-05-11 2013-11-28 Panasonic Corp Lighting device
JP5945867B2 (en) * 2012-05-11 2016-07-05 パナソニックIpマネジメント株式会社 Lighting device
JP6923967B2 (en) * 2015-11-25 2021-08-25 高橋 信之 LED green light LED device using composite light.
JP6711484B2 (en) * 2015-11-25 2020-06-17 高橋 信之 Moth-proof device using LED green light composite rays.
GB2564706B (en) * 2017-07-21 2021-05-05 Brandenburg Innovation Ltd A method of repelling mosquitos
CN111050546B (en) * 2017-08-29 2022-09-06 国立大学法人浜松医科大学 Low-insect-attracting light-emitting device, display device, low-insect-attracting light-emitting method and display method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4291026B2 (en) * 2003-01-22 2009-07-08 小糸工業株式会社 Surgical light
JP3787147B1 (en) * 2005-08-30 2006-06-21 株式会社未来 Lighting unit and lighting device
JP2007287384A (en) * 2006-04-13 2007-11-01 Epson Imaging Devices Corp Lighting fixture, liquid crystal device, and electronic apparatus
JP3132253U (en) * 2007-01-04 2007-06-07 晶和貿易株式会社 Light source device

Also Published As

Publication number Publication date
JP2009224148A (en) 2009-10-01

Similar Documents

Publication Publication Date Title
JP5413871B2 (en) Lighting device
US8684566B2 (en) Lighting unit with indirect light source
US20220223571A1 (en) Tunable white lighting systems
US20120182713A1 (en) Lighting unit with light emitting elements
US20130044476A1 (en) Lighting unit with heat-dissipating circuit board
US11767951B2 (en) Linear lamp replacement
CN102714260A (en) Solid state lighting devices including light mixtures
JP2008034392A (en) White color led provided with light emitting layer of many colors having macroscopic structure width arranged on dispersion screen
US8919978B2 (en) Lighting device
JP3177205U (en) Lighting equipment for aquarium
US20140268735A1 (en) Lighting device
WO2009083853A1 (en) Lighting system
US20150377425A1 (en) Lighting device
JP5722519B2 (en) LED ceiling lighting device
JP6255413B2 (en) Lighting apparatus and manufacturing method thereof
JP2015028844A (en) Illumination method using light-emitting diode
JP2024079073A (en) Lighting equipment
JP2019003882A (en) LED lighting device
TWI379966B (en)
JP2014160549A (en) Illumination device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131008

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131106

R150 Certificate of patent or registration of utility model

Ref document number: 5413871

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees