JP5411209B2 - Electronic expansion valve controller - Google Patents

Electronic expansion valve controller Download PDF

Info

Publication number
JP5411209B2
JP5411209B2 JP2011134777A JP2011134777A JP5411209B2 JP 5411209 B2 JP5411209 B2 JP 5411209B2 JP 2011134777 A JP2011134777 A JP 2011134777A JP 2011134777 A JP2011134777 A JP 2011134777A JP 5411209 B2 JP5411209 B2 JP 5411209B2
Authority
JP
Japan
Prior art keywords
superheat
value
period
change
valve opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011134777A
Other languages
Japanese (ja)
Other versions
JP2013002740A (en
Inventor
信行 木内
多聞 猪谷
好央 宮重
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saginomiya Seisakusho Inc
Original Assignee
Saginomiya Seisakusho Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saginomiya Seisakusho Inc filed Critical Saginomiya Seisakusho Inc
Priority to JP2011134777A priority Critical patent/JP5411209B2/en
Priority to TW101114275A priority patent/TWI459172B/en
Priority to KR1020120042623A priority patent/KR101389672B1/en
Priority to CN201210189037.4A priority patent/CN102829590B/en
Publication of JP2013002740A publication Critical patent/JP2013002740A/en
Application granted granted Critical
Publication of JP5411209B2 publication Critical patent/JP5411209B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/34Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators
    • F25B41/345Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators by solenoids
    • F25B41/347Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators by solenoids with the valve member being opened and closed cyclically, e.g. with pulse width modulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/06Details of flow restrictors or expansion valves
    • F25B2341/068Expansion valves combined with a sensor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)
  • Feedback Control In General (AREA)

Description

本発明は、冷凍装置における電子膨張弁の制御装置に係り、詳細には、冷凍装置の過熱度を調整するために電子膨張弁の弁開度を制御する電子膨張弁の制御装置に関する。   The present invention relates to a control device for an electronic expansion valve in a refrigeration device, and more particularly to a control device for an electronic expansion valve that controls the opening degree of the electronic expansion valve in order to adjust the degree of superheat of the refrigeration device.

従来、この種の制御装置として、例えば特開2009−156502号公報(特許文献1)、特公平8−33244号公報(特許文献2)に開示されたものがある。   Conventionally, as this type of control device, for example, there are those disclosed in Japanese Patent Application Laid-Open No. 2009-156502 (Patent Document 1) and Japanese Patent Publication No. 8-33244 (Patent Document 2).

特許文献1の技術は、目標値フィルタの定数を変えて、測定過熱度が過熱度設定値を上げる場合も下げる場合も、過熱度が設定値に速やかに収束するようにした技術であり、冷凍装置を設置した際の過熱度の調整を容易にしたものである。また、特許文献2の技術は、測定過熱度の変化を監視して、過熱度の設定を補正し常に最適な設定値で運転することが出来る技術である。   The technique of Patent Document 1 is a technique in which the constant of the target value filter is changed so that the degree of superheat quickly converges to the set value regardless of whether the measured superheat level increases or decreases. This makes it easy to adjust the degree of superheat when the device is installed. Moreover, the technique of patent document 2 is a technique which can monitor the change of measurement superheat degree, can correct | amend the setting of superheat degree, and can always drive | operate with an optimal setting value.

特開2009−156502号公報JP 2009-156502 A 特公平8−33244号公報Japanese Patent Publication No. 8-33244

特許文献1のものでは、調整された過熱度設定値は、調整した時点の条件においては最適な過熱度設定を得られるが、その設定値が、いかなる条件においても最適な値であるとは言えない。よって、小まめに過熱度設定値の調整を行うことが出来ない場合には、季節条件や負荷条件などが変わっても液バック運転を継続することがないように、過熱度設定値を高めにしておく必要があり、常に最適な過熱度で運転できていない点で課題が残されている。言い換えると、常に最適な過熱度で運転する為には、条件が変わる毎に、ユーザーが過熱度設定値を変更する必要があり、わずらわしさの面で課題が残されている。   In Patent Document 1, an adjusted superheat degree setting value can obtain an optimum superheat degree setting under the condition at the time of adjustment, but it can be said that the set value is an optimum value under any conditions. Absent. Therefore, if the superheat setting value cannot be adjusted more frequently, the superheat setting value should be increased so that the liquid back operation will not continue even if the seasonal conditions or load conditions change. The problem remains in that it is not always possible to operate at the optimum degree of superheat. In other words, in order to always operate at the optimum degree of superheat, the user needs to change the superheat degree setting value every time the condition changes, and there remains a problem in terms of annoyance.

また、特許文献2の技術では、過熱度設定値が低いことを判断して高めに補正するまでの間、振動的な過熱度の変化が制御信号としてコントローラに入力されるので、それに応じて電子膨張弁も振動的な動作をしてしまい、電子膨張弁の信頼性の面では課題が残されている。   Further, in the technique of Patent Document 2, since a change in vibrational superheat is input to the controller as a control signal until it is determined that the superheat setting value is low and corrected to a high value, an electronic signal is generated accordingly. The expansion valve also vibrates, and there remains a problem in terms of the reliability of the electronic expansion valve.

本発明は、様々な冷凍装置、負荷、蒸発器圧力、凝縮器圧力等の条件においても、最適な過熱度で運転する事を実現しつつ、電子膨張弁の機械寿命を縮めることがない、信頼性の高い電子膨張弁の制御装置を提供することを課題とする。   The present invention realizes the operation with the optimum superheat degree even under various conditions such as refrigeration equipment, load, evaporator pressure, condenser pressure, etc., and does not shorten the mechanical life of the electronic expansion valve. It is an object of the present invention to provide a highly reliable electronic expansion valve control device.

請求項1の電子膨張弁の制御装置は、冷凍装置の電子膨張弁に操作量信号を与えることにより冷凍装置の過熱度を制御する電子膨張弁の制御装置であって、入力される過熱度設定値と前記冷凍装置の測定過熱度に応じて前記電子膨張弁に対する操作量信号を出力するPID制御手段と、過熱度設定値と前記PID制御手段が出力する前記操作量信号のフィードバック値を入力して、前記PID制御手段に出力する過熱度設定値を補正し、補正済みの補正過熱度設定値を前記PID制御手段に出力する設定値補正手段と、を備えたことを特徴とする。 The control device for an electronic expansion valve according to claim 1 is a control device for an electronic expansion valve that controls the degree of superheat of the refrigeration apparatus by giving an operation amount signal to the electronic expansion valve of the refrigeration apparatus, and the superheat degree setting that is input PID control means for outputting an operation amount signal for the electronic expansion valve according to the value and the measured superheat degree of the refrigeration apparatus, a superheat degree set value and a feedback value of the operation amount signal output by the PID control means are input. Te, the correct superheat setting value to be output to the PID controller, characterized in that the corrected correction superheated Do設 value with a set value correcting means for outputting to said PID control means.

請求項2の電子膨張弁の制御装置は、請求項1に記載の制御装置であって、前記設定値補正手段は、前記操作量信号のフィードバック値から、前記電子膨張弁の弁開度変化を常時監視して、第1周期(例えば1分)毎に、過去の第2周期分(例えば10分間分)における弁開度変化量、弁開度変化幅を算出し、過去の第2周期分における弁開度変化量が第1所定パルス(例えば25パルス)以下で、且つ、過去の第2周期分における弁開度変化幅が第1所定パルス幅(例えば5パルス)以下である場合には、現在の過熱度設定値が高いと判断して前記過熱度設定値を低めに補正し、過去の第2周期分における弁開度変化量が第2所定パルス(例えば87パルス)以上である場合には、現在の過熱度設定値が低いと判断して前記過熱度設定値を高めに補正するものであり、前記第1所定パルス、及び前記第1所定パルス幅は、それぞれが実験に基づいて得られた値で、電子膨張弁の構造や、前記第2周期の長さによって異なるが、過熱度制御が安定していると判断できる状態で、前記第2周期の間運転した際に得られる上限の値であり、前記第2所定パルスは電子膨張弁の寿命から算出される値で、前記第2周期の間の弁開度変化量が前記第2所定パルス以内であれば、そのままの運転状態で冷凍装置の運転を継続して、電子膨張弁の規定寿命(例えば10年間)を経過することを想定しても、電子膨張弁の耐久動作回数を越えないように算出された値と、実験に基づいて得られた、過熱度が低く不安定であることを(液バックが近づいたことを)確実に判断出来る値とを比較して、小さい方の値であることを特徴とする。   The control device for an electronic expansion valve according to claim 2 is the control device according to claim 1, wherein the set value correction means is configured to change a valve opening degree of the electronic expansion valve from a feedback value of the operation amount signal. Monitoring is performed constantly, and the valve opening change amount and the valve opening change width in the past second period (for example, 10 minutes) are calculated every first period (for example, 1 minute). When the valve opening change amount at is less than a first predetermined pulse (for example, 25 pulses) and the valve opening change width in the past second period is less than the first predetermined pulse width (for example, 5 pulses) When it is determined that the current superheat setting value is high and the superheat setting value is corrected to be low, the amount of change in the valve opening in the past second period is equal to or greater than a second predetermined pulse (for example, 87 pulses). Is determined that the current superheat setting value is low and the superheat setting value is set to The first predetermined pulse and the first predetermined pulse width are values obtained based on experiments, respectively, depending on the structure of the electronic expansion valve and the length of the second period. Although it is different, it is the upper limit value obtained when operating during the second period in a state where it can be determined that the superheat control is stable, and the second predetermined pulse is calculated from the life of the electronic expansion valve If the change amount of the valve opening during the second period is within the second predetermined pulse, the operation of the refrigeration apparatus is continued in the same operation state, and the specified life of the electronic expansion valve (for example, 10 years) ), The value calculated so as not to exceed the number of endurance operations of the electronic expansion valve and the fact that the degree of superheat obtained based on the experiment is low and unstable (liquid back) Compared to a value that can be reliably determined) Characterized in that it is a value of the most side.

請求項3の電子膨張弁の制御装置は、請求項2に記載の電子膨張弁の制御装置であって、前記設定値補正手段は、前記第1周期よりも長い第3周期(例えば第2周期と同じ10分)毎に、過去第3周期間の弁開度変化量を「第3周期間の弁開度変化量の第3周期間毎の値」として記憶し、その前回分を「第3周期間の弁開度変化量の第3周期間毎の値の前回分」として保持し、前記第1周期毎に、今回の過去第3周期間の弁開度変化量が、第3所定パルス(例えば21パルス)以上で、「第3周期間の弁開度変化量の第3周期間毎の値」の3倍以上に増加したか、或いは、今回の過去第3周期間の弁開度変化量が、第3所定パルス(例えば21パルス)以上で、「第3周期間の弁開度変化量の第3周期間毎の値の前回分」の4倍以上に増加した場合にも、現在の過熱度設定値が低いと判断して前記過熱度設定値を高めに補正するものであり、前記第3所定パルスの値は、実験に基づいて得られた値で、過熱度の変化が緩慢なシステムにおいても、過熱度が低く不安定である(液バックが近づいている)ことを判断する最小の値であり、この前記第3所定パルス以上であるという条件を設けることで、例えば「第3周期間の弁開度変化量の第3周期間毎の値」が1パルスで、前記第1周期毎の過去第3周期間の弁開度変化量が3パルスである場合や、「第3周期間の弁開度変化量の第3周期間毎の値の前回分」が1パルスで、前記第1周期毎の過去第3周期間の弁開度変化量が4パルスである場合のように、極端に少ない弁開度変化量の場合に、本来ならば制御が安定していると判断すべき所を、誤って過熱度が低く不安定である(液バックが近づいている)と判断してしまうことを防止できる。また、前記3倍、4倍という倍率も、実験に基づいて得られた値で、過熱度の変化が緩慢なシステムにおいても、過熱度が低く不安定であることを(液バックが近づいたことを)判断できる倍率であることを特徴とする。   The electronic expansion valve control device according to a third aspect is the electronic expansion valve control device according to the second aspect, wherein the set value correction means has a third period (for example, a second period) longer than the first period. Every 10 minutes), the amount of change in the valve opening during the past third period is stored as “the value of the amount of change in the valve opening during the third period for every third period”. As the previous value of the value of the valve opening change amount during the third cycle during the third cycle ", the valve opening change amount during the past third cycle is set to a third predetermined value for each first cycle. More than 3 times the value of the amount of change in the valve opening during the third period for every third period or more than the pulse (for example, 21 pulses), or the valve opening during the past third period When the degree of change is greater than or equal to the third predetermined pulse (for example, 21 pulses), it increases to more than four times the “previous value of the valve opening change amount during the third period for each third period”. In this case, it is determined that the current superheat degree set value is low and the superheat degree set value is corrected to be higher, and the value of the third predetermined pulse is a value obtained based on an experiment. Even in a system with a slow change in the degree of temperature, the degree of superheat is low and unstable (the liquid back is approaching). For example, “the value of the valve opening change amount during the third cycle for each third cycle” is 1 pulse, and the valve opening change amount during the past third cycle for each first cycle is 3 pulses. In other cases, “the previous value of the value of the valve opening change amount during the third cycle during the third cycle” is one pulse, and the valve opening change amount during the past third cycle of the first cycle is 4 If the amount of change in the valve opening is extremely small, as in the case of a pulse, it is determined that the control is normally stable. The place to be possible to prevent the accidental superheat will be determined to be unstable low (liquid back is approaching). In addition, the magnifications of 3 times and 4 times are values obtained based on experiments. Even in a system in which the change in superheat degree is slow, the superheat degree is low and unstable (the liquid back is approaching). It is a magnification that can be determined.

請求項4の電子膨張弁の制御装置は、請求項2または請求項3に記載の制御装置であって、冷凍装置が運転を開始し、制御装置が起動処理を終了してから、前記第1周期毎に算出した過去の第2周期分の弁開度変化幅が第2所定パルス幅(例えば25パルス)以内になるか、或いは冷凍装置が運転を開始し制御装置が起動処理を終了してからの経過時間が30分以上になるか、のどちらかが成立した時点から前記過熱度設定値の補正を開始するようにしたことを特徴とする。   A control device for an electronic expansion valve according to a fourth aspect is the control device according to the second or third aspect, wherein the first operation is performed after the refrigeration apparatus starts operation and the control apparatus finishes the startup process. The valve opening change width for the past second period calculated for each period falls within a second predetermined pulse width (for example, 25 pulses), or the refrigeration apparatus starts operation and the control apparatus ends the start-up process. The correction of the superheat degree set value is started from the time when either of the elapsed time from 30 minutes or more is established.

請求項1の電子膨張弁の制御装置によれば、冷凍装置の電子膨張弁に操作量信号を与えることにより冷凍装置の過熱度を制御する電子膨張弁の制御装置であって、入力される過熱度設定値と前記冷凍装置の測定過熱度に応じて前記電子膨張弁に対する操作量信号を出力するPID制御手段と、過熱度設定値と前記PID制御手段が出力する前記操作量信号のフィードバック値を入力して、前記PID制御手段に出力する過熱度設定値を補正し、補正済みの補正過熱度設定値を前記PID制御手段に出力する設定値補正手段と、を備えているので、前記操作量信号のフィードバック値により過熱度設定値が高いのか低いのかを判断し、最適な値に補正することができ、冷凍装置のシステムの状態に応じて最適な過熱度設定値で運転することができる。 According to the control device for an electronic expansion valve of claim 1, the control device for the electronic expansion valve controls the degree of superheat of the refrigeration apparatus by giving an operation amount signal to the electronic expansion valve of the refrigeration apparatus. PID control means for outputting an operation amount signal for the electronic expansion valve according to the degree of set value and the measured superheat degree of the refrigeration apparatus, and a feedback value of the operation amount signal output from the superheat degree set value and the PID control means. type, by correcting the superheat setting value to be output to the PID controller, since the corrected correction overheating Do設 value and a, a setting value correcting means for outputting to said PID control means, the manipulated variable It is possible to determine whether the superheat setting value is high or low based on the feedback value of the signal, and to correct it to an optimal value.It is possible to operate at the optimal superheat setting value according to the system state of the refrigeration system. That.

請求項2の電子膨張弁の制御装置は、電子膨張弁の弁開度変化量、変化幅により現在の過熱度設定値が高いのか低いのかを判断し補正し、その過熱度設定値が低いことを判断する電子膨張弁の弁開度変化量は、電子膨張弁の機械寿命を越えないように設定されている為、電子膨張弁が設計寿命以上の動作をする前に過熱度設定値が高めに補正され、過熱度変化および、電子膨張弁の弁開度変化が安定するので、請求項1の効果に加えて、信頼性が著しく向上する。   The control device for an electronic expansion valve according to claim 2 determines whether or not the current superheat degree set value is high or low based on the valve opening change amount and change width of the electronic expansion valve, and corrects the superheat degree set value to be low. The amount of change in the opening degree of the electronic expansion valve is determined so as not to exceed the mechanical life of the electronic expansion valve, so the superheat setting value is increased before the electronic expansion valve operates beyond the design life. In addition to the effect of the first aspect, the reliability is remarkably improved because the change in superheat degree and the change in the opening degree of the electronic expansion valve are stabilized.

請求項3の電子膨張弁の制御装置によれば、求項2の効果に加え、システムの規模が大きい場合など、前記過熱度設定値が低く、過熱度変化が不安定になっていても、その過熱度変化が緩慢であるために、前記第2周期分における電子膨張弁の弁開度変化量が、前記第2所定パルス(例えば87パルス)に達しない場合にも、過熱度変化が不安定になっていることを判断し、前記過熱度設定値を高めに補正することが出来るので、最適な過熱度設定値で運転することが出来るようになる。 According to the control device of the electronic expansion valve according to claim 3, in addition to the effects of Motomeko 2, such as when larger systems, the superheat setpoint is low, superheat changes have unstable However, since the change in superheat degree is slow, the change in superheat degree also occurs when the amount of change in the opening of the electronic expansion valve in the second period does not reach the second predetermined pulse (for example, 87 pulses). Since it is determined that the value is unstable and the superheat degree set value can be corrected to be higher, it is possible to operate with the optimum superheat degree set value.

請求項4の電子膨張弁の制御装置によれば、冷媒の循環が安定していない運転初期の状態には過熱度設定値の補正を行わないようにすることが出来、冷媒の循環が安定して、請求項1乃至3の構成による過熱度設定値の補正が効果的になる状態から開始するようになるので、請求項1乃至3の効果を効率的に得ることができる。   According to the control device for the electronic expansion valve of the fourth aspect, it is possible to prevent the correction of the superheat setting value in the initial operation state where the refrigerant circulation is not stable, and the refrigerant circulation is stabilized. Thus, the correction of the superheat degree setting value according to the configuration of claims 1 to 3 is started from a state where it becomes effective, so that the effect of claims 1 to 3 can be obtained efficiently.

本発明の電子膨張弁の制御装置の第1実施形態の要部機能ブロック図である。It is a principal part functional block diagram of 1st Embodiment of the control apparatus of the electronic expansion valve of this invention. 本発明の電子膨張弁の制御装置の第2実施形態の要部機能ブロック図である。It is a principal part functional block diagram of 2nd Embodiment of the control apparatus of the electronic expansion valve of this invention. 本発明の電子膨張弁の制御装置の第3実施形態の要部機能ブロック図である。It is a principal part functional block diagram of 3rd Embodiment of the control apparatus of the electronic expansion valve of this invention. 本発明の各実施形態の制御装置を用いた冷凍装置の第1システム例及び第2システム例を示す図である。It is a figure which shows the 1st system example and 2nd system example of the freezing apparatus using the control apparatus of each embodiment of this invention. 実施形態における起動時の過熱度設定上乗せ処理のフローチャートである。It is a flowchart of the superheat degree setting addition process at the time of starting in an embodiment. 実施形態における補正動作禁止の解除判定処理のフローチャートである。It is a flowchart of the cancellation | release determination process of correction | amendment operation prohibition in embodiment. 実施形態における過熱度設定値の補正処理のフローチャートである。It is a flowchart of the correction process of the superheat degree setting value in embodiment. 実施形態における補正判定サブルーチンのフローチャートである。It is a flowchart of the correction determination subroutine in the embodiment. 実施形態におけるデータ処理を概念的に示す図である。It is a figure which shows notionally the data processing in embodiment. 実施形態における起動時の過熱度設定上乗せ処理に応じたシステムの状態の一例を示す図である。It is a figure which shows an example of the state of the system according to the superheat degree setting addition process at the time of starting in embodiment. 実施形態における補正動作禁止の解除判定処理に応じたシステムの状態の一例を示す図である。It is a figure which shows an example of the state of the system according to the cancellation | release determination process of correction | amendment operation prohibition in embodiment. 実施形態における過熱度設定値の補正処理に応じたシステムの状態の一例を示す図である。It is a figure which shows an example of the state of the system according to the correction process of the superheat degree setting value in embodiment.

次に、本発明の電子膨張弁の制御装置の実施形態について図面を参照して説明する。図1は本発明の電子膨張弁の制御装置の第1実施形態の要部機能ブロック図、図2は本発明の電子膨張弁の制御装置の第2実施形態の要部機能ブロック図、図3は本発明の電子膨張弁の制御装置の第3実施形態の要部機能ブロック図であり、図1〜図3において破線で囲った箇所が本発明に特有の構成である。図4は各実施形態の制御装置を用いた冷凍装置の第1システム例(図4(A) )及び第2システム例(図4(B) )を示す図である。   Next, an embodiment of a control device for an electronic expansion valve of the present invention will be described with reference to the drawings. FIG. 1 is a functional block diagram of a main part of a first embodiment of a control device for an electronic expansion valve of the present invention, FIG. 2 is a functional block diagram of a main part of a second embodiment of the control device for an electronic expansion valve of the present invention, and FIG. These are the principal function block diagrams of 3rd Embodiment of the control apparatus of the electronic expansion valve of this invention, and the location enclosed with the broken line in FIGS. 1-3 is a structure peculiar to this invention. FIG. 4 is a diagram showing a first system example (FIG. 4A) and a second system example (FIG. 4B) of a refrigeration apparatus using the control device of each embodiment.

図4において、10は圧縮機、20は凝縮器、30は電子膨張弁、40は蒸発器であり、これらは配管で環状に接続することにより冷凍サイクルを構成し、冷媒の圧縮、凝縮液化、減圧(膨張)、蒸発気化を行う周知のサイクルを形成する。50は電子膨張弁30の弁開度を入力信号に応じて調整するパルスモータなどの弁駆動部である。100はコントローラであり、各実施形態の電子膨張弁の制御装置はコントローラ100に実装されている。コントローラ100は、冷凍サイクルの過熱度と内部に設定した過熱度設定値とを比較して算出した偏差信号に対するPID動作に従った操作量信号を求め、この操作量信号を弁駆動部50に出力し、電子膨張弁30の弁開度を制御する。すなわち操作量信号は弁駆動部50に与えるパルスモータの駆動パルス数に対応している。第1システム例と第2システム例の違いは以下のとおりである。   In FIG. 4, 10 is a compressor, 20 is a condenser, 30 is an electronic expansion valve, and 40 is an evaporator. These are connected in a ring to form a refrigeration cycle. A well-known cycle for decompression (expansion) and evaporation is formed. Reference numeral 50 denotes a valve drive unit such as a pulse motor that adjusts the valve opening degree of the electronic expansion valve 30 in accordance with an input signal. Reference numeral 100 denotes a controller, and the control device for the electronic expansion valve of each embodiment is mounted on the controller 100. The controller 100 obtains an operation amount signal according to the PID operation with respect to the deviation signal calculated by comparing the superheat degree of the refrigeration cycle with the superheat degree set value set inside, and outputs the operation amount signal to the valve drive unit 50. The valve opening degree of the electronic expansion valve 30 is controlled. That is, the operation amount signal corresponds to the number of drive pulses of the pulse motor applied to the valve drive unit 50. The differences between the first system example and the second system example are as follows.

図4(A) の第1システム例では、蒸発器40の出口側配管の温度を検出する温度センサ60と蒸発器40の出口側で蒸発圧力を検出する圧力センサ70とを備えており、コントローラ100は、圧力センサ70からの入力信号より蒸発温度を算出して、出口側配管の温度センサ60からの入力信号と、算出した蒸発温度との差をとって温度/圧力式による過熱度を算出する。図4(B) の第2システム例では、蒸発器40の出口側配管の温度を検出する温度センサ60と、蒸発器40の入口側配管の温度を検出する温度センサ80とを備えており、コントローラ100は、温度センサ60,80からのそれぞれの入力信号により蒸発器40の出口側配管の温度と蒸発器40の入口側配管の温度との差をとって温度/温度式による過熱度を算出する。なお、上記算出した過熱度を「測定過熱度」という。ところで、ここで説明した『“X”と“Y”との差』の意味は、『“X”−“Y”』のことを意味する。   4A includes a temperature sensor 60 for detecting the temperature of the outlet side piping of the evaporator 40 and a pressure sensor 70 for detecting the evaporation pressure on the outlet side of the evaporator 40. 100 calculates the evaporation temperature from the input signal from the pressure sensor 70, and calculates the superheat degree by the temperature / pressure equation by taking the difference between the input signal from the temperature sensor 60 of the outlet side pipe and the calculated evaporation temperature. To do. 4B includes a temperature sensor 60 that detects the temperature of the outlet-side piping of the evaporator 40, and a temperature sensor 80 that detects the temperature of the inlet-side piping of the evaporator 40. The controller 100 calculates the degree of superheat by the temperature / temperature equation by taking the difference between the temperature of the outlet side piping of the evaporator 40 and the temperature of the inlet side piping of the evaporator 40 based on the respective input signals from the temperature sensors 60 and 80. To do. The calculated degree of superheat is referred to as “measured superheat degree”. By the way, the meaning of “difference between“ X ”and“ Y ”” described herein means “X” − “Y” ”.

図1の第1実施形態において、1は設定値補正手段、2はPID制御手段、3は制御対象、4は測定部である。前記コントローラ100はCPUやメモリを備えたコンピュータを備えており、このコントローラ100のコンピュータが所定の制御プログラムを実行することにより、設定値補正手段1、PID制御手段2及び測定部4の機能が得られる。PID制御手段2は、PID演算部21、目標値フィルタを備えた目標値変更部22、目標値変更部22を制御する目標値変更制御部23とで構成されている。設定値補正手段1には例えばユーザが設定する過熱度設定値SVが入力され、設定値補正手段1はこの過熱度設定値SVを補正した補正過熱度設定値SV′を目標値変更部22と目標値変更制御部23に出力する。また、制御対象3は電子膨張弁30を含む第1システム例または第2システム例の冷凍サイクルであり、測定部4はこの冷凍サイクルにおける蒸発温度や過熱度を演算し、算出した過熱度を測定過熱度PVとしてPID演算部21に出力する。   In the first embodiment of FIG. 1, 1 is a set value correcting means, 2 is a PID control means, 3 is a control object, and 4 is a measuring unit. The controller 100 includes a computer having a CPU and a memory. When the computer of the controller 100 executes a predetermined control program, the functions of the set value correction unit 1, the PID control unit 2, and the measurement unit 4 are obtained. It is done. The PID control means 2 includes a PID calculation unit 21, a target value change unit 22 having a target value filter, and a target value change control unit 23 that controls the target value change unit 22. For example, a superheat degree set value SV set by the user is input to the set value correction means 1, and the set value correction means 1 uses the corrected superheat degree set value SV ′ obtained by correcting the superheat degree set value SV as a target value changing unit 22. Output to the target value change control unit 23. The controlled object 3 is the refrigeration cycle of the first system example or the second system example including the electronic expansion valve 30, and the measuring unit 4 calculates the evaporation temperature and the degree of superheat in the refrigeration cycle and measures the calculated degree of superheat. The superheat degree PV is output to the PID calculation unit 21.

目標値変更部22は、入力される補正過熱度設定値SV′を目標値フィルタの伝達関数により変化させ、この変化させた過熱度の設定値を目標値としてPID演算部21に出力する。この目標値の変化の態様は制御することができるようになされている。補正過熱度設定値SV′は目標値変更制御部23にも入力されており、目標値変更制御部23は、補正過熱度設定値SV′の変化の方向、すなわち、補正過熱度設定値SV′が上がったのか、あるいは、下がったのかを検出し、その変化の方向に応じて、目標値変更部22から出力される目標値の変化の態様を制御する。   The target value changing unit 22 changes the input correction superheat degree set value SV ′ by the transfer function of the target value filter, and outputs the changed set value of the superheat degree to the PID calculating unit 21 as a target value. The mode of change of the target value can be controlled. The corrected superheat degree set value SV ′ is also input to the target value change control unit 23, and the target value change control unit 23 changes the direction of the corrected superheat degree set value SV ′, that is, the corrected superheat degree set value SV ′. Whether the value has increased or decreased is detected, and the mode of change of the target value output from the target value changing unit 22 is controlled according to the direction of the change.

PID演算部21は、目標値変更部22から出力される過熱度設定値(目標値)と測定過熱度PVの偏差Eに応じてPID演算を行い、制御対象3に対して操作量信号MVを供給する。このように、実施形態では目標値フィルタを備えており、2自由度のPID制御を行い、目標値変更制御部23により、目標値変更部22を、補正過熱度設定値SV′が上がったときの目標値の変化よりも、下がったときの目標値の変化の方が緩やかになるように制御することにより、その時々の条件で制御対象に対して適正な値であれば補正過熱度設定値SV’が上がった時も下がった時も測定過熱度PVを速やかに収束させることが出来る。   The PID calculation unit 21 performs PID calculation according to the deviation E between the superheat degree set value (target value) output from the target value change unit 22 and the measured superheat degree PV, and outputs the operation amount signal MV to the control target 3. Supply. As described above, in the embodiment, the target value filter is provided, PID control with two degrees of freedom is performed, and the target value change control unit 23 causes the target value change unit 22 to increase when the corrected superheat degree set value SV ′ increases. If the value is appropriate for the control target under the current conditions, control is performed so that the change in the target value when it falls is more gradual than the change in the target value. The measured superheat PV can be quickly converged both when SV ′ rises and falls.

特許文献1、2および、本発明の電子膨張弁の制御装置が使用される一般的な冷凍装置においては、過熱度設定値を高めにするほうが過熱度の変化は安定する。逆に過熱度設定値が低い場合には、次のような理由から過熱度の変化が不安定になる。過熱度設定値が適正な値かそれ以上である場合には、配管内の冷媒は蒸発器内で蒸発し終わり、出口配管温度を検出する温度センサの取付け位置においては、完全に気体になり、さらに過熱された過熱蒸気の状態になって通過している。冷媒が蒸発し終わり完全に気体になって過熱されている部分よりも、冷媒が蒸発している部分の方が周囲の熱を吸熱する量がはるかに多いので、冷媒が蒸発している部分の配管の方が低温になる。それにより冷凍装置の低圧側配管には、その前後で温度が急激に変わる部分、つまり、蒸発変化が終わり、過熱される変化に転じる部分が存在する。過熱度設定値が適正な値かそれ以上である場合には、その蒸発変化が終わる部分が、出口配管温度を検出する温度センサの取付け位置よりも十分に上流側に位置するので、その部分が過熱度制御により、僅かに前後移動してもコントローラに入力される出口配管温度は安定したままで、測定過熱度も安定している。しかし過熱度設定値が適正な値よりも低い場合には、前述の蒸発変化が終わる部分が、出口配管温度を検出する温度センサの取付け位置に近づき、その位置が過熱度制御により僅かに前後移動すると、コントローラに入力される出口配管温度にも急激な温度変化を生じさせ、測定過熱度の変化が大きくなり、それに合せて過熱度を制御すると測定過熱度の変化が振動的になるのである。本発明の過熱度設定値の補正処理は、過熱度変化が安定している場合には、過熱度設定値を低めに補正し、逆に、過熱度変化が不安定な場合には、過熱度設定値を高めに補正するものなので、結果として、冷媒が出口配管温度を検出する温度センサの取付け位置の少し上流側の位置で、蒸発し終わることになる。出口配管温度を検出する温度センサは蒸発器の出口に取付けられているので、ほぼ蒸発器全体を使用して蒸発し終わるようになり、効率の良い熱交換を行うことが出来る。   In Patent Documents 1 and 2 and a general refrigeration apparatus in which the control device for an electronic expansion valve of the present invention is used, the change in superheat degree is more stable when the superheat degree set value is increased. Conversely, when the superheat setting value is low, the change in superheat becomes unstable for the following reason. When the superheat setting value is an appropriate value or more, the refrigerant in the pipe finishes evaporating in the evaporator and becomes completely gas at the position where the temperature sensor for detecting the outlet pipe temperature is installed. Furthermore, it has passed in the state of superheated superheated steam. The part where the refrigerant evaporates absorbs the surrounding heat much more than the part where the refrigerant evaporates and is completely gasified and overheated. The piping is cooler. As a result, the low pressure side piping of the refrigeration apparatus has a portion where the temperature changes suddenly before and after that, that is, a portion where the evaporation change ends and turns into a superheated change. When the superheat setting value is an appropriate value or more, the portion where the evaporation change ends is located sufficiently upstream from the mounting position of the temperature sensor that detects the outlet piping temperature. By the superheat degree control, the outlet pipe temperature input to the controller remains stable even if it moves slightly back and forth, and the measured superheat degree is also stable. However, if the superheat setting value is lower than the appropriate value, the portion where the above-mentioned evaporation change ends approaches the mounting position of the temperature sensor that detects the outlet pipe temperature, and the position moves slightly back and forth due to superheat control. Then, a sudden temperature change is caused also in the outlet pipe temperature input to the controller, and the change in the measurement superheat degree becomes large. When the superheat degree is controlled in accordance with the change, the change in the measurement superheat degree becomes oscillating. The correction process of the superheat degree setting value of the present invention corrects the superheat degree setting value lower when the superheat degree change is stable, and conversely, when the superheat degree change is unstable, Since the set value is corrected to be higher, as a result, the refrigerant finishes evaporating at a position slightly upstream of the position where the temperature sensor for detecting the outlet pipe temperature is attached. Since the temperature sensor for detecting the outlet pipe temperature is attached to the outlet of the evaporator, the evaporation is almost completed using the entire evaporator, and efficient heat exchange can be performed.

ここで、本発明のような電子膨張弁の制御装置では、測定過熱度が過熱度設定値よりも高ければ弁開度が大きくなるように制御し、逆に測定過熱度が過熱度設定値よりも低い時は弁開度が小さくなるように制御し、冷凍サイクルの測定過熱度が過熱度設定値に等しくなるようにするものである。したがって、冷凍サイクルの過熱度の変化が電子膨張弁30の弁開度の変化(操作量信号MVの変化)にも現れる。そこで、設定値補正手段1に、PID制御手段2(PID演算部21)から出力される操作量信号MVの出力をフィードバック入力し、この設定値補正手段1は操作量信号MVを監視し、過熱度設定値SVを補正して補正過熱度設定値SV′を出力する。なお、前記特許文献2の場合は設定値補正手段に測定過熱度PVをフィードバックしている。   Here, in the control device for the electronic expansion valve as in the present invention, if the measured superheat is higher than the superheat setting value, the valve opening is controlled to be larger, and conversely, the measured superheat is higher than the superheat set value. When the value is too low, the valve opening is controlled to be small so that the measured superheat degree of the refrigeration cycle becomes equal to the superheat degree set value. Therefore, the change in the degree of superheat of the refrigeration cycle also appears in the change in the opening degree of the electronic expansion valve 30 (change in the operation amount signal MV). Therefore, the set value correction means 1 is fed back with the output of the operation amount signal MV output from the PID control means 2 (PID calculating unit 21), and the set value correction means 1 monitors the operation amount signal MV and overheats. The degree setting value SV is corrected, and a corrected superheat degree setting value SV ′ is output. In the case of Patent Document 2, the measured superheat PV is fed back to the set value correction means.

すなわち、冷凍サイクルの設定過熱度が過熱度設定値と等しくならずに過熱度設定値よりも高くなったり低くなったりを繰返して振動的なときは、弁開度の変化も振動的になり、冷凍サイクルの測定過熱度が安定している場合には弁開度の変化も安定している。したがって、特許文献2のように測定過熱度の変化を直接入力しなくても、結果的に設定過熱度を制御している操作量信号MVの出力をフィードバックして入力することで、過熱度変化が安定しているのか不安定なのかを判断することが出来る。このように、操作量信号MVの出力によって判断することによって、同時に電子膨張弁の操作端の機械的寿命にも考慮することが出来るようになる。これは、操作端が動きすぎている場合は動かなくなるように補正するからである。   In other words, when the set superheat degree of the refrigeration cycle is not equal to the superheat degree set value and is repeatedly vibrated repeatedly higher or lower than the superheat degree set value, the change in the valve opening is also vibrated, When the measured superheat degree of the refrigeration cycle is stable, the change in the valve opening is also stable. Therefore, even if the change in the measured superheat degree is not directly input as in Patent Document 2, as a result, the output of the manipulated variable signal MV that controls the set superheat degree is fed back and input, thereby changing the superheat degree. Can be judged whether it is stable or unstable. As described above, the determination based on the output of the operation amount signal MV makes it possible to consider the mechanical life of the operation end of the electronic expansion valve at the same time. This is because correction is performed so that the operation end does not move when the operation end moves too much.

図2の第2実施形態において、図1と同符号を付記した要素は第1実施形態と同様であり、詳細な説明は省略する。この第2実施形態では、測定部4からの蒸発温度がフィードバックされる補正動作開始判定手段5を備えている。この補正動作開始判定手段5は後述の「起動時の過熱度設定上乗せ処理」が終了したか、及び、補正動作の禁止が解除されたかの判定を行い、設定値補正手段1に過熱度設定値の補正処理を開始させる指示を出力するものである。   In the second embodiment of FIG. 2, elements denoted by the same reference numerals as in FIG. 1 are the same as those of the first embodiment, and detailed description thereof is omitted. In the second embodiment, a correction operation start determination unit 5 to which the evaporation temperature from the measurement unit 4 is fed back is provided. The correction operation start determination means 5 determines whether or not “after-start superheating degree setting process” has been completed and whether the prohibition of the correction operation has been canceled, and the setting value correction means 1 sets the superheat degree setting value. An instruction to start the correction process is output.

図3の第3実施形態 において、図1と同符号を付記した要素は第1実施形態と同様であり、詳細な説明は省略する。この第3実施形態では、PID演算部21自体が「PID制御手段」であり、設定値補正手段1は過熱度設定値SVを補正した補正過熱度設定値SV′をPID演算部21に直接出力するよう構成されている。   In the third embodiment of FIG. 3, elements denoted by the same reference numerals as in FIG. 1 are the same as those of the first embodiment, and detailed description thereof is omitted. In the third embodiment, the PID calculation unit 21 itself is a “PID control unit”, and the set value correction unit 1 directly outputs a corrected superheat degree set value SV ′ obtained by correcting the superheat degree set value SV to the PID calculation unit 21. It is configured to

次に、実施形態のさらに具体的な制御について説明する。まず、冷凍装置の起動時に「起動時の過熱度設定上乗せ処理」を行う。これは以下の理由による。冷凍装置の運転開始から暫くの間は、冷媒配管系統内に冷媒がいきわたるまで蒸発器40内が冷媒不足となり、過熱度が高めになる。その高めの過熱度を検知してそのまま過熱度制御を行うと、電子膨張弁30の弁開度を開きすぎてしまう。そして、冷媒がいきわたり、過熱度が小さく変化してきたときに制御が間に合わず液バック気味になるなどして、安定した制御状態になるのが遅くなる。そこで、以下のように「過熱度設定上乗せ処理」を実行する。   Next, more specific control of the embodiment will be described. First, when the refrigeration apparatus is started up, the “superheating degree setting process at start-up” is performed. This is due to the following reason. For a while after the start of the operation of the refrigeration system, the evaporator 40 becomes short of refrigerant until the refrigerant reaches the refrigerant piping system, and the degree of superheat increases. If the higher superheat degree is detected and the superheat degree control is performed as it is, the opening degree of the electronic expansion valve 30 will be opened too much. Then, when the refrigerant spreads or the degree of superheat changes to a small level, the control cannot be made in time, and the liquid back seems to be slow. Thus, the stable control state is delayed. Therefore, the “superheat setting addition process” is executed as follows.

冷凍装置の起動処理終了時点から、下記(1)または(2)の条件のどちらかが成立するまでの間、設定値補正手段1が出力する補正過熱度SV′は、予め設定された過熱度設定(SH)の値ではなく、起動時の過熱度設定(SHS)の値を目標値として過熱度制御を行う。
(1)「起動処理終了から10分経過」
(2)「起動処理終了からの蒸発温度(SL)の変化幅が3[K]/5分以内」
The corrected superheat degree SV ′ output from the set value correcting means 1 from the end of the start-up process of the refrigeration apparatus until either of the following conditions (1) or (2) is satisfied is a preset superheat degree. Superheat degree control is performed using not the setting (SH) value but the value of the superheat degree setting (SHS) at startup as a target value.
(1) “10 minutes have passed since the end of the startup process”
(2) “Change in the evaporation temperature (SL) after the start-up process is within 3 [K] / 5 minutes”

起動時の過熱度設定(SHS)と過熱度設定(SH)の差を「上乗せ分」として扱い、条件(1)または(2)のどちらかが成立した時点で上乗せ分を0とする。すなわち、見かけ上、目標値をSHSからSHに変更したことになる。   The difference between the superheat degree setting (SHS) and the superheat degree setting (SH) at the time of start-up is treated as an “addition”, and the addition is set to 0 when either of the conditions (1) or (2) is satisfied. That is, the target value is apparently changed from SHS to SH.

次に、設定値補正手段1による過熱度設定の補正動作の開始時点を制御する。起動処理終了から、下記の条件(3)または(4)のどちらかが成立するまで、過熱度設定の補正動作を禁止する。そして、条件(3)または(4)のどちらかが成立すると、定常状態(負荷とバルブ能力がバランスした状態)と判断し、過熱度設定の補正動作の禁止を解除し、補正動作を開始する。
(3)「起動処理終了から30分経過」
(4)「過去10分間の弁開度変化幅が25パルス以内」
Next, the start point of the correction operation of the superheat degree setting by the set value correction means 1 is controlled. The correction operation of the superheat degree setting is prohibited until either of the following conditions (3) or (4) is satisfied after the start process ends. When either of the conditions (3) or (4) is satisfied, it is determined as a steady state (a state where the load and the valve capacity are balanced), the prohibition of the superheat degree setting correction operation is canceled, and the correction operation is started. .
(3) “30 minutes have passed since the end of the startup process”
(4) “Valve opening change width in the past 10 minutes is within 25 pulses”

起動処理とは、冷凍装置が運転を開始し、コントローラに制御開始の指示が入力されてから、(この入力信号のことを「起動入力」と言い、リレー接点等でコントローラに入力される。)コントローラが過熱度のPID制御を始めるまでに行う処理のことで、例えば、電子膨張弁の弁開度を、PID制御を開始する弁開度位置(これを起動開度と言う)にする処理であったり、またはPID制御を開始する前に起動開度を一定時間(これを起動時間と言う)保持する処理であったりする。   The activation process is performed after the refrigeration apparatus starts operation and an instruction to start control is input to the controller (this input signal is referred to as “activation input” and is input to the controller through a relay contact or the like). The process performed before the controller starts PID control of the superheat degree. For example, the valve opening degree of the electronic expansion valve is changed to the valve opening position at which PID control is started (this is called the starting opening degree). Or a process of holding the activation opening for a certain time (referred to as activation time) before starting the PID control.

設定値補正手段1による過熱度設定の補正動作は以下のように行う。過熱度の目標値が低い状態で運転すると、蒸発器40の出口配管の温度センサ60の取付け位置付近に液冷媒が行き来して、温度センサ60の入力(検出温度)が不安定になり、測定過熱度の値が不安定になる。そこで、この不安定状態の有無を検出して、過熱度の設定を最適な値に補正し、補正過熱度設定値を生成する。   The correction operation of the superheat degree setting by the set value correction means 1 is performed as follows. When the operation is performed in a state where the target value of the superheat degree is low, the liquid refrigerant moves back and forth near the attachment position of the temperature sensor 60 on the outlet pipe of the evaporator 40, and the input (detected temperature) of the temperature sensor 60 becomes unstable, and measurement is performed. The superheat value becomes unstable. Therefore, the presence or absence of this unstable state is detected, the superheat degree setting is corrected to an optimum value, and a corrected superheat degree setting value is generated.

過熱度設定値の補正動作も「起動時の過熱度設定上乗せ処理」と同様に設定の上乗せ分を増減させて実施する。不安定状態の検出は、電子膨張弁30の弁開度変化、すなわち操作量信号MVの変化によって判断する。   The correction operation of the superheat degree set value is also performed by increasing or decreasing the amount of setting addition in the same manner as the “superheat degree setting addition process at start-up”. Detection of the unstable state is determined by a change in the opening degree of the electronic expansion valve 30, that is, a change in the operation amount signal MV.

図9は設定値補正手段1におけるデータ処理を概念的に示す図である。設定値補正手段1は、過熱度設定値を補正する為に、起動処理終了の時点から、操作量信号MVによる弁開度変化量、最大開度位置、最小開度位置、の1分間分のデータをそれぞれ1分毎に集計し、過去10分間分を保持している。そして1分間毎にそれらのデータから以下の(a)及び(b)の値を算出する。
過去10分間の弁開度変化量…(a)
過去10分間の弁開度変化幅…(b)
FIG. 9 is a diagram conceptually showing data processing in the set value correcting means 1. In order to correct the superheat setting value, the set value correcting means 1 is for one minute from the end of the start-up process to the valve opening change amount, maximum opening position, and minimum opening position by the operation amount signal MV. Data is totaled every minute and the past 10 minutes are held. Then, the following values (a) and (b) are calculated from these data every minute.
The amount of change in valve opening over the past 10 minutes ... (a)
Valve opening change width in the past 10 minutes ... (b)

また、10分毎に、前記の1分毎の処理後、以下の(c)及び(d)の値も更新する。
過去10分間の弁開度変化量(a)の10分毎の値…(c)
過去10分間の弁開度変化量(a)の10分毎の値の前回値…(d)
In addition, the following values (c) and (d) are also updated every 10 minutes after the processing every minute.
Value of change in valve opening (a) in the past 10 minutes (a) every 10 minutes ... (c)
Previous value of value every 10 minutes of valve opening change amount (a) in the past 10 minutes ... (d)

「起動時の過熱度設定上乗せ処理」が終了し、補正動作の禁止が解除されると、1分毎に次の(5)から(9)の条件を判定して設定の上乗せ分を増減させて過熱度設定値の補正を行う。   When the "superheat setting addition process at startup" is completed and the prohibition of correction operation is released, the following conditions (5) to (9) are judged every minute to increase or decrease the additional setting. Correct the superheat setting value.

(安定状態を検出した場合)過熱度設定値を下げる補正は、次の(5)及び(6)の条件により行う。
(5)過去10分間の弁開度変化量(a)が25パルス以下
(6)過去10分間の弁開度変化幅(b)が5パルス以下
上記条件(5)及び(6)の両方が成立すると設定の上乗せ分を1[K] 減少させて、過熱度設定値を低めに補正する。そして、低めに補正した後の15分間は、上記条件(5)及び(6)の両方が成立しているとしても過熱度設定値を低めにする補正は行わない。また、不安定状態から過熱度設定値を上げる補正を行い安定状態になった場合は、過熱度設定値を上げてから30分間は過熱度設定値を下げる補正は行わない。
(When a stable state is detected) Correction for lowering the superheat setting value is performed under the following conditions (5) and (6).
(5) Valve opening change amount (a) for the past 10 minutes is 25 pulses or less (6) Valve opening change width (b) for the past 10 minutes is 5 pulses or less Both of the above conditions (5) and (6) If it is established, the setting is reduced by 1 [K], and the superheat setting value is corrected to a lower value. Then, for 15 minutes after the low correction, even if both of the above conditions (5) and (6) are satisfied, the correction for lowering the superheat setting value is not performed. Further, when the correction is made to increase the superheat degree set value from the unstable state and the stable state is obtained, the correction for lowering the superheat degree set value is not performed for 30 minutes after the superheat degree set value is raised.

(不安定状態を検出した場合)過熱度設定値を上げる補正は、次の(7)、(8)及び(9)の条件により行う。
(7)過去10分間の弁開度変化量(a)が87パルス以上
(8)過去10分間の弁開度変化量(a)が21パルス以上で過去10分間の弁開度変化量の10分毎の値(c)の3倍以上
(9)過去10分間の弁開度変化量(a)が21パルス以上で過去10分間の弁開度変化量の10分毎の値の前回値(d)の4倍以上
上記条件(7)、(8)及び(9)のいずれか1つが成立すると、設定の上乗せ分を1.0[K] 増加させて、過熱度設定値を補正する。
(When an unstable state is detected) Correction for increasing the superheat setting value is performed under the following conditions (7), (8), and (9).
(7) The valve opening change amount (a) for the past 10 minutes is 87 pulses or more. (8) The valve opening change amount (a) for the past 10 minutes is 21 pulses or more, and 10 of the valve opening change amount for the past 10 minutes. More than 3 times the value (c) per minute (9) The previous value (10) of the valve opening change amount (a) in the past 10 minutes is 21 pulses or more and the valve opening change amount in the past 10 minutes is 10 minutes. If any one of the above conditions (7), (8), and (9) is satisfied at least four times d), the setting value is increased by 1.0 [K] and the superheat setting value is corrected.

なお、補正を行った際は、1分毎に集計している過去10分間の弁開度変化量、最大位置、最小位置、の全データを一旦0にクリアする。そして、(c)、(d)、の値は10分が経過していなくても補正する直前のデータで更新し、10分カウンタをリスタートする。   When correction is performed, all data of the valve opening change amount, the maximum position, and the minimum position for the past 10 minutes, which are counted every minute, are once cleared to zero. The values of (c) and (d) are updated with the data immediately before correction even if 10 minutes have not elapsed, and the 10-minute counter is restarted.

図5〜図8はコントローラ100の設定値補正手段1の制御動作のフローチャートであり、この制御動作はコントローラ100に内蔵のマイクロコンピュータにより実行され、設定値補正手段1の機能を得る。なお、図5〜図7の処理は、コントローラ100のメイン処理に対して例えば1秒程度のタイミングの割り込み処理により実行され、図5及び図6の処理は第2実施形態に対応している。   5 to 8 are flowcharts of the control operation of the set value correcting means 1 of the controller 100. This control operation is executed by a microcomputer built in the controller 100, and the function of the set value correcting means 1 is obtained. The processing in FIGS. 5 to 7 is executed by interrupt processing with a timing of, for example, about 1 second with respect to the main processing of the controller 100, and the processing in FIGS. 5 and 6 corresponds to the second embodiment.

図5は起動時の過熱度設定上乗せ処理のフローチャートである。まず、ステップS1で、運転が開始され、起動処理が終了してからの経過時間が10分以上であるかを判定し、判定がYESであれば、ステップS2で、補正過熱度設定値をSHSからSHに変更して、過熱度設定値の上乗せを終了し、元のルーチンに復帰する。ステップS1で判定がNOであれば、ステップS3で、過去5分間の蒸発温度(SL)の変化幅が3[K]以下であるかを判定し、判定がYESであれば、ステップS2で過熱度設定値の上乗せを終了して元のルーチンに復帰し、判定がNOであればそのまま元のルーチンに復帰する。以上の処理により、前記条件(1)及び(2)に応じた起動時の過熱度設定上乗せ処理が行われる。この起動時の過熱度設定上乗せ処理に応じたシステムの状態は例えば図10のようになる。   FIG. 5 is a flowchart of the superheat degree setting process at the time of startup. First, in step S1, it is determined whether the elapsed time from the start of the operation and the start-up process is 10 minutes or more. If the determination is YES, the corrected superheat degree set value is set to SHS in step S2. Is changed to SH, the addition of the superheat degree set value is terminated, and the process returns to the original routine. If the determination in step S1 is NO, it is determined in step S3 whether the change width of the evaporating temperature (SL) in the past 5 minutes is 3 [K] or less. If the determination is YES, overheating is performed in step S2. The addition of the set value is terminated and the process returns to the original routine. If the determination is NO, the process returns to the original routine as it is. By the above process, the superheat degree setting process at the time of start-up according to the conditions (1) and (2) is performed. The state of the system corresponding to the superheating degree setting process at the time of startup is as shown in FIG. 10, for example.

図6は補正動作禁止の解除判定処理のフローチャートである。まず、ステップS4で、運転が開始され、起動処理が終了してからの経過時間が30分以上であるかを判定し、判定がYESであれば、ステップS5で補正動作の禁止を解除して元のルーチンに復帰する。ステップS4で判定がNOであれば、ステップS6で、過去10分間の弁開度変化幅が25パルス以下であるかを判定し、判定がYESであれば、ステップS5で補正動作の禁止を解除して元のルーチンに復帰し、判定がNOであればそのまま元のルーチンに復帰する。以上の処理により、前記条件(3)及び(4)に応じた補正動作の禁止の解除判定の処理が行われる。この補正動作禁止の解除判定処理に応じたシステムの状態は例えば図11のようになる。   FIG. 6 is a flowchart of the correction operation prohibition release determination process. First, in step S4, it is determined whether the elapsed time since the start of the operation and the start-up process is 30 minutes or more. If the determination is YES, the prohibition of the correction operation is canceled in step S5. Return to the original routine. If the determination in step S4 is NO, it is determined in step S6 whether the valve opening change width in the past 10 minutes is 25 pulses or less. If the determination is YES, the prohibition of the correction operation is canceled in step S5. Then, the process returns to the original routine. If the determination is NO, the process returns to the original routine as it is. Through the above processing, the correction cancellation prohibition determination processing according to the conditions (3) and (4) is performed. The state of the system according to this correction operation prohibition release determination process is, for example, as shown in FIG.

図7は過熱度設定値の補正処理のフローチャートである。この処理は補正動作の禁止が解除されている場合に実行され、1分タイマと10分タイマを起動し、この1分タイマと10分タイマのタイムアップ及びリスタートを繰り返して処理が進行する。まず、ステップS11で、1分経過しているかを判定し、判定がNOであればそのまま元のルーチンに復帰し、判定がYESであれば、ステップS12で、操作量信号MVによる1分間の弁開度変化量、1分間の最大開度位置、1分間の最小開度位置のデータをそれぞれ集計し、ステップS13に進む。ステップS13では、上記集計したデータから過去10分間の弁開度変化量(a)と、過去10分間の弁開度変化幅(b)を算出し、ステップS14に進む。   FIG. 7 is a flowchart of the superheat degree setting value correction process. This process is executed when the prohibition of the correction operation is cancelled. The 1-minute timer and the 10-minute timer are started, and the process proceeds by repeating the time-up and restart of the 1-minute timer and the 10-minute timer. First, in step S11, it is determined whether 1 minute has passed. If the determination is NO, the process returns to the original routine as it is. If the determination is YES, in step S12, the valve for 1 minute is operated by the operation amount signal MV. The data of the amount of change in opening, the maximum opening position for 1 minute, and the minimum opening position for 1 minute are totaled, and the process proceeds to step S13. In step S13, the valve opening change amount (a) for the past 10 minutes and the valve opening change width (b) for the past 10 minutes are calculated from the collected data, and the process proceeds to step S14.

ステップS14では、10分経過しているかを判定し、判定がNOであればステップS16で図8の補正判定サブルーチンの処理を行って元のルーチンに復帰する。ステップS14で判定がYESであれば、ステップS15で、過去10分間の弁開度変化量(a)の10分毎の値(c)と過去10分間の弁開度変化量(a)の10分毎の値の前回値(d)を更新する。そして、ステップS16で図8の補正判定サブルーチンの処理を行って元のルーチンに復帰する。   In step S14, it is determined whether 10 minutes have passed. If the determination is NO, the process returns to the original routine by performing the correction determination subroutine of FIG. 8 in step S16. If the determination in step S14 is YES, in step S15, a value (c) of the valve opening change amount (a) for the past 10 minutes (c) and 10 of the valve opening change amount (a) for the past 10 minutes. The previous value (d) of the value every minute is updated. In step S16, the process of the correction determination subroutine of FIG. 8 is performed, and the process returns to the original routine.

図8の補正判定サブルーチンでは、前記条件(5)、(6)及び(7)〜(9)の判定を行う。ステップS21では条件(7)を判定し、ステップS22,S23では条件(8)を判定し、ステップS22,S24では条件(9)を判定する。そして、ステップS21で条件(7)が成立している場合、ステップS22,S23で条件(8)が成立している場合、及びステップS22,S24で条件(9)が成立している場合、それぞれステップS25に進み、過熱度設定値を1[K] 上げて補正過熱度設定値として出力し、ステップS26でマスク時間処理を行って元のルーチンに復帰する。ステップS26のマスク時間処理は、設定値を上げる補正を行って安定状態になった場合に、設定値を上げてから30分間は設定を下げる補正を行わないための処理であり、マスク時間を30分に設定する。   In the correction determination subroutine of FIG. 8, the conditions (5), (6) and (7) to (9) are determined. In step S21, the condition (7) is determined. In steps S22 and S23, the condition (8) is determined. In steps S22 and S24, the condition (9) is determined. When the condition (7) is satisfied at step S21, when the condition (8) is satisfied at steps S22 and S23, and when the condition (9) is satisfied at steps S22 and S24, respectively. Proceeding to step S25, the superheat degree set value is increased by 1 [K] and output as a corrected superheat degree set value. In step S26, mask time processing is performed and the process returns to the original routine. The mask time process in step S26 is a process for performing no correction for decreasing the setting for 30 minutes after increasing the set value when the correction is made to increase the set value and the stable state is reached. Set to minutes.

以上の条件(7)〜(9)のいずれも成立しない場合は、ステップS27でマスク時間が経過しているかを判定し、判定がNOであればそのまま元のルーチンに復帰し、判定がYESであれば、ステップS28で条件(5)を判定し、ステップS29で条件(6)を判定する。そして、ステップS28,S29で条件(5)及び(6)の両方が成立していると、ステップS30で過熱度設定値を1[K] 下げて補正過熱度設定値として出力し、ステップS31でマスク時間処理を行って元のルーチンに復帰する。ステップS31のマスク時間処理は、設定値を低めに補正した後の15分間は、上記条件(5)及び(6)の両方が成立しているとしても目標値を低めにする補正は行わないための処理であり、マスク時間を15分に設定する。以上の過熱度設定値の補正処理に応じたシステムの状態は例えば図12のようになる。   If none of the above conditions (7) to (9) is satisfied, it is determined in step S27 whether the mask time has elapsed. If the determination is NO, the process returns to the original routine and the determination is YES. If there is, the condition (5) is determined in step S28, and the condition (6) is determined in step S29. If both conditions (5) and (6) are satisfied in steps S28 and S29, the superheat degree set value is lowered by 1 [K] in step S30 and output as a corrected superheat degree set value, and in step S31. Perform mask time processing and return to the original routine. In the mask time processing in step S31, correction for lowering the target value is not performed for 15 minutes after the setting value is corrected to be low, even if both of the above conditions (5) and (6) are satisfied. The mask time is set to 15 minutes. The state of the system according to the above correction process of the superheat degree setting value is as shown in FIG. 12, for example.

なお、過熱度が設定値よりも高い状態で、電子膨張弁を弁開方向に動かす制御出力をしているのに上限開度(OLP)に制限されて動かない場合がある。その状態で過熱度の補正を行うと、弁開度変化が上限開度で安定しているため、設定値を下げる補正を続けてしまうので、上限開度(OLP)で制限されている場合は、補正に関する変数をリセットして補正処理は行わない。 In higher than superheat setpoint condition, may not work is limited to the upper limit opening (OLP) to have a control output for moving the electronic expansion valve in the valve opening direction. If the degree of superheat is corrected in this state, since the change in the valve opening is stable at the upper limit opening, the correction for lowering the set value is continued, so if it is limited by the upper limit opening (OLP) The variable relating to correction is reset and correction processing is not performed.

また、圧縮機始動時の液戻り防止、圧縮機モータの過負荷防止を可能とするMOP(Maximum Operating Pressure)という機能がある。上限開度と同様に、過熱度が設定値よりも高い状態で、電子膨張弁を弁開方向に動かす制御出力をしているのにMOP機能により弁開度を制限されて動かない場合がある。その場合も補正に関する変数をリセットして補正処理を行わない。   Further, there is a function called MOP (Maximum Operating Pressure) that enables prevention of liquid return at the start of the compressor and prevention of overload of the compressor motor. Similar to the upper limit opening, there are cases where the valve opening is limited by the MOP function and does not move even though the superheat degree is higher than the set value and the control output is moved to move the electronic expansion valve in the valve opening direction. . Even in this case, the correction variable is reset and the correction process is not performed.

さらに、ユーザーが過熱度設定SHを変更した際に、設定値を変更したことによる電子膨張弁の挙動を、不安定状態と認識してしまわないように、設定変更時には補正に関する変数を一旦リセットして補正処理を再スタートする。また、SHを変更した際に、設定の上乗せ分がある場合は0にクリアする。   Furthermore, when the user changes the superheat setting SH, the variable related to correction is temporarily reset when the setting is changed so that the behavior of the electronic expansion valve due to the change of the setting value is not recognized as an unstable state. Restart the correction process. When SH is changed, if there is an additional setting, it is cleared to 0.

操作量信号出力を判定のために入力する制御装置は、他分野にも多く存在するが、単純に操作端を保護する目的であることが多い。本発明の制御装置は、それらとは異なりフィードバック入力した操作量信号出力を制御入力信号として扱い、積極的に過熱度設定値の補正に利用するものである。すなわち、入力された操作量信号出力が操作端を保護する目的のみで使用されるものは、操作量信号出力を制限する形で働くので、狙った制御出力を出力できずに制御性を悪化させる可能性がある。それに対して、本発明の制御装置はフィードバック入力した操作量信号出力を用いて、操作量信号出力が電子膨張弁の信頼性を確保できる範囲内での動作か否かの判定と、過熱度設定値が高いのか低いのかの判定とを同時に行い、制御性を悪化させることなく操作量出力が電子膨張弁の信頼性を確保できる範囲内におさまり、且つ蒸発器を有効利用できるように、過熱度設定値を最適な値に補正することが出来る点で、他のものとは異なり、大変大きな効果が得られる。   There are many control devices that input an operation amount signal output for determination, but there are many purposes simply for protecting an operation end. Unlike the above, the control device of the present invention treats the manipulated variable signal output that is feedback-input as a control input signal, and actively uses it to correct the superheat setting value. That is, if the input operation amount signal output is used only for the purpose of protecting the operation end, it operates in a manner that restricts the operation amount signal output, so that the target control output cannot be output and the controllability is deteriorated. there is a possibility. On the other hand, the control device of the present invention uses the manipulated variable signal output fed back to determine whether or not the manipulated variable signal output operates within a range in which the reliability of the electronic expansion valve can be ensured, and sets the superheat degree. The degree of superheat is determined so that the manipulated variable output is within the range in which the reliability of the electronic expansion valve can be secured without degrading the controllability and the evaporator can be used effectively without degrading the controllability. Unlike the other ones, a great effect can be obtained in that the set value can be corrected to an optimum value.

1 設定値補正手段
2 PID制御手段
3 制御対象
4 測定部
5 補正動作開始判定手段
10 圧縮機
20 凝縮器
30 電子膨張弁
40 蒸発器
50 弁駆動部
60 蒸発器出口側配管の温度センサ
70 圧力センサ
80 蒸発器入口側配管の温度センサ
100 コントローラ
DESCRIPTION OF SYMBOLS 1 Set value correction | amendment means 2 PID control means 3 Control object 4 Measurement part 5 Correction operation start determination means 10 Compressor 20 Condenser 30 Electronic expansion valve 40 Evaporator 50 Valve drive part 60 Temperature sensor 70 of evaporator outlet side piping Pressure sensor 80 Evaporator inlet side pipe temperature sensor 100 Controller

Claims (4)

冷凍装置の電子膨張弁に操作量信号を与えることにより冷凍装置の過熱度を制御する電子膨張弁の制御装置であって、
入力される過熱度設定値と前記冷凍装置の測定過熱度に応じて前記電子膨張弁に対する操作量信号を出力するPID制御手段と、
過熱度設定値と前記PID制御手段が出力する前記操作量信号のフィードバック値を入力して、前記PID制御手段に出力する過熱度設定値を補正し、補正済みの補正過熱度設定値を前記PID制御手段に出力する設定値補正手段と、
を備えたことを特徴とする電子膨張弁の制御装置。
A control device for an electronic expansion valve that controls the degree of superheat of the refrigeration apparatus by giving an operation amount signal to the electronic expansion valve of the refrigeration apparatus,
PID control means for outputting an operation amount signal for the electronic expansion valve in accordance with an input superheat degree set value and a measured superheat degree of the refrigeration apparatus;
Enter the feedback value of the manipulated variable signal, wherein the superheat setpoint PID control means outputs, to correct the superheat setting value to be output to the PID controller, the PID of the corrected correction overheating Do設 value A set value correcting means for outputting to the control means;
A control device for an electronic expansion valve, comprising:
前記設定値補正手段は、前記操作量信号のフィードバック値から、前記電子膨張弁の弁開度変化を常時監視して、第1周期毎に、過去の第2周期分における弁開度変化量、弁開度変化幅を算出し、過去の第2周期分における弁開度変化量が第1所定パルス以下で、且つ、過去の第2周期分における弁開度変化幅が第1所定パルス幅以下である場合には、現在の過熱度設定値が高いと判断して前記過熱度設定値を低めに補正し、
過去の第2周期分における弁開度変化量が第2所定パルス以上である場合には、現在の過熱度設定値が低いと判断して前記過熱度設定値を高めに補正することを特徴とする請求項1に記載の電子膨張弁の制御装置。
The set value correction means constantly monitors the valve opening change of the electronic expansion valve from the feedback value of the manipulated variable signal, and changes the valve opening change amount in the past second period for each first period, The valve opening change width is calculated, the valve opening change amount in the past second period is not more than the first predetermined pulse, and the valve opening change width in the past second period is not more than the first predetermined pulse width. If it is, it is determined that the current superheat setting value is high, and the superheat setting value is corrected to be low,
When the amount of change in the valve opening in the past second period is equal to or greater than the second predetermined pulse, it is determined that the current superheat setting value is low and the superheat setting value is corrected to be higher. The control device for an electronic expansion valve according to claim 1.
前記設定値補正手段は、前記第1周期よりも長い第3周期毎に、過去第3周期間の弁開度変化量を記憶して、その前回分までを保持し、前記第1周期毎に、今回の過去第3周期間の弁開度変化量が、第3所定パルス以上で、「第3周期間の弁開度変化量の第3周期間毎の値」の3倍以上に増加したか、或いは、今回の過去第3周期間の弁開度変化量が、第3所定パルス(例えば21パルス)以上で、「第3周期間の弁開度変化量の第3周期間毎の値の前回分」の4倍以上に増加した場合にも、現在の過熱度設定値が低いと判断して前記過熱度設定値を高めに補正することを特徴とする請求項2に記載の電子膨張弁の制御装置。   The set value correction means stores the valve opening change amount during the past third period for each third period longer than the first period, holds the previous amount, and for each first period. The amount of change in the valve opening during the past third period has increased to more than three times the “value during every third period of the amount of change in the valve opening during the third period” over the third predetermined pulse. Or, the amount of change in the valve opening during the past third period is greater than or equal to a third predetermined pulse (for example, 21 pulses), and “the value of the amount of change in the valve opening during the third period for every third period” 3. The electronic expansion according to claim 2, wherein even when the value is increased to four times or more of the “previous amount”, the current superheat setting value is determined to be low and the superheat setting value is corrected to be higher. Valve control device. 冷凍装置が運転を開始し、制御装置が起動処理を終了してから、前記第1周期毎に算出した過去の第2周期分の弁開度変化幅が第2所定パルス幅以内になるか、或いは冷凍装置が運転を開始し制御装置が起動処理を終了してからの経過時間が30分以上になるか、のどちらかが成立した時点から前記過熱度設定値の補正を開始するようにしたことを特徴とする請求項2または3に記載の電子膨張弁の制御装置。   After the refrigeration apparatus starts operation and the control apparatus ends the start-up process, the valve opening change width for the past second period calculated for each first period is within the second predetermined pulse width, Alternatively, the correction of the superheat degree setting value is started when either of the elapsed time from when the refrigeration apparatus starts operation and the control apparatus finishes the start-up process becomes 30 minutes or more. The control device for an electronic expansion valve according to claim 2 or 3.
JP2011134777A 2011-06-17 2011-06-17 Electronic expansion valve controller Active JP5411209B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011134777A JP5411209B2 (en) 2011-06-17 2011-06-17 Electronic expansion valve controller
TW101114275A TWI459172B (en) 2011-06-17 2012-04-20 Electronic expansion valve control device
KR1020120042623A KR101389672B1 (en) 2011-06-17 2012-04-24 Controller for electronic expansion valve
CN201210189037.4A CN102829590B (en) 2011-06-17 2012-06-08 control device of electronic expansion valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011134777A JP5411209B2 (en) 2011-06-17 2011-06-17 Electronic expansion valve controller

Publications (2)

Publication Number Publication Date
JP2013002740A JP2013002740A (en) 2013-01-07
JP5411209B2 true JP5411209B2 (en) 2014-02-12

Family

ID=47332812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011134777A Active JP5411209B2 (en) 2011-06-17 2011-06-17 Electronic expansion valve controller

Country Status (4)

Country Link
JP (1) JP5411209B2 (en)
KR (1) KR101389672B1 (en)
CN (1) CN102829590B (en)
TW (1) TWI459172B (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5880975B2 (en) * 2013-03-27 2016-03-09 三菱重工冷熱株式会社 Control apparatus and control method for refrigeration apparatus, and refrigeration apparatus including the control apparatus
JP2014190658A (en) * 2013-03-28 2014-10-06 Panasonic Corp Refrigerator
JP5787106B2 (en) * 2013-05-15 2015-09-30 株式会社東洋製作所 Control apparatus and control method for refrigeration apparatus, and refrigeration apparatus including the control apparatus
JP6320200B2 (en) * 2014-07-01 2018-05-09 アズビル株式会社 PID controller and data collection method
JP2016080304A (en) * 2014-10-21 2016-05-16 株式会社鷺宮製作所 Control device and control method of cooling box
CN106196782B (en) * 2015-04-30 2018-09-14 青岛海尔空调电子有限公司 Heat pump unit and its control method
WO2016194185A1 (en) * 2015-06-03 2016-12-08 三菱電機株式会社 Refrigeration cycle device
CN105509355B (en) * 2016-01-19 2017-03-22 中国地质大学(武汉) Control method and control system of high-viscosity medium cooling device for rheometer
CN107975519B (en) * 2016-10-21 2020-07-28 北京精密机电控制设备研究所 Servo hydraulic energy double-closed-loop control system and method
CN107783423B (en) * 2017-10-25 2020-03-27 珠海格力电器股份有限公司 PID parameter self-tuning method and device based on machine learning
CN109386996A (en) * 2018-10-08 2019-02-26 珠海格力电器股份有限公司 Control method of electronic expansion valve and air conditioning system
CN110762729B (en) * 2019-09-23 2021-04-16 宁波奥克斯电气股份有限公司 Method for controlling air conditioner and air conditioner
CN111829206B (en) * 2020-06-04 2021-12-07 广东奥伯特节能设备有限公司 Unloading expansion valve heat pump unit and control method and device thereof and storage medium
US11841151B2 (en) * 2021-12-01 2023-12-12 Haier Us Appliance Solutions, Inc. Method of operating an electronic expansion valve in an air conditioner unit
CN114396745A (en) * 2021-12-30 2022-04-26 经纬恒润(天津)研究开发有限公司 System state parameter adjusting method and device of heat pump system
CN114688689B (en) * 2022-03-31 2023-08-11 安徽奥克斯智能电气有限公司 Opening degree adjusting method and device of electronic expansion valve and multi-connected air conditioner

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04329408A (en) * 1991-04-30 1992-11-18 Osayasu Sato Method for controlling machine device
DE4436925C2 (en) * 1994-10-15 1998-05-14 Danfoss As Control device for the superheating temperature of at least one evaporator of a refrigeration system
US6601397B2 (en) * 2001-03-16 2003-08-05 Copeland Corporation Digital scroll condensing unit controller
GB2400923B (en) * 2003-04-25 2005-06-01 Falmer Investment Ltd Adaptive fuzzy logic temperature control
TW200534068A (en) * 2004-04-07 2005-10-16 Macronix Int Co Ltd Close loop control system and method thereof
JP3933179B1 (en) * 2005-12-16 2007-06-20 ダイキン工業株式会社 Air conditioner
WO2007097183A1 (en) * 2006-02-24 2007-08-30 Kabushiki Kaisha Yaskawa Denki Electric motor control apparatus
JP2007285579A (en) * 2006-04-14 2007-11-01 Toshiba Corp Air conditioning control device
JP2008032250A (en) * 2006-07-26 2008-02-14 Fuji Electric Retail Systems Co Ltd Method and device for controlling refrigerating air-conditioning system
JP2008138915A (en) * 2006-11-30 2008-06-19 Daikin Ind Ltd Refrigerating device
JP4905271B2 (en) * 2007-06-29 2012-03-28 ダイキン工業株式会社 Refrigeration equipment
JP5374034B2 (en) * 2007-10-12 2013-12-25 株式会社不二工機 Valve control method and valve control apparatus
JP2009146241A (en) * 2007-12-17 2009-07-02 Fuji Koki Corp Valve control device and valve control method
JP4672001B2 (en) * 2007-12-26 2011-04-20 株式会社鷺宮製作所 Superheat control device
JP5045524B2 (en) * 2008-03-31 2012-10-10 ダイキン工業株式会社 Refrigeration equipment
JP2009047418A (en) * 2008-10-27 2009-03-05 Mitsubishi Electric Corp Refrigeration and air-conditioning unit, and control method of refrigeration and air-conditioning unit
JP2010127586A (en) * 2008-11-28 2010-06-10 Samsung Electronics Co Ltd Refrigerating cycle device
JP4996645B2 (en) * 2009-03-31 2012-08-08 サンデン株式会社 Cooling system
JP5412170B2 (en) * 2009-04-28 2014-02-12 株式会社岡村製作所 Electronic expansion valve control system
CN101832618B (en) * 2010-04-29 2012-07-11 海信(山东)空调有限公司 Frequency control method and control device of compressor of air conditioner

Also Published As

Publication number Publication date
KR20120139539A (en) 2012-12-27
TWI459172B (en) 2014-11-01
CN102829590B (en) 2014-10-22
JP2013002740A (en) 2013-01-07
KR101389672B1 (en) 2014-04-28
CN102829590A (en) 2012-12-19
TW201300979A (en) 2013-01-01

Similar Documents

Publication Publication Date Title
JP5411209B2 (en) Electronic expansion valve controller
KR101225862B1 (en) Startup and control methods for an orc bottoming plant
US5301101A (en) Receding horizon based adaptive control having means for minimizing operating costs
EP2515056B1 (en) Control algorithm for electronic expansion valve modulation
RU2470238C1 (en) Control method of cooling agent flow supplied to evaporator
US20150377530A1 (en) Method to control electronic expansion valve
JP5817683B2 (en) Heat pump water heater
US8567206B2 (en) Vehicle air conditioning system
JP4672001B2 (en) Superheat control device
EP3268682B1 (en) Expansion valve control
US20120102980A1 (en) Control Process For An Expansion Valve
JP6119895B1 (en) Heat pump equipment
JP5776649B2 (en) Heat pump water heater
JP2011094937A (en) Primary pump system heat source variable flow rate control system and method
JP7015710B2 (en) Ice machine
KR101123839B1 (en) Method of controlling electronic expansion valve used in chiller apparatus for semiconductor process
JP2005282932A (en) Water feed control method for boiler and its device
JP2008032250A (en) Method and device for controlling refrigerating air-conditioning system
EP3249323B1 (en) Method and system for controlling superheating of compression refrigerating cycles with a recuperator
JPH09178273A (en) Air conditioner
JP6585997B2 (en) Steam system
JP3178453B2 (en) Refrigeration equipment
JP6993891B2 (en) Ice maker and how to avoid cotton ice formation
JP4801420B2 (en) Control device, control method, and control program
JP2010261660A (en) Combustion control method and control system for boiler

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130404

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131015

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131107

R150 Certificate of patent or registration of utility model

Ref document number: 5411209

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150