JP5406884B2 - Stencil for screen printing having amorphous carbon film and method for producing the same - Google Patents

Stencil for screen printing having amorphous carbon film and method for producing the same Download PDF

Info

Publication number
JP5406884B2
JP5406884B2 JP2011119476A JP2011119476A JP5406884B2 JP 5406884 B2 JP5406884 B2 JP 5406884B2 JP 2011119476 A JP2011119476 A JP 2011119476A JP 2011119476 A JP2011119476 A JP 2011119476A JP 5406884 B2 JP5406884 B2 JP 5406884B2
Authority
JP
Japan
Prior art keywords
amorphous carbon
carbon film
mesh
film layer
mask
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011119476A
Other languages
Japanese (ja)
Other versions
JP2012006390A (en
Inventor
邦彦 澁澤
Original Assignee
太陽化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2010123558 priority Critical
Priority to JP2010123558 priority
Application filed by 太陽化学工業株式会社 filed Critical 太陽化学工業株式会社
Priority to JP2011119476A priority patent/JP5406884B2/en
Publication of JP2012006390A publication Critical patent/JP2012006390A/en
Application granted granted Critical
Publication of JP5406884B2 publication Critical patent/JP5406884B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41FPRINTING MACHINES OR PRESSES
    • B41F15/00Screen printers
    • B41F15/14Details
    • B41F15/34Screens, Frames; Holders therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41CPROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
    • B41C1/00Forme preparation
    • B41C1/14Forme preparation for stencil-printing or silk-screen printing
    • B41C1/148Forme preparation for stencil-printing or silk-screen printing by a traditional thermographic exposure using the heat- or light- absorbing properties of the pattern on the original, e.g. by using a flash
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41NPRINTING PLATES OR FOILS; MATERIALS FOR SURFACES USED IN PRINTING MACHINES FOR PRINTING, INKING, DAMPING, OR THE LIKE; PREPARING SUCH SURFACES FOR USE AND CONSERVING THEM
    • B41N1/00Printing plates or foils; Materials therefor
    • B41N1/24Stencils; Stencil materials; Carriers therefor
    • B41N1/248Mechanical details, e.g. fixation holes, reinforcement or guiding means; Perforation lines; Ink holding means; Visually or otherwise detectable marking means; Stencil units
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
    • H05K3/1216Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns by screen printing or stencil printing
    • H05K3/1225Screens or stencils; Holders therefor

Description

本発明は、非晶質炭素膜を有するスクリーン印刷用孔版及びその製造方法に関する。   The present invention relates to a stencil for screen printing having an amorphous carbon film and a method for producing the same.

電子部品を基板に表面実装するために、スクリーン印刷によってはんだペーストを基板表面に印刷する技術が知られている。また、スクリーン印刷は、積層コンデンサや積層インダクタの内部電極を構成する金属ペーストの印刷にも用いられる。スクリーン印刷においては、スクリーン版やメタルマスク等のスクリーン印刷用孔版を基板等の被印刷物と重ね合わせた後、スキージ面にスクレッパーを用いてはんだペーストや金属ペースト等の印刷ペーストを塗布し、塗布された印刷ペーストにスキージを押し当てて移動させることにより、ペーストが孔版に形成された多数の印刷パターン開口部から被印刷物に転写される。このようなスクリーン印刷用孔版においては、印刷ペーストの滲みを抑制し、版離れ及びペースト抜け性を改良することが望まれている。高粘度のペーストを用いる場合には、版離れ性及びペースト抜け性の改良が特に望まれる。   In order to surface-mount electronic components on a substrate, a technique for printing a solder paste on a substrate surface by screen printing is known. Screen printing is also used for printing a metal paste that constitutes internal electrodes of multilayer capacitors and multilayer inductors. In screen printing, a screen printing stencil such as a screen plate or a metal mask is superimposed on a substrate or other printed material, and then a paste such as a solder paste or a metal paste is applied to the squeegee surface using a scraper. When the squeegee is pressed against the printing paste and moved, the paste is transferred to the substrate from a large number of printing pattern openings formed in the stencil. In such a stencil for screen printing, it is desired to suppress bleeding of the printing paste and improve the separation of the plate and the paste removal property. In the case of using a high-viscosity paste, it is particularly desirable to improve the release property and paste removal property.

印刷ペーストの滲みを抑制し、版離れ及びペースト抜け性を改良するためのメタルマスクの開示例がある。
例えば、特許文献1〜3には、スクリーン印刷用マスクの表面や印刷パターン開口部に、ダイヤモンド・ライク・カーボン(DLC)等の非晶質炭素膜を形成することで、滲みを抑制し、版離れ性及びペースト抜け性を改善することが提案されている。 For example, in Patent Documents 1 to 3, bleeding is suppressed by forming an amorphous carbon film such as diamond-like carbon (DLC) on the surface of a screen printing mask or an opening of a printing pattern, and a plate is formed. It has been proposed to improve the release property and the paste removal property. しかしながら、非晶質炭素膜に撥油性はなく、むしろペーストを組成する樹脂バインダとの親和性が高いため、単に非晶質炭素膜を設けるだけでは、ペーストの滲みを防止することができず、版離れ性及びペースト抜け性を十分に改善できない。 However, since the amorphous carbon film does not have oil repellency and rather has a high affinity with the resin binder that composes the paste, it is not possible to prevent the paste from bleeding simply by providing the amorphous carbon film. It is not possible to sufficiently improve the plate release property and the paste removal property. There is a disclosed example of a metal mask for suppressing bleeding of a printing paste and improving separation of a plate and paste removal. There is a disclosed example of a metal mask for suppressing bleeding of a printing paste and improving separation of a plate and paste removal.
For example, in Patent Documents 1 to 3, an amorphous carbon film such as diamond-like carbon (DLC) is formed on the surface of a mask for screen printing or a printing pattern opening, thereby suppressing bleeding. It has been proposed to improve separation and paste removal. However, the amorphous carbon film has no oil repellency, but rather has a high affinity with the resin binder that composes the paste. Therefore, simply providing an amorphous carbon film cannot prevent the paste from spreading, It is not possible to sufficiently improve the release property and paste removal property. For example, in Patent Documents 1 to 3, an amorphous carbon film such as diamond-like carbon (DLC) is formed on the surface of a mask for screen printing or a printing pattern opening, thereby suppressing bleeding. It has been proposed to improve However, the amorphous carbon film has no oil repellency, but rather has a high affinity with the resin binder that composes the paste. Therefore, simply providing an amorphous carbon film cannot prevent the paste from spreading, It is not possible to sufficiently improve the release property and paste removal property.

そこで、DLC膜にフッ素コーティングを施すことが検討されている。例えば、特許文献4では、フルオロ炭化ガスを用いてCVD法でDLC膜をマスク本体の表面に形成することにより、DLC膜中にフッ素樹脂等の滑剤を含有させ、ペーストの抜け性を向上させるとともに、被印刷面におけるペーストの滲みを防止できるとしている。   Therefore, it has been studied to apply a fluorine coating to the DLC film. For example, in Patent Document 4, a DLC film is formed on the surface of a mask body by a CVD method using a fluorocarbon gas, so that a lubricant such as a fluororesin is contained in the DLC film, and the paste can be removed easily. Thus, it is possible to prevent the paste from bleeding on the printing surface.

また、フッ素系のガスを使用せずに、DLC膜の表面にフッ素含有撥水・撥油層を設ける方法も提案されている。例えば、特許文献5では、種々の固体上物質の表面に作製したDLC膜表面に、極安定パーフルオロアルキルラジカルを有効成分とする表面処理剤を形成し、この表面処理剤の上にさらにフッ素コートを施すことが開示されている。   There has also been proposed a method of providing a fluorine-containing water / oil repellent layer on the surface of the DLC film without using a fluorine-based gas. For example, in Patent Document 5, a surface treatment agent containing an extremely stable perfluoroalkyl radical as an active ingredient is formed on the surface of a DLC film prepared on the surface of various solid substances, and a fluorine coating is further formed on the surface treatment agent. Is disclosed.

一方、特許文献6、7のように、上記のドライプロセスであるCVD法による非晶質炭素膜を形成することなく、予め版面に液体状のプライマーを塗布しておき、そのうえにフッ素含有シランカップリング剤を塗布する方法も、通常良く用いられる方法である。 On the other hand, as in Patent Documents 6 and 7, a liquid primer is applied to the plate surface in advance without forming an amorphous carbon film by the CVD method, which is the dry process, and then a fluorine-containing silane coupling is performed thereon. The method of applying the agent is also a commonly used method.

特開平11−245371号公報JP-A-11-245371 特開2002−67267号公報JP 2002-67267 A 特開2005−144973号公報Japanese Patent Laid-Open No. 2005-1441973 特開2006−205716号公報JP 2006-205716 A 特開2005−146060号公報JP 2005-146060 A 特開2006−347062号公報JP 2006-347062 A 特開2009−45867号公報JP 2009-45867 A

しかしながら、DLC膜上に形成される撥水・撥油性を有するフッ素コーティング層は、DLC膜への定着性が十分でない。また、スクリーン印刷用孔版の一部、例えば、スキージ面や構成部材同士の接続部分は十分な濡れ性が必要なので、スクリーン印刷用孔版全体にフッ素コーティング層を設けることは望ましくない場合がある。
また、液体状のプライマーを用いる例では、メッシュの目開き部に液体状のプライマーが広がり、開口部を閉塞してしまうという問題がある。 Further, in the example of using the liquid primer, there is a problem that the liquid primer spreads in the opening portion of the mesh and closes the opening. However, the fluorine coating layer having water and oil repellency formed on the DLC film does not have sufficient fixability to the DLC film. Further, since a part of the screen printing stencil, for example, a squeegee surface or a connecting portion between components, needs to have sufficient wettability, it may not be desirable to provide a fluorine coating layer on the entire screen printing stencil. However, the fluorine coating layer having water and oil repellency formed on the DLC film does not have sufficient fixability to the DLC film. Further, since a part of the screen printing stencil, for example, a squeegee surface or a connecting portion between components, needs to have sufficient wettability, it may not be desirable to provide a fluorine coating layer on the entire screen printing stencil.
Moreover, in the example using a liquid primer, there exists a problem that a liquid primer spreads in the opening part of a mesh, and obstruct | occludes an opening part. Moreover, in the example using a liquid primer, there exists a problem that a liquid primer spreads in the opening part of a mesh, and obstruct | occludes an opening part.

本発明の様々な実施形態によって、DLC膜などの非晶質炭素膜を備え、この非晶質炭素膜上の少なくとも一部に撥水・撥油層が定着性良く設けられたスクリーン印刷用孔版が提供される。   According to various embodiments of the present invention, there is provided a stencil for screen printing comprising an amorphous carbon film such as a DLC film and having a water / oil repellent layer provided on at least a part of the amorphous carbon film with good fixability. Provided.

本発明者らは、ケイ素(Si)、酸素(O)、窒素(N)から成る群の少なくとも1つを含む非晶質炭素膜が、フッ素を含有するシランカップリング剤を定着性良く保持することを見いだした。このような非晶質炭素膜の表面の撥水・撥油性が望まれる部分に、フッ素を含有するシランカップリング剤の薄膜を形成することで、脱水縮合反応等の共有結合又は水素結合等にて非晶質炭素膜とシランカップリング剤の薄膜とが強固な化学結合を起こし、シランカップリング剤の薄膜が非晶質炭素膜上に定着性良く保持されることが確認された。   The inventors of the present invention have an amorphous carbon film containing at least one member selected from the group consisting of silicon (Si), oxygen (O), and nitrogen (N) to hold a fluorine-containing silane coupling agent with good fixability. I found out. By forming a fluorine-containing silane coupling agent thin film on the surface of such an amorphous carbon film where water and oil repellency is desired, a covalent bond such as a dehydration condensation reaction or a hydrogen bond can be obtained. It was confirmed that the amorphous carbon film and the thin film of the silane coupling agent caused a strong chemical bond, and the thin film of the silane coupling agent was retained on the amorphous carbon film with good fixability.

本発明の一実施形態に係るスクリーン版は、枠体に固定されたメッシュと、前記メッシュに充填され、貫通孔が形成された乳剤層と、前記貫通孔の内壁面の少なくとも一部に形成され、ケイ素、酸素、又は窒素のうち少なくとも1つの元素を含有する非晶質炭素膜層と、前記非晶質炭素膜層上の少なくとも一部に設けられたフッ素を含有するシランカップリング剤薄膜層とを備える。   A screen plate according to an embodiment of the present invention is formed on at least a part of a mesh fixed to a frame, an emulsion layer filled in the mesh and having a through hole, and an inner wall surface of the through hole. Amorphous carbon film layer containing at least one element of silicon, oxygen, or nitrogen, and a silane coupling agent thin film layer containing fluorine provided on at least a part of the amorphous carbon film layer With.

本発明の一実施形態に係るスクリーン印刷用マスクは、枠体に直接に又はメッシュを介して間接に取り付けられた貫通孔を有するマスク基板と、前記貫通孔の内壁面の少なくとも一部に形成され、ケイ素、酸素、又は窒素のうち少なくとも1つの元素を含有する非晶質炭素膜層と、前記非晶質炭素膜層上の少なくとも一部に設けられたフッ素を含有するシランカップリング剤薄膜層とを備える。本発明の他の実施形態に係るスクリーン印刷用マスクは、枠体に固定されたメッシュと、前記メッシュの一方の面に取り付けられた貫通孔を有するマスク基板と、前記貫通孔の内壁面の少なくとも一部に形成され、ケイ素、酸素、又は窒素のうち少なくとも1つの元素を含有する非晶質炭素膜層と、前記非晶質炭素膜層上の少なくとも一部に設けられたフッ素を含有するシランカップリング剤薄膜層と、を備える。   A screen printing mask according to an embodiment of the present invention is formed on a mask substrate having a through-hole attached directly to a frame body or indirectly through a mesh, and at least a part of an inner wall surface of the through-hole. Amorphous carbon film layer containing at least one element of silicon, oxygen, or nitrogen, and a silane coupling agent thin film layer containing fluorine provided on at least a part of the amorphous carbon film layer With. A mask for screen printing according to another embodiment of the present invention includes a mesh fixed to a frame, a mask substrate having a through hole attached to one surface of the mesh, and at least an inner wall surface of the through hole. A partially formed amorphous carbon film layer containing at least one element of silicon, oxygen, or nitrogen, and fluorine-containing silane provided on at least a part of the amorphous carbon film layer A coupling agent thin film layer.

本発明の一実施形態に係るスクリーン版の製造方法は、枠体にメッシュを固定する工程と、前記メッシュに乳剤を充填して乳剤層を形成する工程と、前記乳剤層の印刷パターンに対応する位置に貫通孔を形成する工程と、前記貫通孔の内壁面の少なくとも一部に、ケイ素、酸素、又は窒素のうち少なくとも1つの元素を含有する非晶質炭素膜層を形成する工程と、前記非晶質炭素膜層上の少なくとも一部にフッ素を含有するシランカップリング剤薄膜層を形成する工程とを備える。   The screen plate manufacturing method according to an embodiment of the present invention corresponds to a step of fixing a mesh to a frame, a step of filling an emulsion with the mesh to form an emulsion layer, and a printing pattern of the emulsion layer. Forming a through hole at a position; forming an amorphous carbon film layer containing at least one element of silicon, oxygen, or nitrogen on at least a part of an inner wall surface of the through hole; Forming a silane coupling agent thin film layer containing fluorine on at least a part of the amorphous carbon film layer.

本発明の一実施形態に係るスクリーン印刷用マスクの製造方法は、枠体に直接に又はメッシュを介して間接にマスク基板を固定する工程と、前記金属板の印刷パターンに対応する位置に貫通孔を形成する工程と、前記貫通孔の内壁面の少なくとも一部に、ケイ素、酸素、又は窒素のうち少なくとも1つの元素を含有する非晶質炭素膜層を形成する工程と、前記非晶質炭素膜層上の少なくとも一部にフッ素を含有するシランカップリング剤薄膜層を形成する工程とを備える。本発明の他の実施形態に係るスクリーン印刷用マスクの製造方法は、枠体にメッシュを固定する工程と、前記メッシュの一方の面に貫通孔を有するマスク基板を取り付ける工程と、前記貫通孔の内壁面の少なくとも一部に、ケイ素、酸素、又は窒素のうち少なくとも1つの元素を含有する非晶質炭素膜層を形成する工程と、前記非晶質炭素膜層上の少なくとも一部にフッ素を含有するシランカップリング剤薄膜層を形成する工程と、を備える。   A method for manufacturing a mask for screen printing according to an embodiment of the present invention includes a step of fixing a mask substrate directly to a frame body or indirectly through a mesh, and a through hole at a position corresponding to the printing pattern of the metal plate Forming an amorphous carbon film layer containing at least one element of silicon, oxygen, or nitrogen on at least a part of the inner wall surface of the through hole, and the amorphous carbon Forming a silane coupling agent thin film layer containing fluorine on at least a part of the film layer. A method for manufacturing a mask for screen printing according to another embodiment of the present invention includes a step of fixing a mesh to a frame, a step of attaching a mask substrate having a through hole on one surface of the mesh, Forming an amorphous carbon film layer containing at least one element of silicon, oxygen, or nitrogen on at least a part of the inner wall; and fluorine on at least a part of the amorphous carbon film layer Forming a silane coupling agent thin film layer to be contained.

本発明の様々な実施形態によれば、DLC膜などの非晶質炭素膜を備え、この非晶質炭素膜上の少なくとも一部に、撥水・撥油層が定着性良く設けられたスクリーン版及び印刷用マスクが提供される。   According to various embodiments of the present invention, a screen plate comprising an amorphous carbon film such as a DLC film, and a water / oil repellent layer provided on at least a part of the amorphous carbon film with good fixability. And a printing mask is provided.

本発明の一実施形態に係るスクリーン版の全体構成を模式的に表す平面図The top view which represents typically the whole structure of the screen plate which concerns on one Embodiment of this invention 本発明の一実施形態に係るスクリーン版を模式的に表す断面図Sectional drawing which represents typically the screen plate which concerns on one Embodiment of this invention. 本発明の他の実施形態に係るスクリーン版を模式的に表す断面図Sectional drawing which represents typically the screen plate which concerns on other embodiment of this invention. 本発明の他の実施形態に係るスクリーン版を模式的に表す断面図Sectional drawing which represents typically the screen plate which concerns on other embodiment of this invention. 本発明の一実施形態に係るメタルマスクを模式的に表す断面図Sectional drawing which represents typically the metal mask which concerns on one Embodiment of this invention. 本発明の他の実施形態に係るメタルマスクを模式的に表す断面図Sectional drawing which represents typically the metal mask which concerns on other embodiment of this invention. 本発明の他の実施形態に係るメタルマスクを模式的に表す断面図Sectional drawing which represents typically the metal mask which concerns on other embodiment of this invention. 本発明の一実施形態に係るステンレス鋼(SUS)メッシュの印刷後の写真The photograph after the printing of the stainless steel (SUS) mesh which concerns on one Embodiment of this invention フッ素コーティングを施していないステンレス鋼(SUS)メッシュの印刷後の写真Photo after printing of stainless steel (SUS) mesh without fluorine coating 本発明の一実施形態に係るSUSメッシュを用いて基板上に印刷されたペーストを示す写真The photograph which shows the paste printed on the board | substrate using the SUS mesh which concerns on one Embodiment of this invention. 実施例1〜7及び比較例1の、ミネラルスピリットとの接触角の測定結果を示すグラフThe graph which shows the measurement result of the contact angle with Examples 1-7 and Comparative Example 1 with the mineral spirit. 実施例1〜9及び比較例1の、水との接触角の測定結果を示すグラフThe graph which shows the measurement result of the contact angle with water of Examples 1-9 and Comparative Example 1 比較例1の表面の複数の位置においてミネラルスピリットとの接触角を測定した結果を示すグラフThe graph which shows the result of having measured the contact angle with the mineral spirit in the several position of the surface of the comparative example 1 実施例7の表面の複数の位置においてミネラルスピリットとの接触角を測定した結果を示すグラフThe graph which shows the result of having measured the contact angle with the mineral spirit in the several position of the surface of Example 7. 比較例2のCCD500倍写真CCD 500x photograph of Comparative Example 2 参考例のCCD500倍写真CCD 500 times photo of reference example 実施例10のCCD500倍写真CCD 500x photograph of Example 10 実施例11の非晶質炭素膜形成前の乳剤表面のCCD写真CCD photograph of emulsion surface before formation of amorphous carbon film in Example 11 実施例11の非晶質炭素膜形成後の乳剤表面のCCD写真CCD photograph of emulsion surface after formation of amorphous carbon film in Example 11 印刷前及び1万回印刷後の、実施例11、比較例3の乳剤表面に於けるミネラルスピリットとの接触角の測定結果を示すグラフThe graph which shows the measurement result of the contact angle with the mineral spirit in the emulsion surface of Example 11 and Comparative Example 3 before printing and after printing 10,000 times. 延伸前の状態と延伸率3%時の、メッシュに塗布された乳剤の浮き(メッシュからの部分剥離)の状態(ボイド数)をCCDカメラで撮影した写真A photograph taken with a CCD camera of the state before stretching and the state (number of voids) of the emulsion applied to the mesh (partial release from the mesh) at a stretching rate of 3%.

本発明の様々な実施形態について添付図面を参照して説明する。各実施形態において、類似の構成要素には類似の参照符号を付して説明を行い、その類似の構成要素についての詳細な説明は適宜省略する。図1は本発明の一実施形態に係るスクリーン版の全体構成を模式的に表す平面図、図2は本発明の一実施形態に係るスクリーン版を模式的に表す断面図である。図1及び図2は、本発明の一実施形態に係るスクリーン版の構成を模式的に示すものであり、その寸法は必ずしも正確に図示されていない点に留意されたい。   Various embodiments of the present invention will be described with reference to the accompanying drawings. In each embodiment, similar constituent elements will be described with similar reference numerals, and detailed description of the similar constituent elements will be omitted as appropriate. FIG. 1 is a plan view schematically illustrating the entire configuration of a screen plate according to an embodiment of the present invention, and FIG. 2 is a cross-sectional view schematically illustrating the screen plate according to an embodiment of the present invention. 1 and 2 schematically show the configuration of a screen plate according to an embodiment of the present invention, and it should be noted that the dimensions are not necessarily shown accurately.

図示の通り、本発明の一実施形態に係るスクリーン版10は、鉄製の鋳物、ステンレス鋼やアルミニウム合金から成る枠体12に、ポリエステル等の樹脂やステンレス鋼から成るメッシュ16を張り、このメッシュ16の全部又は一部に乳剤14を塗布して構成される。   As shown in the drawing, a screen plate 10 according to an embodiment of the present invention has a mesh 16 made of resin such as polyester or stainless steel on a frame 12 made of iron casting, stainless steel or aluminum alloy. The emulsion 14 is coated on all or part of the above.

メッシュ16は、例えば、金属、樹脂、又は炭素繊維から成る糸を編み込んで構成される。メッシュ16として、例えば、線径φ15μm、厚み23μm、メッシュ開口部幅24.7μm、メッシュカウント640(1inch幅に640本のメッシュが存在)のメッシュを用いることができる。一実施形態においては、メッシュ糸の交点部分を押しつぶし、メッシュの糸1本の厚みに相当する厚みまでメッシュ16の厚みを薄型化することができる。メッシュ16の材質、線径、メッシュ数等は、ここで述べたものに限られず、印刷対象に応じて適宜変更することができる。   The mesh 16 is configured by weaving a thread made of metal, resin, or carbon fiber, for example. As the mesh 16, for example, a mesh having a wire diameter of 15 μm, a thickness of 23 μm, a mesh opening width of 24.7 μm, and a mesh count of 640 (640 meshes exist in 1 inch width) can be used. In one embodiment, the intersection of mesh yarns can be crushed to reduce the thickness of the mesh 16 to a thickness corresponding to the thickness of one mesh yarn. The material, the wire diameter, the number of meshes, and the like of the mesh 16 are not limited to those described here, and can be appropriately changed according to the printing target.

一実施形態において、乳剤14として、例えばジアゾ系の感光乳剤を用いることができる。乳剤14には、例えばフォトリソグラフィ法によって、印刷パターンに対応する印刷パターン開口部18が形成される。印刷パターン開口部18は、乳剤14を厚み方向に貫通するように形成される。フォトリソグラフィ法を用いる場合には、フォトマスクのマスクパターンをメッシュ16に塗布された乳剤14に露光することにより乳剤14の一部を硬化させ、続いて、乳剤14のうち露光により硬化した部分のみをメッシュ16上に残存させ、それ以外の部分を除去することで、印刷パターン開口部18を形成する。印刷パターン開口部18は、乳剤14の内壁22によって画定されている。乳剤14に代えて、印刷パターンがパターニングされた(印刷パターン開口部18に相当する貫通孔が形成された)ニッケル、ニッケル合金、又はステンレス鋼等の金属箔をメッシュ16に貼り付けてもよい。また、印刷パターンが形成されたメッシュ16を枠体12に直接貼り付ける代わりに、メッシュ16とは別の支持スクリーン(不図示)を枠体12に張り、この支持スクリーンにメッシュ16を貼り付けてもよい。一実施形態において、支持スクリーンのメッシュ16と重なる部分は、カッターナイフ等で切り取られる。   In one embodiment, for example, a diazo photosensitive emulsion can be used as the emulsion 14. In the emulsion 14, for example, a printing pattern opening 18 corresponding to the printing pattern is formed by a photolithography method. The print pattern opening 18 is formed so as to penetrate the emulsion 14 in the thickness direction. In the case of using the photolithography method, a part of the emulsion 14 is cured by exposing the emulsion 14 coated on the mesh 16 with a mask pattern of a photomask, and then only a portion of the emulsion 14 that has been cured by exposure is cured. Is left on the mesh 16 and the other portions are removed to form the printed pattern opening 18. The printed pattern opening 18 is defined by the inner wall 22 of the emulsion 14. Instead of the emulsion 14, a metal foil such as nickel, nickel alloy, or stainless steel in which a printing pattern is patterned (a through hole corresponding to the printing pattern opening 18 is formed) may be attached to the mesh 16. Further, instead of directly attaching the mesh 16 on which the printing pattern is formed to the frame body 12, a support screen (not shown) different from the mesh 16 is attached to the frame body 12, and the mesh 16 is attached to the support screen. Also good. In one embodiment, the portion of the support screen that overlaps the mesh 16 is cut with a cutter knife or the like.

一実施形態において、メッシュ16の各糸の表面には、図示しない非晶質炭素膜が形成される。この非晶質炭素膜は、例えば、炭素(C)、水素(H)、及びケイ素(Si)を主成分とするa−C:H:Si膜である。膜中のSi含有量は、例えば4〜50原子%であり、好ましくは、10〜40原子%である。本発明の一実施形態に係る非晶質炭素膜は、例えば、プラズマCVD法を用いて形成することができる。ケイ素の原料となる反応ガスとしては、テトラメチルシラン、メチルシラン、ジメチルシラン、トリメチルシラン、ジメトキシジオメチルシラン、及びテトラメチルシクロテトラシロキサンなどが用いられる。メッシュ16に形成された非晶質炭素膜は接着剤との親和性が高いため、接着剤や粘着テープを用いることによりメッシュ16を枠体12へ確実に固定することができる。また、非晶質炭素膜は乳剤14との接着性が高いため、メッシュ16に確実に乳剤14を保持することができる。また、乳剤14に代えて上述したニッケル等の金属箔を設ける場合には、金属箔とメッシュ16との接合部に非晶質炭素膜を形成しないことにより、金属箔をメッシュ16に確実に保持することができる。   In one embodiment, an amorphous carbon film (not shown) is formed on the surface of each thread of the mesh 16. This amorphous carbon film is, for example, an aC: H: Si film containing carbon (C), hydrogen (H), and silicon (Si) as main components. Si content in a film | membrane is 4-50 atomic%, for example, Preferably, it is 10-40 atomic%. The amorphous carbon film according to an embodiment of the present invention can be formed using, for example, a plasma CVD method. Tetramethylsilane, methylsilane, dimethylsilane, trimethylsilane, dimethoxydiomethylsilane, tetramethylcyclotetrasiloxane, and the like are used as a reaction gas that is a raw material for silicon. Since the amorphous carbon film formed on the mesh 16 has a high affinity with the adhesive, the mesh 16 can be securely fixed to the frame 12 by using an adhesive or an adhesive tape. Further, since the amorphous carbon film has high adhesion to the emulsion 14, the emulsion 14 can be reliably held on the mesh 16. Further, in the case where the above-described metal foil such as nickel is provided instead of the emulsion 14, the metal foil is securely held on the mesh 16 by not forming an amorphous carbon film at the joint between the metal foil and the mesh 16. can do.

本発明の非晶質炭素膜には、後述のシランカップリング剤を定着性良く保持できるように、Siに加えて、又は、Siに代えて、様々な元素を含有させることができる。例えば、非晶質炭素膜として、a−C:H:Si膜にさらに酸素原子(O)を含有させたa−C:H:Si:O膜を用いることができる。膜中のO含有量は、Siを含む主原料ガスと酸素との総流量に占める酸素の流量割合を調整することによって変更される。主原料ガスと酸素との総流量に占める酸素の流量割合は、例えば0.01〜12%、好ましくは0.5〜10%となるように調整される。また、本発明の非晶質炭素膜は、a−C:H:Si:O膜にさらに窒素(N)を含有させたa−C:H:Si:O:N膜、又は、a−C:H:Si膜に窒素プラズマを照射したa−C:H:Si:N膜であってもよい。   The amorphous carbon film of the present invention can contain various elements in addition to Si or in place of Si so that a silane coupling agent described later can be retained with good fixability. For example, an aC: H: Si: O film in which an oxygen atom (O) is further contained in an aC: H: Si film can be used as the amorphous carbon film. The O content in the film is changed by adjusting the flow rate of oxygen in the total flow rate of the main raw material gas containing Si and oxygen. The flow rate ratio of oxygen to the total flow rate of the main raw material gas and oxygen is adjusted to be, for example, 0.01 to 12%, preferably 0.5 to 10%. Further, the amorphous carbon film of the present invention is an aC: H: Si: O: N film in which nitrogen (N) is further added to an aC: H: Si: O film, or aC. It may be aC: H: Si: N film in which nitrogen plasma is irradiated to the: H: Si film.

また、Siに代えてO又はNの一方又は両方を含有させた膜(a−C:H:O膜、a−C:H:N膜、又はa−C:H:O:N膜)を用いることもできる。例えば、非晶質炭素膜の表面を、窒素もしくは酸素又はそれらの混合物を用いてプラズマ処理することにより、非晶質炭素膜に酸素又は窒素を含有させることができる。このプラズマ処理は、非晶質炭素膜の成膜装置と同じ成膜装置内において、真空をブレイクすることなく、炭素膜の成膜と連続的にまたは一括して行うことができる。プラズマ処理された非晶質炭素膜表面は、その表面にSi−OH等の様々な官能基を有するので、これらの官能基と後述するフッ素含有シランカップリング剤の持つ官能基とが相互作用することにより、後述のフッ素含有シランカップリング剤と非晶質炭素膜表面との密着性をさらに改善することができる。   In addition, a film containing one or both of O and N instead of Si (aC: H: O film, aC: H: N film, or aC: H: O: N film) is used. It can also be used. For example, oxygen or nitrogen can be contained in the amorphous carbon film by performing plasma treatment on the surface of the amorphous carbon film using nitrogen or oxygen or a mixture thereof. This plasma treatment can be performed continuously or collectively with the carbon film formation without breaking the vacuum in the same film formation apparatus as the amorphous carbon film formation apparatus. Since the surface of the plasma-treated amorphous carbon film has various functional groups such as Si-OH on the surface, these functional groups interact with the functional groups of the fluorine-containing silane coupling agent described later. As a result, the adhesion between the fluorine-containing silane coupling agent described later and the amorphous carbon film surface can be further improved.

メッシュ16表面の非晶質炭素膜上の少なくとも一部分には、フッ素を含有するシランカップリング剤から成る薄膜20が形成される。フッ素含有シランカップリング剤の薄膜20は、メッシュ16表面の非晶質炭素膜と脱水縮合反応による共有結合又は水素結合等の化学結合で強固に固定される。フッ素を含有するシランカップリング剤として、例えば、フロロサーフ社のFG−5010Z130−0.2を用いることができる。一実施形態において、この薄膜20は、印刷パターン開口部18を透過する印刷ペーストの透過体積に実質的な影響を与えないほど薄く形成され、例えば、約20nmの厚さに形成される。薄膜20の膜厚はこれに限定されず、用いられるフッ素含有シランカップリング剤の種類により適宜変更され、例えば、1nm〜1μmの範囲で形成される。   A thin film 20 made of a silane coupling agent containing fluorine is formed on at least a part of the amorphous carbon film on the surface of the mesh 16. The fluorine-containing silane coupling agent thin film 20 is firmly fixed to the amorphous carbon film on the surface of the mesh 16 by a chemical bond such as a covalent bond or a hydrogen bond by a dehydration condensation reaction. As the silane coupling agent containing fluorine, for example, FG-5010Z130-0.2 manufactured by Fluorosurf can be used. In one embodiment, the thin film 20 is formed so thin that it does not substantially affect the transmission volume of the printing paste that passes through the printing pattern openings 18, for example, has a thickness of about 20 nm. The film thickness of the thin film 20 is not limited to this, and is appropriately changed depending on the type of fluorine-containing silane coupling agent used, and is formed in the range of 1 nm to 1 μm, for example.

上述のようにプラズマCVD法を用いて非晶質炭素膜を形成することにより、乳剤14表面又は上述のニッケル等の金属箔表面の凹凸を埋めない程度に覆うように非晶質炭素膜を形成することができる。このようにして形成した非晶質炭素膜にシランカップリング剤を塗布することにより、乳剤14表面の凹部にもシランカップリング剤を配置することができる。この凹部におけるフッ素含有シランカップリング剤層は、乳剤14表面の凸部に形成された固い非晶質炭素膜によって保護されるため摩擦による剥落を起こしにくい。これにより、フッ素含有シランカップリング剤の薄膜20をより長期にわたって非晶質炭素膜表面に保持することができる。   By forming the amorphous carbon film using the plasma CVD method as described above, the amorphous carbon film is formed so as to cover the unevenness of the surface of the emulsion 14 or the surface of the metal foil such as nickel as described above. can do. By applying a silane coupling agent to the amorphous carbon film thus formed, the silane coupling agent can be disposed also in the recesses on the surface of the emulsion 14. Since the fluorine-containing silane coupling agent layer in the concave portion is protected by a hard amorphous carbon film formed on the convex portion on the surface of the emulsion 14, it does not easily peel off due to friction. Thereby, the thin film 20 of the fluorine-containing silane coupling agent can be held on the surface of the amorphous carbon film for a longer period.

上述のように、薄膜20は、非晶質炭素膜上の少なくとも一部分に形成される。図2に例示すように、一実施形態における薄膜20は、メッシュ16の各糸の下面26側に形成されてもよい。薄膜20は、例えば、フッ素含有シランカップリング剤の溶液をメッシュ16の表面に塗布することにより形成される。フッ素含有シランカップリング剤の塗布及びフッ素含有シランカップリング剤溶液への浸漬は大気中で行うことができるので、スクリーン版10の撥水・撥油性が必要な部分、例えば、上述のように、メッシュ16の印刷パターン開口部18から露出した部分の下面26側に、真空中での作業と比較して容易に薄膜20を形成することができる。   As described above, the thin film 20 is formed on at least a part of the amorphous carbon film. As illustrated in FIG. 2, the thin film 20 in one embodiment may be formed on the lower surface 26 side of each thread of the mesh 16. The thin film 20 is formed, for example, by applying a solution of a fluorine-containing silane coupling agent to the surface of the mesh 16. Since the application of the fluorine-containing silane coupling agent and the immersion in the fluorine-containing silane coupling agent solution can be performed in the atmosphere, the portion of the screen plate 10 that requires water and oil repellency, for example, as described above, The thin film 20 can be easily formed on the lower surface 26 side of the part exposed from the printed pattern opening 18 of the mesh 16 as compared with the operation in a vacuum.

以上のように構成されたスクリーン版10は、乳剤14の下面26が被印刷物と対向するように配置して使用される。スクリーン版10を所定位置に配置後、上面24にはんだペーストや内部電極を構成する金属ペースト等の印刷ペーストを塗布し、スキージ(不図示)を上面24に一定圧で押し当てたまま上面24に沿ってスライドさせることにより、塗布された印刷ペーストが印刷パターン開口部18を通過し、被印刷物に転写される。   The screen plate 10 configured as described above is used by being arranged so that the lower surface 26 of the emulsion 14 faces the substrate. After the screen plate 10 is placed in a predetermined position, a printing paste such as a solder paste or a metal paste constituting an internal electrode is applied to the upper surface 24, and a squeegee (not shown) is pressed against the upper surface 24 at a constant pressure. By sliding along, the applied printing paste passes through the printing pattern opening 18 and is transferred to the substrate.

続いて、上記のスクリーン版10の製造方法の一例について説明する。まず、鉄製鋳物、ステンレス鋼やアルミニウム合金から成る枠体12、及び、プラズマCVD法等により表面に非晶質炭素膜が形成されたメッシュ16を準備し、このメッシュ16を枠体12に張る。メッシュ16は、枠体12に直接取り付けてもよく、支持スクリーンを介して取り付けてもよい。次に、このメッシュ16に感光乳剤14を塗布し、フォトリソグラフィ法により印刷パターンに対応する印刷パターン開口部18を乳剤14に形成する。続いて、メッシュ16の印刷パターン開口部18において露出している部分の下面26側にフッ素含有シランカップリング剤の薄膜20を塗布し、スクリーン版10が得られる。   Then, an example of the manufacturing method of said screen plate 10 is demonstrated. First, a frame 12 made of iron casting, stainless steel or aluminum alloy, and a mesh 16 having an amorphous carbon film formed on the surface by plasma CVD or the like are prepared, and the mesh 16 is stretched on the frame 12. The mesh 16 may be attached directly to the frame body 12 or may be attached via a support screen. Next, the photosensitive emulsion 14 is applied to the mesh 16, and a printing pattern opening 18 corresponding to the printing pattern is formed in the emulsion 14 by photolithography. Subsequently, the thin film 20 of the fluorine-containing silane coupling agent is applied to the lower surface 26 side of the portion exposed in the printed pattern opening 18 of the mesh 16 to obtain the screen plate 10.

このように、本発明の一実施形態に係るスクリーン版10においては、メッシュ16表面に形成された非晶質炭素膜上の少なくとも一部に、撥水・撥油性に優れ、非晶質炭素膜と強固に化学結合するフッ素含有シランカップリング剤の薄膜20が設けられる。薄膜20は撥水・撥油性に優れているため、印刷時に印刷ペーストが印刷パターン開口部18へ残存することを抑制し、版離れ性及びペースト抜け性を改善することができる。一実施形態においては、メッシュ16のうち、印刷パターン開口部18において露出している部分の下面26側に薄膜20が形成される。このように、印刷ペーストが特に残存しやすい部分に選択的にフッ素含有シランカップリング剤の薄膜20を形成することができる。また、一実施形態においては、フッ素含有シランカップリング剤が改質された非晶質炭素膜と強固に結合しているため、液体状プライマーによりフッ素含有シランカップリング剤を固定する必要がない。これにより、液体状プライマーを用いることによる、膜厚の増加や印刷パターン開口部18の閉塞等の弊害を防止することができる。   Thus, in the screen plate 10 according to an embodiment of the present invention, at least part of the amorphous carbon film formed on the surface of the mesh 16 is excellent in water and oil repellency and has an amorphous carbon film. And a thin film 20 of a fluorine-containing silane coupling agent that is strongly chemically bonded. Since the thin film 20 is excellent in water repellency and oil repellency, it is possible to suppress the printing paste from remaining in the printing pattern opening 18 during printing, and to improve the plate release property and the paste removal property. In one embodiment, the thin film 20 is formed on the lower surface 26 side of the portion of the mesh 16 that is exposed at the printed pattern opening 18. As described above, the thin film 20 of the fluorine-containing silane coupling agent can be selectively formed in a portion where the printing paste is particularly likely to remain. In one embodiment, since the fluorine-containing silane coupling agent is firmly bonded to the modified amorphous carbon film, it is not necessary to fix the fluorine-containing silane coupling agent with a liquid primer. As a result, it is possible to prevent adverse effects such as an increase in film thickness and blockage of the print pattern opening 18 due to the use of the liquid primer.

図3は、本発明の他の実施形態に係るスクリーン版30を模式的に示す断面図である。図示の通り、スクリーン版30においては、フッ素含有シランカップリング剤の薄膜20’が、メッシュ16の下面側に加えて、内壁22のメッシュ16よりも下面26側の部分、及び、乳剤14の下面26の印刷パターン開口部18近傍に形成されている。   FIG. 3 is a cross-sectional view schematically showing a screen plate 30 according to another embodiment of the present invention. As shown in the figure, in the screen plate 30, the fluorine-containing silane coupling agent thin film 20 ′ is in addition to the lower surface side of the mesh 16, the portion of the inner wall 22 on the lower surface 26 side of the mesh 16, and the lower surface of the emulsion 14. It is formed in the vicinity of 26 print pattern openings 18.

スクリーン版30の製造方法について説明する。まず、鉄製の鋳物、ステンレス鋼やアルミニウム合金から成る枠体12、及び、メッシュ16を準備し、このメッシュ16を枠体12に張る。メッシュ16の表面には、非晶質炭素膜が形成されていても良いし、形成されていなくとも良い。次に、メッシュ16に感光乳剤14を塗布し、フォトリソグラフィ法により乳剤14に印刷パターン開口部18を形成する。続いて、プラズマCVD法により、乳剤14の内壁22、上面24、下面26、及び、メッシュ16の露出している部分に非晶質炭素膜を形成する。なお、メッシュ16については、枠体12へ張り付ける前に非晶質炭素膜を形成してもよい。非晶質炭素膜の原料ガスには、スクリーン版10の作製に用いたものと同じ原料ガスを用いることができる。続いて、この非晶質炭素膜の上にフッ素含有シランカップリング剤を塗布し、フッ素含有シランカップリング剤の薄膜20’を形成する。これにより、スクリーン版30が得られる。薄膜20’は、メッシュ16の下面26側、内壁22のメッシュ16よりも下面側の部分、及び、乳剤14の下面26の印刷パターン開口部18近傍にフッ素含有シランカップリング剤を塗布することにより形成される。   A method for manufacturing the screen plate 30 will be described. First, an iron casting, a frame 12 made of stainless steel or aluminum alloy, and a mesh 16 are prepared, and the mesh 16 is stretched on the frame 12. An amorphous carbon film may or may not be formed on the surface of the mesh 16. Next, the photosensitive emulsion 14 is applied to the mesh 16 and a printed pattern opening 18 is formed in the emulsion 14 by photolithography. Subsequently, an amorphous carbon film is formed on the exposed portions of the inner wall 22, the upper surface 24, the lower surface 26, and the mesh 16 of the emulsion 14 by plasma CVD. The mesh 16 may be formed with an amorphous carbon film before being attached to the frame body 12. As the source gas for the amorphous carbon film, the same source gas as that used for producing the screen plate 10 can be used. Subsequently, a fluorine-containing silane coupling agent is applied on the amorphous carbon film to form a fluorine-containing silane coupling agent thin film 20 '. Thereby, the screen plate 30 is obtained. The thin film 20 ′ is formed by applying a fluorine-containing silane coupling agent to the lower surface 26 side of the mesh 16, the portion of the inner wall 22 on the lower surface side of the mesh 16, and the vicinity of the print pattern opening 18 on the lower surface 26 of the emulsion 14. It is formed.

このように、本発明の一実施形態に係るスクリーン版30においては、非晶質炭素膜上のメッシュ16及び印刷パターン開口部18の内壁22の少なくとも一部に、撥水・撥油層に優れたシランカップリング剤の薄膜20’が定着性良く設けられる。これにより、印刷時に印刷ペーストが印刷パターン開口部18へ残存することをより一層抑制し、版離れ性及びペースト抜け性をさらに改善することができる。また、乳剤14の下面26の印刷パターン開口部18近傍にもシランカップリング剤の薄膜20’が形成されるため、印刷時の印刷ペーストの滲みを抑制することができるとともに、薄膜20’がスクリーン版30と被印刷物との間で緩衝材となって、スクリーン版30との接触による衝撃から被印刷物を保護することができる。また、本発明の一実施形態においては、非晶質炭素膜は乳剤14よりも濡れ性が高いため、乳剤14の上面24に形成された非晶質炭素膜の高い濡れ性により、印刷ペーストを乳剤14上に満遍なく塗布することができる。   As described above, in the screen plate 30 according to the embodiment of the present invention, at least a part of the mesh 16 on the amorphous carbon film and the inner wall 22 of the printed pattern opening 18 has an excellent water / oil repellent layer. A thin film 20 ′ of a silane coupling agent is provided with good fixability. Thereby, it is possible to further suppress the printing paste from remaining in the printing pattern opening 18 during printing, and to further improve the plate separation property and paste removal property. Further, since the thin film 20 ′ of the silane coupling agent is also formed in the vicinity of the printing pattern opening 18 on the lower surface 26 of the emulsion 14, the bleeding of the printing paste during printing can be suppressed, and the thin film 20 ′ can be used as a screen. It becomes a buffer material between the plate 30 and the printing material, and the printing material can be protected from an impact caused by contact with the screen plate 30. In one embodiment of the present invention, since the amorphous carbon film has higher wettability than the emulsion 14, the printing paste is formed by the high wettability of the amorphous carbon film formed on the upper surface 24 of the emulsion 14. It can be coated evenly on the emulsion 14.

図4は、本発明の他の実施形態に係るスクリーン版40を模式的に示す断面図である。図示の通り、スクリーン版40においては、フッ素含有シランカップリング剤の薄膜20”が、メッシュ16の上面側及び内壁22の上面側にも形成されている。これにより、印刷時に印刷ペーストが印刷パターン開口部18へ残存することをより一層抑制し、版離れ性及びペースト抜け性をさらに改善することができる。スクリーン版40は、スクリーン版30と同様の方法で製造することができる。   FIG. 4 is a cross-sectional view schematically showing a screen plate 40 according to another embodiment of the present invention. As shown in the figure, in the screen plate 40, a thin film 20 ″ of a fluorine-containing silane coupling agent is also formed on the upper surface side of the mesh 16 and the upper surface side of the inner wall 22. As a result, the printing paste becomes a print pattern during printing. It is possible to further suppress the remaining in the opening 18 and further improve the plate separation property and paste removal property, and the screen plate 40 can be manufactured by the same method as the screen plate 30.

図5は、本発明の一実施形態に係るメタルマスク50を模式的に示す断面図である。図示の通り、本発明の一実施形態に係るメタルマスク50は、ステンレス鋼(SUS)等の金属から成るマスク単板51に、エッチング加工、プレス打ち抜き加工、ドリル加工、レーザ加工等の公知の手法を用いて、印刷パターンに対応する印刷パターン開口部54を形成する。マスク単板51の材質としては様々なものを利用するができ、例えば、塩化ビニル、アクリル、ポリカーボネート等の樹脂、セラミクス、セルロース等の素材を用いてマスク単板51を構成することができる。また、マスク単版51は、上述の金属板に、乳剤等の感光性樹脂、ポリイミド、ポリイミドアミド等の樹脂、及び、保護テープ等を接合して成る複数層の合板であっても良い。印刷パターン開口部54が形成されたマスク単板51に、上述したプラズマCVD等の手法により不図示の非晶質炭素膜が形成される。一実施形態において、非晶質炭素膜は、マスク単板51の上面52、下面53、及び内壁56に形成される。そして、内壁56の厚み方向中央よりも下面53側の部分には、非晶質炭素膜の上にフッ素含有シランカップリング剤の薄膜55が形成される。薄膜55は、上述した薄膜20と同様の手法により形成することができる。使用時には、メタルマスク50を、その下面53が被印刷物と対向するように配置し、その上面52に印刷ペーストを塗布し、スキージを上面に一定圧で押し当てたまま上面に沿ってスライドさせる。これにより、塗布された印刷ペーストを、印刷パターン開口部54を介して被印刷物に転写することができる。   FIG. 5 is a cross-sectional view schematically showing a metal mask 50 according to an embodiment of the present invention. As shown in the drawing, a metal mask 50 according to an embodiment of the present invention is a known technique such as etching, press punching, drilling, laser processing, etc. on a mask single plate 51 made of a metal such as stainless steel (SUS). Is used to form a print pattern opening 54 corresponding to the print pattern. Various materials can be used as the material of the mask single plate 51. For example, the mask single plate 51 can be configured using a material such as a resin such as vinyl chloride, acrylic, or polycarbonate, ceramics, or cellulose. The mask single plate 51 may be a multi-layer plywood formed by bonding a photosensitive resin such as an emulsion, a resin such as polyimide or polyimide amide, and a protective tape to the above-described metal plate. An amorphous carbon film (not shown) is formed on the mask single plate 51 in which the printed pattern openings 54 are formed by the above-described technique such as plasma CVD. In one embodiment, the amorphous carbon film is formed on the upper surface 52, the lower surface 53, and the inner wall 56 of the mask single plate 51. Then, a thin film 55 of a fluorine-containing silane coupling agent is formed on the amorphous carbon film at a portion on the lower surface 53 side of the inner wall 56 in the thickness direction. The thin film 55 can be formed by the same method as the thin film 20 described above. At the time of use, the metal mask 50 is disposed so that the lower surface 53 faces the substrate, the printing paste is applied to the upper surface 52, and the squeegee is slid along the upper surface while pressing the squeegee at a constant pressure. Thereby, the applied printing paste can be transferred to the substrate via the printing pattern opening 54.

このように、本発明の一実施形態に係るメタルマスク50においては、印刷ペーストが通過する印刷パターン開口部54の内壁56の少なくとも一部に、撥水・撥油層に優れたシランカップリング剤の薄膜55が定着性良く設けられる。薄膜55は撥水・撥油性に優れているため、印刷時に印刷ペーストが印刷パターン開口部54に残存することを抑制し、版離れ性及びペースト抜け性を改善することができる。   Thus, in the metal mask 50 according to an embodiment of the present invention, a silane coupling agent having an excellent water / oil repellent layer is formed on at least a part of the inner wall 56 of the print pattern opening 54 through which the print paste passes. The thin film 55 is provided with good fixability. Since the thin film 55 is excellent in water repellency and oil repellency, it is possible to suppress the printing paste from remaining in the printing pattern opening 54 during printing, and to improve the plate separation property and paste removal property.

メタルマスクに形成されるフッ素含有シランカップリング剤の薄膜55の位置は、図5に示したものに限られない。図6及び図7に他の例を示す。例えば、図6に示すメタルマスク60においては、シランカップリング剤の薄膜55’が、印刷パターン開口部54の内壁56の下面53側、及び、マスク単板51の下面53の印刷パターン開口部54近傍に形成されている。これにより、ペースト抜け性の向上に加えて、印刷時の印刷ペーストの滲みを抑制することもできるとともに、薄膜55’がメタルマスク60と被印刷物との間で緩衝材となり、被印刷物を保護することができる。また、図7に示すメタルマスク70においては、非晶質炭素膜(不図示)及びフッ素含有シランカップリング剤の薄膜55”が、印刷パターン開口部54の内壁56全体、及び、マスク単板51の下面53の印刷パターン開口部54近傍に形成されている。これにより、版離れ性及びペースト抜け性をさらに改善することができる。   The position of the fluorine-containing silane coupling agent thin film 55 formed on the metal mask is not limited to that shown in FIG. 6 and 7 show other examples. For example, in the metal mask 60 shown in FIG. 6, the silane coupling agent thin film 55 ′ is formed on the lower surface 53 side of the inner wall 56 of the printing pattern opening 54 and the printing pattern opening 54 on the lower surface 53 of the mask single plate 51. It is formed in the vicinity. Thereby, in addition to improving the paste removal property, it is possible to suppress bleeding of the printing paste at the time of printing, and the thin film 55 ′ serves as a buffer material between the metal mask 60 and the printing material to protect the printing material. be able to. Further, in the metal mask 70 shown in FIG. 7, an amorphous carbon film (not shown) and a thin film 55 ″ of a fluorine-containing silane coupling agent are formed on the entire inner wall 56 of the printed pattern opening 54 and the mask single plate 51. Is formed in the vicinity of the printing pattern opening 54 on the lower surface 53. This makes it possible to further improve the plate separation property and paste removal property.

以上のように、本発明の様々な実施形態に係るスクリーン版及びメタルマスクは、開口部の内壁面のうち、少なくとも一部分に、改質された非晶質炭素膜が形成され、さらに当該非晶質炭素膜表面にフッ素を含有するシランカップリング剤により形成されているので、印刷時に印刷ペーストが開口部に残存することを抑制し、版離れ性及びペースト抜け性を向上させることができる。   As described above, in the screen plate and the metal mask according to various embodiments of the present invention, the modified amorphous carbon film is formed on at least a part of the inner wall surface of the opening, and the amorphous film is further formed. Since the surface of the carbonaceous film is formed of a silane coupling agent containing fluorine, it is possible to suppress the printing paste from remaining in the opening during printing, and to improve the plate release property and paste removal property.

特に、本発明の一実施形態に於いては、非晶質炭素膜の成膜時に発生することのあるピンフォールを通じて、印刷用ペーストに含まれる油分、溶剤成分等の毛管現象による浸透進入、その後の基材への到達を防止することが可能となる。この作用は、特に、印刷用孔版に多用される水溶性の乳剤や、アクリル樹脂、樹脂性粘着保護テープ等の油耐性、溶剤耐性に乏しい素材上に非晶質炭素膜構造体が形成される場合に有効である。
即ち、前記水溶性乳剤や油耐性、溶剤耐性に乏しい素材で作られた基体上に、本願のような非晶質炭素膜構造体、更にその表層にフッ素層が形成された構造体は、前記フッ素層が該油分や溶剤成分の進入を防止するため、前記ピンフォールを通じて、油成分、溶剤成分が表層から基体に達し、基体が損傷される事態を防止できる。 That is, the amorphous carbon film structure as in the present application and the structure in which a fluorine layer is formed on the surface layer thereof on a substrate made of the water-soluble emulsion or a material having poor oil resistance and solvent resistance are described above. Since the fluorine layer prevents the oil component and the solvent component from entering, it is possible to prevent the oil component and the solvent component from reaching the substrate from the surface layer and damaging the substrate through the pinfall. 併せて、基体が損傷されることに起因する非晶質炭素膜の基体からの剥離を防止することが可能となる。 At the same time, it is possible to prevent the amorphous carbon film from peeling off from the substrate due to damage to the substrate.
この構造は、スクリーン版の印刷対象基板面側の印刷パターン開口部周辺乳剤部等の特に印刷品質を左右する部分や、孔版の耐久性を左右するコンビネーションなどの重要部分に適用すると特に有効である。 This structure is particularly effective when applied to a portion that affects print quality, such as an emulsion portion around a print pattern opening on the surface side of a screen plate to be printed, or an important portion such as a combination that affects the durability of a stencil. .. In particular, in one embodiment of the present invention, penetration through a capillary phenomenon such as oil and solvent components contained in a printing paste through a pin fall that may occur during the formation of an amorphous carbon film, and thereafter Can be prevented from reaching the substrate. In particular, this action forms an amorphous carbon film structure on water-soluble emulsions frequently used in printing stencils, materials with poor oil resistance, and solvent resistance such as acrylic resins and resinous adhesive protective tapes. It is effective in the case. In particular, in one embodiment of the present invention, penetration through a capillary phenomenon such as oil and solvent components contained in a printing paste through a pin fall that may occur during the formation of an amorphous carbon film, and subsequently Can be prevented from reaching In particular, this action forms an amorphous carbon film structure on water-soluble emulsions frequently used in printing stencils, materials with poor oil resistance, and solvent resistance such as acrylic resins and resinous adhesive protective tapes. It is effective in the case. ..
That is, an amorphous carbon film structure as in the present application on a substrate made of the water-soluble emulsion or a material having poor oil resistance and solvent resistance, and a structure in which a fluorine layer is formed on the surface layer thereof, Since the fluorine layer prevents the oil and solvent components from entering, it is possible to prevent the substrate from being damaged by the oil and solvent components reaching the substrate from the surface layer through the pinfold. In addition, it is possible to prevent the amorphous carbon film from being peeled from the substrate due to the substrate being damaged. That is, an amorphous carbon film structure as in the present application on a substrate made of the water-soluble emulsion or a material having poor oil resistance and solvent resistance, and a structure in which a fluorine layer is formed on the surface layer thereof, Since the fluorine layer prevents the oil and solvent components from entering, it is possible to prevent the substrate from being damaged by the oil and solvent components reaching the substrate from the surface layer through the pinfold. In addition, it is possible to prevent the emulsion. carbon film from being peeled from the substrate due to the substrate being damaged.
This structure is particularly effective when applied to an important part such as a part that influences the printing quality, such as an emulsion part around the printing pattern opening on the substrate side of the screen plate, or a combination that affects the durability of the stencil. . This structure is particularly effective when applied to an important part such as a part that influences the printing quality, such as an emulsion part around the printing pattern opening on the substrate side of the screen plate, or a combination that affects the durability of the stencil ..

また、非晶質炭素膜は、元来、HO、Oに対する透過バリア性を有する。フッ素含有シランカップリング剤は撥水性であり、水分の吸着を防ぐことが可能である。このため、本願のような非晶質炭素膜構造体、更にその表層にフッ素層が形成された構造体は、基体へのHOの進入を従来の非晶質炭素膜に比べてより防止することが可能となる。
このため、雰囲気中や印刷ペースト中のH Oにより膨潤し形状変化や軟化の発生しやすい水溶性乳剤などの孔版を構成する材料や、酸化しやすい金属メッシュなどをH O、O の影響からより一層保護することが可能となる。 For this reason, materials that make up stencil such as water-soluble emulsions that swell due to H 2 O in the atmosphere or in the print paste and are prone to shape changes and softening, and metal meshes that are easily oxidized are used as H 2 O and O 2 . It is possible to further protect from the influence. この作用はまた、前述の基体自体の劣化に起因する非晶質炭素膜の剥離防止を可能とする。 This action also makes it possible to prevent the amorphous carbon film from peeling off due to the deterioration of the substrate itself.
この構造は、孔版を構成する乳剤、または金属メッシュ、または樹脂性のコンビネーション(接続用)の粘着テープ、孔版表面保護用の樹脂性粘着保護テープなど、特に印刷品質を左右する印刷パターン開口部周辺の乳剤部等、重要な部位の表層に適用すると特に有効である。 This structure is based on the emulsion or metal mesh that makes up the stencil, the adhesive tape of the resin combination (for connection), the resin adhesive protective tape for stencil surface protection, etc., especially around the print pattern opening that affects the print quality. It is particularly effective when applied to the surface layer of important parts such as the emulsion part of. The amorphous carbon film originally has a permeation barrier property against H 2 O and O 2 . The fluorine-containing silane coupling agent is water repellent and can prevent moisture adsorption. For this reason, the amorphous carbon film structure as in the present application, and the structure in which the fluorine layer is formed on the surface layer, prevent H 2 O from entering the base more than the conventional amorphous carbon film. It becomes possible to do. The amorphous carbon film originally has a permeation barrier property against H 2 O and O 2. The fluorine-containing silane coupling agent is water repellent and can prevent moisture adsorption. For this reason, the amorphous carbon film structure as in the present application, and the structure in which the fluorine layer is formed on the surface layer, prevent H 2 O from entering the base more than the conventional amorphous carbon film. It becomes possible to do.
For this reason, a material constituting a stencil such as a water-soluble emulsion that swells due to H 2 O in the atmosphere or in the printing paste and easily undergoes shape change or softening, or a metal mesh that easily oxidizes is used in H 2 O, O 2 . It becomes possible to further protect from the influence. This action also makes it possible to prevent the amorphous carbon film from peeling off due to the deterioration of the substrate itself. For this reason, a material simply a stencil such as a water-soluble emulsion that swells due to H 2 O in the atmosphere or in the printing paste and easily undergoes shape change or softening, or a metal mesh that easily oxidizes is used in H 2 O, O 2. It becomes possible to further protect from the influence. This action also makes it possible to prevent the amorphous carbon film from peeling off due to the deterioration of the substrate itself.
This structure consists of an emulsion, metal mesh, resinous combination adhesive tape (for connection), and resinous adhesive masking tape for protecting the stencil surface. It is particularly effective when applied to the surface layer of an important part, such as the emulsion part. This structure consists of an emulsion, metal mesh, resinous combination adhesive tape (for connection), and resinous adhesive masking tape for protecting the stencil surface. It is particularly effective when applied to the surface layer of an important part, such as the emulsion part ..

電鋳プロセスによるNiパターン箔の作成と炭素膜の成膜
ステンレス鋼(SUS304)を、表面仕上げバフ研摩品厚み0.3mm、一辺95mmの四角形にカットして脱脂し、スピンコーター(ミカサ(株) 1H-DX II)にてJSR社製フォトレジストTHB-126Nを最大2500RPMにてコートした後、ホットプレート(井内 sefi SHAMAL HOTPLATE HHP-401)にて90℃で5分間乾燥し、手動マスクアライナ紫外線露光装置(SUSS MicroTec MA6)にて、予め40μmライン&スペースの格子形状を描画できるように作成したガラス乾板を使い、600mJ/cm にて露光を行い、現像液につけて手搖動75秒(15秒静止後搖動)現像を行った。 Stainless steel (SUS304) is cut into squares with a surface finish buff polishing product thickness of 0.3 mm and a side of 95 mm, degreased, and JSR photoresist THB-126N is used with a spin coater (Mikasa Co., Ltd. 1H-DX II). After coating with a maximum of 2500 RPM, dry on a hot plate (Inuchi sefi SHAMAL HOTPLATE HHP-401) at 90 ° C for 5 minutes, and use a manual mask aligner UV exposure device (SUSS MicroTec MA6) in advance for 40 μm line and space. Using a glass dry plate prepared so that a lattice shape could be drawn, exposure was performed at 600 mJ / cm 2 , and the mixture was immersed in a developing solution and developed by hand shaking for 75 seconds (after standing still for 15 seconds). レジスト塗布厚は約40μmであった。 The resist coating thickness was about 40 μm. Preparation of Ni pattern foil by electroforming process and deposition of carbon film Stainless steel (SUS304) is degreased by cutting it into a square with a surface finish buffed abrasive thickness of 0.3 mm and a side of 95 mm, spin coater (Mikasa Co., Ltd.) 1H-DX II) coated with JSR photoresist THB-126N at a maximum of 2500 RPM, then dried at 90 ° C for 5 minutes on a hot plate (Iuchi sefi SHAMAL HOTPLATE HHP-401), and manually masked aligner UV exposure Using an apparatus (SUSS MicroTec MA6), using a glass dry plate prepared in advance so that a 40 μm line & space lattice shape can be drawn, exposure is performed at 600 mJ / cm 2 , and it is attached to the developer for 75 seconds (15 seconds). The film was developed after shaking. The resist coating thickness was about 40 μm. Preparation of Ni pattern foil by electroforming process and deposition of carbon film Stainless steel (SUS304) is degreased by cutting it into a square with a surface finish buffed abrasive thickness of 0.3 mm and a side of 95 mm, spin coater (Mikasa Co., Ltd.) 1H-DX II) coated with JSR optionally THB-126N at a maximum of 2500 RPM, then dried at 90 ° C for 5 minutes on a hot plate (Iuchi sefi SHAMAL HOTPLATE HHP-401), and manually masked aligner UV exposure Using an apparatus (SUSS MicroTec MA6), using a glass dry plate prepared in advance so that a 40 μm line & space lattice shape can be drawn, exposure is performed at 600 mJ / cm 2 , and it is attached to the developer for 75 seconds (15 seconds). The film was developed after shaking. The resist coating thickness was about 40 μm.

次に、該母型をスルファミン酸Niメッキ液にてメッキし、電流1.8A、電流密度約2.4A/dmにて50分間メッキした。その後、レジスト部分を専用のレジスト剥離液(THB-S2)にて除去した。機械研摩等による析出したNi箔の表面研摩工程は省略した。次に、前述のパターン形成済みのNi箔を電鋳母型用のステンレス鋼(SUS304)板から剥離し、電極接点部以外のNi箔全面に非晶質炭素膜を成膜できるように固定した。 Next, the mother mold was plated with a nickel sulfamate plating solution and plated at a current of 1.8 A and a current density of about 2.4 A / dm 2 for 50 minutes. Thereafter, the resist portion was removed with a dedicated resist stripping solution (THB-S2). The surface polishing step of the deposited Ni foil by mechanical polishing or the like was omitted. Next, the patterned Ni foil is peeled off from the stainless steel (SUS304) plate for the electroforming mother mold, and fixed so that an amorphous carbon film can be formed on the entire Ni foil other than the electrode contact portion. .

SUS板冶具に固定したNi箔を高圧パルスプラズマCVD装置に投入し、1×10−3Paまで真空減圧した後、アルゴンガスを流量30SCCM、ガス圧2Pa、パルス周波数10kHz、パルス幅10μsの条件にてアルゴンガスプラズマで基材を約5分クリーニングした。その後、トリメチルシランを流量40SCCM、ガス圧2Paになるよう流量調整し、印加電圧−7kV、パルス周波数10kHz、パルス幅10μsにて10分間成膜処理を行った。具体的には、5分間成膜した後20分間放置して冷却し、その後さらに5分間成膜することで10分間成膜した。 A Ni foil fixed to a SUS plate jig is put into a high-pressure pulse plasma CVD apparatus, and after vacuum depressurization to 1 × 10 −3 Pa, argon gas is flowed at a flow rate of 30 SCCM, a gas pressure of 2 Pa, a pulse frequency of 10 kHz, and a pulse width of 10 μs. The substrate was cleaned with argon gas plasma for about 5 minutes. Thereafter, the flow rate of trimethylsilane was adjusted to a flow rate of 40 SCCM and a gas pressure of 2 Pa, and a film formation process was performed for 10 minutes at an applied voltage of −7 kV, a pulse frequency of 10 kHz, and a pulse width of 10 μs. Specifically, after 5 minutes of film formation, the film was left to cool for 20 minutes, and then further formed for 5 minutes to form a film for 10 minutes.

次に、印刷マスク用の240mm×290mmの四角形状アルミニウム合金枠(フレーム)にテトロンメッシュを張り、このテトロンメッシュの中央部分に上記成膜したNi箔を仮止めした。続いて、アイカ工業株式会社製EX-582CA(主剤)、EX-582CB(硬化剤)を主剤2:硬化剤1の比率にて、糊しろ1cm位を目安にテトロンメッシュ側から塗付して、50℃の乾燥炉に45分間投入し接着剤を固化させた。その後、乾燥させたテトロンメッシュを乾燥炉から取り出し、Ni箔部分と重なるテトロンメッシュ部分をカットした。次に、テトロンメッシュ部分にアルミテープを全面に張り、ステンシルマスクを得た。   Next, a Tetron mesh was applied to a 240 mm × 290 mm square aluminum alloy frame (frame) for a printing mask, and the deposited Ni foil was temporarily fixed to the central portion of the Tetron mesh. Next, apply EX-582CA (main agent) and EX-582CB (curing agent) manufactured by Aika Kogyo Co., Ltd. from the Tetron mesh side with a ratio of main agent 2: curing agent 1 and a glue margin of about 1 cm as a guide. The adhesive was solidified by putting in a drying oven at 50 ° C. for 45 minutes. Thereafter, the dried tetron mesh was taken out from the drying furnace, and the tetron mesh portion overlapping the Ni foil portion was cut. Next, an aluminum tape was applied on the entire surface of the tetron mesh to obtain a stencil mask.

完成したステンシルマスクの印刷基板と接する側の面にフロロサーフ社のFG−5010Z130−0.2フッ素コート剤を刷毛塗りし2日間乾燥させ、撥水・撥油性の表面構造を持つNi電鋳ステンシルマスクが完成した。   The surface of the finished stencil mask that contacts the printed circuit board is brushed with Fluorosurf's FG-5010Z130-0.2 fluorine coating and dried for 2 days. Was completed.

本件発明における印刷性の向上の確認を行うため、以下に詳述するように、撥水・撥油性の薄膜が表面に形成されたステンレス鋼(SUS)メッシュを用いての印刷試験を行った。   In order to confirm the improvement in printability in the present invention, as described in detail below, a print test was performed using a stainless steel (SUS) mesh having a water- and oil-repellent thin film formed on the surface.

まず、140mm×140mm角にカットした大阪メッシュ製 SC500-18-18を準備した。このメッシュの半分をステンレス鋼(SUS304)板にて両方から挟むことでマスキングしたものを高圧パルスプラズマCVD装置に投入した。この高圧パルスプラズマCVD装置を1×10−3Paまで真空減圧した後、アルゴンガスを流量30SCCM、ガス圧2Pa、パルス周波数10kHz、パルス幅10μsの条件にて、アルゴンガスプラズマで基材を約5分クリーニングした。続いて、流量40SCCM、ガス圧2Paのトリメチルシランを反応ガスとして用い、クリーニング後のメッシュに、印加電圧−7kV、パルス周波数10kHz、パルス幅10μsの条件で10分間成膜し、ステンレス鋼(SUS)メッシュの表面に非晶質炭素膜を形成した。 First, SC500-18-18 made by Osaka mesh cut to 140 mm × 140 mm square was prepared. One half of this mesh masked by sandwiching it with a stainless steel (SUS304) plate was put into a high-pressure pulse plasma CVD apparatus. After this high-pressure pulse plasma CVD apparatus was vacuum depressurized to 1 × 10 −3 Pa, an argon gas was flowed at a flow rate of 30 SCCM, a gas pressure of 2 Pa, a pulse frequency of 10 kHz, and a pulse width of 10 μs. Cleaned minutes. Subsequently, trimethylsilane having a flow rate of 40 SCCM and a gas pressure of 2 Pa was used as a reaction gas, and a film was formed on the cleaned mesh for 10 minutes under the conditions of an applied voltage of −7 kV, a pulse frequency of 10 kHz, and a pulse width of 10 μs, and stainless steel (SUS). An amorphous carbon film was formed on the surface of the mesh.

続いて、アルミニウム製の240mm×290mm角の枠にステンレス鋼(SUS304)製の板を接着する。このステンレス鋼(SUS304)製の板として、厚みが0.6mmであり、板中央部を130mm×130mの矩形の貫通孔を設けたものを用いた。次に、この貫通孔を覆うように前記ステンレス(SUS)メッシュをステンレス鋼(SUS304)製の板に仮止めした。次に、接着剤(アロンアルファー203TX)を用いてステンレス鋼(SUS)メッシュとステンレス鋼(SUS304)製の板とを接着した。次に、ステンレス鋼(SUS)メッシュ及びステンレス鋼(SUS304)製の板を乾燥炉に投入し、接着剤を固化させた。接着剤が乾燥した後、アルミニウム枠に取り付けたステンレス(SUS304)製の板とステンレス鋼(SUS)メッシュの接合部をアルミニウム製の粘着テープを用いて目張りし、ステンレス鋼(SUS)メッシュが120mm×120mmの大きさだけ露出するようにした。   Subsequently, a stainless steel (SUS304) plate is bonded to an aluminum 240 mm × 290 mm square frame. As this stainless steel (SUS304) plate, a plate having a thickness of 0.6 mm and having a rectangular through hole of 130 mm × 130 m at the center of the plate was used. Next, the stainless steel (SUS) mesh was temporarily fixed to a stainless steel (SUS304) plate so as to cover the through hole. Next, a stainless steel (SUS) mesh and a stainless steel (SUS304) plate were bonded using an adhesive (Aron Alpha 203TX). Next, a stainless steel (SUS) mesh and a stainless steel (SUS304) plate were put into a drying furnace to solidify the adhesive. After the adhesive dries, the joint between the stainless steel (SUS304) plate and the stainless steel (SUS) mesh attached to the aluminum frame is covered with an aluminum adhesive tape, and the stainless steel (SUS) mesh is 120 mm × Only a size of 120 mm was exposed.

次に、完成したスクリーン版のステンレス鋼(SUS)メッシュの非晶質炭素膜が成膜された部分に、フロロサーフ社のフッ素コート剤、FG−5010Z130−0.2を塗布し、2日間乾燥させた。乾燥後のステンレス鋼(SUS)メッシュ全面にIPAを霧吹きで噴霧した後、IPAを含ませた不織布にてステンレス鋼メッシュ露出部の両面を拭き取り、試験用のスクリーン版を完成させた。   Next, Fluorosurf's fluorine coating agent, FG-5010Z130-0.2, was applied to the portion of the screen screen where the amorphous carbon film of stainless steel (SUS) mesh was formed and dried for 2 days. It was. IPA was sprayed on the entire surface of the stainless steel (SUS) mesh after drying by spraying, and then both surfaces of the exposed portion of the stainless steel mesh were wiped off with a nonwoven fabric containing IPA to complete a test screen plate.

次に、上記のようにして作製した試験用のスクリーン版を用いて、印刷実験を行った。印刷機はミナミ株式会社製印刷機MK-850-SVを使用した。上記、試験用スクリーン版の枠体をマスクアダプターを介して印刷機にセットした。次に、硬度70のウレタンスキージを110mmの長さにカットしてスキージホルダにセットし、スキージスピード:約20mm/S、スキージ押し込み量:スキージがSUSメッシュに接触して平行になる点から1.25mm押し込み(リフト)、スキージアタック角度60度にてオンコンタクト印刷を行い、ペースト透過性を検証した。   Next, a printing experiment was performed using the test screen plate produced as described above. The printing machine used was a printing machine MK-850-SV manufactured by Minami Corporation. The test screen frame was set on a printing machine through a mask adapter. Next, a urethane squeegee with a hardness of 70 is cut to a length of 110 mm and set in a squeegee holder. Squeegee speed: about 20 mm / S, squeegee push-in amount: 1. On-contact printing was performed at 25 mm indentation (lift) and a ski-diatack angle of 60 degrees to verify paste permeability.

印刷基板(被印刷物)として、Ni−Zn−Cuフェライトのスラリーを、グリーンシート法により厚さ約30μmの磁性体シートに形成したものをカットしてステンレス鋼(SUS304)の板に上に貼ったものを準備した。また、印刷用ペーストとして、ナミックス社製:X7348S-13 Agペースト粒径φ1μm、粘度300Pa'sを使用した。X7348S-13は、厚膜印刷用で粘性が高く、印刷メッシュに残留し易い性質を有する。   As a printed substrate (printed material), a Ni-Zn-Cu ferrite slurry formed on a magnetic sheet having a thickness of about 30 μm by the green sheet method was cut and pasted on a stainless steel (SUS304) plate. I prepared something. Further, as a printing paste, NAMICS X7348S-13 Ag paste particle diameter φ1 μm and viscosity 300 Pa's were used. X7348S-13 is for thick film printing and has a high viscosity and is likely to remain on the printing mesh.

図8は、上述したフッ素コーティングが施されたステンレス鋼(SUS)メッシュを用いてX7348S-13ペーストを印刷した後の当該ステンレス鋼(SUS)メッシュ部分の写真を示す。図9は、非晶質炭素膜及びフッ素コーティングのいずれも形成されていないステンレス鋼(SUS)メッシュを用いてX7348S-13ペーストを印刷した後の当該SUSメッシュ部分の写真を示す。図8において、ステンレス鋼(SUS)メッシュにペーストの付着は全く観察できない。一方、図9に示されるように、非晶質炭素膜及びフッ素コーティングのいずれも形成されていないステンレス鋼(SUS)メッシュ部分には、印刷により多量のペーストが目を埋めるように付着した。   FIG. 8 shows a photograph of the stainless steel (SUS) mesh portion after printing the X7348S-13 paste using the above-described stainless steel (SUS) mesh coated with fluorine. FIG. 9 shows a photograph of the SUS mesh portion after printing the X7348S-13 paste using a stainless steel (SUS) mesh on which neither the amorphous carbon film nor the fluorine coating is formed. In FIG. 8, the adhesion of the paste to the stainless steel (SUS) mesh cannot be observed at all. On the other hand, as shown in FIG. 9, a large amount of paste adhered to the stainless steel (SUS) mesh portion on which neither the amorphous carbon film nor the fluorine coating was formed so as to fill the eyes.

図10は、フッ素コーティングが施されたステンレス鋼(SUS)メッシュ部分、及びフッ素コーティングを施さないステンレス鋼(SUS)メッシュ部分を用いて基板上に印刷されたペーストの写真を示す。同図の中央より左側が、フッ素コーティングを施したステンレス鋼(SUS)メッシュ部分によって印刷されたペーストを示し、同図の中央より右側が、フッ素コーティングを施さないステンレス鋼(SUS)メッシュ部分によって印刷されたペーストを示す。   FIG. 10 shows photographs of pastes printed on a substrate using a stainless steel (SUS) mesh portion with a fluorine coating and a stainless steel (SUS) mesh portion without a fluorine coating. The left side from the center of the figure shows the paste printed with a stainless steel (SUS) mesh part with fluorine coating, and the right side from the center of the figure shows the printing with a stainless steel (SUS) mesh part without fluorine coating. Shows the paste.

図10に示されているように、フッ素コーティングを施さないステンレス鋼(SUS)メッシュ部分によって印刷されたペーストは、ペーストが薄く基板に印刷されていることが分かる。これにより、フッ素コーティングを施さないステンレス鋼(SUS)メッシュ部分は、ペーストの透過性が悪いことが分かる。   As shown in FIG. 10, it can be seen that the paste printed by the stainless steel (SUS) mesh portion without the fluorine coating is thinly printed on the substrate. Thereby, it turns out that the permeability | transmittance of a paste is bad in the stainless steel (SUS) mesh part which does not give a fluorine coating.

このように、非晶質炭素膜表面にフッ素コーティングを施すことによって、ペーストの透過性が大きく改善することが確認できた。 Thus, it was confirmed that the permeability of the paste was greatly improved by applying the fluorine coating on the surface of the amorphous carbon film.

接触角の測定
Si、O、又はNのうち少なくとも1つの元素を含む非晶質炭素膜をステンレス鋼(SUS304 2B品)表面に形成し、これらの非晶質炭素膜にフッ素コーティング(フッ素含有シランカップリング剤層)を施した試料を以下の通り作製した。 An amorphous carbon film containing at least one element of Si, O, or N is formed on the surface of stainless steel (SUS304 2B product), and these amorphous carbon films are coated with fluorine (fluorine-containing silane coupling agent layer). ) Was applied to the sample as follows. 各試料におけるフッ素コーティング層の定着性を調査するため、各試料について、ミネラルスピリット(油)、及び水(純水)との接触角の測定を行った。 In order to investigate the fixability of the fluorine coating layer in each sample, the contact angle with mineral spirit (oil) and water (pure water) was measured for each sample. ミネラルスピリットは、印刷ペーストの希釈液として使用されることが多いので、ミネラルスピリットとの接触角を測定することにより、印刷ペーストとの濡れ性を評価することができる。 Since the mineral spirit is often used as a diluent for the printing paste, the wettability with the printing paste can be evaluated by measuring the contact angle with the mineral spirit. Contact angle measurement An amorphous carbon film containing at least one element of Si, O, or N is formed on the surface of stainless steel (SUS304 2B product), and fluorine coating (fluorine-containing silane) is formed on these amorphous carbon films. A sample with a coupling agent layer) was prepared as follows. In order to investigate the fixability of the fluorine coating layer in each sample, the contact angle with mineral spirit (oil) and water (pure water) was measured for each sample. Mineral spirit is often used as a diluent for printing paste, and therefore wettability with printing paste can be evaluated by measuring the contact angle with mineral spirit. Contact angle measurement An amorphous carbon film containing at least one element of Si, O, or N is formed on the surface of stainless steel (SUS304 2B product), and fluorine coating (fluorine-containing silane) is formed on these amorphous carbon films. A sample with a coupling agent layer) was prepared as follows. In order to investigate the fixability of the fluorine coating layer in each sample, the contact angle with mineral spirit (oil) and water (pure water) was measured for each sample. Mineral spirit is often used as a fluoride for printing paste, and therefore wettability with printing paste can be evaluated by measuring the contact angle with mineral spirit.

1.試料の作成
1辺が30mm、厚さが1mm、表面粗さRaが0.034μmの矩形のステンレス鋼(SUS304)板を、各試料の基材として用いた。ステンレス鋼(SUS304)板には電解研摩処理を行った。
1. Preparation of Sample A rectangular stainless steel (SUS304) plate having a side of 30 mm, a thickness of 1 mm, and a surface roughness Ra of 0.034 μm was used as a base material for each sample. The stainless steel (SUS304) plate was subjected to electrolytic polishing treatment.

(1)実施例1の作成
高圧パルスプラズマCVD装置に上記ステンレス鋼(SUS304)基材を2点投入し、1×10−3Paまで真空減圧した後、アルゴンガスプラズマで当該基材を約5分クリーニングした。アルゴンガスプラズマでのクリーニングは、各実施例、比較例いずれも、アルゴンガス流量15SCCM,ガス圧1Pa,印加電圧−4kVパルス周波数2kHz、パルス幅50μs、5分間の条件で行なった。クリーニング後、流量15SCCMのアルゴン、及び、流量10SCCMのテトラメチルシランを、反応容器内のガス圧が1.5Paになるように反応容器に導入し、印加電圧−4kV、パルス周波数2kHz、パルス幅50μsの条件で非晶質炭素膜を30分間成膜した。このようにして成膜した非晶質炭素膜の表面に、フッ素含有シランカップリング剤であるフロロサーフ社のFG−5010Z130−0.2の溶液(フッ素樹脂0.02〜0.2%、フッ素系溶剤99.8%〜99.98%)をディップ塗布し、2日間、室温(湿度50%、以下各実施例、比較例とも同条件)にて乾燥させて、実施例1の試料を得た。
(1) Creation of Example 1 Two points of the above stainless steel (SUS304) base material were put into a high-pressure pulse plasma CVD apparatus, and the pressure was reduced to 1 × 10 −3 Pa. Cleaned minutes. In each example and comparative example, cleaning with argon gas plasma was performed under the conditions of an argon gas flow rate of 15 SCCM, a gas pressure of 1 Pa, an applied voltage of −4 kV, a pulse frequency of 2 kHz, and a pulse width of 50 μs for 5 minutes. After cleaning, argon at a flow rate of 15 SCCM and tetramethylsilane at a flow rate of 10 SCCM are introduced into the reaction vessel so that the gas pressure in the reaction vessel is 1.5 Pa, and the applied voltage is −4 kV, the pulse frequency is 2 kHz, and the pulse width is 50 μs. An amorphous carbon film was formed for 30 minutes under the conditions described above. On the surface of the amorphous carbon film thus formed, a solution of FG-5010Z130-0.2 of fluorosurf which is a fluorine-containing silane coupling agent (fluorine resin 0.02-0.2%, fluorine-based Solvent 99.8% to 99.98%) was applied by dip coating and dried at room temperature (humidity 50%, the same conditions for each of the examples and comparative examples below) for 2 days to obtain a sample of Example 1. .

(2)実施例2の作成
高圧パルスプラズマCVD装置に上記ステンレス鋼(SUS304)基材を2点投入し、1×10−3Paまで真空減圧した後、アルゴンガスプラズマで基材を約5分クリーニングした。クリーニング後、流量15SCCMのアルゴン、及び、流量10SCCMのテトラメチルシランを、反応容器内のガス圧が1.5Paになるように反応容器に導入し、印加電圧−4kV、パルス周波数2kHz、パルス幅50μsの条件で30分間成膜した。次に、原料ガスを排気し、その後、流量14SCCMの酸素ガスを、ガス圧が1.5Paになるように反応容器に導入し、印加電圧−3kV、パルス周波数2kHz、パルス幅50μsの条件で酸素プラズマを非晶質炭素膜に5分間照射した。次に、酸素プラズマの照射後の非晶質炭素膜の表面にフッ素系シランカップリング剤であるフロロサーフ社のFG−5010Z130−0.2の溶液(フッ素樹脂0.02〜0.2%、フッ素系溶剤99.8%〜99.98%)をディップ塗布し、2日間、室温にて乾燥させて、実施例2の試料を得た。
(2) Creation of Example 2 Two points of the above stainless steel (SUS304) base material were put into a high-pressure pulse plasma CVD apparatus, the pressure was reduced to 1 × 10 −3 Pa, and the base material was then subjected to argon gas plasma for about 5 minutes. Cleaned. After cleaning, argon at a flow rate of 15 SCCM and tetramethylsilane at a flow rate of 10 SCCM are introduced into the reaction vessel so that the gas pressure in the reaction vessel is 1.5 Pa, and the applied voltage is −4 kV, the pulse frequency is 2 kHz, and the pulse width is 50 μs. The film was formed for 30 minutes under the conditions. Next, the source gas is evacuated, and then oxygen gas with a flow rate of 14 SCCM is introduced into the reaction vessel so that the gas pressure becomes 1.5 Pa, and oxygen is applied under the conditions of an applied voltage of −3 kV, a pulse frequency of 2 kHz, and a pulse width of 50 μs. The amorphous carbon film was irradiated with plasma for 5 minutes. Next, on the surface of the amorphous carbon film after the oxygen plasma irradiation, a solution of Fluorosurf FG-5010Z130-0.2 which is a fluorine-based silane coupling agent (fluorine resin 0.02 to 0.2%, fluorine System solvent 99.8% to 99.98%) was applied by dip coating and dried at room temperature for 2 days to obtain a sample of Example 2.

(3)実施例3の作成
まず、実施例1と同様にアルゴン及びテトラメチルシランを用いて非晶質炭素膜を成膜した。続いて、原料ガスを排気した後、流量15SCCMの窒素ガスを、反応容器内のガス圧が1.5Paとなるように反応容器に導入し、印加電圧−4kV、パルス周波数2kHz、パルス幅50μsの条件で窒素プラズマを非晶質炭素膜に5分間照射した。次に、窒素プラズマ照射後の非晶質炭素膜に、実施例1と同様に、フッ素系シランカップリング剤をディップ塗布し、2日間、室温にて乾燥させて、実施例3の試料を得た。
(3) Creation of Example 3 First, similarly to Example 1, an amorphous carbon film was formed using argon and tetramethylsilane. Subsequently, after exhausting the raw material gas, nitrogen gas having a flow rate of 15 SCCM is introduced into the reaction vessel so that the gas pressure in the reaction vessel becomes 1.5 Pa, and the applied voltage is −4 kV, the pulse frequency is 2 kHz, and the pulse width is 50 μs. Under conditions, nitrogen plasma was irradiated to the amorphous carbon film for 5 minutes. Next, as in Example 1, the fluorine-based silane coupling agent was dip-coated on the amorphous carbon film after the nitrogen plasma irradiation, and dried at room temperature for 2 days to obtain the sample of Example 3. It was.

(4)実施例4の作成
実施例1と同様にアルゴン及びテトラメチルシランを用いて非晶質炭素膜を成膜した。続いて、原料ガスを排気した後、流量15SCCMの窒素ガスを、反応容器内のガス圧が1.5Paとなるように反応容器に導入し、印加電圧−4kV、パルス周波数2kHz、パルス幅50μsの条件で窒素プラズマを非晶質炭素膜に5分間照射した。次に、窒素ガスを排気し、流量14SCCMの酸素ガスを、反応容器内のガス圧が1.5Paとなるように反応容器に導入し、印加電圧−3kV、パルス周波数2kHz、パルス幅50μsの条件で酸素プラズマを非晶質炭素膜に5分間照射した。この窒素プラズマ及び酸素プラズマ照射後の非晶質炭素膜に、実施例1と同様にして、フッ素系シランカップリング剤をディップ塗布し、2日間、室温にて乾燥させて、実施例4の試料を得た。
(4) Creation of Example 4 As in Example 1, an amorphous carbon film was formed using argon and tetramethylsilane. Subsequently, after exhausting the raw material gas, nitrogen gas having a flow rate of 15 SCCM is introduced into the reaction vessel so that the gas pressure in the reaction vessel becomes 1.5 Pa, and the applied voltage is −4 kV, the pulse frequency is 2 kHz, and the pulse width is 50 μs. Under conditions, nitrogen plasma was irradiated to the amorphous carbon film for 5 minutes. Next, nitrogen gas is exhausted, and oxygen gas with a flow rate of 14 SCCM is introduced into the reaction vessel so that the gas pressure in the reaction vessel is 1.5 Pa, and the conditions are an applied voltage of −3 kV, a pulse frequency of 2 kHz, and a pulse width of 50 μs. The amorphous carbon film was irradiated with oxygen plasma for 5 minutes. The amorphous carbon film after irradiation with nitrogen plasma and oxygen plasma was dip-coated with a fluorinated silane coupling agent in the same manner as in Example 1 and dried at room temperature for 2 days. Got.

(5)実施例5の作成
高圧パルスプラズマCVD装置に上記ステンレス鋼(SUS304)基材を2点投入し、1×10−3Paまで真空減圧した後、アルゴンガスプラズマで当該基材をクリーニングした。クリーニング後、反応容器内の圧力が1.5Paとなるように、流量15SCCMのテトラメチルシラン及び流量0.7SCCMの酸素ガスを反応容器に導入し、印加電圧−4kV、パルス周波数2kHz、パルス幅50μsの条件で30分間成膜した。酸素ガスは、テトラメチルシランとの流量混合比が4.5%となるよう調整した。このようにして成膜した非晶質炭素膜の表面に、実施例1と同様に、フッ素系シランカップリング剤をディップ塗布し、2日間、室温にて乾燥させて、実施例5の試料を得た。
(5) Creation of Example 5 Two points of the above stainless steel (SUS304) base material were put into a high-pressure pulse plasma CVD apparatus, and the pressure was reduced to 1 × 10 −3 Pa, and then the base material was cleaned with argon gas plasma. . After cleaning, tetramethylsilane with a flow rate of 15 SCCM and oxygen gas with a flow rate of 0.7 SCCM are introduced into the reaction vessel so that the pressure in the reaction vessel becomes 1.5 Pa, an applied voltage of −4 kV, a pulse frequency of 2 kHz, and a pulse width of 50 μs. The film was formed for 30 minutes under the conditions. The oxygen gas was adjusted so that the flow rate mixing ratio with tetramethylsilane was 4.5%. In the same manner as in Example 1, the surface of the amorphous carbon film thus formed was dip-coated with a fluorinated silane coupling agent and dried at room temperature for 2 days. Obtained.

(6)実施例6の作成
高圧パルスプラズマCVD装置に上記ステンレス鋼(SUS304)基材を2点投入し、1×10−3Paまで真空減圧した後、アルゴンガスプラズマで当該基材をクリーニングした。クリーニング後、反応容器内の圧力が1.5Paとなるように、流量15SCCMのテトラメチルシラン及び流量1.4SCCMの酸素ガスを反応容器に導入し、印加電圧−4kV、パルス周波数2kHz、パルス幅50μsの条件で30分間成膜した。酸素ガスは、テトラメチルシランとの流量混合比が8.5%となるよう調整した。このようにして成膜した非晶質炭素膜の表面に、実施例1と同様に、フッ素系シランカップリング剤をディップ塗布し、2日間、室温にて乾燥させて、実施例6の試料を得た。
(6) Creation of Example 6 Two points of the above stainless steel (SUS304) base material were put into a high-pressure pulse plasma CVD apparatus, the vacuum was reduced to 1 × 10 −3 Pa, and then the base material was cleaned with argon gas plasma. . After cleaning, tetramethylsilane with a flow rate of 15 SCCM and oxygen gas with a flow rate of 1.4 SCCM are introduced into the reaction vessel so that the pressure in the reaction vessel becomes 1.5 Pa, an applied voltage of −4 kV, a pulse frequency of 2 kHz, and a pulse width of 50 μs. The film was formed for 30 minutes under the conditions. The oxygen gas was adjusted so that the flow rate mixing ratio with tetramethylsilane was 8.5%. As in Example 1, the surface of the amorphous carbon film thus formed was dip-coated with a fluorinated silane coupling agent and dried at room temperature for 2 days. Obtained.

(7)実施例7の作成
高圧パルスプラズマCVD装置に上記ステンレス鋼(SUS304)基材を2点投入し、1×10−3Paまで真空減圧した後、アルゴンガスプラズマで当該基材をクリーニングした。クリーニング後、反応容器内のガス圧が1.5Paとなるように、流量15SCCMのアルゴン、及び、流量10SCCMのテトラメチルシランを反応容器内に導入して印加電圧−4kV、パルス周波数2kHz、パルス幅50μsの条件で約10分間成膜した。これにより、基材表面にSiを含有する非晶質炭素膜を下地中間層として形成した。次に、反応容器内のガス圧力が1.5Paとなるように、流量20SCCMのアセチレンを反応容器に導入し、印加電圧−4kV、パルス周波数2kHz、パルス幅50μsの条件で30分間成膜を行った。これにより、下地中間層の表面にSiを含まない非晶質炭素膜を形成した。原料ガスを排気した後、反応容器内のガス圧1.5Paとなるように流量14SCCMの酸素ガスを反応容器に導入し、印加電圧−4kV、パルス周波数2kHz、パルス幅50μsの条件で酸素プラズマを5分間非晶質炭素膜に照射した。この酸素プラズマ照射後の非晶質炭素膜の表面に、実施例1と同様にして、フッ素系シランカップリング剤をディップ塗布し、2日間、室温にて乾燥させて、実施例7の試料を得た。
(7) Creation of Example 7 Two points of the above stainless steel (SUS304) substrate were put into a high-pressure pulse plasma CVD apparatus, and the pressure was reduced to 1 × 10 −3 Pa. Then, the substrate was cleaned with argon gas plasma. . After cleaning, argon with a flow rate of 15 SCCM and tetramethylsilane with a flow rate of 10 SCCM are introduced into the reaction vessel so that the gas pressure in the reaction vessel becomes 1.5 Pa, and the applied voltage is −4 kV, the pulse frequency is 2 kHz, and the pulse width. The film was formed for about 10 minutes under the condition of 50 μs. As a result, an amorphous carbon film containing Si was formed on the substrate surface as a base intermediate layer. Next, acetylene having a flow rate of 20 SCCM is introduced into the reaction vessel so that the gas pressure in the reaction vessel becomes 1.5 Pa, and film formation is performed for 30 minutes under the conditions of applied voltage of −4 kV, pulse frequency of 2 kHz, and pulse width of 50 μs. It was. As a result, an amorphous carbon film containing no Si was formed on the surface of the base intermediate layer. After exhausting the source gas, oxygen gas with a flow rate of 14 SCCM is introduced into the reaction vessel so that the gas pressure in the reaction vessel becomes 1.5 Pa, and oxygen plasma is generated under the conditions of applied voltage of −4 kV, pulse frequency of 2 kHz, and pulse width of 50 μs. The amorphous carbon film was irradiated for 5 minutes. The surface of the amorphous carbon film after the oxygen plasma irradiation was dip-coated with a fluorinated silane coupling agent in the same manner as in Example 1, and dried at room temperature for 2 days. Obtained.

(8)実施例8の作成
実施例7と同様にしてステンレス鋼(SUS304)基材にSiを含有する非晶質炭素膜を下地中間層として形成し、この下地中間層の表面にSiを含まない非晶質炭素膜を形成した。本実施例においては、原料ガスを排気した後、反応容器内のガス圧g1.5Paとなるように流量14SCCMの窒素ガスを反応容器に導入し、印加電圧−4kV、パルス周波数2kHz、パルス幅50μsの条件で窒素プラズマを5分間非晶質炭素膜に照射した。この窒素プラズマ照射後の非晶質炭素膜の表面に、実施例1と同様にして、フッ素系シランカップリング剤をディップ塗布し、2日間、室温にて乾燥させて、実施例8の試料を得た。
(8) Preparation of Example 8 In the same manner as in Example 7, an amorphous carbon film containing Si was formed as a base intermediate layer on a stainless steel (SUS304) substrate, and Si was contained on the surface of the base intermediate layer. No amorphous carbon film was formed. In this embodiment, after exhausting the raw material gas, nitrogen gas having a flow rate of 14 SCCM is introduced into the reaction vessel so that the gas pressure in the reaction vessel is 1.5 Pa, an applied voltage of −4 kV, a pulse frequency of 2 kHz, and a pulse width of 50 μs. Under these conditions, the amorphous carbon film was irradiated with nitrogen plasma for 5 minutes. The surface of the amorphous carbon film after the nitrogen plasma irradiation was dip-coated with a fluorinated silane coupling agent in the same manner as in Example 1 and dried at room temperature for 2 days. Obtained.

(9)実施例9の作成
実施例7と同様にしてステンレス鋼(SUS304基材)にSiを含有する非晶質炭素膜を下地中間層として形成し、この下地中間層の表面にSiを含まない非晶質炭素膜を形成した。本実施例においては、原料ガスを排気した後、反応容器内のガス圧1.5Paとなるように流量14SCCMの窒素ガスを反応容器に導入し、印加電圧−4kV、パルス周波数2kHz、パルス幅50μsの条件で窒素プラズマを5分間非晶質炭素膜に照射した。次に、窒素ガスを排気し、流量14SCCMの酸素ガスを、反応容器内のガス圧が1.5Paとなるように反応容器に導入し、印加電圧−3kV、パルス周波数2kHz、パルス幅50μsの条件で酸素プラズマを非晶質炭素膜に5分間照射した。この窒素プラズマ及び酸素プラズマ照射後の非晶質炭素膜の表面に、実施例1と同様にして、フッ素系シランカップリング剤をディップ塗布し、2日間、室温にて乾燥させて、実施例9の試料を得た。
(9) Creation of Example 9 In the same manner as in Example 7, an amorphous carbon film containing Si is formed as a base intermediate layer on stainless steel (SUS304 base material), and Si is contained on the surface of the base intermediate layer. No amorphous carbon film was formed. In this embodiment, after exhausting the source gas, nitrogen gas having a flow rate of 14 SCCM is introduced into the reaction vessel so that the gas pressure in the reaction vessel is 1.5 Pa, and the applied voltage is −4 kV, the pulse frequency is 2 kHz, and the pulse width is 50 μs. Under these conditions, the amorphous carbon film was irradiated with nitrogen plasma for 5 minutes. Next, nitrogen gas is exhausted, and oxygen gas with a flow rate of 14 SCCM is introduced into the reaction vessel so that the gas pressure in the reaction vessel is 1.5 Pa, and the conditions are an applied voltage of −3 kV, a pulse frequency of 2 kHz, and a pulse width of 50 μs. The amorphous carbon film was irradiated with oxygen plasma for 5 minutes. A fluorinated silane coupling agent was dip-coated on the surface of the amorphous carbon film after the nitrogen plasma and oxygen plasma irradiation in the same manner as in Example 1 and dried at room temperature for 2 days. Samples were obtained.

(10)比較例1の作成
実施例7と同様にしてSUS304基材にSiを含有する非晶質炭素膜を下地中間層として形成した。本比較例においては、原料ガスを排気した後、反応容器内のガス圧1.5Paとなるように流量20SCCMのアセチレンを反応容器に導入し、印加電圧−4kV、パルス周波数2kHz、パルス幅50μsの条件で30分間成膜した。このようにして、下地中間層の上にSiを含まない非晶質炭素膜を成膜した。このSiを含まない非晶質炭素膜に、実施例1と同様にして、フッ素系シランカップリング剤をディップ塗布し、2日間、室温にて乾燥させて、比較例1の試料を得た。
(10) Creation of Comparative Example 1 In the same manner as in Example 7, an amorphous carbon film containing Si was formed as a base intermediate layer on a SUS304 base material. In this comparative example, after exhausting the source gas, acetylene having a flow rate of 20 SCCM is introduced into the reaction vessel so that the gas pressure in the reaction vessel becomes 1.5 Pa, and the applied voltage is −4 kV, the pulse frequency is 2 kHz, and the pulse width is 50 μs. The film was formed for 30 minutes under the conditions. In this manner, an amorphous carbon film not containing Si was formed on the base intermediate layer. A fluorine-based silane coupling agent was dip-coated on the amorphous carbon film not containing Si in the same manner as in Example 1 and dried at room temperature for 2 days to obtain a sample of Comparative Example 1.

2.濡れ性の測定
次に、上記実施例1〜7と比較例1の試料それぞれについて、ミネラルスピリット(油)との濡れ性を測定した。測定には、Fibro system社製の携帯式接触角計PG−X(モバイル接触角計)を使用し室温25℃、湿度30%の環境にて行った。フッ素含有シランカップリング剤の定着性を調べるために、実施例1〜7と比較例1の各試料をアセトンに投入して120分間超音波洗浄を行い、各試料について、超音波洗浄後のミネラルスピリットとの接触角を測定した。超音波洗浄を行う際には、各試料を60分連続して超音波洗浄した後、60分間超音波洗浄を止めて放置し、その後60分間超音波洗浄を行った。なお、比較例1の試料については、短時間の超音波洗浄でフッ素含有シランカップリング剤が脱落すると想定されたため、超音波洗浄を5分間だけ行い、その5分間の超音波洗浄後の接触角を測定した。超音波洗浄は、株式会社エスエヌディ製の商品名US−20KS(発振38kHz(BLT 自励発振)、高周波出力480W)を使用して行った。超音波洗浄を行うことにより、圧電振動子からの振動によってアセトン中にキャビティ(空洞)が発生し、このキャビティが基材表面でつぶれるときに基材表面に対して大きな物理的衝撃力を発生させるので、下層との結合が弱いフッ素含有シランカップリング剤は基材表面から剥離する。したがって、超音波洗浄後の基材表面における接触角を調べることにより、フッ素シランカップリング剤とその下層との密着性を確認することができる。
2. Next, the wettability with mineral spirit (oil) was measured for each of the samples of Examples 1 to 7 and Comparative Example 1. The measurement was performed using a portable contact angle meter PG-X (mobile contact angle meter) manufactured by Fibro system in an environment of room temperature 25 ° C. and humidity 30%. In order to investigate the fixability of the fluorine-containing silane coupling agent, each sample of Examples 1 to 7 and Comparative Example 1 was put into acetone and subjected to ultrasonic cleaning for 120 minutes, and each sample was subjected to mineral after ultrasonic cleaning. The contact angle with spirit was measured. When performing ultrasonic cleaning, each sample was ultrasonically cleaned for 60 minutes, then ultrasonic cleaning was stopped for 60 minutes, and the sample was then ultrasonically cleaned for 60 minutes. In addition, about the sample of the comparative example 1, since it was assumed that a fluorine-containing silane coupling agent fell off by a short ultrasonic cleaning, ultrasonic cleaning was performed only for 5 minutes, and the contact angle after the ultrasonic cleaning for 5 minutes Was measured. The ultrasonic cleaning was performed using a product name US-20KS (oscillation 38 kHz (BLT self-excited oscillation), high frequency output 480 W) manufactured by SND Co., Ltd. By performing ultrasonic cleaning, a cavity (cavity) is generated in acetone by vibration from the piezoelectric vibrator, and a large physical impact force is generated on the substrate surface when the cavity is crushed on the substrate surface. Therefore, the fluorine-containing silane coupling agent having a weak bond with the lower layer is peeled off from the substrate surface. Therefore, the adhesion between the fluorosilane coupling agent and the lower layer can be confirmed by examining the contact angle on the substrate surface after ultrasonic cleaning.

図11は、実施例1〜7及び比較例1のミネラルスピリットとの接触角の測定結果を示すグラフであり、基板上の16ヶ所の測定位置において測定した接触角の平均値を示す。図示の通り、比較例1の試料については、5分間の超音波洗浄により接触角が約40°まで低下した。一方、実施例1〜7の試料については、120分間の超音波洗浄後でも45°以上の接触角を保った。特に、非晶質炭素膜にSiを含む実施例1〜6の資料については、いずれも50°以上の接触角を維持した。このように、各実施例について、試料表面に撥水・撥油性を発揮するために十分な量のフッ素含有シランカップリング剤が残存していることが確認された。   FIG. 11 is a graph showing measurement results of contact angles with mineral spirits of Examples 1 to 7 and Comparative Example 1, and shows average values of contact angles measured at 16 measurement positions on the substrate. As shown in the drawing, the contact angle of the sample of Comparative Example 1 was reduced to about 40 ° by ultrasonic cleaning for 5 minutes. On the other hand, the samples of Examples 1 to 7 maintained a contact angle of 45 ° or more even after 120 minutes of ultrasonic cleaning. In particular, all the materials of Examples 1 to 6 containing Si in the amorphous carbon film maintained a contact angle of 50 ° or more. Thus, for each of the examples, it was confirmed that a sufficient amount of fluorine-containing silane coupling agent remained on the sample surface to exhibit water and oil repellency.

次に水(純水)との濡れ性を測定した。測定装置、環境は上記同様である。実施例1〜9と比較例1の各試料をアセトンに投入して5分間超音波洗浄を行い、各試料について、超音波洗浄後の水との接触角を測定した。図12は、実施例1〜9、並びに、比較例1の水との接触角の測定結果を示すグラフであり、基板上の10ヶ所の測定位置において測定した接触角の平均値を示す。図示の通り、比較例1の接触角は約90°であるのに対し、実施例1〜9の接触角はいずれも105°以上であり、各実施例について試料表面に撥水・撥油性を発揮するために十分な量のフッ素含有シランカップリング剤が残存していることが確認された。   Next, wettability with water (pure water) was measured. The measuring apparatus and environment are the same as above. Each sample of Examples 1-9 and Comparative Example 1 was put into acetone and subjected to ultrasonic cleaning for 5 minutes, and the contact angle of each sample with water after ultrasonic cleaning was measured. FIG. 12 is a graph showing the measurement results of contact angles with water in Examples 1 to 9 and Comparative Example 1, and shows the average value of contact angles measured at 10 measurement positions on the substrate. As shown in the figure, the contact angle of Comparative Example 1 is about 90 °, whereas the contact angles of Examples 1 to 9 are all 105 ° or more, and each sample has water and oil repellency on the sample surface. It was confirmed that a sufficient amount of the fluorine-containing silane coupling agent remained to be exhibited.

以上の接触角の測定結果から、実施例1〜9に示した非晶質炭素膜及びフッ素含有シランカップリング剤から成る膜構造をスクリーン印刷用孔版の開口部に応用することにより、図9に示すように、当該開口部へのペーストの残存を抑制することができることが分かる。   From the measurement results of the above contact angles, by applying the film structure composed of the amorphous carbon film and the fluorine-containing silane coupling agent shown in Examples 1 to 9 to the opening of the screen printing stencil, FIG. As shown, it can be seen that the paste remaining in the opening can be suppressed.

図13は、5分間超音波洗浄を行った比較例1の表面の複数の位置(測定ポイント)においてミネラルスピリットとの接触角を測定した結果を示すグラフであり、図14は、120分間超音波洗浄を行った実施例7の表面の複数の位置(測定ポイント)においてミネラルスピリットとの接触角を測定した結果を示すグラフである。図13及び14から明らかなように、比較例1については、接触角の測定ポイントごとのバラツキ(Max−Min)の幅が大きく、フッ素シランカップリング剤が剥離していることが確認できる。実施例7については、相対的に均一な接触角が得られた。   FIG. 13 is a graph showing the results of measuring contact angles with mineral spirits at a plurality of positions (measurement points) on the surface of Comparative Example 1 subjected to ultrasonic cleaning for 5 minutes, and FIG. 14 shows ultrasonic waves for 120 minutes. It is a graph which shows the result of having measured the contact angle with the mineral spirit in the several position (measurement point) of the surface of Example 7 which performed washing | cleaning. As is clear from FIGS. 13 and 14, in Comparative Example 1, it can be confirmed that the variation in the contact angle measurement point (Max-Min) is large and the fluorine silane coupling agent is peeled off. For Example 7, a relatively uniform contact angle was obtained.

上記実施例2〜6では、ケイ素を含む非晶質炭素膜を成膜後、反応容器を真空ブレイクすることなく、ケイ素を含む原料ガスの排気、酸素及び/又は窒素の導入、及びプラズマ照射を行っているが、ケイ素を含む非晶質炭素膜を作成した後、反応容器を常圧に戻し、その後再度反応容器を真空状態として、酸素及び/又は窒素を導入してもよい。このように、プラズマ照射前に反応容器を常圧に戻した場合であっても、水及びミネラルスピリッツとの接触角は、上記実施例とほぼ同様の数値を示すことを確認した。   In Examples 2 to 6, after forming an amorphous carbon film containing silicon, the source vessel containing silicon is exhausted, oxygen and / or nitrogen introduced, and plasma irradiation is performed without vacuum-breaking the reaction vessel. However, after forming an amorphous carbon film containing silicon, the reaction vessel may be returned to normal pressure, and then the reaction vessel may be evacuated again to introduce oxygen and / or nitrogen. Thus, even when the reaction vessel was returned to normal pressure before plasma irradiation, it was confirmed that the contact angles with water and mineral spirits showed substantially the same numerical values as in the above examples.

<フッ素含有シランカップリング剤固定用の液体状プライマーとの比較>
210mm×210mmに切り出したステンレス鋼製の500メッシュ19μm線径、厚さ28μm(500−19−28)を3枚用意した。
なお、上記のステンレス鋼メッシュの場合、1インチの幅に500本のステンレス鋼の線材が存在し、19は、該ステンレス鋼の線の太さを表し、28は線の交差する部分(交点)の厚さを表している。
該ステンレス鋼製の500メッシュ19μm線径は、印刷用孔版用のメッシュとしては広く一般市場で使用されており、該メッシュに乳剤を塗布し印刷パターン開口部の貫通孔を形成した場合、該メッシュが貫通孔開口部に露出することになる。 The stainless steel 500 mesh 19 μm wire diameter is widely used in the general market as a mesh for printing stencil, and when an emulsion is applied to the mesh to form a through hole in a printing pattern opening, the mesh is used. Will be exposed in the through hole opening. 該メッシュの目開きの開口幅は20μm前後の幅で、非常に細かく、フッ素含有シランカップリング剤を固定するためのプライマーの、メッシュ目開き(開口部)への濡れ広がりによる閉塞状況等の確認を行なった。 The opening width of the mesh opening is about 20 μm, which is very fine, and confirmation of the blockage status of the primer for fixing the fluorine-containing silane coupling agent due to wetting and spreading to the mesh opening (opening). Was done. <Comparison with liquid primer for fixing fluorine-containing silane coupling agent> <Comparison with liquid primer for fixing fluorine-containing silane coupling agent>
Three pieces of stainless steel 500 mesh 19 μm wire diameter and thickness 28 μm (500-19-28) cut out to 210 mm × 210 mm were prepared. Three pieces of stainless steel 500 mesh 19 μm wire diameter and thickness 28 μm (500-19-28) cut out to 210 mm × 210 mm were prepared.
In the case of the above stainless steel mesh, 500 stainless steel wires exist in a width of 1 inch, 19 represents the thickness of the stainless steel wire, and 28 represents a portion where the wires intersect (intersection). Represents the thickness. In the case of the above stainless steel mesh, 500 stainless steel wires exist in a width of 1 inch, 19 represents the thickness of the stainless steel wire, and 28 represents a portion where the wires intersect (intersection). Represents the thickness.
The stainless steel 500 mesh 19 μm wire diameter is widely used in the general market as a mesh for printing stencil. When an emulsion is applied to the mesh to form a through hole in a printing pattern opening, the mesh Will be exposed at the opening of the through hole. The opening width of the mesh opening is about 20 μm, and it is very fine. Confirmation of the clogging situation due to the wetting and spreading of the primer for fixing the fluorine-containing silane coupling agent to the mesh opening (opening) Was done. The stainless steel 500 mesh 19 μm wire diameter is widely used in the general market as a mesh for printing stencil. When an emulsion is applied to the mesh to form a through hole in a printing pattern opening, the mesh Will be exposed at the opening Of the through hole. The opening width of the mesh opening is about 20 μm, and it is very fine. Confirmation of the clogging situation due to the wetting and spreading of the primer for fixing the fluorine-containing silane coupling agent to the mesh opening. (opening) Was done.

粘性や流動性を有するフッ素含有シランカップリング剤固定用の液体状プライマーを塗布した場合と、ドライプロセスであるプラズマCVD法による非晶質炭素膜を該メッシュ表面にフッ素含有シランカップリング剤固定用プライマーとして塗布した場合の、該メッシュの開口部への濡れ広がりと膜張りによる開口部の閉塞の発生状況を確認するには、ステンレス鋼製のメッシュ、500メッシュ19μm線径(500−19−28)は好適な試験サンプルである。
第一のメッシュは、320mm×320mmの鉄製鋳物枠の4辺からの中央部に、四角形に200mm×200mmの大きさでステンレス鋼メッシュをポリエステルメッシュと接着剤(アロンアルファー203TX)にて接着、コンビネーションされたステンレス鋼製メッシュを配置した。 The first mesh is a combination of a 320 mm x 320 mm iron casting frame with a stainless steel mesh of 200 mm x 200 mm bonded to the center from the four sides with a polyester mesh and an adhesive (Aron Alpha 203TX). A stainless steel mesh was placed. For fixing fluorine-containing silane coupling agent on the mesh surface when applying a liquid primer for fixing fluorine-containing silane coupling agent with viscosity or fluidity, and an amorphous carbon film by plasma CVD method which is a dry process In order to confirm the state of occurrence of clogging of the opening due to the spreading of the mesh and the opening of the mesh when applied as a primer, a mesh made of stainless steel, a 500 mesh 19 μm wire diameter (500-19-28) ) Is a preferred test sample. For fixing fluorine-containing silane coupling agent on the mesh surface when applying a liquid primer for fixing fluorine-containing silane coupling agent with resin or fluidity, and an amorphous carbon film by plasma CVD method which is a dry process In order to confirm the state of occurrence of clogging of the opening due to the spreading of the mesh and the opening of the mesh when applied as a primer, a mesh made of stainless steel, a 500 mesh 19 μm wire diameter (500-19-28)) Is a preferred test sample.
The first mesh is a combination of a stainless steel mesh with a size of 200 mm x 200 mm in a square shape with a polyester mesh and an adhesive (Aron Alpha 203TX) at the center from four sides of a 320 mm x 320 mm iron casting frame. A stainless steel mesh was placed. The first mesh is a combination of a stainless steel mesh with a size of 200 mm x 200 mm in a square shape with a polyester mesh and an adhesive (Aron Alpha 203TX) at the center from four sides of a 320 mm x 320 mm iron casting frame. A stainless steel mesh was placed.

その後、該メッシュの貼られた枠体を水平に配置し、フッ素含有シランカップリング剤の密着強化用液体プライマー、フロロテクノロジー社製フロロサーフ専用プライマーコートPC−2を旭化成製のBEMCOT CLEAN WIPE−P(不織布)に含ませて塗布した。その後、温度55℃、湿度70%の恒温槽にて該枠体を水平に配置し、60分間乾燥させた。(比較例2)   Thereafter, the mesh-attached frame body is horizontally arranged, and a fluorine primer for enhancing adhesion of a fluorine-containing silane coupling agent, a fluorosurf primer primer coat PC-2 manufactured by Asahi Kasei Co., Ltd. is manufactured by BEMCOT CLEAN WIPE-P ( Non-woven fabric) was applied. Thereafter, the frame body was placed horizontally in a thermostatic bath at a temperature of 55 ° C. and a humidity of 70%, and dried for 60 minutes. (Comparative Example 2)

さらに、参考として、今回の試験で使用したステンレス鋼メッシュ210mm×210mmの一部を70mm×30mmに切断し、フロロテクノロジー社製のフッ素含有シランカップリング剤の基材への密着用液体プライマーPC−2をフローコートした後、温度80℃、湿度80%の恒温槽にて垂直に配置し、60分間乾燥させたものを準備した。(参考例)   Furthermore, as a reference, a part of the stainless steel mesh 210 mm × 210 mm used in this test was cut into 70 mm × 30 mm, and a liquid primer PC− for adhering to a base material of a fluorine-containing silane coupling agent manufactured by Fluoro Technology Co., Ltd. After 2 was flow-coated, it was placed vertically in a constant temperature bath at a temperature of 80 ° C. and a humidity of 80% and dried for 60 minutes. (Reference example)

残りの210mm×210mmのメッシュへはフッ素含有シランカップリング剤の固定用プライマー層として非晶質炭素膜を形成した。(実施例10)
非晶質炭素膜の形成は、高圧パルスプラズマCVD装置の電極部に該メッシュの一辺端を帯状10mmの電極挟みしろで保持しセットした後、排気を行い、1×10 −3 Paまで真空減圧した後、アルゴンガスプラズマで当該基材を約5分間クリーニングした。 To form the amorphous carbon film, one end of the mesh is held and set on the electrode portion of the high-pressure pulse plasma CVD apparatus with a band-shaped 10 mm electrode sandwiching margin, and then exhausted and vacuum reduced to 1 × 10 -3 Pa. After that, the substrate was cleaned with argon gas plasma for about 5 minutes. アルゴンガスプラズマでのクリーニングは、アルゴンガス流量15SCCM,ガス圧2Pa,印加電圧−4kV、パルス周波数10kHz、パルス幅10μsの条件で行なった。 Cleaning with argon gas plasma was performed under the conditions of an argon gas flow rate of 15 SCCM, a gas pressure of 2 Pa, an applied voltage of -4 kV, a pulse frequency of 10 kHz, and a pulse width of 10 μs. クリーニング後、流量30SCCMにてトリメチルシランを、反応容器内のガス圧が1.5Paになるように導入し、印加電圧−4kV、パルス周波数10kHz、パルス幅10μsの条件で非晶質炭素膜を15分間成膜した。 After cleaning, trimethylsilane was introduced at a flow rate of 30 SCCM so that the gas pressure in the reaction vessel was 1.5 Pa, and an amorphous carbon film was formed under the conditions of an applied voltage of -4 kV, a pulse frequency of 10 kHz, and a pulse width of 10 μs. The film was formed for 1 minute.
その後、比較例2と同様に枠体に固定した。 Then, it was fixed to the frame as in Comparative Example 2. An amorphous carbon film was formed as a primer layer for fixing the fluorine-containing silane coupling agent on the remaining 210 mm × 210 mm mesh. (Example 10) An amorphous carbon film was formed as a primer layer for fixing the fluorine-containing silane coupling agent on the remaining 210 mm × 210 mm mesh. (Example 10)
The amorphous carbon film is formed by holding and setting one end of the mesh on the electrode part of the high-pressure pulse plasma CVD apparatus with a 10 mm strip electrode sandwiched between the electrodes, and then evacuating to 1 × 10 −3 Pa in vacuum. After that, the substrate was cleaned with argon gas plasma for about 5 minutes. Cleaning with argon gas plasma was performed under the conditions of an argon gas flow rate of 15 SCCM, a gas pressure of 2 Pa, an applied voltage of −4 kV, a pulse frequency of 10 kHz, and a pulse width of 10 μs. After cleaning, trimethylsilane was introduced at a flow rate of 30 SCCM so that the gas pressure in the reaction vessel was 1.5 Pa, and the amorphous carbon film was applied under the conditions of applied voltage −4 kV, pulse frequency 10 kHz, and pulse width 10 μs. The film was formed for a minute. The amorphous carbon film is formed by holding and setting one end of the mesh on the electrode part of the high-pressure pulse plasma CVD apparatus with a 10 mm strip electrode sandwiched between the electrodes, and then evacuating to 1 × 10 −3 Pa in vacuum. After that, the substrate was cleaned with argon gas plasma for about 5 minutes. Cleaning with argon gas plasma was performed under the conditions of an argon gas flow rate of 15 SCCM, a gas pressure of 2 Pa, an applied voltage of − 4 kV, a pulse frequency of 10 kHz, and a pulse width of 10 μs. After cleaning, trimethylsilane was introduced at a flow rate of 30 SCCM so that the gas pressure in the reaction vessel was 1.5 Pa, and the amorphous carbon film was applied under the conditions of applied voltage −4 kV, pulse frequency 10 kHz, and pulse width 10 μs. The film was formed for a minute.
Then, it fixed to the frame similarly to the comparative example 2. Then, it fixed to the frame similarly to the comparative example 2.

実施例10も比較例2と同様に恒温槽に配置した後、比較例2、実施例10のメッシュ開口部の閉塞の発生状況をCCDカメラにて確認した。
図15は、比較例2のCCD500倍写真であり、図16は、参考例のCCD500倍写真である。以上のように、比較例2(及び参考例)は、メッシュの目開き部に液体プライマーPC−2が膜を張るように濡れ広がり、開口部が閉塞している部位が多数確認できた。
図17は、実施例10のCCD500倍の写真である。実施例10では、目詰まりは全く確認できなかった。
Example 10 was also placed in a thermostatic chamber as in Comparative Example 2, and then the occurrence of clogging of the mesh openings in Comparative Example 2 and Example 10 was confirmed with a CCD camera.
FIG. 15 is a 500 times photograph of the CCD of Comparative Example 2, and FIG. 16 is a 500 times photograph of the CCD of the reference example. As described above, in Comparative Example 2 (and Reference Example), a large number of sites where the liquid primer PC-2 spreads so that the membrane was stretched around the mesh openings and the openings were blocked were confirmed. FIG. 15 is a 500 times photograph of the CCD of Comparative Example 2, and FIG. 16 is a 500 times photograph of the CCD of the reference example. As described above, in Comparative Example 2 (and Reference Example), a large number of sites where the liquid primer PC-2 spreads so that the membrane was stretched around the mesh openings and the openings were blocked were confirmed.
FIG. 17 is a photograph of the CCD of Example 10 at a magnification of 500 times. In Example 10, no clogging could be confirmed. FIG. 17 is a photograph of the CCD of Example 10 at a magnitude of 500 times. In Example 10, no clogging could be confirmed.

本件の検証により、プラズマCVD法にて形成する非晶質炭素膜をその上部に形成される第2層のプライマー層とした場合、通常印刷用孔版に使用する程度の目開きのメッシュ構造体における微細な開口部の閉塞を起さないことが確認できた。
印刷用孔版においては、メッシュに乳剤が塗布されることにより乳剤部の凹凸構造が付加され、さらに形成される印刷パターン開口部についてはφ20μm程度の微小なものも存在する。 In the printing stencil, the uneven structure of the emulsion portion is added by applying the emulsion to the mesh, and the print pattern opening formed further includes a minute one having a diameter of about 20 μm. これほど微細な構造であると、プライマー塗布後に閉塞状態の確認や、開口部を閉塞させてしまった液体プライマーの拭き取り除去を行なうことは困難である。 With such a fine structure, it is difficult to confirm the blocked state after applying the primer and to wipe off the liquid primer that has blocked the opening.
本願の非晶質炭素膜をフッ素含有シランカップリング剤等の密着用プライマーとした場合、印刷用孔版の印刷パターン開口部等に露出する細かなメッシュ目開き(開口部)の閉塞を起さないため、印刷用ペーストの透過性を確保することが可能となるとともに、メッシュ開口部の閉塞状態を確認するための検査や、閉塞状態の除去対応も不要とすることができる。 When the amorphous carbon film of the present application is used as an adhesion primer such as a fluorine-containing silane coupling agent, the fine mesh openings (openings) exposed in the print pattern openings of the printing stencil do not be blocked. Therefore, it is possible to secure the transparency of the printing paste, and it is not necessary to perform an inspection for confirming the blocked state of the mesh opening and a countermeasure for removing the blocked state. According to the verification of the present case, when the amorphous carbon film formed by the plasma CVD method is used as the second primer layer formed on the amorphous carbon film, the mesh structure having a mesh size that is usually used for a stencil for printing is used. It was confirmed that the fine openings were not blocked. According to the verification of the present case, when the amorphous carbon film formed by the plasma CVD method is used as the second primer layer formed on the amorphous carbon film, the mesh structure having a mesh size that is usually used for a stencil for printing is used. It was confirmed that the fine openings were not blocked.
In the stencil for printing, a concavo-convex structure of the emulsion part is added by applying the emulsion to the mesh, and there are fine print pattern openings of about φ20 μm. With such a fine structure, it is difficult to confirm the clogged state after applying the primer and to wipe off and remove the liquid primer that has clogged the opening. In the stencil for printing, a concavo-convex structure of the emulsion part is added by applying the emulsion to the mesh, and there are fine print pattern openings of about φ20 μm. With such a fine structure, it is difficult to confirm the clogged state after applying the primer and to wipe off and remove the liquid primer that has clogged the opening.
When the amorphous carbon film of the present application is used as a primer for adhesion such as a fluorine-containing silane coupling agent, it does not cause clogging of fine mesh openings (openings) exposed at the printing pattern openings of the printing stencil. Therefore, it is possible to ensure the transparency of the printing paste, and it is possible to eliminate the need for inspection for confirming the closed state of the mesh opening and removal of the closed state. When the amorphous carbon film of the present application is used as a primer for adhesion such as a fluorine-containing silane coupling agent, it does not cause clogging of fine mesh openings (openings) exposed at the printing pattern openings of the printing stencil. Therefore , it is possible to ensure the transparency of the printing paste, and it is possible to eliminate the need for inspection for confirming the closed state of the mesh opening and removal of the closed state.

320mm×320mmの鉄製鋳物枠の4辺からの中央部に、四角形に200mm×200mmの大きさでステンレス鋼メッシュをポリエステルメッシュと接着剤(アロンアルファー203TX)にて接着し、コンビネーションされたステンレス製メッシュを配置し、酢酸ビニル系エマルジョン2%、ポリビニルアルコール2%、光重合性樹脂25%、シリコーン系化合物5%、水65%、顔料1%未満、ジアゾ樹脂1%未満の成分で構成される乳剤を塗布、フォトリソグラフィ法にて露光、現像を行い乳剤スクリーン版を2版作成した。
乳剤スクリーンマスクの仕様は2版とも下記内容である。
スクリーンメッシュ:500メッシュ19μm線径(500−19−28)
印刷パターン有効エリア:95mm×95mm Print pattern effective area: 95 mm x 95 mm
印刷配線パターン:線幅200μm Printed wiring pattern: Line width 200 μm
印刷パターン開口部形状:印刷有効エリア中央部に横直線で形成された1000μm幅、全長90mmの中央主電極(バス電極)と直交する形で中央のバス電極から両側に全長40mm、ピッチ20mm、線幅200μmの印刷配線パターンが、中央のバス電極の長さ方向に等ピッチで形成されている櫛型パターンである。 Print pattern opening shape: A line with a total length of 40 mm, a pitch of 20 mm, and a line perpendicular to the central main electrode (bus electrode) having a width of 1000 μm and a total length of 90 mm formed in a horizontal straight line in the center of the print effective area. The printed wiring pattern having a width of 200 μm is a comb-shaped pattern formed at equal pitches in the length direction of the central bus electrode.
乳剤厚さは2μm、スクリーンメッシュ含めた乳剤部総厚では概ね30μmである。 The emulsion thickness is 2 μm, and the total thickness of the emulsion portion including the screen mesh is approximately 30 μm. A stainless steel mesh is combined by bonding a stainless steel mesh with a size of 200 mm x 200 mm to a square with a polyester mesh and an adhesive (Aron Alpha-203TX) at the center from four sides of a 320 mm x 320 mm cast iron frame. An emulsion composed of 2% vinyl acetate emulsion, 2% polyvinyl alcohol, 25% photopolymerizable resin, 5% silicone compound, 65% water, less than 1% pigment, and less than 1% diazo resin. Then, exposure and development were performed by a photolithography method to prepare two emulsion screen plates. A stainless steel mesh is combined by bonding a stainless steel mesh with a size of 200 mm x 200 mm to a square with a polyester mesh and an adhesive (Aron Alpha-203TX) at the center from four sides of a 320 mm x 320 mm cast iron frame. An emulsion composed of 2% vinyl acetate emulsion, 2% Looking alcohol, 25% photopolymerizable resin, 5% silicone compound, 65% water, less than 1% pigment, and less than 1% diazo resin. Then, exposure and development were performed by a photolithography method to prepare two emulsion screen plates.
The specifications of the emulsion screen mask are as follows. The specifications of the emulsion screen mask are as follows.
Screen mesh: 500 mesh 19 μm wire diameter (500-19-28) Screen mesh: 500 mesh 19 μm wire diameter (500-19-28)
Print pattern effective area: 95mm x 95mm Print pattern effective area: 95mm x 95mm
Printed wiring pattern: Line width 200μm Printed wiring pattern: Line width 200 μm
Print pattern opening shape: 1000 μm wide and 90 mm long central main electrode (bus electrode) formed in a horizontal straight line at the center of the print effective area, and 40 mm long, 20 mm pitch, line on both sides from the central bus electrode A printed wiring pattern having a width of 200 μm is a comb pattern formed at an equal pitch in the length direction of the central bus electrode. Print pattern opening shape: 1000 μm wide and 90 mm long central main electrode (bus electrode) formed in a horizontal straight line at the center of the print effective area, and 40 mm long, 20 mm pitch, line on both sides from the central bus electrode A printed wiring pattern having a width of 200 μm is a comb pattern formed at an equal pitch in the length direction of the central bus electrode.
The emulsion thickness is 2 μm, and the total emulsion thickness including the screen mesh is approximately 30 μm. The emulsion thickness is 2 μm, and the total emulsion thickness including the screen mesh is approximately 30 μm.

上記一方の乳剤スクリーンマスクの印刷対象基板に接する面側のみの印刷パターンエリアに実施例2の表層にフッ素を伴う非晶質炭素膜を100nm成膜したものを実施例11とした。
また、非晶質炭素膜を成膜せず、シラン系化合物0.5〜1.0wt%、1−ブタノール99.0〜99.5wt%を含有する、フッ素含有シランカップリング剤の樹脂基材への密着強化用液体プライマーコートPC−3B((株)フロロテクノロジー社製)を、フッ素含有シランカップリング剤の密着用プライマー層としてフローコートした後、温度55℃、湿度70%の恒温槽にて60分間乾燥させ、その後フッ素含有シランカップリング剤である、フロロサーフ社のFG−5010Z130−0.2の溶液(フッ素樹脂0.02〜0.2%、フッ素系溶剤99.8%〜99.98%)を塗布し、8時間、常温、湿度50%の環境にて乾燥させ、更に2度目の塗布を行い、12時間、常温、湿度50%の環境で乾燥させたものを比較例3とした。 Further, a resin base material of a fluorine-containing silane coupling agent containing 0.5 to 1.0 wt% of a silane compound and 99.0 to 99.5 wt% of 1-butanol without forming an amorphous carbon film. Liquid primer coat for strengthening adhesion to PC-3B (manufactured by Fluoro Technology Co., Ltd.) is flow-coated as a primer layer for adhesion of a fluorine-containing silane coupling agent, and then placed in a constant temperature bath at a temperature of 55 ° C. and a humidity of 70%. After drying for 60 minutes, a solution of FG-5010Z130-0.2 of Fluorosurf Co., Ltd., which is a fluorine-containing silane coupling agent (fluororesin 0.02 to 0.2%, fluorine-based solvent 99.8% to 99. 98%) was applied, dried in an environment of room temperature and humidity of 50% for 8 hours, further applied a second time, and dried in an environment of room temperature and humidity of 50% for 12 hours with Comparative Example 3. did.
非晶質炭素膜成膜前と後に、実施例11について乳剤表面をCCDカメラにて観察すると供に、各実施例、比較例の乳剤の表面粗さをレーザ顕微鏡にて測定した。 Before and after forming the amorphous carbon film, the surface roughness of the emulsion of Example 11 was observed with a CCD camera, and the surface roughness of the emulsion of each Example and Comparative Example was measured with a laser microscope.
なお、レーザ顕微鏡はキーエンス製VK-9500を使用した。 The laser microscope used was KEYENCE VK-9500. Example 11 was obtained by forming 100 nm of an amorphous carbon film with fluorine on the surface layer of Example 2 in the print pattern area only on the side of the one emulsion screen mask in contact with the substrate to be printed. Example 11 was obtained by forming 100 nm of an amorphous carbon film with fluorine on the surface layer of Example 2 in the print pattern area only on the side of the one emulsion screen mask in contact with the substrate to be printed.
In addition, a fluorine-containing silane coupling agent resin base material that does not form an amorphous carbon film and contains 0.5 to 1.0 wt% of a silane compound and 99.0 to 99.5 wt% of 1-butanol After applying the liquid primer coat PC-3B (made by Fluoro Technology Co., Ltd.) as an adhesion primer layer for the fluorine-containing silane coupling agent, in a thermostatic bath at a temperature of 55 ° C. and a humidity of 70%. Fluoro-containing FG-5010Z130-0.2 solution (fluorine resin 0.02-0.2%, fluorine-based solvent 99.8% -99.99%). 98%), dried in an environment of room temperature and humidity of 50% for 8 hours, applied for the second time, and dried for 12 hours in an environment of room temperature and humidity of 50%. did. In addition, a fluorine-containing silane coupling agent resin base material that does not form an amorphous carbon film and contains 0.5 to 1.0 wt% of a silane compound and 99.0 to 99.5 wt% of 1-butanol After applying the liquid primer coat PC- 3B (made by Fluoro Technology Co., Ltd.) as an adhesion primer layer for the fluorine-containing silane coupling agent, in a thermostatic bath at a temperature of 55 ° C. and a humidity of 70%. Fluoro-containing FG- 5010Z130-0.2 solution (fluorine resin 0.02-0.2%, fluorine-based solvent 99.8% -99.99%). 98%), dried in an environment of room temperature and humidity of 50% for 8 hours, applied for the second time, and dried for 12 hours in an environment of room temperature and humidity of 50%. Did.
Before and after the formation of the amorphous carbon film, the emulsion surface of Example 11 was observed with a CCD camera, and the surface roughness of the emulsions of each Example and Comparative Example was measured with a laser microscope. Before and after the formation of the emulsion carbon film, the emulsion surface of Example 11 was observed with a CCD camera, and the surface roughness of the emulsions of each Example and Comparative Example was measured with a laser microscope.
The laser microscope used was VK-9500 manufactured by Keyence. The laser microscope used was VK-9500 manufactured by Keyence.

1)表面粗さ 実施例11 Ra:0,52μm Ry:2.14μm Rz:2.04μm
実施例12 Ra:0.51μm Ry:2.15μm Rz:2.03μm
比較例3 Ra:0.44μm Ry:1.97μm Rz:1.80μm
であり、実施例11は、比較例3に比べ表面の粗度が増していることが確認できた。
1) Surface roughness Example 11 Ra: 0.52 μm Ry: 2.14 μm Rz: 2.04 μm
Example 12 Ra: 0.51 μm Ry: 2.15 μm Rz: 2.03 μm
Comparative Example 3 Ra: 0.44 μm Ry: 1.97 μm Rz: 1.80 μm
In Example 11, it was confirmed that the surface roughness was increased as compared with Comparative Example 3.

2)CCDカメラによる表面観察
実施例11の乳剤表面状態を、非晶質炭素膜の形成前後でCCDカメラ2000倍で観察した。
図18は、実施例11の非晶質炭素膜形成前の乳剤表面(印刷パターン貫通孔付近)のCCD写真である。
図19は、実施例11の非晶質炭素膜形成後の乳剤表面(印刷パターン貫通孔付近)のCCD写真である。
乳剤部にシワが形成されていることが確認できる。この細かいシワ状の凹凸が乳剤尿面の粗度を上げたと推定できる。
このシワは、非晶質炭素膜形成中のプラズマによる熱、及び非晶質炭素膜の大きな応力により形成されていると考えられる。 It is considered that these wrinkles are formed by the heat generated by the plasma during the formation of the amorphous carbon film and the large stress of the amorphous carbon film. 2) Surface observation with CCD camera The emulsion surface state of Example 11 was observed with a CCD camera 2000 times before and after the formation of the amorphous carbon film. 2) Surface observation with CCD camera The emulsion surface state of Example 11 was observed with a CCD camera 2000 times before and after the formation of the amorphous carbon film.
FIG. 18 is a CCD photograph of the emulsion surface (near the printed pattern through-hole) before forming the amorphous carbon film in Example 11. FIG. 18 is a CCD photograph of the emulsion surface (near the printed pattern through-hole) before forming the amorphous carbon film in Example 11.
FIG. 19 is a CCD photograph of the emulsion surface (near the printed pattern through hole) after the formation of the amorphous carbon film of Example 11. FIG. 19 is a CCD photograph of the emulsion surface (near the printed pattern through hole) after the formation of the amorphous carbon film of Example 11.
It can be confirmed that wrinkles are formed in the emulsion portion. It can be presumed that the fine wrinkled irregularities increased the roughness of the emulsion urine surface. It can be confirmed that wrinkles are formed in the emulsion portion. It can be presumed that the fine wrinkled irregularities increased the roughness of the emulsion urine surface.
This wrinkle is considered to be formed by the heat generated by the plasma during the formation of the amorphous carbon film and the large stress of the amorphous carbon film. This wrinkle is considered to be formed by the heat generated by the plasma during the formation of the amorphous carbon film and the large stress of the amorphous carbon film.

3)下記の内容で印刷試験を行なった。
(1)印刷用スキージ:ウレタン製で硬度(シェア)80
(2)スキージアタック角度:80°
(3)スキージ印圧:2±0.2kgf・cm
(4)スキージ速度:800mm・sec
(5)スクリーンクリアランス:1.4mm
(6)印刷ペースト:Niペースト Niペーストは、ニッケル粉末、ビヒクル、および分散剤を混合し、例えば三本ロールミルを用いて、ニッケル粉末を十分に分散させ、粘度を10〜30Pa・secにすることで調製される。

混合される構成成分は、粒径0.2〜0.4μmのニッケル粉末を30〜60wt%、共生地を10〜30wt%、残りその他である。 The components to be mixed are 30 to 60 wt% of nickel powder having a particle size of 0.2 to 0.4 μm, 10 to 30 wt% of the common dough, and the rest.
残りのその他は、固形分に対して、ビヒクル2〜10wt%、分散材1〜2wt%である。 The remaining others are 2 to 10 wt% of the vehicle and 1 to 2 wt% of the dispersant with respect to the solid content. なお、ビヒクルは、有機バインダ エチルセルロース、ニトロセルロース、ジビドロターピネオールなどから 2〜10wt%、有機溶剤はブチルカルビトールアセテートあるいはαーターピネオール 90〜98wt%で構成されている。 The vehicle is composed of 2 to 10 wt% of organic binder ethyl cellulose, nitrocellulose, dividro terpineol and the like, and the organic solvent is composed of butyl carbitol acetate or α-ter pineol 90 to 98 wt%. 分散材はオレイン酸などである。 The dispersant is oleic acid or the like.
(7)印刷基板(グリーンシート) (7) Printed circuit board (green sheet)
印刷用基板であるグリーンシートは、チタン酸バリウムを主成分とするセラミック材料粉末とPVB(ポリビニルブチラール)等の有機バインダ及びエタノール等の有機溶媒を所定の比率で混合してセラミックスラリーを作成し、このスラリーをドクターブレード法等の公知のシート化手段により約20μmの厚さに32μmのPETフィルム上に成形したものである。 The green sheet, which is a printing substrate, is prepared by mixing a ceramic material powder containing barium titanate as a main component, an organic binder such as PVB (polyvinyl butyral), and an organic solvent such as ethanol at a predetermined ratio to prepare a ceramic slurry. This slurry is formed on a 32 μm PET film having a thickness of about 20 μm by a known sheeting means such as a doctor blade method. グリーンシートのこのときの表面の粘着力は、約600g/cm の程度である。 The adhesive strength of the surface of the green sheet at this time is about 600 g / cm 2 . 3) A printing test was conducted with the following contents. 3) A printing test was conducted with the following contents.
(1) Squeegee for printing: Made of urethane, hardness (share) 80 (1) Squeegee for printing: Made of urethane, hardness (share) 80
(2) Ski Ziatack angle: 80 ° (2) Ski Ziatack angle: 80 °
(3) Squeegee printing pressure: 2 ± 0.2 kgf · cm 2 (3) Squeegee printing pressure: 2 ± 0.2 kgf · cm 2
(4) Squeegee speed: 800 mm · sec (4) Squeegee speed: 800 mm · sec
(5) Screen clearance: 1.4mm (5) Screen clearance: 1.4mm
(6) Printing paste: Ni paste Ni paste is a mixture of nickel powder, vehicle, and dispersing agent. For example, a three roll mill is used to sufficiently disperse the nickel powder and make the viscosity 10-30 Pa · sec. It is prepared with. (6) Printing paste: Ni paste Ni paste is a mixture of nickel powder, vehicle, and dispersing agent. For example, a three roll mill is used to sufficiently disperse the nickel powder and make the variance 10-30 Pa · sec. It is prepared with.
Constituent components to be mixed are 30 to 60 wt% of nickel powder having a particle size of 0.2 to 0.4 μm, 10 to 30 wt% of co-dough, and the rest. Constituent components to be mixed are 30 to 60 wt% of nickel powder having a particle size of 0.2 to 0.4 μm, 10 to 30 wt% of co-dough, and the rest.
The remaining others are 2 to 10 wt% of the vehicle and 1 to 2 wt% of the dispersion material with respect to the solid content. The vehicle is composed of 2-10 wt% of organic binders such as ethyl cellulose, nitrocellulose, dividroterpineol, and the organic solvent is composed of butyl carbitol acetate or 90-98 wt% of α-terpineol. The dispersing material is oleic acid or the like. The remaining others are 2 to 10 wt% of the vehicle and 1 to 2 wt% of the dispersion material with respect to the solid content. The vehicle is composed of 2-10 wt% of organic binders such as ethyl cellulose, nitrocellulose, dividroterpineol , and the organic solvent is composed of butyl carbitol acetate or 90-98 wt% of α-terpineol. The dispersing material is oleic acid or the like.
(7) Printed circuit board (green sheet) (7) Printed circuit board (green sheet)
The green sheet, which is a printing substrate, creates a ceramic slurry by mixing a ceramic material powder mainly composed of barium titanate, an organic binder such as PVB (polyvinyl butyral) and an organic solvent such as ethanol at a predetermined ratio, This slurry is formed on a PET film having a thickness of about 20 μm on a PET film having a thickness of about 32 μm by a known sheet forming means such as a doctor blade method. The adhesive strength of the surface of the green sheet at this time is about 600 g / cm 2 . The green sheet, which is a printing substrate, creates a ceramic slurry by mixing a ceramic material powder mainly composed of barium titanate, an organic binder such as PVB (polyvinyl butyral) and an organic solvent such as ethanol at a predetermined ratio, This slurry is formed on a PET film having a thickness of about 20 μm on a PET film having a thickness of about 32 μm by a known sheet forming means such as a doctor blade method. The adhesive strength of the surface of the green sheet at this time is about 600 g / cm 2 .

各実施例、比較例とも、1万回印刷した際の印刷配線のエッジ部の直線性(滲み発生の状況)を確認した。
(1)実施例11 綺麗に直線が出ている。
(2)比較例3 印刷滲みが発生し直線性が劣化している。

実施例について、乳剤表面にシワ状の凹凸が発生しているにもかかわらず印刷物のエッジ部に印刷ペーストの滲みが発生しないのは、印刷のスキージング時、乳剤表面に形成されたフッ素相を伴う非晶質炭素膜構造体が印刷基板面と接触する際、撥油性表面を有するシワ状凹凸の凹部中に空気が内包されることで、毛管現象による印刷ペーストの印刷パターン貫通孔周辺部乳剤面(特に乳剤表面の凹凸部)側への滲み出しが抑制されたためと考えられる。 In the examples, the fact that the print paste does not bleed at the edges of the printed matter despite the wrinkle-like irregularities on the emulsion surface is due to the fluorine phase formed on the emulsion surface during printing squeezing. When the accompanying amorphous carbon film structure comes into contact with the surface of the printing substrate, air is contained in the wrinkled uneven recesses having an oil-repellent surface, so that the emulsion around the print pattern through hole of the printing paste due to the capillary phenomenon It is considered that the exudation to the surface (particularly the uneven portion of the emulsion surface) was suppressed. In each example and comparative example, the linearity (the state of occurrence of bleeding) of the edge portion of the printed wiring when printing 10,000 times was confirmed. In each example and comparative example, the linearity (the state of occurrence of bleeding) of the edge portion of the printed wiring when printing 10,000 times was confirmed.
(1) Example 11 A straight line is clearly formed. (1) Example 11 A straight line is clearly formed.
(2) Comparative Example 3 Printing blur occurs and linearity deteriorates. (2) Comparative Example 3 Printing blur occurs and linearity deteriorates.
In the examples, although the wrinkle-like irregularities are generated on the surface of the emulsion, the bleeding of the printing paste does not occur at the edge of the printed matter. When the accompanying amorphous carbon film structure comes into contact with the printed circuit board surface, air is encapsulated in the concave portions of the wrinkled irregularities having an oil-repellent surface, so that the printing pattern through-hole peripheral part emulsion of the printing paste due to capillary action This is considered to be because the bleeding to the surface (particularly the uneven portion of the emulsion surface) was suppressed. In the examples, although the wrinkle-like irregularities are generated on the surface of the emulsion, the bleeding of the printing paste does not occur at the edge of the printed matter. When the accompanying amorphous carbon film structure comes into contact with the printed circuit board surface, air is encapsulated in the concave portions of the wrinkled irregularities having an oil-repellent surface, so that the printing pattern through-hole peripheral part emulsion of the printing paste due to capillary action This is considered to be because the bleeding to the surface (particularly the uneven portion of the emulsion surface) was suppressed.

4)印刷前及び1万回印刷後の、実施例11、比較例3の乳剤表面に於けるミネラルスピリットとの接触角の測定結果を図20に示す。
なお、測定点は、印刷有効エリア95mm×95mmを縦方向に端から端まで概ね4等分した5箇所、横方向(印刷パターン中央主電極の1000μm幅、90mmの電極線を挟んで、直行する方向)に概ね3等分した4箇所、各点計20点の直近位置の乳剤面上にて行なった。 The measurement points are 5 points in which the print effective area 95 mm × 95 mm is roughly divided into 4 equal parts from end to end in the vertical direction, and are orthogonal to each other in the horizontal direction (1000 μm width of the central main electrode of the print pattern, 90 mm electrode wire is sandwiched between them). It was carried out on the emulsion surface at the nearest position of 20 points in total at 4 points divided into 3 equal parts in the direction). 測定には、Fibro system社製の携帯式接触角計PG−X(モバイル接触角計)を使用し室温25℃、湿度30%の環境にて行った。 The measurement was performed using a portable contact angle meter PG-X (mobile contact angle meter) manufactured by Fibro system in an environment of room temperature of 25 ° C. and humidity of 30%.
まず、印刷前の接触角は、実施例11が比較例3よりも大きな値を示し、実施例は比較例に比べて大きな撥油性が発現されていることが判る。 First, it can be seen that the contact angle before printing in Example 11 was larger than that in Comparative Example 3, and that Example exhibited greater oil repellency than Comparative Example.
印刷後に於いては、比較例3の接触角の劣化(値の低下)は見られるが、実施例11については印刷前との接触角の変動がほぼ無く、十分な撥油性を示すことが確認できた。 After printing, deterioration of the contact angle (decrease in value) of Comparative Example 3 was observed, but it was confirmed that in Example 11, there was almost no change in the contact angle from that before printing, and sufficient oil repellency was exhibited. did it. 4) FIG. 20 shows the measurement results of the contact angle with mineral spirit on the emulsion surfaces of Example 11 and Comparative Example 3 before printing and after printing 10,000 times. 4) FIG. 20 shows the measurement results of the contact angle with mineral spirit on the emulsion surfaces of Example 11 and Comparative Example 3 before printing and after printing 10,000 times.
In addition, the measurement points are orthogonal to the print effective area 95 mm × 95 mm in five portions obtained by dividing the print area into four portions from end to end in the vertical direction, and in the horizontal direction (1000 μm width of the print pattern center main electrode, 90 mm electrode line). (Direction) was roughly divided into 3 parts, and was carried out on the emulsion surface at the nearest position of 20 points in total. The measurement was performed using a portable contact angle meter PG-X (mobile contact angle meter) manufactured by Fibro system in an environment of room temperature 25 ° C. and humidity 30%. In addition, the measurement points are orthogonal to the print effective area 95 mm × 95 mm in five portions obtained by dividing the print area into four portions from end to end in the vertical direction, and in the horizontal direction (1000 μm width of the) print pattern center main electrode, 90 mm electrode line). (Direction) was roughly divided into 3 parts, and was carried out on the emulsion surface at the nearest position of 20 points in total. The measurement was performed using a portable contact angle meter PG-X (mobile contact angle meter) manufactured by Fibro system in an environment of room temperature 25 ° C. and humidity 30%.
First, as for the contact angle before printing, Example 11 shows a larger value than Comparative Example 3, and it can be seen that the Example exhibits a greater oil repellency than the Comparative Example. First, as for the contact angle before printing, Example 11 shows a larger value than Comparative Example 3, and it can be seen that the Example exhibits a greater oil repellency than the Comparative Example.
After printing, contact angle deterioration (decrease in value) in Comparative Example 3 was observed, but Example 11 was confirmed to exhibit sufficient oil repellency with almost no change in contact angle with that before printing. did it. After printing, contact angle deterioration (decrease in value) in Comparative Example 3 was observed, but Example 11 was confirmed to exhibit sufficient oil repellency with almost no change in contact angle with that before printing. Did it.

以上のことから、実施例11は比較例3に比べ、乳剤(上の非晶質炭素膜)に塗布したフッ素含有シランカップリング剤の固定能に優れていることが確認できる。
また、シワのような微細な凹凸構造を硬く、耐摩耗性に富む非晶質炭素膜にて形成し、その凹部に20nm程度と薄膜にて形成可能なフッ素含有シランカップリング剤を残留させることにより、凹部に保持された柔らかいフッ素含有シランカップリング剤(フッ素層)は、硬い非晶質炭素膜から成る凸部によって物理的な外力、今回の印刷検証の場合は、セラミックグリーンシートなど硬い印刷対象基板から直接的な損傷を受けず保護され、その凹部に長く残留させることが容易になる。 Further, a fine uneven structure such as wrinkles is formed of a hard, abrasion-resistant amorphous carbon film, and a fluorine-containing silane coupling agent that can be formed with a thin film of about 20 nm remains in the concave portion. The soft fluorine-containing silane coupling agent (fluorine layer) held in the recesses is physically external due to the convex parts made of a hard amorphous carbon film. In the case of this printing verification, hard printing such as ceramic green sheet It is protected from being directly damaged from the target substrate, and it becomes easy to remain in the recess for a long time.
あわせて、硬い非晶質炭素膜にて構成される実施例11については、印刷用ペースト中に配合されている硬い研磨粉のようなNi微粉からの耐摩耗性も向上していると考えられる。 At the same time, in Example 11 composed of a hard amorphous carbon film, it is considered that the abrasion resistance from Ni fine powder such as the hard abrasive powder blended in the printing paste is also improved. .. From the above, it can be confirmed that Example 11 is superior to Comparative Example 3 in fixing ability of the fluorine-containing silane coupling agent applied to the emulsion (the above amorphous carbon film). From the above, it can be confirmed that Example 11 is superior to Comparative Example 3 in fixing ability of the fluorine-containing silane coupling agent applied to the emulsion (the above amorphous carbon film).
In addition, a fine uneven structure such as wrinkles is formed with a hard, wear-resistant amorphous carbon film, and a fluorine-containing silane coupling agent that can be formed as a thin film with a thickness of about 20 nm is left in the recess. Therefore, the soft fluorine-containing silane coupling agent (fluorine layer) held in the concave portion is a physical external force due to the convex portion made of a hard amorphous carbon film. In the case of this printing verification, hard printing such as ceramic green sheet It is protected without being directly damaged from the target substrate, and it becomes easy to remain in the recess for a long time. In addition, a fine uneven structure such as wrinkles is formed with a hard, wear-resistant amorphous carbon film, and a fluorine-containing silane coupling agent that can be formed as a thin film with a thickness of about 20 nm is left in the Recess, therefore, the soft fluorine-containing silane coupling agent (fluorine layer) held in the concave portion is a physical external force due to the convex portion made of a hard amorphous carbon film. In the case of this printing verification, hard printing such as ceramic green sheet It is protected without being directly damaged from the target substrate, and it becomes easy to remain in the recess for a long time.
In addition, with respect to Example 11 composed of a hard amorphous carbon film, it is considered that the wear resistance from Ni fine powder such as hard abrasive powder blended in the printing paste is also improved. . In addition, with respect to Example 11 composed of a hard amorphous carbon film, it is considered that the wear resistance from Ni fine powder such as hard abrasive powder blended in the printing paste is also improved.

乳剤スクリーン版の作成
ステンレス鋼製メッシュ、四角型の形状で300mm×300mmの500メッシュ19μm線径(500−19−28)全面に非晶質炭素膜を成膜した。
高圧パルスプラズマCVD装置に上記メッシュの1辺の端10mmの帯状部分を電極接続保持部とし投入、1×10−3Paまで真空減圧した後、アルゴンガス流量30SCCM、ガス圧2Pa、印加電圧−4kV、パルス周波数10kHz、パルス幅10μsにてアルゴンガスプラズマでクリーニングした。
次にトリメチルシランを流量30SCCM、ガス圧2Paになるよう調整し、印加電圧−4kV、パルス周波数10kHz、パルス幅10μsにて10分間非晶質炭素膜を成膜し、トリメチルシランガスを排気後、酸素ガスを流量30SCCM、ガス圧2Paになるよう調整し、印加電圧−3kV、パルス周波数10kHz、パルス幅10μsにて3分間照射し成膜容器から取り出した。 Next, trimethylsilane is adjusted to have a flow rate of 30 SCCM and a gas pressure of 2 Pa, an amorphous carbon film is formed at an applied voltage of -4 kV, a pulse frequency of 10 kHz, and a pulse width of 10 μs for 10 minutes. After exhausting the trimethylsilane gas, oxygen The gas was adjusted to have a flow rate of 30 SCCM and a gas pressure of 2 Pa, irradiated with an applied voltage of -3 kV, a pulse frequency of 10 kHz, and a pulse width of 10 μs for 3 minutes, and taken out from the film forming container. (実施例12) Preparation of Emulsion Screen Plate Amorphous carbon film was formed on the entire surface of a stainless steel mesh, square shape, 300 mm × 300 mm, 500 mesh, 19 μm wire diameter (500-19-28). (Example 12) Preparation of Emulsion Screen Plate Amorphous carbon film was formed on the entire surface of a stainless steel mesh, square shape, 300 mm × 300 mm, 500 mesh, 19 μm wire diameter (500-19-28).
A high-pressure pulse plasma CVD apparatus is charged with a 10 mm strip on one side of the mesh as an electrode connection holding part, and after vacuum depressurization to 1 × 10 −3 Pa, an argon gas flow rate of 30 SCCM, a gas pressure of 2 Pa, and an applied voltage of −4 kV And cleaning with argon gas plasma at a pulse frequency of 10 kHz and a pulse width of 10 μs. A high-pressure pulse plasma CVD apparatus is charged with a 10 mm strip on one side of the mesh as an electrode connection holding part, and after vacuum depressurization to 1 × 10 −3 Pa, an argon gas flow rate of 30 SCCM, a gas pressure of 2 Pa, and an applied voltage of −4 kV And cleaning with argon gas plasma at a pulse frequency of 10 kHz and a pulse width of 10 μs.
Next, trimethylsilane was adjusted to have a flow rate of 30 SCCM and a gas pressure of 2 Pa, an amorphous carbon film was formed for 10 minutes at an applied voltage of −4 kV, a pulse frequency of 10 kHz, and a pulse width of 10 μs. The gas was adjusted to a flow rate of 30 SCCM and a gas pressure of 2 Pa, and irradiated for 3 minutes at an applied voltage of −3 kV, a pulse frequency of 10 kHz, and a pulse width of 10 μs and taken out from the film formation container. (Example 12) Next, trimethylsilane was adjusted to have a flow rate of 30 SCCM and a gas pressure of 2 Pa, an amorphous carbon film was formed for 10 minutes at an applied voltage of −4 kV, a pulse frequency of 10 kHz, and a pulse width of 10 μs. The gas was adjusted to a flow rate of 30 SCCM and a gas pressure of 2 Pa, and similarly for 3 minutes at an applied voltage of −3 kV, a pulse frequency of 10 kHz, and a pulse width of 10 μs and taken out from the film formation container. (Example 12)

さらに、同様のステンレス鋼メッシュを実施例と同様に電極部を接続し高圧パルスプラズマCVD装置に投入し、1×10−3Paまで真空減圧した後、アルゴンガス流量30SCCM、ガス圧2Pa、印加電圧−4kV、パルス周波数10kHz、パルス幅10μsにてアルゴンガスプラズマでクリーニングした。
次にトリメチルシランを流量30SCCM、ガス圧2Paになるよう調整し、印加電圧−4kV、パルス周波数10kHz、パルス幅10μsにて5分間基材への中間密着用の非晶質炭素膜を成膜し、トリメチルシランガスを排気後、アセチレンを流量30SCCM、ガス圧2Paになるよう調整し、印加電圧−4kV、パルス周波数10kHz、パルス幅10μsにて6分間非晶質炭素膜を成膜した。 Next, trimethylsilane was adjusted to a flow rate of 30 SCCM and a gas pressure of 2 Pa, and an amorphous carbon film for intermediate adhesion to the substrate was formed at an applied voltage of -4 kV, a pulse frequency of 10 kHz, and a pulse width of 10 μs for 5 minutes. After exhausting the trimethylsilane gas, acetylene was adjusted to have a flow rate of 30 SCCM and a gas pressure of 2 Pa, and an amorphous carbon film was formed at an applied voltage of -4 kV, a pulse frequency of 10 kHz, and a pulse width of 10 μs for 6 minutes. (比較例4) Further, the same stainless steel mesh as in the example was connected to the electrode part, put into a high-pressure pulse plasma CVD apparatus, and vacuum-depressed to 1 × 10 −3 Pa, and then an argon gas flow rate of 30 SCCM, a gas pressure of 2 Pa, and an applied voltage Cleaning was performed with argon gas plasma at −4 kV, a pulse frequency of 10 kHz, and a pulse width of 10 μs. (Comparative example 4) Further, the same stainless steel mesh as in the example was connected to the electrode part, put into a high-pressure pulse plasma CVD apparatus, and vacuum-depressed to 1 × 10 −3 Pa, and then an argon gas flow rate of 30 SCCM, a gas pressure of 2 Pa, and an applied voltage Cleaning was performed with argon gas plasma at −4 kV, a pulse frequency of 10 kHz, and a pulse width of 10 μs.
Next, trimethylsilane was adjusted to a flow rate of 30 SCCM and a gas pressure of 2 Pa, and an amorphous carbon film for intermediate adhesion to the substrate was formed for 5 minutes at an applied voltage of −4 kV, a pulse frequency of 10 kHz, and a pulse width of 10 μs. After exhausting the trimethylsilane gas, the acetylene was adjusted to a flow rate of 30 SCCM and a gas pressure of 2 Pa, and an amorphous carbon film was formed for 6 minutes at an applied voltage of −4 kV, a pulse frequency of 10 kHz, and a pulse width of 10 μs. (Comparative Example 4) Next, trimethylsilane was adjusted to a flow rate of 30 SCCM and a gas pressure of 2 Pa, and an amorphous carbon film for intermediate adhesion to the substrate was formed for 5 minutes at an applied voltage of −4 kV, a pulse frequency of 10 kHz, and a pulse width of 10 μs. After exhausting the trimethylsilane gas, the acetylene was adjusted to a flow rate of 30 SCCM and a gas pressure of 2 Pa, and an amorphous carbon film was formed for 6 minutes at an applied voltage of −4 kV, a pulse frequency of 10 kHz, and a pulse width of 10 μs. (Comparative Example 4)

続いて、実施例12、比較例4共に450mm×450mmの鉄製鋳物枠体の4辺からの中央部に、200mm×200mmの大きさで上記非晶質炭素膜を成膜したステンレス鋼メッシュをポリエステルメッシュと接着剤(アロンアルファー203TX)にて接着、コンビネーションされたステンレス製メッシュ、を配置し、酢酸ビニル系エマルジョン2%、ポリビニルアルコール2%、光重合性樹脂25%、シリコーン系化合物5%、水65%、顔料1%未満、ジアゾ樹脂1%未満の成分で構成される乳剤をマスク乳剤総厚で概ね30μmになるように一面に塗布した。
上記枠体に貼られ、乳剤を全面に塗布されたステンレス鋼メッシュ部の周囲4辺をカッターナイフで切り取り、短冊形に乳剤が塗布されたステンレス鋼メッシュの試料を切り出し、両端をクランプして引っ張り、延伸前の状態と延伸後(延伸率3%時)のメッシュに塗布された乳剤の浮き(メッシュからの部分剥離)の状態(ボイド数)をCCDカメラ1000倍にて同一視野範囲で観察した。 Cut out the four sides around the stainless steel mesh part that is attached to the above frame and coated the emulsion on the entire surface with a cutter knife, cut out a sample of the stainless steel mesh coated with the emulsion in a strip shape, clamp both ends and pull. , The state before stretching and the state (number of voids) of floating (partial peeling from the mesh) of the emulsion applied to the mesh after stretching (at a stretching rate of 3%) were observed in the same field range with a CCD camera 1000 times. .. Subsequently, in both Example 12 and Comparative Example 4, a stainless steel mesh formed by forming the amorphous carbon film with a size of 200 mm × 200 mm on the center from four sides of a 450 mm × 450 mm iron casting frame was polyester. A mesh and a stainless steel mesh bonded and combined with an adhesive (Aron Alpha 203TX) are placed, vinyl acetate emulsion 2%, polyvinyl alcohol 2%, photopolymerizable resin 25%, silicone compound 5%, water An emulsion composed of 65%, less than 1% pigment, and less than 1% diazo resin was coated on one side so that the total thickness of the mask emulsion was approximately 30 μm. Thus, in both Example 12 and Comparative Example 4, a stainless steel mesh formed by forming the amorphous carbon film with a size of 200 mm x 200 mm on the center from four sides of a 450 mm x 450 mm iron casting frame was polyester. A mesh and a stainless steel mesh bonded and combined with an adhesive (Aron Alpha 203TX) are placed, vinyl acetate emulsion 2%, oxidizing alcohol 2%, photopolymerizable resin 25%, silicone compound 5%, water An emulsion composed of 65%, less than 1% pigment, and less than 1% diazo resin was coated on one side so that the total thickness of the mask emulsion was approximately 30 μm.
Cut the four sides of the stainless steel mesh part, which is affixed to the frame and coated with the emulsion on the entire surface, with a cutter knife, cut out a sample of stainless steel mesh coated with the emulsion in a strip shape, and clamp both ends to pull. The state before the stretching and the state (number of voids) of the emulsion applied to the mesh after stretching (at a stretching ratio of 3%) (number of voids) were observed in the same field of view with a CCD camera 1000 times. . Cut the four sides of the stainless steel mesh part, which is affixed to the frame and coated with the emulsion on the entire surface, with a cutter knife, cut out a sample of stainless steel mesh coated with the emulsion in a strip shape, and clamp both ends to pull. The state before the stretching and the state (number of voids) of the emulsion applied to the mesh after stretching (at a stretching ratio of 3%) (number of voids) were observed in the same field of view with a CCD camera 1000 times ..

引っ張り試験条件 試験機:インストロン社 5865型 つかみ長さ:60mmストリップ幅:10mm
延伸率の測定:ビデオカメラ伸び計により標点間の伸び率を測定 結果を写した写真を図21に示す。

乳剤が浮いたと推測される痕跡の数を、表1に示す。 The number of traces of the emulsion presumed to have floated is shown in Table 1. Tensile test conditions Testing machine: Instron type 5865 Grip length: 60mm Strip width: 10mm Tensile test conditions Testing machine: Instron type 5865 Grip length: 60mm Strip width: 10mm
Measurement of stretching ratio: Measurement of elongation ratio between gauge points with video camera extensometer A photograph showing the result is shown in FIG. Measurement of stretching ratio: Measurement of stretching ratio between gauge points with video camera extensometer A photograph showing the result is shown in FIG.
Table 1 shows the number of traces presumed that the emulsion floated. Table 1 shows the number of traces presumed that the emulsion floated.

比較例4は、実施例12に比べ作成時当初から気泡(ボイド)の数が多く確認でき、実施例12の表面は、水溶性の乳剤への濡れ性が高いことが推定できる。
延伸率3%まで引き伸ばした時点での気泡(ボイド)の増加数は、実施例12の方が圧倒的に少なく、乳剤の固着強度が上昇しているとも推定できる。 The number of bubbles (voids) increased at the time of stretching to a stretch rate of 3% was overwhelmingly smaller in Example 12, and it can be estimated that the adhesion strength of the emulsion was increased.
印刷用孔版の乳剤中に空孔が発生している部位は、実質乳剤が薄くなり、印刷使用上、該部分からの乳剤の破損を惹起し易い。 At the portion where the pores are generated in the emulsion of the printing stencil, the actual emulsion becomes thin, and the emulsion is likely to be damaged from the portion during printing use.
よって、乳剤中の空孔を無くし、さらに乳剤が強固にスクリーンメッシュに固着することで、印刷用孔版の耐久性を向上させることができる。 Therefore, the durability of the printing stencil can be improved by eliminating the pores in the emulsion and further firmly adhering the emulsion to the screen mesh. In Comparative Example 4, the number of bubbles (voids) can be confirmed from the beginning compared with Example 12, and it can be estimated that the surface of Example 12 has high wettability to a water-soluble emulsion. In Comparative Example 4, the number of bubbles (voids) can be confirmed from the beginning compared with Example 12, and it can be estimated that the surface of Example 12 has high wettability to a water-soluble emulsion.
It can be estimated that the increase in the number of bubbles (voids) at the time when the drawing rate is 3% is overwhelmingly smaller in Example 12, and the fixing strength of the emulsion is increased. It can be estimated that the increase in the number of bubbles (voids) at the time when the drawing rate is 3% is overwhelmingly smaller in Example 12, and the fixing strength of the emulsion is increased.
The portion where voids are generated in the emulsion of the printing stencil is that the emulsion becomes substantially thin, and it is easy to cause breakage of the emulsion from the portion during printing. The portion where voids are generated in the emulsion of the printing stencil is that the emulsion becomes substantially thin, and it is easy to cause breakage of the emulsion from the portion during printing.
Therefore, the durability of the stencil for printing can be improved by eliminating voids in the emulsion and further firmly fixing the emulsion to the screen mesh. Therefore, the durability of the stencil for printing can be improved by eliminating voids in the emulsion and further firmly fixing the emulsion to the screen mesh.

10:一実施形態に係るスクリーン版
12:枠体
14、14a、14b:乳剤
16:メッシュ
18:印刷パターン開口部
20、20’、20”:フッ素含有シランカップリング剤の薄膜
22:内壁
24:上面
26:下面
30、40:他の実施形態に係るスクリーン版
50:一実施形態に係るメタルマスク
51:マスク単板
52:上面
53:下面
54:印刷パターン開口部
55、55’、55”:フッ素含有シランカップリング剤の薄膜
56:内壁
60、70:他の実施形態に係るメタルマスク
10: Screen plate according to one embodiment 12: Frame body 14, 14a, 14b: Emulsion 16: Mesh 18: Print pattern opening 20, 20 ′, 20 ″: Thin film of fluorine-containing silane coupling agent 22: Inner wall 24: Upper surface 26: Lower surface 30, 40: Screen plate according to another embodiment 50: Metal mask according to one embodiment 51: Mask single plate 52: Upper surface 53: Lower surface 54: Print pattern opening 55, 55 ′, 55 ″: Thin film of fluorine-containing silane coupling agent 56: inner wall 60, 70: metal mask according to another embodiment

Claims (25)

  1. 枠体に固定されたメッシュと、
    前記メッシュに充填され、貫通孔が形成された乳剤層と、
    前記貫通孔の内壁面の少なくとも一部に形成され、ケイ素、酸素、又は窒素のうち少なくとも1つの元素を含有する非晶質炭素膜層と、
    前記非晶質炭素膜層上の少なくとも一部に設けられたフッ素を含有するシランカップリング剤薄膜層と、
    を備えるスクリーン版。
    A mesh fixed to the frame,
    An emulsion layer filled with the mesh and having through-holes formed therein;
    An amorphous carbon film layer formed on at least a part of the inner wall surface of the through hole and containing at least one element of silicon, oxygen, or nitrogen;
    A silane coupling agent thin film layer containing fluorine provided on at least a part of the amorphous carbon film layer;
    With screen version. With screen version.
  2. 前記非晶質炭素膜が、窒素もしくは酸素、又は、窒素と酸素との混合物を用いてプラズマ処理される請求項1に記載のスクリーン版。 The screen plate according to claim 1, wherein the amorphous carbon film is subjected to plasma treatment using nitrogen or oxygen, or a mixture of nitrogen and oxygen.
  3. 前記非晶質炭素膜が、前記メッシュの表面にさらに形成される請求項1に記載のスクリーン版。 The screen plate according to claim 1, wherein the amorphous carbon film is further formed on a surface of the mesh.
  4. 前記非晶質炭素膜が、前記乳剤層の表面にさらに形成される請求項1に記載のスクリーン版。 The screen plate according to claim 1, wherein the amorphous carbon film is further formed on a surface of the emulsion layer.
  5. 前記乳剤層が被印刷物と対向して配置される下面を有し、前記シランカップリング剤薄膜層が、前記貫通孔の内壁面のうち、前記乳剤層の下面側の部分に設けられた請求項1に記載のスクリーン版。 The emulsion layer has a lower surface disposed to face the substrate, and the silane coupling agent thin film layer is provided on a portion of the inner wall surface of the through hole on the lower surface side of the emulsion layer. 1. A screen version according to 1.
  6. 前記シランカップリング剤薄膜層が、前記貫通孔の内壁面全体に設けられた請求項1に記載のスクリーン版。 The screen plate according to claim 1, wherein the silane coupling agent thin film layer is provided on the entire inner wall surface of the through hole.
  7. 前記シランカップリング剤薄膜層が、前記下面の前記貫通孔の近傍に設けられた請求項5に記載のスクリーン版。 The screen plate according to claim 5, wherein the silane coupling agent thin film layer is provided in the vicinity of the through hole on the lower surface.
  8. 枠体に直接に又はメッシュを介して間接に取り付けられた貫通孔を有するマスク基板と、
    前記貫通孔の内壁面の少なくとも一部に形成され、ケイ素、酸素、又は窒素のうち少なくとも1つの元素を含有する非晶質炭素膜層と、
    前記非晶質炭素膜層上の少なくとも一部に設けられたフッ素を含有するシランカップリング剤薄膜層と、
    を備えるスクリーン印刷用マスク。
    A mask substrate having a through-hole attached directly to the frame body or indirectly through a mesh;
    An amorphous carbon film layer formed on at least a part of the inner wall surface of the through hole and containing at least one element of silicon, oxygen, or nitrogen;
    A silane coupling agent thin film layer containing fluorine provided on at least a part of the amorphous carbon film layer;
    A screen printing mask comprising: A screen printing mask comprising:
  9. 前記非晶質炭素膜が、窒素もしくは酸素、又は、窒素と酸素との混合物を用いてプラズマ処理される請求項8に記載のスクリーン印刷用マスク。 The screen printing mask according to claim 8, wherein the amorphous carbon film is subjected to a plasma treatment using nitrogen, oxygen, or a mixture of nitrogen and oxygen.
  10. 前記非晶質炭素膜が、前記金属板の表面にさらに形成される請求項8に記載のスクリーン印刷用マスク。 The screen printing mask according to claim 8, wherein the amorphous carbon film is further formed on a surface of the metal plate.
  11. 前記マスク基板が被印刷物と対向して配置される下面を有し、前記シランカップリング剤薄膜層が、前記貫通孔の内壁面のうち、前記マスク基板の下面側の部分に設けられる請求項8に記載のスクリーン印刷用マスク。   9. The mask substrate has a lower surface disposed to face a substrate, and the silane coupling agent thin film layer is provided on a lower surface side portion of the mask substrate in an inner wall surface of the through hole. A mask for screen printing as described in 1.
  12. 前記シランカップリング剤薄膜層が、前記貫通孔の内壁面全体に設けられた請求項9に記載のスクリーン印刷用マスク。 The screen printing mask according to claim 9, wherein the silane coupling agent thin film layer is provided on the entire inner wall surface of the through hole.
  13. 前記シランカップリング剤薄膜層が、前記下面の前記貫通孔の近傍に設けられた請求項11に記載のスクリーン印刷用マスク。 The mask for screen printing according to claim 11, wherein the silane coupling agent thin film layer is provided in the vicinity of the through hole on the lower surface.
  14. 前記マスク基板が金属製又は樹脂製の板材から成る請求項8に記載のスクリーン印刷用マスク。 The mask for screen printing according to claim 8, wherein the mask substrate is made of a metal or resin plate.
  15. 枠体に固定されたメッシュと、
    前記メッシュの一方の面に取り付けられた貫通孔を有するマスク基板と、
    前記貫通孔の内壁面の少なくとも一部に形成され、ケイ素、酸素、又は窒素のうち少なくとも1つの元素を含有する非晶質炭素膜層と、
    前記非晶質炭素膜層上の少なくとも一部に設けられたフッ素を含有するシランカップリング剤薄膜層と、
    を備えるスクリーン印刷用マスク。
    A mesh fixed to the frame,

    A mask substrate having a through hole attached to one side of the mesh; A mask substrate having a through hole attached to one side of the mesh;
    An amorphous carbon film layer formed on at least a part of the inner wall surface of the through hole and containing at least one element of silicon, oxygen, or nitrogen; An amorphous carbon film layer formed on at least a part of the inner wall surface of the through hole and containing at least one element of silicon, oxygen, or nitrogen;
    A silane coupling agent thin film layer containing fluorine provided on at least a part of the amorphous carbon film layer; A silane coupling agent thin film layer containing fluorine provided on at least a part of the amorphous carbon film layer;
    A screen printing mask comprising: A screen printing mask comprising:
  16. 前記非晶質炭素膜が、窒素もしくは酸素、又は、窒素と酸素との混合物を用いてプラズマ処理される請求項15に記載のスクリーン印刷用マスク。 The mask for screen printing according to claim 15, wherein the amorphous carbon film is subjected to a plasma treatment using nitrogen or oxygen, or a mixture of nitrogen and oxygen.
  17. 前記非晶質炭素膜が、前記メッシュの表面にさらに形成される請求項15に記載のスクリーン印刷用マスク。 The screen printing mask according to claim 15, wherein the amorphous carbon film is further formed on a surface of the mesh.
  18. 前記非晶質炭素膜が、前記マスク基板の表面にさらに形成される請求項15に記載のスクリーン印刷用マスク。 The screen printing mask according to claim 15, wherein the amorphous carbon film is further formed on a surface of the mask substrate.
  19. 前記マスク基板が被印刷物と対向して配置される下面を有し、前記シランカップリング剤薄膜層が、前記貫通孔の内壁面のうち、前記マスク基板の下面側の部分に設けられる請求項15に記載のスクリーン印刷用マスク。   The mask substrate has a lower surface disposed to face a substrate, and the silane coupling agent thin film layer is provided on a lower surface side portion of the mask substrate in an inner wall surface of the through hole. A mask for screen printing as described in 1.
  20. 前記シランカップリング剤薄膜層が、前記貫通孔の内壁面全体に設けられた請求項15に記載のスクリーン印刷用マスク。 The screen printing mask according to claim 15, wherein the silane coupling agent thin film layer is provided on the entire inner wall surface of the through hole.
  21. 前記シランカップリング剤薄膜層が、前記下面の前記貫通孔の近傍に設けられた請求項19に記載のスクリーン印刷用マスク。 The screen printing mask according to claim 19, wherein the silane coupling agent thin film layer is provided in the vicinity of the through hole on the lower surface.
  22. 前記マスク基板が、ニッケル箔、ニッケル合金箔、ステンレス箔から成る群から選択された金属箔から成る請求項15に記載のスクリーン印刷用マスク。 The mask for screen printing according to claim 15, wherein the mask substrate is made of a metal foil selected from the group consisting of nickel foil, nickel alloy foil, and stainless steel foil.
  23. 枠体にメッシュを固定する工程と、
    前記メッシュに乳剤を充填して乳剤層を形成する工程と、
    前記乳剤層の印刷パターンに対応する位置に貫通孔を形成する工程と、
    前記貫通孔の内壁面の少なくとも一部に、ケイ素、酸素、又は窒素のうち少なくとも1つの元素を含有する非晶質炭素膜層を形成する工程と、

    前記非晶質炭素膜層上の少なくとも一部にフッ素を含有するシランカップリング剤薄膜層を形成する工程と、 A step of forming a fluorine-containing silane coupling agent thin film layer on at least a part of the amorphous carbon film layer, and
    を備えるスクリーン版の製造方法。 A method of manufacturing a screen plate including. Fixing the mesh to the frame, Fixing the mesh to the frame,
    Filling the mesh with an emulsion to form an emulsion layer; Filling the mesh with an emulsion to form an emulsion layer;
    Forming a through hole at a position corresponding to the printing pattern of the emulsion layer; Forming a through hole at a position corresponding to the printing pattern of the emulsion layer;
    Forming an amorphous carbon film layer containing at least one element of silicon, oxygen, or nitrogen on at least a part of the inner wall surface of the through hole; Forming an amorphous carbon film layer containing at least one element of silicon, oxygen, or nitrogen on at least a part of the inner wall surface of the through hole;
    Forming a silane coupling agent thin film layer containing fluorine in at least a part of the amorphous carbon film layer; Forming a silane coupling agent thin film layer containing fluorine in at least a part of the amorphous carbon film layer;
    A method for producing a screen plate comprising: A method for producing a screen plate comprising:
  24. 枠体に直接に又はメッシュを介して間接にマスク基板を固定する工程と、
    前記金属板の印刷パターンに対応する位置に貫通孔を形成する工程と、 A step of forming a through hole at a position corresponding to the printing pattern of the metal plate, and
    前記貫通孔の内壁面の少なくとも一部に、ケイ素、酸素、又は窒素のうち少なくとも1つの元素を含有する非晶質炭素膜層を形成する工程と、 A step of forming an amorphous carbon film layer containing at least one element of silicon, oxygen, or nitrogen on at least a part of the inner wall surface of the through hole.
    前記非晶質炭素膜層上の少なくとも一部にフッ素を含有するシランカップリング剤薄膜層を形成する工程と、 A step of forming a fluorine-containing silane coupling agent thin film layer on at least a part of the amorphous carbon film layer, and
    を備えるスクリーン印刷用マスクの製造方法。 A method of manufacturing a mask for screen printing. Fixing the mask substrate directly to the frame or indirectly through the mesh; Fixing the mask substrate directly to the frame or indirectly through the mesh;
    Forming a through hole at a position corresponding to the printed pattern of the metal plate; Forming a through hole at a position corresponding to the printed pattern of the metal plate;
    Forming an amorphous carbon film layer containing at least one element of silicon, oxygen, or nitrogen on at least a part of the inner wall surface of the through hole; Forming an amorphous carbon film layer containing at least one element of silicon, oxygen, or nitrogen on at least a part of the inner wall surface of the through hole;
    Forming a silane coupling agent thin film layer containing fluorine in at least a part of the amorphous carbon film layer; Forming a silane coupling agent thin film layer containing fluorine in at least a part of the amorphous carbon film layer;
    A method for producing a mask for screen printing comprising: A method for producing a mask for screen printing comprising:
  25. 枠体にメッシュを固定する工程と、
    前記メッシュの一方の面に貫通孔を有するマスク基板を取り付ける工程と、
    前記貫通孔の内壁面の少なくとも一部に、ケイ素、酸素、又は窒素のうち少なくとも1つの元素を含有する非晶質炭素膜層を形成する工程と、
    前記非晶質炭素膜層上の少なくとも一部にフッ素を含有するシランカップリング剤薄膜層を形成する工程と、
    を備えるスクリーン印刷用マスクの製造方法。
    Fixing the mesh to the frame,
    Attaching a mask substrate having a through hole on one side of the mesh;
    Forming an amorphous carbon film layer containing at least one element of silicon, oxygen, or nitrogen on at least a part of the inner wall surface of the through hole;

    Forming a silane coupling agent thin film layer containing fluorine in at least a part of the amorphous carbon film layer; Forming a silane coupling agent thin film layer containing fluorine in at least a part of the amorphous carbon film layer;
    A method for producing a mask for screen printing comprising: A method for producing a mask for screen printing comprising:
JP2011119476A 2010-05-28 2011-05-27 Stencil for screen printing having amorphous carbon film and method for producing the same Active JP5406884B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010123558 2010-05-28
JP2010123558 2010-05-28
JP2011119476A JP5406884B2 (en) 2010-05-28 2011-05-27 Stencil for screen printing having amorphous carbon film and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011119476A JP5406884B2 (en) 2010-05-28 2011-05-27 Stencil for screen printing having amorphous carbon film and method for producing the same

Publications (2)

Publication Number Publication Date
JP2012006390A JP2012006390A (en) 2012-01-12
JP5406884B2 true JP5406884B2 (en) 2014-02-05

Family

ID=45003711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011119476A Active JP5406884B2 (en) 2010-05-28 2011-05-27 Stencil for screen printing having amorphous carbon film and method for producing the same

Country Status (7)

Country Link
US (1) US9186879B2 (en)
EP (1) EP2578413B8 (en)
JP (1) JP5406884B2 (en)
KR (1) KR101479488B1 (en)
CN (1) CN102947103B (en)
TW (1) TWI500518B (en)
WO (1) WO2011148718A1 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9238350B2 (en) 2011-06-06 2016-01-19 Taiyo Yuden Chemical Technology Co., Ltd. Method for affixing water-and-oil-repellent layer to amorphous carbon film layer, and laminated body formed by said method
JP2013161871A (en) * 2012-02-02 2013-08-19 Hitachi High-Technologies Corp Printer, and method for manufacturing solar cell using the same
CN102615932B (en) * 2012-04-06 2013-12-11 深圳光韵达光电科技股份有限公司 Metal printing template, manufacturing method of metal printing template and coating solution used in metal printing template
CN103668066A (en) * 2012-09-11 2014-03-26 太阳化学工业株式会社 Net structural body capable of accommodating workpiece
JP5578215B2 (en) * 2012-09-14 2014-08-27 富士電機株式会社 Method for manufacturing magnetic recording medium
JPWO2014065207A1 (en) * 2012-10-26 2016-09-08 太陽誘電ケミカルテクノロジー株式会社 Mesh structure and manufacturing method thereof
JP6204657B2 (en) * 2012-12-03 2017-09-27 太陽誘電ケミカルテクノロジー株式会社 Filter having a water-repellent amorphous carbon film
WO2014189026A1 (en) * 2013-05-20 2014-11-27 太陽化学工業株式会社 Structure and stencil printing plate which have been subjected to wettability-improving surface modification, and processes for producing both
WO2014203668A1 (en) 2013-06-20 2014-12-24 住友ゴム工業株式会社 Surface modification method and surface modification body
JP6309748B2 (en) * 2013-12-02 2018-04-11 太陽誘電ケミカルテクノロジー株式会社 Electrical connection member mounting mask provided with amorphous carbon film, manufacturing method thereof, and electrical connection member mounting method using the electrical connection member mounting mask
JP6311068B2 (en) * 2014-07-22 2018-04-11 インテヴァック インコーポレイテッド Glass coating with improved scratch / abrasion resistance and oil repellency
JP6418011B2 (en) * 2015-03-04 2018-11-07 富士通株式会社 Metal surface treatment liquid, wiring structure, and manufacturing method of wiring structure
JP6613692B2 (en) 2015-08-03 2019-12-04 住友ゴム工業株式会社 Surface modification method and surface modified elastic body
US20180015766A1 (en) * 2015-08-25 2018-01-18 Photo Stencil, Llc High Definition Stencils With Easy to Clean Properties for Screen Printing
US20180201010A1 (en) * 2017-01-18 2018-07-19 Microsoft Technology Licensing, Llc Screen printing liquid metal
KR102176699B1 (en) * 2018-03-20 2020-11-09 강성배 Screen mask for pattern printing of solar cells

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62148267A (en) * 1985-12-24 1987-07-02 Mitsubishi Electric Corp Printer
JPH04336258A (en) 1991-05-14 1992-11-24 Citizen Watch Co Ltd Coating method of liquid repellent hard film
JPH05220922A (en) * 1992-02-18 1993-08-31 Matsushita Electric Ind Co Ltd Metal mask and production thereof
GB9319070D0 (en) * 1993-09-15 1993-11-03 Ncr Int Inc Stencil having improved wear-resistance and quality consistency and method of manufacturing the same
US5622108A (en) * 1996-01-30 1997-04-22 Universal Screenprinting Systems, Inc. Screen printing machine
JPH09265616A (en) * 1996-03-26 1997-10-07 Citizen Watch Co Ltd Magnetic head and its production
US5749292A (en) * 1996-09-25 1998-05-12 Chartpak, Inc. Relief decorating of ceramic articles using screen printing processes
JPH11245371A (en) 1998-02-27 1999-09-14 Sanyo Electric Co Ltd Mask and squeegee
JP2002067267A (en) 2000-08-24 2002-03-05 Citizen Watch Co Ltd Screen printer and method for manufacturing printing mask used therefor
JP4387765B2 (en) * 2003-11-12 2009-12-24 三菱マテリアル電子化成株式会社 Surface treatment agent for diamond-like coating
JP2005144973A (en) 2003-11-19 2005-06-09 Process Lab Micron:Kk Perforated printing mask
JP2006205716A (en) 2004-12-28 2006-08-10 Yuken Industry Co Ltd Metal mask
JP2006347062A (en) * 2005-06-17 2006-12-28 Fluoro Technology:Kk Plate film surface treating agent for screen printing plate
JP2007057722A (en) * 2005-08-23 2007-03-08 Canon Inc Particle transfer type display apparatus and method of manufacturing same
CN101125477B (en) * 2006-08-17 2011-06-29 比亚迪精密制造有限公司 Method for manufacturing screen printing net plate
JP5187924B2 (en) * 2007-08-21 2013-04-24 株式会社フロロテクノロジー Screen printing plate surface treatment agent
JP5432457B2 (en) 2008-01-28 2014-03-05 パナソニック株式会社 Method for producing diamond-like carbon coating
JP5467452B2 (en) * 2009-03-04 2014-04-09 学校法人東京電機大学 Method for surface modification of amorphous carbon film
JP2010247534A (en) * 2009-03-27 2010-11-04 Toppan Printing Co Ltd Method for printing and method for manufacturing printed material

Also Published As

Publication number Publication date
US9186879B2 (en) 2015-11-17
JP2012006390A (en) 2012-01-12
EP2578413A4 (en) 2015-05-20
TW201204563A (en) 2012-02-01
US20130220152A1 (en) 2013-08-29
WO2011148718A1 (en) 2011-12-01
CN102947103B (en) 2015-03-25
EP2578413B8 (en) 2019-03-20
EP2578413A1 (en) 2013-04-10
KR101479488B1 (en) 2015-01-06
TWI500518B (en) 2015-09-21
EP2578413B1 (en) 2019-01-16
KR20130009855A (en) 2013-01-23
CN102947103A (en) 2013-02-27

Similar Documents

Publication Publication Date Title
KR101675627B1 (en) Conductive member, method for producing same, touch panel and solar cell
US7105221B2 (en) Circuit board, laminated member for circuit board, and method for making laminated member for circuit board
CA2354753C (en) Formation of an embedded capacitor plane using a thin dielectric
JP4128885B2 (en) Method for forming fine wiring pattern
US9713261B2 (en) Fabrication process of stepped circuit board
US8984747B2 (en) Method for manufacturing fabric type circuit board
EP1648709B1 (en) Method for modifying the surface of substrate
US6420255B1 (en) Mounting substrate with a solder resist layer and method of forming the same
DE102011089096B4 (en) Melting element and method for its production
EP0355998B1 (en) Glass ceramic substrate having electrically conductive film
JP5016005B2 (en) Capacitor having an epoxy derivative layer cured with aminophenylfluorene
JP2009516080A (en) Electrode and method for forming the same
US6276055B1 (en) Method and apparatus for forming plugs in vias of a circuit board layer
US20080216314A1 (en) Method for manufacturing the bga package board
KR100377603B1 (en) Anisotropic conductive resin film
US20110259218A1 (en) Screen printing screen
EP2395541A2 (en) Conductive pattern and manufacturing method thereof
WO2007129554A1 (en) Thin-sheet glass laminate, process for manufacturing display apparatus using the laminate, and supporting glass substrate
JPWO2011001961A1 (en) Method for forming transparent conductive layer pattern
JP2010520823A (en) Method for printing fine pattern by intaglio printing and printing apparatus for fine pattern
US8231766B2 (en) Method for producing printed wiring board
CN1176567C (en) Method of manufacturing multilayer wiring board
JP5676749B2 (en) Copper foil for printed circuit
KR101328314B1 (en) Gravure Printing Engraving Roll and Manufacturing Method thereof
CN101971037A (en) Probe guard

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121002

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131022

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131101

R150 Certificate of patent or registration of utility model

Ref document number: 5406884

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250