JP5383232B2 - Power generation membrane of solid oxide fuel cell and solid oxide fuel cell having the same - Google Patents

Power generation membrane of solid oxide fuel cell and solid oxide fuel cell having the same Download PDF

Info

Publication number
JP5383232B2
JP5383232B2 JP2009019795A JP2009019795A JP5383232B2 JP 5383232 B2 JP5383232 B2 JP 5383232B2 JP 2009019795 A JP2009019795 A JP 2009019795A JP 2009019795 A JP2009019795 A JP 2009019795A JP 5383232 B2 JP5383232 B2 JP 5383232B2
Authority
JP
Japan
Prior art keywords
power generation
fuel cell
side electrode
conductivity
solid oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009019795A
Other languages
Japanese (ja)
Other versions
JP2010177105A (en
Inventor
靖彦 水流
一剛 森
弘一 武信
嘉範 榊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2009019795A priority Critical patent/JP5383232B2/en
Publication of JP2010177105A publication Critical patent/JP2010177105A/en
Application granted granted Critical
Publication of JP5383232B2 publication Critical patent/JP5383232B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Description

本発明は、固体電解質型燃料電池の発電膜及びこれを備えた固体電解質型燃料電池に関する。   The present invention relates to a power generation membrane for a solid oxide fuel cell and a solid oxide fuel cell including the same.

固体電解質型燃料電池(SOFC)の一般的な構成としては、図1に示すものが知られている。発電膜10は、固体電解質1とその両面に形成された燃料側電極2、空気側電極3から構成される。燃料側電極2側には導電性接合材4、インターコネクタ6が形成され、空気側電極3側には導電性接合材5、インターコネクタ7が形成されている。   As a general configuration of a solid oxide fuel cell (SOFC), the one shown in FIG. 1 is known. The power generation membrane 10 includes a solid electrolyte 1, a fuel side electrode 2 and an air side electrode 3 formed on both surfaces thereof. A conductive bonding material 4 and an interconnector 6 are formed on the fuel side electrode 2 side, and a conductive bonding material 5 and an interconnector 7 are formed on the air side electrode 3 side.

上記固体電解質1としては、イットリア安定化ジルコニア(YSZ)を用いることが提案されている。上記空気側電極3としては、優れた出力密度と高い耐久性が得られることから、組成式(La(1−y)SrMnOで表されるランタンストロンチウムマンガン酸化物(LSM)とYSZとのコンポジットが用いられる。上記燃料側電極2には、優れた電子伝導性、電極反応性、水素雰囲気中での安定性が必要とされる。燃料側電極2の材料としては、酸化ニッケル(NiO)及びYSZの混合物(NiO/YSZサーメット)が一般的に使用されている。 As the solid electrolyte 1, it has been proposed to use yttria stabilized zirconia (YSZ). As the air side electrode 3, since excellent power density and high durability can be obtained, lanthanum strontium manganese oxide (LSM) represented by the composition formula (La (1-y) Sr y ) z MnO 3 and A composite with YSZ is used. The fuel side electrode 2 is required to have excellent electron conductivity, electrode reactivity, and stability in a hydrogen atmosphere. As a material for the fuel side electrode 2, a mixture of nickel oxide (NiO) and YSZ (NiO / YSZ cermet) is generally used.

固体電解質型燃料電池の運転温度は一般的には約1000℃であるが、より低温(例えば約800℃以下)で作動する固体電解質型燃料電池が求められている。しかしながら、従来の固体電解質型燃料電池では、固体電解質型燃料電池の運転温度を1000℃から800℃以下に低下させると燃料側電極の分極が大きくなり、反応抵抗が大きくなって発電性能が低下するという問題があった。従って、800℃程度の比較的低温で運転するためには、800℃でも反応抵抗が低い燃料側電極が必要とされていた。   The operating temperature of a solid oxide fuel cell is generally about 1000 ° C., but a solid oxide fuel cell that operates at a lower temperature (for example, about 800 ° C. or less) is desired. However, in the conventional solid oxide fuel cell, when the operating temperature of the solid oxide fuel cell is decreased from 1000 ° C. to 800 ° C. or less, the polarization of the fuel side electrode increases, the reaction resistance increases, and the power generation performance decreases. There was a problem. Therefore, in order to operate at a relatively low temperature of about 800 ° C., a fuel side electrode having a low reaction resistance even at 800 ° C. has been required.

界面での電気抵抗を低減して高い発電性能を有する固体電解質型燃料電池とするために、例えば特許文献1に、電解質膜と空気極との間に、サマリアなどの元素をドープしたセリアの層を形成することが開示されている。   In order to obtain a solid electrolyte fuel cell having high power generation performance by reducing electrical resistance at the interface, for example, Patent Document 1 discloses a ceria layer doped with an element such as samaria between an electrolyte membrane and an air electrode. Is disclosed.

特開2001−283877号公報JP 2001-283877 A

サマリアドープセリアを燃料側電極に適用した場合、YSZに比べて、800℃の還元雰囲気における反応活性を向上させることが可能である。しかし、サマリアドープセリアは、還元雰囲気でイオン導電性及び電子導電性を示すため、イオン導電性のみを示すYSZよりも導電率が向上するものの、電極材料に適用するには導電率が不十分という問題があった。   When samaria-doped ceria is applied to the fuel side electrode, the reaction activity in a reducing atmosphere at 800 ° C. can be improved as compared with YSZ. However, samaria-doped ceria exhibits ionic conductivity and electronic conductivity in a reducing atmosphere, and thus the conductivity is improved compared to YSZ that exhibits only ionic conductivity, but the conductivity is insufficient for application to electrode materials. There was a problem.

本発明は、このような事情に鑑みてなされたものであって、低い運転温度でも燃料側電極の分極発生が抑えられた固体電解質型燃料電池の発電膜及びこれを備える固体電解質型燃料電池を提供する。   The present invention has been made in view of such circumstances, and a power generation membrane of a solid oxide fuel cell in which the occurrence of polarization of a fuel-side electrode is suppressed even at a low operating temperature, and a solid oxide fuel cell including the same provide.

本発明の固体電解質型燃料電池の発電膜は、固体電解質と、該固体電解質の一側に設けられた空気側電極と、他の側に設けられた燃料側電極とを有する固体電解質型燃料電池の発電膜であって、前記燃料側電極が、前記固体電解質側から順に、NiOと、Ce1−xLn(Ln:GdまたはTm、0.03≦x≦0.5)との混合物を含む第1層と、NiOと、還元雰囲気において前記Ce1−xLnよりも高い導電性を有する高導電性酸化物との混合物を含む第2層とを備える。 A power generation membrane of a solid oxide fuel cell according to the present invention includes a solid electrolyte, an air side electrode provided on one side of the solid electrolyte, and a fuel side electrode provided on the other side. The fuel-side electrode comprises, in order from the solid electrolyte side, NiO and Ce 1-x Ln x O 2 (Ln: Gd or Tm, 0.03 ≦ x ≦ 0.5). A first layer including a mixture, a second layer including NiO, and a second layer including a mixture of a highly conductive oxide having higher conductivity than Ce 1-x Ln x O 2 in a reducing atmosphere.

本発明者らは、Ce1−xGd及びCe1−xTmは、サマリアドープセリアよりも導電率が高いことを見出した。更に、上記組成範囲とすることにより、酸化雰囲気及び還元雰囲気のいずれにおいても顕著に高い導電率を示すことを見出した。
本発明の燃料側電極は、固体電解質側の第1層が、NiOとCe1−xGdまたはCe1−xTm(0.03≦x≦0.5)との混合物を含む層とされる。これにより、分極抵抗が低減される。また、第1層上に、Ce1−xGdまたはCe1−xTmよりも還元雰囲気における導電率(電子伝導率)が高い酸化物とNiOとの混合物を含む第2層が形成される。これにより、燃料側電極全体の導電性を向上させることができる。上述の2層構成の燃料側電極によると、反応活性を向上させることができる。
The inventors have found that Ce 1-x Gd x O 2 and Ce 1-x Tm x O 2 have higher electrical conductivity than samaria doped ceria. Furthermore, it has been found that by using the above composition range, the conductivity is remarkably high in both the oxidizing atmosphere and the reducing atmosphere.
In the fuel-side electrode of the present invention, the first layer on the solid electrolyte side is a mixture of NiO and Ce 1-x Gd x O 2 or Ce 1-x Tm x O 2 (0.03 ≦ x ≦ 0.5). It is made into the layer containing. Thereby, polarization resistance is reduced. In addition, a second layer containing a mixture of oxide and NiO having higher conductivity (electron conductivity) in a reducing atmosphere than Ce 1-x Gd x O 2 or Ce 1-x Tm x O 2 on the first layer. A layer is formed. Thereby, the electroconductivity of the whole fuel side electrode can be improved. According to the fuel-side electrode having the two-layer structure described above, the reaction activity can be improved.

上記発明において、前記NiOと前記Ce1−xLnとの混合比が、質量比で20:80から60:40の範囲内であることが好ましい。これにより、800℃における分極抵抗を大幅に低下させることができる。 In the above invention, the mixing ratio of the NiO and the Ce 1-x Ln x O 2 is preferably in the range of 20:80 to 60:40 by mass ratio. Thereby, the polarization resistance at 800 ° C. can be greatly reduced.

上記発明において、前記高導電性酸化物が、ランタンドープストロンチウムチタネート及びストロンチウムドープランタンクロマイトの少なくとも一方であることが好ましい。   In the above invention, the highly conductive oxide is preferably at least one of lanthanum-doped strontium titanate and strontium doped lanthanum chromite.

ランタンドープストロンチウムチタネート(Sr1−mLaTiO)及びストロンチウムドープランタンクロマイト(La1−nSrCrO)は、還元雰囲気で高い電子導電性を示す酸化物である。NiOとこれらの酸化物との混合物を含む第2層とすることにより、燃料側電極の導電性向上を図ることができる。 Lanthanum-doped strontium titanate (Sr 1-m La m TiO 3 ) and strontium doped lanthanum chromite (La 1-n Sr n CrO 3 ) are oxides that exhibit high electronic conductivity in a reducing atmosphere. By using the second layer containing a mixture of NiO and these oxides, the conductivity of the fuel side electrode can be improved.

上記発明において、前記NiOと前記高導電性酸化物との混合比が、質量比で40:60から80:20の範囲内であることが好ましい。上記混合比であれば、800℃においても十分な導電性を確保することが可能である。   In the said invention, it is preferable that the mixing ratio of the said NiO and the said highly conductive oxide exists in the range of 40:60 to 80:20 by mass ratio. If it is the said mixing ratio, it is possible to ensure sufficient electroconductivity also at 800 degreeC.

また、本発明は、上記の発電膜を備える固体電解質型燃料電池を提供する。
本発明の発電膜は、分極抵抗が低減されて高い反応活性が得られるとともに、高い導電性を示す。従って、上述の発電膜を備える固体電解質型燃料電池では、発電特性が大幅に向上する。
The present invention also provides a solid oxide fuel cell comprising the above power generation membrane.
The power generation film of the present invention exhibits high conductivity while reducing polarization resistance and obtaining high reaction activity. Therefore, in the solid oxide fuel cell including the above-described power generation membrane, power generation characteristics are greatly improved.

上述のような2層構成の燃料側電極とすることにより、800℃における燃料側電極での分極抵抗を低減できるとともに、燃料側電極の導電性を向上させることができる。これにより、燃料側電極での反応活性が高い発電膜とすることができる。従って、本発明の発電膜を備える固体電解質型燃料電池は、発電特性を向上させることが可能である。   By using the two-layer fuel side electrode as described above, the polarization resistance at the fuel side electrode at 800 ° C. can be reduced, and the conductivity of the fuel side electrode can be improved. Thereby, it can be set as the electric power generation film | membrane with high reaction activity in a fuel side electrode. Therefore, the solid oxide fuel cell including the power generation membrane of the present invention can improve power generation characteristics.

固体電解質型燃料電池の一例を示す概略図である。It is the schematic which shows an example of a solid oxide fuel cell. 本発明に係る固体電解質型燃料電池の発電膜の概略図である。It is the schematic of the electric power generation film | membrane of the solid oxide fuel cell which concerns on this invention. Ce1−xGd中のGd含有量と、800℃における酸素雰囲気または還元雰囲気での導電率との関係を表すグラフである。And Ce 1-x Gd x O Gd content in 2 is a graph showing the relationship between the conductivity of the oxygen atmosphere or a reducing atmosphere at 800 ° C..

以下、本発明の実施形態について説明する。
図2は、本実施形態に係る固体電解質型燃料電池の発電膜の断面図である。図2の発電膜10において、イットリア安定化ジルコニア(YSZ)からなる平板状の固体電解質1の一方の面に、ランタンストロンチウムマンガン酸化物(La(1−y)SrMnO(LSM)とYSZとのコンポジットからなる空気側電極3が形成される。固体電解質1の他方の面には、固体電解質1側から順に、第1層2a及び第2層2bが積層された燃料側電極2が形成される。
Hereinafter, embodiments of the present invention will be described.
FIG. 2 is a cross-sectional view of the power generation membrane of the solid oxide fuel cell according to this embodiment. In the power generation film 10 of FIG. 2, lanthanum strontium manganese oxide (La (1-y) Sr y ) z MnO 3 (LSM) is formed on one surface of a flat solid electrolyte 1 made of yttria-stabilized zirconia (YSZ). An air side electrode 3 made of a composite of YSZ and YSZ is formed. On the other surface of the solid electrolyte 1, a fuel side electrode 2 in which a first layer 2 a and a second layer 2 b are laminated in order from the solid electrolyte 1 side is formed.

第1層2aは、NiOと、Ce1−xLn(Ln:GdまたはTm、0.03≦x≦0.5)で表されるドープセリア化合物との混合物を含む。 The first layer 2 a includes a mixture of NiO and a doped ceria compound represented by Ce 1-x Ln x O 2 (Ln: Gd or Tm, 0.03 ≦ x ≦ 0.5).

表1に、ドーパント(Ln)を変えたCe0.8Ln0.2について、800℃水素ガス中での導電率を示す。導電率測定用試料は、Ce0.8Ln0.2で表される組成の粉末を粉末混合法により合成し、1500℃4時間の条件で焼結して得た。導電率は、直流4端子法により測定した。なお、800℃水素ガス中におけるYSZの導電率は0.05S/cmである。
いずれの元素をドーパントとしても、YSZより導電率が向上した。GdまたはTmをドーパントとした場合に、特に高い導電率が得られた。

Figure 0005383232
Table 1 shows the conductivity in hydrogen gas at 800 ° C. for Ce 0.8 Ln 0.2 O 2 in which the dopant (Ln) is changed. A sample for conductivity measurement was obtained by synthesizing a powder having a composition represented by Ce 0.8 Ln 0.2 O 2 by a powder mixing method and sintering it at 1500 ° C. for 4 hours. The conductivity was measured by a direct current four-terminal method. The conductivity of YSZ in 800 ° C. hydrogen gas is 0.05 S / cm.
Even if any element was used as a dopant, the conductivity was improved from that of YSZ. Particularly high electrical conductivity was obtained when Gd or Tm was used as a dopant.
Figure 0005383232

図3に、Ce1−xGdで表される化合物におけるGd量(x値)と、800℃における酸化雰囲気中(空気中)または還元雰囲気中(水素ガス中)での導電率との相関を表すグラフを示す。同図において、横軸はGd量、縦軸は酸化雰囲気での導電率(主軸)及び還元雰囲気での導電率(第2軸)である。導電率測定用試料は、Ce1−xGd(0≦x≦0.5)で表される組成の粉末を粉末混合法により合成し、(幅4mm、長さ20mm、高さ3mmの直方体)に成形した後、1500℃4時間の条件で焼結して得た。導電率は、直流4端子法により測定した。
酸化雰囲気(空気)中の導電率は酸素イオン伝導が主体であり、還元雰囲気(水素ガス)中の導電率は電子伝導が主体である。電極特性の観点から、酸化雰囲気及び還元雰囲気の両方の導電率が高いほど、反応活性が高くなる。図3に示すように、酸化雰囲気中での導電率は、Gd量x=0.03から急激に増大した後、徐々に増加した。x=0.3以上では、ほぼ一定となった。還元雰囲気中での導電率は、x=0.05まではGd量増加に伴い増加し、x=0.05を超えると徐々に減少した。図3の結果から、酸化雰囲気及び還元雰囲気のいずれにおいても高い伝導率を得るためには、Ce1−xGdで表される化合物におけるGd量は0.03≦x≦0.5、好ましくは0.03≦x≦0.1とされる。
FIG. 3 shows the amount of Gd (x value) in a compound represented by Ce 1-x Gd x O 2 and the conductivity in an oxidizing atmosphere (in air) or reducing atmosphere (in hydrogen gas) at 800 ° C. The graph showing the correlation of is shown. In the figure, the horizontal axis represents the amount of Gd, and the vertical axis represents the conductivity in the oxidizing atmosphere (main axis) and the conductivity in the reducing atmosphere (second axis). The conductivity measurement sample was prepared by synthesizing a powder having a composition represented by Ce 1-x Gd x O 2 (0 ≦ x ≦ 0.5) by a powder mixing method (width 4 mm, length 20 mm, height 3 mm). And then sintered under the condition of 1500 ° C. for 4 hours. The conductivity was measured by a direct current four-terminal method.
The conductivity in the oxidizing atmosphere (air) is mainly oxygen ion conduction, and the conductivity in the reducing atmosphere (hydrogen gas) is mainly electron conduction. From the viewpoint of electrode characteristics, the higher the conductivity of both the oxidizing atmosphere and the reducing atmosphere, the higher the reaction activity. As shown in FIG. 3, the conductivity in the oxidizing atmosphere increased rapidly after increasing rapidly from the Gd amount x = 0.03. At x = 0.3 or more, it was almost constant. The conductivity in the reducing atmosphere increased with increasing Gd amount up to x = 0.05, and gradually decreased when exceeding x = 0.05. From the result of FIG. 3, in order to obtain high conductivity in both the oxidizing atmosphere and the reducing atmosphere, the Gd amount in the compound represented by Ce 1-x Gd x O 2 is 0.03 ≦ x ≦ 0.5. Preferably, 0.03 ≦ x ≦ 0.1.

このように、上記組成のCe1−xGdまたはCe1−xTmで表される化合物は、酸化雰囲気及び還元雰囲気において高い導電率を有するため、燃料側電極での分極抵抗を低減することができ、高活性となる。 Thus, since the compound represented by Ce 1-x Gd x O 2 or Ce 1-x Tm x O 2 having the above composition has high conductivity in an oxidizing atmosphere and a reducing atmosphere, polarization at the fuel side electrode Resistance can be reduced and high activity is achieved.

ただし、Ce1−xGdまたはCe1−xTmは、Ni(水素ガス中においてNiOが還元される)よりも電子導電性が低い。そのため、第1層中の上記ドープセリア化合物の割合が多いと、分極抵抗が大きくなり、固体電解質型燃料電池としたときの発電性能が低下する。従って、NiOとドープセリア化合物との混合比は、質量比で20:80から60:40、好ましくは、40:60から50:50の範囲内とされる。 However, Ce 1-x Gd x O 2 or Ce 1-x Tm x O 2 has lower electronic conductivity than Ni (NiO is reduced in hydrogen gas). For this reason, if the ratio of the doped ceria compound in the first layer is large, the polarization resistance increases, and the power generation performance when a solid oxide fuel cell is obtained is lowered. Therefore, the mixing ratio of NiO and the doped ceria compound is in the range of 20:80 to 60:40, preferably 40:60 to 50:50 by mass ratio.

第2層2bは、NiOと、上記Ce1−xLn(Ln:GdまたはTm、0.03≦x≦0.5)で表されるドープセリア化合物よりも還元雰囲気における導電率が高い酸化物(高導電性酸化物)との混合物を含む。
表1に示すように、Ce0.8Gd0.2及びCe0.8Tm0.2の導電率は、それぞれ1.6S/cm、1.1S/cmである。電極材料として好適な導電率は100S/cm以上必要であることから、上述のドープセリア化合物のみでは導電率が不十分である。そこで、還元雰囲気で高い電子伝導性を有する高導電性酸化物とNiOとの混合物を含む第2層を形成することにより、燃料側電極全体の導電率を向上させる。
The second layer 2b has higher conductivity in a reducing atmosphere than NiO and a doped ceria compound represented by Ce 1-x Ln x O 2 (Ln: Gd or Tm, 0.03 ≦ x ≦ 0.5). Includes a mixture with an oxide (high conductivity oxide).
As shown in Table 1, the electrical conductivity of Ce 0.8 Gd 0.2 O 2 and Ce 0.8 Tm 0.2 O 2 is 1.6 S / cm and 1.1 S / cm, respectively. Since conductivity suitable as an electrode material is required to be 100 S / cm or more, the conductivity is insufficient only with the above-described doped ceria compound. Therefore, the conductivity of the entire fuel-side electrode is improved by forming a second layer containing a mixture of a highly conductive oxide having high electron conductivity in a reducing atmosphere and NiO.

高導電性酸化物は、例えば、ランタンドープストロンチウムチタネート(Sr1−mLaTiO)、ストロンチウムドープランタンクロマイト(La1−nSrCrO)とされる。
上記高導電性酸化物は、Niと比較すると電子導電性に劣る。そのため、第2層中の高導電性酸化物の割合が多いと、分極抵抗が大きくなり、固体電解質型燃料電池としたときの発電性能が低下する。従って、NiOと高導電性酸化物との混合比は、質量比で40:60から80:20、好ましくは、60:40から70:30の範囲内とされる。
The highly conductive oxide is, for example, lanthanum-doped strontium titanate (Sr 1-m La m TiO 3 ) or strontium doped lanthanum chromite (La 1-n Sr n CrO 3 ).
The highly conductive oxide is inferior in electronic conductivity as compared with Ni. Therefore, if the ratio of the highly conductive oxide in the second layer is large, the polarization resistance increases, and the power generation performance when a solid oxide fuel cell is obtained decreases. Therefore, the mixing ratio of NiO and highly conductive oxide is 40:60 to 80:20, preferably 60:40 to 70:30 in terms of mass ratio.

(実施例1)
固体電解質として、10mol%Sc−1mol%CeO安定化ジルコニア平板(直径30mm、厚さ200μm)を作製した。固体電解質の片面に、LSM(La0.8Sr0.2MnO)/YSZ(8mol%Y安定化ジルコニア)=80:20(質量比)の混合粉末と溶媒(エタノール)との混合液を、直径10mmの大きさで塗布した。その後、1300℃、4時間の条件で焼成し、空気側電極を形成したハーフセルを作製した。
Example 1
A 10 mol% Sc 2 O 3 −1 mol% CeO 2 stabilized zirconia flat plate (diameter 30 mm, thickness 200 μm) was prepared as a solid electrolyte. On one side of the solid electrolyte, mixed powder of LSM (La 0.8 Sr 0.2 MnO 3 ) / YSZ (8 mol% Y 2 O 3 stabilized zirconia) = 80: 20 (mass ratio) and solvent (ethanol) The mixed solution was applied with a diameter of 10 mm. Then, it baked on 1300 degreeC and the conditions for 4 hours, and produced the half cell which formed the air side electrode.

燃料側電極用材料として、粒径0.1μmのCe0.95Gd0.05(Gdドープセリア、以下GDCと称する)粉末を粉末混合法により合成した。固体電解質の空気側電極と反対側の面に、NiO:GDC=50:50(質量比)の混合粉末と溶媒(エタノール)との混合液を、直径10mmの大きさで塗布し、燃料側電極の第1層を形成した。なお、乾燥後の第1層膜厚が10μmとなるように、塗布量を調整した。
第1層乾燥後、NiO:SLT(ランタンドープストロンチウムチタネート、Sr0.7La0.3TiO)=70:30(質量比)の混合粉末と溶媒(エタノール)との混合液を、直径10mmの大きさで第1層上に塗布し、燃料側電極の第2層を形成した。なお、乾燥後の第2層膜厚が50μmとなるように、塗布量を調整した。
第2層乾燥後、固体電解質を1250℃、4時間の条件で焼成し、実施例1の発電膜を得た。
As a fuel-side electrode material, Ce 0.95 Gd 0.05 O 2 (Gd-doped ceria, hereinafter referred to as GDC) powder having a particle size of 0.1 μm was synthesized by a powder mixing method. A mixed liquid of NiO: GDC = 50: 50 (mass ratio) mixed powder and solvent (ethanol) is applied to the surface of the solid electrolyte opposite to the air side electrode in a size of 10 mm in diameter, and the fuel side electrode The first layer of was formed. The coating amount was adjusted so that the thickness of the first layer after drying was 10 μm.
After drying the first layer, a mixed solution of NiO: SLT (lanthanum-doped strontium titanate, Sr 0.7 La 0.3 TiO 3 ) = 70: 30 (mass ratio) and a solvent (ethanol) has a diameter of 10 mm. The second layer of the fuel side electrode was formed on the first layer. The coating amount was adjusted so that the thickness of the second layer after drying was 50 μm.
After drying the second layer, the solid electrolyte was baked at 1250 ° C. for 4 hours to obtain a power generation film of Example 1.

(実施例2)
実施例1と同様の条件で、固体電解質に空気側電極、及び、燃料側電極の第1層を形成した。
第1層乾燥後、NiO:LSC(ストロンチウムドープランタンクロマイト、La0.7Sr0.3CrO)=70:30(質量比)の混合粉末と溶媒(エタノール)との混合液を、直径10mmの大きさで第1層上に塗布し、燃料側電極の第2層を形成した。なお、乾燥後の第2層膜厚が50μmとなるように、塗布量を調整した。
第2層乾燥後、固体電解質を1250℃、4時間の条件で焼成し、実施例2の発電膜を得た。
(Example 2)
Under the same conditions as in Example 1, an air-side electrode and a fuel-side electrode first layer were formed on the solid electrolyte.
After drying the first layer, a mixed solution of NiO: LSC (strontium dope lanthanum chromite, La 0.7 Sr 0.3 CrO 3 ) = 70: 30 (mass ratio) and solvent (ethanol) has a diameter of 10 mm. The second layer of the fuel side electrode was formed on the first layer. The coating amount was adjusted so that the thickness of the second layer after drying was 50 μm.
After drying the second layer, the solid electrolyte was fired at 1250 ° C. for 4 hours to obtain a power generation film of Example 2.

(比較例)
実施例1と同様の条件で、ハーフセルを作製した。
固体電解質の空気側電極と反対側の面に、NiO:YSZ=70:30(質量比)の混合粉末と溶媒(エタノール)との混合液を、直径10mmの大きさで塗布し、燃料側電極を形成した。なお、乾燥後の燃料側電極の膜厚が80μmとなるように、塗布量を調整した。
燃料側電極乾燥後、固体電解質を1300℃、4時間の条件で焼成し、比較例の発電膜を得た。
(Comparative example)
A half cell was manufactured under the same conditions as in Example 1.
A mixed liquid of mixed powder of NiO: YSZ = 70: 30 (mass ratio) and solvent (ethanol) is applied to the surface of the solid electrolyte opposite to the air side electrode in a size of 10 mm in diameter, and the fuel side electrode Formed. The coating amount was adjusted so that the film thickness of the fuel side electrode after drying was 80 μm.
After drying the fuel side electrode, the solid electrolyte was fired at 1300 ° C. for 4 hours to obtain a comparative power generation film.

実施例1、実施例2、及び比較例1の発電膜に、発電試験用の白金電極を取り付け、800℃での燃料側電極のIR抵抗および分極抵抗を測定した。表2に、0.7VでのIR抵抗及び分極抵抗を示す。

Figure 0005383232
表2に示すように、2層構造とした実施例1及び実施例2では、800℃での分極抵抗が比較例の1/3〜1/2程度に低減した。 A platinum electrode for a power generation test was attached to the power generation films of Example 1, Example 2, and Comparative Example 1, and the IR resistance and polarization resistance of the fuel side electrode at 800 ° C. were measured. Table 2 shows the IR resistance and polarization resistance at 0.7V.
Figure 0005383232
As shown in Table 2, in Example 1 and Example 2 having a two-layer structure, the polarization resistance at 800 ° C. was reduced to about 1/3 to 1/2 of the comparative example.

(実施例3)
実施例1と同様の条件で、ハーフセルを作製した。
燃料側電極用材料として、粒径0.1μmのCe1−xGd(x=0〜0.5)粉末を粉末混合法により合成した。各組成のGDCについて、NiO:GDC=50:50(質量比)の混合粉末を調整した。固体電解質の空気側電極と反対側の面に、各混合粉末と溶媒(エタノール)との混合液を、直径10mmの大きさで塗布し、燃料側電極の第1層を形成した。なお、乾燥後の第1層膜厚が10μmとなるように、塗布量を調整した。
第1層乾燥後、実施例1と同様にして第2層を形成した。その後、実施例1と同様の条件で固体電解質を焼成し、各発電膜を得た。
(Example 3)
A half cell was manufactured under the same conditions as in Example 1.
As a fuel-side electrode material, a particle size of 0.1μm Ce 1-x Gd x O 2 (x = 0~0.5) powders were synthesized by a powder mixing method. About GDC of each composition, NiO: GDC = 50: 50 (mass ratio) mixed powder was prepared. A mixed liquid of each mixed powder and a solvent (ethanol) was applied to the surface of the solid electrolyte opposite to the air side electrode in a size of 10 mm in diameter to form the first layer of the fuel side electrode. The coating amount was adjusted so that the thickness of the first layer after drying was 10 μm.
After drying the first layer, a second layer was formed in the same manner as in Example 1. Then, the solid electrolyte was baked on the same conditions as Example 1, and each power generation film was obtained.

各発電膜に、発電試験用の白金電極を取り付け、800℃での燃料側電極の分極抵抗を測定した。表3に、0.7Vでの分極抵抗を示す。

Figure 0005383232
表3に示すように、Gdドープ量が0.03原子%から0.5原子%の範囲で、比較例1の分極抵抗に比べて、低い分極抵抗が得られた。特に、Gdドープ量0.03原子%から0.1原子%の範囲で、分極抵抗が大幅に低下した。 A platinum electrode for power generation test was attached to each power generation membrane, and the polarization resistance of the fuel side electrode at 800 ° C. was measured. Table 3 shows the polarization resistance at 0.7V.
Figure 0005383232
As shown in Table 3, when the Gd doping amount was in the range of 0.03 atomic% to 0.5 atomic%, a low polarization resistance was obtained as compared with the polarization resistance of Comparative Example 1. In particular, the polarization resistance was significantly reduced when the Gd doping amount was in the range of 0.03 atomic% to 0.1 atomic%.

(実施例4)
第1層の燃料側電極材料をCe1−xTm(x=0〜0.5)とした以外は、実施例3と同様にして各発電膜を得た。
Example 4
Each power generation membrane was obtained in the same manner as Example 3 except that the fuel-side electrode material of the first layer was Ce 1-x Tm x O 2 (x = 0 to 0.5).

各発電膜に、発電試験用の白金電極を取り付け、800℃での燃料側電極の分極抵抗を測定した。表4に、0.7Vでの分極抵抗を示す。

Figure 0005383232
表4に示すように、Tmドープ量が0.05原子%から0.5原子%の範囲で、比較例1の分極抵抗に比べて、低い分極抵抗が得られた。特に、Gdドープ量0.05原子%から0.1原子%の範囲で、分極抵抗が大幅に低下した。なお、Tmドープ量0.03原子%においても、実施例3と同様に、低い分極抵抗が得られることは容易に推測できる。 A platinum electrode for power generation test was attached to each power generation membrane, and the polarization resistance of the fuel side electrode at 800 ° C. was measured. Table 4 shows the polarization resistance at 0.7V.
Figure 0005383232
As shown in Table 4, when the Tm doping amount was in the range of 0.05 atomic% to 0.5 atomic%, a lower polarization resistance was obtained compared to the polarization resistance of Comparative Example 1. In particular, the polarization resistance was significantly reduced when the Gd doping amount was in the range of 0.05 atomic% to 0.1 atomic%. It can be easily estimated that a low polarization resistance can be obtained even at a Tm doping amount of 0.03 atomic%, as in Example 3.

(実施例5)
実施例1と同様にして、ハーフセルを作製した。
燃料側電極用材料として、粒径0.1μmのCe0.95Gd0.05粉末を粉末混合法により合成した。NiOと上記組成のGDC粉末とを、質量比で10:90〜80:20の割合で混合した混合粉末を調整した。固体電解質の空気側電極と反対側の面に、各混合比の混合粉末と溶媒(エタノール)との混合液を、直径10mmの大きさで塗布し、燃料側電極の第1層を形成した。なお、乾燥後の第1層膜厚が10μmとなるように、塗布量を調整した。
第1層乾燥後、実施例1と同様にして第2層を形成した。その後、実施例1と同様の条件で固体電解質を焼成し、各発電膜を得た。
(Example 5)
A half cell was produced in the same manner as in Example 1.
As a fuel-side electrode material, Ce 0.95 Gd 0.05 O 2 powder having a particle size of 0.1 μm was synthesized by a powder mixing method. A mixed powder in which NiO and GDC powder having the above composition were mixed at a mass ratio of 10:90 to 80:20 was prepared. On the surface of the solid electrolyte opposite to the air-side electrode, a mixed liquid of mixed powder and solvent (ethanol) with each mixing ratio was applied in a size of 10 mm in diameter to form the first layer of the fuel-side electrode. The coating amount was adjusted so that the thickness of the first layer after drying was 10 μm.
After drying the first layer, a second layer was formed in the same manner as in Example 1. Then, the solid electrolyte was baked on the same conditions as Example 1, and each power generation film was obtained.

各発電膜に、発電試験用の白金電極を取り付け、800℃での燃料側電極の分極抵抗を測定した。表5に、0.7Vでの分極抵抗を示す。

Figure 0005383232
以上の結果から、NiO:GDCを20:80〜60:40(質量比)とすることにより、800℃での分極抵抗を低下させることができた。特に、NiO:GDC=40:60から50:50の範囲内で、分極抵抗を大幅に低減することができた。 A platinum electrode for power generation test was attached to each power generation membrane, and the polarization resistance of the fuel side electrode at 800 ° C. was measured. Table 5 shows the polarization resistance at 0.7V.
Figure 0005383232
From the above results, the polarization resistance at 800 ° C. could be reduced by setting NiO: GDC to 20:80 to 60:40 (mass ratio). In particular, the polarization resistance could be greatly reduced within the range of NiO: GDC = 40: 60 to 50:50.

(実施例6)
NiOとSLT(Sr0.7La0.3TiO)とを、質量比で20:80〜80:20の割合で混合した混合粉末を調整した。各混合比の混合粉末を(幅4mm、長さ20mm、高さ3mmの直方体)に成形し、1500℃4時間の条件で焼結して、導電率測定用試料を得た。
(Example 6)
A mixed powder in which NiO and SLT (Sr 0.7 La 0.3 TiO 3 ) were mixed at a mass ratio of 20:80 to 80:20 was prepared. A mixed powder of each mixing ratio was formed into a rectangular parallelepiped having a width of 4 mm, a length of 20 mm, and a height of 3 mm, and sintered at 1500 ° C. for 4 hours to obtain a sample for measuring conductivity.

(比較例2)
NiOとYSZとを、質量比16.2:83.8〜63.5:36.5の割合で混合した混合粉末を調整した。各混合比の混合粉末を(幅4mm、長さ20mm、高さ3mmの直方体)に成形し、1500℃4時間の条件で焼結して、導電率測定用試料を得た。
(Comparative Example 2)
A mixed powder in which NiO and YSZ were mixed at a mass ratio of 16.2: 83.8 to 63.5: 36.5 was prepared. A mixed powder of each mixing ratio was formed into a rectangular parallelepiped having a width of 4 mm, a length of 20 mm, and a height of 3 mm, and sintered at 1500 ° C. for 4 hours to obtain a sample for measuring conductivity.

実施例6の試料について、800℃、900℃及び1000℃における水素ガス中での導電率を測定した。また、比較例2の試料について、800℃における水素ガス中での導電率を測定した。導電率は、直流4端子法により測定した。実施例6の結果を表6に、比較例2の結果を表7に示す。

Figure 0005383232
Figure 0005383232
For the sample of Example 6, the conductivity in hydrogen gas at 800 ° C., 900 ° C. and 1000 ° C. was measured. Further, the conductivity of the sample of Comparative Example 2 in hydrogen gas at 800 ° C. was measured. The conductivity was measured by a direct current four-terminal method. The results of Example 6 are shown in Table 6, and the results of Comparative Example 2 are shown in Table 7.
Figure 0005383232
Figure 0005383232

表6に示すように、実施例6(NiO/SLT)は、温度が変化しても導電率はほぼ同じであった。比較例2(NiO/YSZ)は、NiOの割合が減少するに伴い、導電率が大幅に低下した。特に、NiOが40質量%以下では極めて低い導電率であった。一方、実施例6では、NiOが40質量%以下でも高い導電率を示した。   As shown in Table 6, in Example 6 (NiO / SLT), the conductivity was almost the same even when the temperature was changed. In Comparative Example 2 (NiO / YSZ), the electrical conductivity significantly decreased as the NiO ratio decreased. In particular, the conductivity was very low when NiO was 40% by mass or less. On the other hand, Example 6 showed high conductivity even when NiO was 40% by mass or less.

このように、NiO/SLTはNiO/YSZに比べて高い導電性を示すため、NiO/SLTを燃料側電極の第2層に適用することにより、固体電解質型燃料電池の発電特性を大幅に向上させることができる。   Thus, since NiO / SLT shows higher conductivity than NiO / YSZ, the power generation characteristics of the solid oxide fuel cell are greatly improved by applying NiO / SLT to the second layer of the fuel side electrode. Can be made.

1 固体電解質
2 燃料側電極
2a 第1層
2b 第2層
3 空気側電極
4,5 導電性接合材
6,7 インターコネクタ
10 発電膜
DESCRIPTION OF SYMBOLS 1 Solid electrolyte 2 Fuel side electrode 2a 1st layer 2b 2nd layer 3 Air side electrode 4,5 Conductive joining material 6,7 Interconnector 10 Power generation film

Claims (4)

固体電解質と、該固体電解質の一側に設けられた空気側電極と、他の側に設けられた燃料側電極とを有する固体電解質型燃料電池の発電膜であって、
前記燃料側電極が、前記固体電解質側から順に、
NiOと、Ce1−xLn(Ln:GdまたはTm、0.03≦x≦0.5)との混合物を含む第1層と、
NiOと、還元雰囲気において前記Ce1−xLnよりも高い導電性を有する高導電性酸化物との混合物を含む第2層と
を備え
前記高導電性酸化物が、ランタンドープストロンチウムチタネート及びストロンチウムドープランタンクロマイトの少なくとも一方である固体電解質型燃料電池の発電膜。
A power generation membrane of a solid oxide fuel cell having a solid electrolyte, an air-side electrode provided on one side of the solid electrolyte, and a fuel-side electrode provided on the other side,
The fuel side electrode, in order from the solid electrolyte side,
A first layer comprising a mixture of NiO and Ce 1-x Ln x O 2 (Ln: Gd or Tm, 0.03 ≦ x ≦ 0.5);
A second layer comprising a mixture of NiO and a highly conductive oxide having a conductivity higher than that of Ce 1-x Ln x O 2 in a reducing atmosphere ;
The power generation film of a solid oxide fuel cell, wherein the highly conductive oxide is at least one of lanthanum-doped strontium titanate and strontium doped planan chromite .
前記NiOと前記Ce1−xLnとの混合比が、質量比で20:80から60:40の範囲内である請求項1に記載の固体電解質型燃料電池の発電膜。 2. The power generation membrane of a solid oxide fuel cell according to claim 1, wherein a mixing ratio of the NiO and the Ce 1-x Ln x O 2 is in a range of 20:80 to 60:40 by mass ratio. 前記NiOと前記高導電性酸化物との混合比が、質量比で40:60から80:20の範囲内である請求項に記載の固体電解質型燃料電池の発電膜。 2. The power generation membrane of a solid oxide fuel cell according to claim 1 , wherein a mixing ratio of the NiO and the highly conductive oxide is within a range of 40:60 to 80:20 by mass ratio. 請求項1乃至請求項のいずれか1項に記載の発電膜を備える固体電解質型燃料電池。 A solid oxide fuel cell comprising the power generation film according to any one of claims 1 to 3 .
JP2009019795A 2009-01-30 2009-01-30 Power generation membrane of solid oxide fuel cell and solid oxide fuel cell having the same Active JP5383232B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009019795A JP5383232B2 (en) 2009-01-30 2009-01-30 Power generation membrane of solid oxide fuel cell and solid oxide fuel cell having the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009019795A JP5383232B2 (en) 2009-01-30 2009-01-30 Power generation membrane of solid oxide fuel cell and solid oxide fuel cell having the same

Publications (2)

Publication Number Publication Date
JP2010177105A JP2010177105A (en) 2010-08-12
JP5383232B2 true JP5383232B2 (en) 2014-01-08

Family

ID=42707823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009019795A Active JP5383232B2 (en) 2009-01-30 2009-01-30 Power generation membrane of solid oxide fuel cell and solid oxide fuel cell having the same

Country Status (1)

Country Link
JP (1) JP5383232B2 (en)

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5021304A (en) * 1989-03-22 1991-06-04 Westinghouse Electric Corp. Modified cermet fuel electrodes for solid oxide electrochemical cells
JP3330198B2 (en) * 1993-08-06 2002-09-30 株式会社フジクラ Solid oxide fuel cell
JPH07249412A (en) * 1994-03-11 1995-09-26 Mitsubishi Heavy Ind Ltd Electrochemical cell
JPH08213029A (en) * 1995-02-06 1996-08-20 Fujikura Ltd Fuel electrode of solid electrolyte fuel cell
JPH1021931A (en) * 1996-06-27 1998-01-23 Kyocera Corp Solid electrolyte type fuel cell
NL1009060C2 (en) * 1998-05-04 1999-11-05 Stichting Energie Electrochemical cell.
JP2001256990A (en) * 2000-03-13 2001-09-21 Mitsuru Sano Solid electrolytic fuel cell operable at low temperature
US6558831B1 (en) * 2000-08-18 2003-05-06 Hybrid Power Generation Systems, Llc Integrated SOFC
JP3871903B2 (en) * 2001-05-30 2007-01-24 日本電信電話株式会社 Method for introducing electrode active oxide into fuel electrode for solid oxide fuel cell
JP2003282070A (en) * 2002-03-26 2003-10-03 Japan Science & Technology Corp Solid oxide type fuel cell
MXPA04012068A (en) * 2002-06-06 2005-03-07 Univ Pennsylvania Ceramic anodes and method of producing the same.
JP2004265746A (en) * 2003-03-03 2004-09-24 Toto Ltd Solid oxide fuel cell
JP2005235549A (en) * 2004-02-19 2005-09-02 Mitsubishi Materials Corp Solid oxide fuel cell
CN1985397B (en) * 2004-06-10 2012-07-04 丹麦科技大学 Solid oxide fuel cell
JP2006059611A (en) * 2004-08-18 2006-03-02 Mitsui Mining & Smelting Co Ltd Ceria based solid electrolyte fuel cell and its manufacturing method
RU2354013C1 (en) * 2005-01-31 2009-04-27 Текникал Юниверсити Оф Денмарк Anode resistant to oxidation-reduction
JP4706997B2 (en) * 2005-04-06 2011-06-22 日産自動車株式会社 Fuel electrode material for solid oxide fuel cell and solid oxide fuel cell
EP1760817B1 (en) * 2005-08-31 2013-08-21 Technical University of Denmark Reversible solid oxide fuell cell stack and method for preparing same
JP4596158B2 (en) * 2005-09-07 2010-12-08 Toto株式会社 Solid oxide fuel cell
DE102006030393A1 (en) * 2006-07-01 2008-01-03 Forschungszentrum Jülich GmbH Anode for a high temperature fuel cell comprises a porous ceramic structure with a first electron-conducting phase and a second ion-conducting phase containing yttrium or scandium-stabilized zirconium dioxide
JP5196216B2 (en) * 2006-10-27 2013-05-15 独立行政法人産業技術総合研究所 Electrochemical reactor
EP1928049A1 (en) * 2006-11-23 2008-06-04 Technical University of Denmark Thin solid oxide cell
JP5112711B2 (en) * 2007-02-09 2013-01-09 日本電信電話株式会社 Method for producing electrode for solid oxide fuel cell and solid oxide fuel cell
JP2009016109A (en) * 2007-07-03 2009-01-22 Tokyo Electric Power Co Inc:The Cell for solid oxide fuel battery, and solid oxide fuel battery

Also Published As

Publication number Publication date
JP2010177105A (en) 2010-08-12

Similar Documents

Publication Publication Date Title
AU2011209829B2 (en) Phase stable doped zirconia electrolyte compositions with low degradation
US7462412B2 (en) Solid oxide fuel cell
EP2529442A2 (en) Phase stable doped zirconia electrolyte compositions with low degradation
KR20130099704A (en) Functional layer material for solid oxide fuel cell, functional layer manufactured using the material and solid oxide fuel cell including the functional layer
US7569292B2 (en) Solid oxide fuel cell
US20130295489A1 (en) Anode support for solid oxide fuel cell, method of manufacturing the same, and solid oxide fuel cell including the same
JP6573243B2 (en) Air electrode composition, air electrode and fuel cell including the same
JP5336207B2 (en) Solid oxide fuel cell
JP2006351406A (en) Air electrode powder for ceria coated sofc, its manufacturing method, and manufacturing method of air electrode
JP2011210623A (en) Power generation film for solid electrolyte fuel cell, and solid electrolyte fuel cell having the same
JP4719940B2 (en) Interconnector material and solid oxide fuel cell having the same
JP4496749B2 (en) Solid oxide fuel cell
KR20120135463A (en) Cathode material for fuel cell, and cathode for fuel cell and solid oxide fuel cell including the material
JP7442071B2 (en) Membrane electrode assemblies, electrochemical devices and electrochemical systems
US20120189944A1 (en) Solid electrolyte for solid oxide fuel cell, and solid oxide fuel cell including the solid electrolyte
JP5133787B2 (en) Solid oxide fuel cell
JP2004303712A (en) Solid oxide fuel cell
JP2017157553A (en) Fuel cell
JP5383232B2 (en) Power generation membrane of solid oxide fuel cell and solid oxide fuel cell having the same
JP3256919B2 (en) Solid electrolyte fuel cell
JP5117834B2 (en) Solid oxide fuel cell
JP2004303713A (en) Solid oxide fuel cell
JP2005243473A (en) Cerium based solid electrolyte and its manufacturing method
JP2008258170A (en) Solid oxide fuel cell
US20210408569A1 (en) Membrane electrode assembly, solid oxide fuel cell, and electrochemical device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111020

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20111027

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20111027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130528

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131001

R151 Written notification of patent or utility model registration

Ref document number: 5383232

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350