JP5381248B2 - Power supply control device and control method thereof - Google Patents

Power supply control device and control method thereof Download PDF

Info

Publication number
JP5381248B2
JP5381248B2 JP2009087534A JP2009087534A JP5381248B2 JP 5381248 B2 JP5381248 B2 JP 5381248B2 JP 2009087534 A JP2009087534 A JP 2009087534A JP 2009087534 A JP2009087534 A JP 2009087534A JP 5381248 B2 JP5381248 B2 JP 5381248B2
Authority
JP
Japan
Prior art keywords
temperature
energization
power supply
control device
path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009087534A
Other languages
Japanese (ja)
Other versions
JP2010239835A (en
Inventor
豊 樋口
成治 高橋
佑樹 杉沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Wiring Systems Ltd
AutoNetworks Technologies Ltd
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Wiring Systems Ltd
AutoNetworks Technologies Ltd
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Wiring Systems Ltd, AutoNetworks Technologies Ltd, Sumitomo Electric Industries Ltd filed Critical Sumitomo Wiring Systems Ltd
Priority to JP2009087534A priority Critical patent/JP5381248B2/en
Priority to CN201080014620.0A priority patent/CN102369643B/en
Priority to PCT/JP2010/055635 priority patent/WO2010113916A1/en
Priority to DE112010001323.3T priority patent/DE112010001323B4/en
Priority to US13/259,596 priority patent/US8918222B2/en
Publication of JP2010239835A publication Critical patent/JP2010239835A/en
Application granted granted Critical
Publication of JP5381248B2 publication Critical patent/JP5381248B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0031Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using battery or load disconnect circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/08Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current
    • H02H3/085Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current making use of a thermal sensor, e.g. thermistor, heated by the excess current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/002Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which a reserve is maintained in an energy source by disconnecting non-critical loads, e.g. maintaining a reserve of charge in a vehicle battery for starting an engine
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/005Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting using a power saving mode
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems

Description

本発明は、電力供給制御装置およびその制御方法に関し、特に、電力供給制御装置がスリープモードを有する場合における、負荷の通電路を保護する技術に関する。   The present invention relates to a power supply control device and a control method thereof, and more particularly to a technique for protecting a load energization path when the power supply control device has a sleep mode.

従来、電源と負荷とを接続する通電経路内に、例えばパワーMOSFETなどの大電力用半導体スイッチ素子を設け、この半導体スイッチ素子をオン・オフさせることにより負荷への電流供給を制御するとともに、負荷への通電路を過電流から保護するようにした電力供給制御装置が提供されている。このような電力供給制御装置では、過電流が流れると上記半導体スイッチ素子の制御端子の電位を制御回路によって制御して当該半導体スイッチ素子をオフにして通電を遮断するものが知られている(文献1参照)。   Conventionally, a high-power semiconductor switch element such as a power MOSFET is provided in an energization path connecting a power source and a load, and current supply to the load is controlled by turning this semiconductor switch element on and off, and the load There is provided a power supply control device that protects an energization path to an overcurrent from overcurrent. In such a power supply control device, when an overcurrent flows, a device that controls the potential of the control terminal of the semiconductor switch element by a control circuit to turn off the semiconductor switch element to cut off the current supply (references) 1).

また、電力供給制御装置が車載用の電力供給制御装置である場合、バッテリ上がりを防止するために、負荷の動作指示が無い場合には、消費電流を抑制する状態(スリープ状態)とすることが行われている。通常、このスリープ状態では、電力供給制御装置の機能は、スリープ状態を解除する機能を除いて、停止状態とされる。   In addition, when the power supply control device is an on-vehicle power supply control device, in order to prevent the battery from running out, when there is no load operation instruction, the current consumption may be suppressed (sleep state). Has been done. Normally, in this sleep state, the functions of the power supply control device are stopped, except for the function for canceling the sleep state.

特開2001−217696号公報JP 2001-217696 A

ところで、本出願の発明者らは、上記電力供給制御装置による通電路の保護を、通電路の温度検出に基づいて行う方法を考案した。その方法では、通電路の温度が、通電電流を検出して、通電電流による通電路の発熱と、通電路の放熱とに基づいて算出推定される。しかしながら、スリープ状態においては、上記したように、電力供給制御装置の動作はその一部を除いて停止されるため、通電路の温度算出を好適に行えず、通電路の保護を適切に行えない場合が生ずる虞があった。   By the way, the inventors of the present application have devised a method for protecting the energization path by the power supply control device based on temperature detection of the energization path. In this method, the temperature of the energization path is calculated and estimated based on the heat generation of the energization path due to the energization current and the heat dissipation of the energization path by detecting the energization current. However, in the sleep state, as described above, since the operation of the power supply control device is stopped except for a part thereof, the temperature calculation of the energization path cannot be suitably performed, and the energization path cannot be properly protected. There was a possibility that a case might occur.

本発明は上記のような事情に基づいて完成されたものであって、スリープモードを有しつつ、適切に通電路の保護を行うことのできる電力供給制御装置およびその制御方法を提供することを目的とする。   The present invention has been completed based on the above-described circumstances, and provides a power supply control device and a control method thereof that can appropriately protect a current path while having a sleep mode. Objective.

上記の目的を達成するための手段として、第1の発明に係る電力供給制御装置は、電源から負荷への電力供給を制御する電力供給制御装置であって、前記電源から前記負荷へ電力を供給する通電路に接続され、消費電流を抑えたスリープモードの動作モードを有する電力供給制御装置において、前記電源と前記通電路との間に設けられ、前記電源から前記負荷への電力供給の許可および禁止を切替えるスイッチ回路と、前記負荷への通電の開始または終了を指示する通電指示信号に応じて前記スイッチ回路の切替を制御するとともに、前記通電路の温度を、前記負荷への通電の有無にかかわらず算出し、前記スリープモードでは算出せず、算出された前記通電路の温度が所定の上限値に達した場合、前記スイッチ回路の通電を禁止して前記通電路の保護を行う通電路保護回路と、前記通電路の温度が所定の温度条件を満たす場合、該電力供給制御装置を前記スリープモードに設定するスリープモード設定回路とを備える。   As means for achieving the above object, a power supply control device according to a first invention is a power supply control device that controls power supply from a power source to a load, and supplies power from the power source to the load. In a power supply control device having a sleep mode operation mode that is connected to a current path that suppresses current consumption, the power supply control apparatus is provided between the power source and the current path, and permits power supply from the power source to the load and The switching of the switch circuit is controlled according to a switch circuit for switching prohibition and an energization instruction signal for instructing start or end of energization to the load, and the temperature of the energization path is set to whether or not the load is energized Regardless of calculation, not in the sleep mode, and when the calculated temperature of the energization path reaches a predetermined upper limit value, energization of the switch circuit is prohibited and the communication is not performed. Energizing circuit protection circuit for protecting the road, the case where the temperature of the current path is predetermined temperature condition is satisfied, and a sleep mode setting circuit for setting the electric power supply control apparatus to the sleep mode.

第2の発明は、第1の発明の電力供給制御装置において、前記所定の温度条件は、前記負荷への通電の終了を指示する通電指示を受け取った後において、前記通電路の温度が所定のしきい値温度まで低下することである。
第3の発明は、第1または2の発明の電力供給制御装置において、前記通電路保護回路は、前記通電路に流れる通電電流を検出する電流検出手段と、環境温度を検出する温度検出手段と、前記通電路の前記環境温度からの上昇温度を、前記通電路に流れる通電電流による前記通電路の発熱と、前記通電路の放熱との差に基づいて算出し、前記通電路の温度を、前記環境温度に前記通電路の前記上昇温度を加算して算出する電線温度演算回路と、前記通電指示信号にしたがって前記スイッチ回路のオン・オフを制御するとともに、前記通電路の温度が所定の上限値に達した場合、前記スイッチ回路をオフする通電判断制御回路とを含む。
According to a second aspect of the present invention, in the power supply control device of the first aspect, the predetermined temperature condition is that the temperature of the energization path is predetermined after receiving an energization instruction instructing the end of energization of the load. It falls to the threshold temperature.
According to a third aspect of the present invention, in the power supply control device of the first or second aspect, the energization path protection circuit includes a current detection unit that detects an energization current flowing through the energization path, and a temperature detection unit that detects an environmental temperature. The temperature rise from the environmental temperature of the current path is calculated based on the difference between the heat generated in the current path due to the current flowing through the current path and the heat radiation of the current path, and the temperature of the current path is calculated as follows: An electric wire temperature calculation circuit that calculates the ambient temperature by adding the rising temperature of the energization path, and controls on / off of the switch circuit according to the energization instruction signal, and the temperature of the energization path is a predetermined upper limit An energization determination control circuit for turning off the switch circuit when the value is reached.

第4の発明は、第1から第3のいずれか一つの発明の電力供給制御装置において、前記しきい値温度は、環境温度に所定の温度値を加算した温度である。   According to a fourth aspect of the present invention, in the power supply control device according to any one of the first to third aspects, the threshold temperature is a temperature obtained by adding a predetermined temperature value to the environmental temperature.

また、上記の目的を達成するための手段として、第5の発明に係る電力供給制御装置の制御方法は、電源から負荷へ電力を供給する通電路に接続され、前記電源から前記負荷への電力供給を制御する電力供給制御装置であって、前記電源から前記負荷への電力供給の許可および禁止を切替えるスイッチ回路と、消費電流を抑えたスリープモードの動作モードとを有する電力供給制御装置の制御方法において、前記負荷への通電の開始を指示する通電指示の受け取りに応じて、前記通電路に流れる通電電流を検出する検出工程と、前記通電路の温度を、前記負荷への通電の有無にかかわらず算出する算出工程と、前記通電路の温度が所定の上限値に達した場合、前記スイッチ回路の通電を禁止する禁止工程と、前記通電路の温度が所定の温度条件を満たす場合、該電力供給制御装置を前記スリープモードに設定する設定工程とを含む。   As a means for achieving the above object, a control method for a power supply control device according to a fifth aspect of the present invention is connected to an energization path for supplying power from a power source to a load, and the power from the power source to the load is A power supply control device for controlling supply, comprising: a switch circuit that switches permission and prohibition of power supply from the power source to the load; and an operation mode of a sleep mode that suppresses current consumption In the method, in response to receiving an energization instruction for instructing start of energization of the load, a detection step of detecting an energization current flowing in the energization path, and a temperature of the energization path in accordance with whether or not the load is energized Regardless of the calculation step, the prohibiting step of prohibiting the energization of the switch circuit when the temperature of the energization path reaches a predetermined upper limit value, and the temperature of the energization path being a predetermined temperature condition If satisfying, and a setting step of setting said power supply control device in the sleep mode.

第6の発明は、第5の発明の電力供給制御装置の制御方法において、前記所定の温度条件は、前記負荷への通電の終了を指示する通電指示を受け取った後において、前記通電路の温度が所定のしきい値温度まで低下することである。
第7の発明は、第5または6の発明の電力供給制御装置の制御方法において、
前記負荷への通電の開始を指示する通電指示に応じて、前記通電路に流れる通電電流および環境温度を検出する検出工程をさらに含み、前記算出工程は、前記環境温度からの前記通電路の上昇温度を、前記通電電流による前記通電路の発熱と、前記通電路の放熱との差に基づいて算出し、前記環境温度に前記通電路の上昇温度を加算して前記通電路の温度を算出する。
According to a sixth aspect of the present invention, in the control method for the power supply control device according to the fifth aspect, the predetermined temperature condition is that the temperature of the energization path after receiving an energization instruction instructing the end of energization of the load. Decreases to a predetermined threshold temperature.
7th invention is the control method of the electric power supply control apparatus of 5th or 6th invention,
The method further includes a detection step of detecting an energization current flowing through the energization path and an environmental temperature in response to an energization instruction instructing the start of energization of the load, and the calculation step includes increasing the energization path from the environmental temperature. The temperature is calculated based on the difference between the heat generation of the current path due to the current flow and the heat dissipation of the current path, and the temperature of the current path is calculated by adding the rising temperature of the current path to the environmental temperature. .

第8の発明は、第5から7の発明のいずれか一つの電力供給制御装置の制御方法において、前記しきい値温度は、前記環境温度に所定の温度値を加算した温度である。   According to an eighth aspect of the present invention, in the control method for the power supply control device according to any one of the fifth to seventh aspects, the threshold temperature is a temperature obtained by adding a predetermined temperature value to the environmental temperature.

上記第1および5の発明の構成によれば、通電路の温度が所定の温度条件を満たす場合に、電力供給制御装置がスリープモードに移行される。すなわち、負荷の通電が停止されても、通電路の温度が所定の温度条件を満たさない場合、電力供給制御装置はスリープモードに移行されない。そのため、電力供給制御装置は、負荷の通電が停止されても、通電路の温度の算出を継続することができ、通電路の温度推定が適正になされる。その結果、スリープモードを有しつつ、適切に通電路の保護を行うことができる。   According to the configurations of the first and fifth inventions, when the temperature of the energization path satisfies the predetermined temperature condition, the power supply control device is shifted to the sleep mode. That is, even when the energization of the load is stopped, if the temperature of the energization path does not satisfy the predetermined temperature condition, the power supply control device is not shifted to the sleep mode. For this reason, the power supply control device can continue to calculate the temperature of the energization path even when the energization of the load is stopped, and the temperature estimation of the energization path is appropriately performed. As a result, the energization path can be appropriately protected while having the sleep mode.

上記第2および6の発明の構成によれば、負荷への通電の終了を指示する通電指示を受け取った後において、通電路の温度が所定のしきい値温度まで低下した場合に電力供給制御装置がスリープモードに移行される。すなわち、負荷への通電が終了されても、通電路の温度が所定のしきい値温度まで低下しない場合は、電力供給制御装置がスリープモードに移行されない。そのため、特に、負荷への通電のオン・オフが比較的短期間に繰り替えされ、通電路の温度が環境温度まで低下しない場合においても、好適に通電路の温度が算出され、適切に通電路の保護を行うことができる。   According to the configurations of the second and sixth inventions, the power supply control device when the temperature of the energization path is lowered to the predetermined threshold temperature after receiving the energization instruction for instructing the end of energization to the load. Enters sleep mode. That is, even when energization of the load is terminated, if the temperature of the energization path does not decrease to the predetermined threshold temperature, the power supply control device is not shifted to the sleep mode. Therefore, especially when the energization of the load is repeatedly turned on and off in a relatively short period of time and the temperature of the energization path does not drop to the environmental temperature, the temperature of the energization path is suitably calculated and the energization path is appropriately Protection can be performed.

上記第3および7の発明の構成によれば、通電路の温度を、スリープモードではない通常の動作モードにおいて、負荷への通電の有無にかかわらず好適に算出推定することができる。   According to the configurations of the third and seventh inventions, the temperature of the energization path can be suitably calculated and estimated regardless of whether or not the load is energized in a normal operation mode other than the sleep mode.

上記第4および8の発明の構成によれば、しきい値温度が、環境温度に所定の温度値を加算したものとして設定される。そのため、電力供給制御装置の設置状況に応じて、所定の温度値を適宜設定することによって、電力供給制御装置の省電力化と電線保護の信頼性とのバランスを適宜調整することができる。   According to the configurations of the fourth and eighth inventions, the threshold temperature is set as a value obtained by adding a predetermined temperature value to the environmental temperature. Therefore, by appropriately setting a predetermined temperature value according to the installation status of the power supply control device, the balance between power saving of the power supply control device and reliability of wire protection can be adjusted as appropriate.

本発明の電力供給制御装置およびその制御方法によれば、スリープモードを有しつつ、適切に通電路の保護を行うことができる。   According to the power supply control device and the control method of the present invention, it is possible to appropriately protect the energization path while having the sleep mode.

本発明の一実施形態に係る電力供給制御装置の概略的なブロック図1 is a schematic block diagram of a power supply control device according to an embodiment of the present invention. 一実施形態に係る各信号の時間推移を概略的に示すタイムチャートThe time chart which shows roughly the time transition of each signal which concerns on one Embodiment

<実施形態>
本発明の一実施形態について図1および図2を参照しつつ説明する。図1は、本発明の一実施形態に係る電力供給制御装置10の概略的なブロック図である。図2は、一実施形態に係る各信号の時間推移を示すタイムチャートである。
<Embodiment>
An embodiment of the present invention will be described with reference to FIGS. 1 and 2. FIG. 1 is a schematic block diagram of a power supply control device 10 according to an embodiment of the present invention. FIG. 2 is a time chart showing a time transition of each signal according to an embodiment.

1.回路構成
電力供給制御装置10は、図1に示されるように、電源Baと負荷50との間において、電源Baから負荷50へ電力を供給する給電線(通電路)51に接続され、電源Baから負荷50へ電力供給を制御する。電力供給制御装置10は、消費電流を抑えたスリープモードの動作モードを有する。
1. Circuit Configuration As shown in FIG. 1, the power supply control device 10 is connected between a power supply Ba and a load 50 to a power supply line (conduction path) 51 that supplies power from the power supply Ba to the load 50, and the power supply Ba The power supply to the load 50 is controlled. The power supply control device 10 has a sleep mode operation mode in which current consumption is suppressed.

電力供給制御装置10は、大きくは、SW(スイッチ)入力検出回路(「スリープモード設定回路」の一例)40、スイッチ回路30、および通電路保護回路20とを含む。   The power supply control device 10 generally includes a SW (switch) input detection circuit (an example of a “sleep mode setting circuit”) 40, a switch circuit 30, and a current path protection circuit 20.

なお、本実施形態においては、電力供給制御装置10は、自動車のエンジンルーム内に配置される例を示す。電源Baはバッテリであり、負荷50として例えばモータが、通電路51である電線を介して電力供給制御装置10によって駆動制御される例が示される。また、図1において、スイッチ回路30にはバッテリ電圧Vbが直接印加されるが、通電路保護回路20およびSW入力検出回路40には、電圧変換器(図示せず)を介して、バッテリ電圧Vbは、所定の電圧に変換されて印加される。   In the present embodiment, an example in which the power supply control device 10 is arranged in an engine room of an automobile is shown. The power source Ba is a battery, and an example in which a motor is driven and controlled by the power supply control device 10 via an electric wire that is an energization path 51 as the load 50 is shown. In FIG. 1, the battery voltage Vb is directly applied to the switch circuit 30, but the battery voltage Vb is applied to the energizing path protection circuit 20 and the SW input detection circuit 40 via a voltage converter (not shown). Is converted into a predetermined voltage and applied.

また、本発明の電力供給制御装置は、本実施形態に限られず、スリープモードを有し、負荷への電力供給を制御するとともに給電線を保護するために用いられる、あらゆる電力供給制御装置に適用可能である。   Further, the power supply control device of the present invention is not limited to this embodiment, and is applicable to any power supply control device that has a sleep mode and is used to control power supply to a load and protect a power supply line. Is possible.

スリープモード設定回路であるSW入力検出回路40は入力スイッチSWに接続される。SW入力検出回路40は、入力スイッチSWがオンされると、負荷50への通電の開始を指示する入力信号(通電指示信号)Sinを受け取って出力指示信号(通電指示信号)Stnを生成する。すなわち、本実施形態においては、負荷50への通電開始の指示は、入力スイッチSWがオンされることによって行われる。なお、図1には、入力スイッチSWがオンされるとローレベルの入力信号Sinを受け取る例が示される。   The SW input detection circuit 40 which is a sleep mode setting circuit is connected to the input switch SW. When the input switch SW is turned on, the SW input detection circuit 40 receives an input signal (energization instruction signal) Sin instructing the start of energization of the load 50 and generates an output instruction signal (energization instruction signal) Stn. That is, in the present embodiment, an instruction to start energization of the load 50 is performed by turning on the input switch SW. FIG. 1 shows an example in which a low level input signal Sin is received when the input switch SW is turned on.

また、SW入力検出回路40は、入力スイッチSWがオフされた場合、負荷50への通電の終了を指示する入力信号Sinを受け取る。なお、図1には、入力スイッチSWがオフされるとハイレベルの入力信号Sinを受け取る例が示される。すなわち、SW入力検出回路40の入力信号Sinを受け取る端子(図示せず)はプルアップされている。   Further, the SW input detection circuit 40 receives an input signal Sin instructing the end of energization of the load 50 when the input switch SW is turned off. FIG. 1 shows an example of receiving a high-level input signal Sin when the input switch SW is turned off. That is, a terminal (not shown) for receiving the input signal Sin of the SW input detection circuit 40 is pulled up.

そして、入力スイッチSWがオフされた後において、環境温度Taからの通電路51の上昇温度(以下、「電線上昇温度」という)ΔTwが規定上昇量ΔT_lower以下となった場合、SW入力検出回路40は、スリープモード信号Spを生成する。そして、SW入力検出回路40は、スリープモード信号Spを電力供給制御装置10内の各回路に供給して、電力供給制御装置10をスリープモード(スリープ状態)に設定する。   Then, after the input switch SW is turned off, when the rising temperature (hereinafter referred to as “wire rising temperature”) ΔTw from the environmental temperature Ta becomes equal to or less than the specified increase amount ΔT_lower, the SW input detection circuit 40 Generates a sleep mode signal Sp. Then, the SW input detection circuit 40 supplies the sleep mode signal Sp to each circuit in the power supply control device 10 to set the power supply control device 10 to the sleep mode (sleep state).

なお、SW入力検出回路40は、電力供給制御装置10のスリープ状態においても、負荷50への通電を指示する入力信号Sinの受け取りが可能な状態とされる。そして、SW入力検出回路40は、スリープ状態における入力信号Sinの受け取りに応じて電力供給制御装置10を起動状態とする機能、すなわちWake−up(ウェイクアップ)機能を有する。   It should be noted that the SW input detection circuit 40 is in a state in which it can receive the input signal Sin instructing energization of the load 50 even in the sleep state of the power supply control device 10. The SW input detection circuit 40 has a function to activate the power supply control device 10 in response to receiving the input signal Sin in the sleep state, that is, a wake-up function.

スイッチ回路30は、バッテリBaと通電路51との間に設けられ、バッテリBaから負荷50への電力供給を、通電路保護回路20からの通電制御信号Scnに応じてオン・オフする。ここで、スイッチ回路30は半導体スイッチとして構成され、負荷50に電力を供給するメインスイッチ31と負荷電流(通電電流)Iを検出するためのセンストランジスタ(電流検出手段)32とを含む。メインスイッチ31およびセンストランジスタ32は、例えば、図1に示されるように、NチャネルFET(電界効果トランジスタ)によって構成される。   The switch circuit 30 is provided between the battery Ba and the energization path 51, and turns on / off the power supply from the battery Ba to the load 50 according to the energization control signal Scn from the energization path protection circuit 20. Here, the switch circuit 30 is configured as a semiconductor switch, and includes a main switch 31 that supplies power to the load 50 and a sense transistor (current detection means) 32 for detecting a load current (energization current) I. The main switch 31 and the sense transistor 32 are configured by, for example, an N-channel FET (field effect transistor) as shown in FIG.

通電路保護回路20は、通電判断制御回路21、電線温度演算回路22、電流検出回路(電流検出手段)23、および環境温度センサ(温度検出手段)24を含み、通電指示信号Stnにしたがってスイッチ回路30の通電を許可するとともに、通電路51の温度Twが所定の上限値Tsmに達した場合、スイッチ回路30の通電を禁止して通電路51を保護する。   The energization path protection circuit 20 includes an energization determination control circuit 21, an electric wire temperature calculation circuit 22, a current detection circuit (current detection means) 23, and an environmental temperature sensor (temperature detection means) 24, and a switch circuit according to the energization instruction signal Stn. 30 is permitted, and when the temperature Tw of the energization path 51 reaches a predetermined upper limit value Tsm, energization of the switch circuit 30 is prohibited to protect the energization path 51.

電流検出手段は、電流検出回路23およびセンストランジスタ32を含み、スイッチ回路30を介して通電路51に流れる負荷電流Iを検出する。電流検出回路23は、センストランジスタ32によって検出されるセンス電流を所定倍して負荷電流Iに換算する。通電電流Iの情報は、電線温度演算回路22に提供される。   The current detection means includes a current detection circuit 23 and a sense transistor 32, and detects a load current I flowing in the energization path 51 via the switch circuit 30. The current detection circuit 23 multiplies the sense current detected by the sense transistor 32 by a predetermined amount and converts it to a load current I. Information on the energization current I is provided to the wire temperature calculation circuit 22.

環境温度センサ24は、例えば、電線温度演算回路22の近傍に設けられ、自動車のエンジンルーム内の環境温度Taを検出する。検出された環境温度Taの情報は、電線温度演算回路22に提供される。   The environmental temperature sensor 24 is provided in the vicinity of the electric wire temperature calculation circuit 22, for example, and detects the environmental temperature Ta in the engine room of a motor vehicle. Information on the detected ambient temperature Ta is provided to the wire temperature calculation circuit 22.

電線温度演算回路22は、スリープモードではない通常の動作モードにおいては、通電電流Iの有無にかかわらず、通電電流Iによる通電路51の発熱と、通電路51の放熱との差に基づいて、環境温度Taからの電線上昇温度ΔTwを算出して、推定する。そして、電線温度演算回路22は、環境温度Taに、算出された電線上昇温度ΔTwを加算して、通電路51の温度(以下、単に「電線温度」という)Twを算出する。電線温度演算回路22は、算出した電線上昇温度ΔTwをSW入力検出回路40に提供し、電線温度Twの情報を通電判断制御回路21に提供する。   In a normal operation mode other than the sleep mode, the electric wire temperature calculation circuit 22 is based on the difference between the heat generation of the energization path 51 by the energization current I and the heat dissipation of the energization path 51 regardless of the presence or absence of the energization current I. The wire rising temperature ΔTw from the environmental temperature Ta is calculated and estimated. Then, the wire temperature calculation circuit 22 adds the calculated wire rising temperature ΔTw to the environmental temperature Ta to calculate the temperature (hereinafter simply referred to as “wire temperature”) Tw of the current path 51. The wire temperature calculation circuit 22 provides the calculated wire rise temperature ΔTw to the SW input detection circuit 40 and provides information on the wire temperature Tw to the energization determination control circuit 21.

ここで、電線温度演算回路22は、例えば、所定時間Δt毎に通電電流Iをサンプリングし、各通電電流Iの値を下式(1)に代入して、電線上昇温度ΔTwを算出する。
ΔTw(n)=ΔTw(n−1)×exp(−Δt/τw)+Rthw
×Rw(n−1)×I(n−1)×(1−exp(−Δt/τw)) ……(1)
ここで、I(n):検出n(1以上の整数)回目の検出通電電流値(A)
ΔTw(n):検出n回時での電線上昇温度(℃)
Rw(n)=Rw(0)×(1+κw×(Tw−To))
:検出n回時の電線抵抗(Ω)
Rw(0):所定基準温度Toでの電線抵抗(Ω)
Rthw:電線熱抵抗(℃/W)
τw:電線放熱時定数(s)
κw:電線抵抗温度係数(/℃)
なお、式(1)において、通電電流Iが含まれない第1項が通電路51の放熱を示し、通電電流Iを含む第2項が通電電流Iによる通電路51の発熱を示している。すなわち、負荷50への通電が遮断されて通電電流Iが無い場合は、通電路51の放熱によって、電線温度Twが決定される。
Here, for example, the wire temperature calculation circuit 22 samples the energization current I every predetermined time Δt, and substitutes the value of each energization current I into the following equation (1) to calculate the wire rise temperature ΔTw.
ΔTw (n) = ΔTw (n−1) × exp (−Δt / τw) + Rthw
× Rw (n−1) × I (n−1) 2 × (1-exp (−Δt / τw)) (1)
Here, I (n): detection energization current value (A) of detection n (an integer of 1 or more) times
ΔTw (n): Wire rise temperature at the time of detection n times (° C)
Rw (n) = Rw (0) × (1 + κw × (Tw−To))
: Wire resistance at detection n times (Ω)
Rw (0): Wire resistance (Ω) at a predetermined reference temperature To
Rthw: Wire thermal resistance (° C / W)
τw: Electric wire heat dissipation time constant (s)
κw: Wire resistance temperature coefficient (/ ° C)
In Equation (1), the first term that does not include the energizing current I indicates heat dissipation of the energizing path 51, and the second term that includes the energizing current I indicates heat generation of the energizing path 51 due to the energizing current I. That is, when the energization to the load 50 is interrupted and there is no energization current I, the wire temperature Tw is determined by the heat radiation of the energization path 51.

通電判断制御回路21は、SW入力検出回路40からの通電指示信号Stnにしたがってスイッチ回路30のオン・オフを制御するとともに、電線温度Twが所定の上限値Tsmに達した場合、スイッチ回路30をオフする。なお、ここで電線温度Twの上限値Tsmは、電線発煙温度とされる。すなわち、通電判断制御回路21は、電線温度Twが電線発煙温度Tsmに達した場合、通電路51を保護するために、スイッチ回路30のメインスイッチ31をオフして、負荷50への通電を禁止する。   The energization determination control circuit 21 controls on / off of the switch circuit 30 in accordance with the energization instruction signal Stn from the SW input detection circuit 40. When the wire temperature Tw reaches a predetermined upper limit value Tsm, the energization determination control circuit 21 controls the switch circuit 30. Turn off. Here, the upper limit value Tsm of the wire temperature Tw is the wire smoke temperature. That is, when the electric wire temperature Tw reaches the electric wire smoke temperature Tsm, the energization determination control circuit 21 turns off the main switch 31 of the switch circuit 30 and prohibits the energization of the load 50 in order to protect the energization path 51. To do.

2.電力供給制御装置の動作
次に、図2のタイムチャートを参照して、本実施形態における電力供給制御装置10の動作を説明する。
今、負荷(モータ)50が停止状態において、図2の時刻t0において、負荷50への通電を開始させるために入力スイッチSWがオンされたとする。すると、入力スイッチSWのオンに応じて、SW入力検出回路40は、Wake−up機能によって電力供給制御装置10を起動状態とする。また、SW入力検出回路40は、出力指示信号(通電指示信号)Stnを通電判断制御回路21に供給する。
2. Operation of Power Supply Control Device Next, the operation of the power supply control device 10 in the present embodiment will be described with reference to the time chart of FIG.
Assume that the input switch SW is turned on to start energization of the load 50 at time t0 in FIG. 2 while the load (motor) 50 is stopped. Then, in response to turning on of the input switch SW, the SW input detection circuit 40 activates the power supply control device 10 by the Wake-up function. The SW input detection circuit 40 supplies an output instruction signal (energization instruction signal) Stn to the energization determination control circuit 21.

通電判断制御回路21は出力指示信号Stnに応じてスイッチ回路30のメインスイッチ31をオンする通電制御信号Scnを生成して、メインスイッチ31をオンさせる。すると、通電電流IがバッテリBaから負荷50に供給され、電線温度Twが環境温度Taから上昇する。   The energization determination control circuit 21 generates an energization control signal Scn for turning on the main switch 31 of the switch circuit 30 according to the output instruction signal Stn, and turns on the main switch 31. Then, the energization current I is supplied from the battery Ba to the load 50, and the wire temperature Tw rises from the environmental temperature Ta.

すなわち、負荷50への通電指令に応じて、センストランジスタ32および電流検出回路23は負荷電流Iを検出し、環境温度センサ24は環境温度Taを検出する(検出工程)。また、電線温度演算回路22は、式1に基づいて、環境温度Taからの電線上昇温度ΔTwを算出して、環境温度Taに電線上昇温度ΔTwを加算して、電線温度Twを算出する(算出工程)。   That is, in response to an energization command to the load 50, the sense transistor 32 and the current detection circuit 23 detect the load current I, and the environmental temperature sensor 24 detects the environmental temperature Ta (detection step). Further, the electric wire temperature calculation circuit 22 calculates the electric wire rising temperature ΔTw from the environmental temperature Ta based on the equation 1, and adds the electric wire rising temperature ΔTw to the environmental temperature Ta to calculate the electric wire temperature Tw (calculation). Process).

なお、図2には、通電電流Iの値として、通電路51にショートが発生した場合のショート電流Isと通常時に流れる通常電流Inとが示される。なお、図2には、時刻t0において通電路51にショートが発生している場合が示されている。   In FIG. 2, the value of the energization current I shows the short-circuit current Is when a short circuit occurs in the energization path 51 and the normal current In that normally flows. FIG. 2 shows a case where a short circuit has occurred in the energization path 51 at time t0.

図2の時刻t1において、通電路51のショートが一旦解除されると、通電電流Iがショート電流Isから通常電流Inに減少する。このとき、通電電流Iによる発熱よりも通電路51の放熱のほうが大きくなるため、算出される電線温度Twは低下する。   At time t1 in FIG. 2, once the short circuit of the energization path 51 is released, the energization current I decreases from the short current Is to the normal current In. At this time, since the heat radiation of the energization path 51 becomes larger than the heat generation due to the energization current I, the calculated wire temperature Tw decreases.

次いで、図2の時刻t2において通電電流Iが再び通常電流Inからショート電流Isに増加すると、電線温度Twも増加する。そして、図2の時刻t3において入力スイッチSWがオフされると、SW入力検出回路40は、通電電流Iを停止するための出力指示信号Stnを通電判断制御回路21に供給する。通電判断制御回路21は、出力指示信号Stnに応じてメインスイッチ31をオフする通電制御信号Scnを生成して、メインスイッチ31は通電制御信号Scnによってオフさせる。すると、負荷50への通電電流Iは遮断され、算出される電線温度Twは低下する。   Next, when the energization current I increases again from the normal current In to the short current Is at time t2 in FIG. 2, the wire temperature Tw also increases. When the input switch SW is turned off at time t3 in FIG. 2, the SW input detection circuit 40 supplies an output instruction signal Stn for stopping the energization current I to the energization determination control circuit 21. The energization determination control circuit 21 generates an energization control signal Scn that turns off the main switch 31 in response to the output instruction signal Stn, and the main switch 31 is turned off by the energization control signal Scn. Then, the energization current I to the load 50 is interrupted, and the calculated wire temperature Tw decreases.

なお、図2の最下段には、入力スイッチSWがオフされると、その直後にスリープモードに移行する、従来のスリープモード移行における、電線温度Twの一例が示される。従来のスリープモード移行の場合、入力スイッチSWがオフされると、例えば、電線温度演算回路22は電線温度Twの算出動作を停止する。そのため、例えば、図2に示されるように、電線上昇温度ΔTwはリセットされ、電線温度Twは環境温度Taとされる。一方、本実施形態においては、入力スイッチSWのオフとともにスリープモードに移行しないため、入力スイッチSWがオフされても電線温度演算回路22は電線上昇温度ΔTwおよび電線温度Twの算出動作を継続する。   2 shows an example of the wire temperature Tw in the conventional transition to the sleep mode in which the transition to the sleep mode is performed immediately after the input switch SW is turned off. In the case of transition to the conventional sleep mode, when the input switch SW is turned off, for example, the wire temperature calculation circuit 22 stops the calculation operation of the wire temperature Tw. Therefore, for example, as illustrated in FIG. 2, the wire rising temperature ΔTw is reset, and the wire temperature Tw is set to the environmental temperature Ta. On the other hand, in this embodiment, since the sleep mode is not shifted when the input switch SW is turned off, the wire temperature calculation circuit 22 continues to calculate the wire rising temperature ΔTw and the wire temperature Tw even when the input switch SW is turned off.

次いで、図2の時刻t4において再び入力スイッチSWがオンされたとすると、時刻t0と同様に、入力検出回路40は、通電電流Iを流すための出力指示信号Stnを通電判断制御回路21に供給する。通電判断制御回路21は出力指示信号Stnに応じてメインスイッチ31をオンさせる。すると、通電電流Iに応じて算出される電線温度Twは、その時の温度から上昇する。   Next, assuming that the input switch SW is turned on again at time t4 in FIG. 2, the input detection circuit 40 supplies the output instruction signal Stn for flowing the energization current I to the energization determination control circuit 21 as at time t0. . The energization determination control circuit 21 turns on the main switch 31 in response to the output instruction signal Stn. Then, the electric wire temperature Tw calculated according to the energization current I rises from the temperature at that time.

一方、従来のスリープモード移行の場合、電線温度Twは、環境温度Taから上昇する。すなわち、電線温度演算回路22は、時刻t4における実際の電線温度Twが環境温度Taよりも高いにも係わらず、時刻t4における電線温度Twを環境温度Taに等しいとして電線温度Twの算出を開始する。   On the other hand, in the case of transition to the conventional sleep mode, the wire temperature Tw rises from the environmental temperature Ta. That is, the electric wire temperature calculation circuit 22 starts calculating the electric wire temperature Tw by setting the electric wire temperature Tw at the time t4 to be equal to the environmental temperature Ta even though the actual electric wire temperature Tw at the time t4 is higher than the environmental temperature Ta. .

そして、例えば、図2の時刻t5において電線温度Twが電線発煙温度Tsmに達した場合、本実施形態においては、入力スイッチSWがオン状態であっても、通電判断制御回路21は、通電路51を保護するために、メインスイッチ31をオフして、負荷50への通電を禁止する(禁止工程)。通電が禁止されることによって電線温度Twは低下し、通電路51は発煙に至らず、適切に保護される。   For example, when the wire temperature Tw reaches the wire smoke temperature Tsm at time t5 in FIG. 2, in the present embodiment, even when the input switch SW is in the on state, the energization determination control circuit 21 has the energization path 51. In order to protect the power supply, the main switch 31 is turned off to prohibit energization of the load 50 (prohibition process). When the energization is prohibited, the electric wire temperature Tw is lowered, and the energization path 51 does not cause smoke and is appropriately protected.

一方、従来のスリープモード移行にしたがった電線温度Twの算出の場合には、時刻t5において、算出される電線温度Twが、まだ電線発煙温度Tsmにまで達していないため、通電電流Iは、図2の点線で示されるように、入力スイッチSWがオフされる時刻t6までさらに継続して流れることとなる。すなわち、従来のスリープモード移行にしたがって電線温度Twの算出を行うと、実際に電線温度Twが電線発煙温度Tsmまで達しているのもかかわらず、電力供給制御装置10は、それを誤認識して、さらに通電電流Iを流し続ける虞がある。   On the other hand, in the case of calculation of the wire temperature Tw according to the transition to the conventional sleep mode, since the calculated wire temperature Tw has not yet reached the wire smoke generation temperature Tsm at time t5, the energization current I is As indicated by the dotted line 2, the flow continues further until time t6 when the input switch SW is turned off. That is, when the wire temperature Tw is calculated in accordance with the transition to the conventional sleep mode, the power supply control device 10 erroneously recognizes that the wire temperature Tw actually reaches the wire smoke generation temperature Tsm. Further, there is a possibility that the energization current I continues to flow.

そして、本実施形態においては、図2の時刻t7において、電線温度Twが所定のしきい値温度Tth以下まで低下し、電線上昇温度ΔTwが判定上昇量(本発明における「所定の温度値」に相当)ΔT_lower以下となった場合、SW入力検出回路40は、スリープモード信号Spを生成し、電力供給制御装置10をスリープモードに設定する(設定工程)。   In this embodiment, at time t7 in FIG. 2, the wire temperature Tw decreases to a predetermined threshold temperature Tth or less, and the wire rising temperature ΔTw becomes the determination increase amount (the “predetermined temperature value” in the present invention). Corresponding) When ΔT_lower or less, the SW input detection circuit 40 generates the sleep mode signal Sp and sets the power supply control device 10 to the sleep mode (setting step).

このように、本実施形態においては、しきい値温度Tthは、環境温度Taに所定の温度値(判定上昇量ΔT_lower)を加算したものとして設定される。そのため、電力供給制御装置10の設置状況に応じて、所定の温度値ΔT_lowerを適宜設定することによって、電力供給制御装置10をスリープモードとするタイミング、すなわち、省電力化と電線保護の信頼性とのバランスを適宜調整することができる。例えば、電線保護の信頼性を重きが置かれる場合は、しきい値温度Tthを環境温度Taに近い温度に設定するようにすればよい。すなわち、所定の加算温度(判定上昇量ΔT_lower)を小さく、例えば、0.1℃から5℃の間とするようにすればよい。   Thus, in the present embodiment, the threshold temperature Tth is set as a value obtained by adding a predetermined temperature value (determination increase amount ΔT_lower) to the environmental temperature Ta. Therefore, by appropriately setting a predetermined temperature value ΔT_lower according to the installation status of the power supply control device 10, the timing for setting the power supply control device 10 to the sleep mode, that is, power saving and reliability of wire protection The balance can be adjusted as appropriate. For example, when emphasis is placed on the reliability of wire protection, the threshold temperature Tth may be set to a temperature close to the environmental temperature Ta. That is, the predetermined addition temperature (determination increase amount ΔT_lower) may be small, for example, between 0.1 ° C. and 5 ° C.

3.本実施形態の効果
上記したように、本実施形態においては、スリープモードに移行する条件に、電線上昇温度ΔTwの条件が加味される。すなわち、入力スイッチSWがオフされた場合であっても、電線上昇温度ΔTwが判定上昇量ΔT_lowerより大きい場合(電線温度Twがしきい値温度Tthより大きい場合)、電力供給制御装置10はスリープモードに移行せず、電線温度演算回路22は電線温度Twの算出動作を継続する。そのため、負荷50への通電のオン・オフが比較的短期間に繰り替えされ、電線温度Twが環境温度Taまで低下しない場合においても、好適に電線温度Twが算出され、適切に通電路51の保護を行うことができる。すなわち、本実施形態による電力供給制御装置10によれば、スリープモードを有しつつ、適切に通電路51の保護を行うことができる。
3. As described above, in the present embodiment, the condition of the electric wire rising temperature ΔTw is added to the condition for shifting to the sleep mode. That is, even when the input switch SW is turned off, if the wire rising temperature ΔTw is greater than the determination increase amount ΔT_lower (when the wire temperature Tw is greater than the threshold temperature Tth), the power supply control device 10 is in the sleep mode. The electric wire temperature calculation circuit 22 continues the calculation operation of the electric wire temperature Tw. Therefore, even when the energization of the load 50 is repeatedly turned on and off in a relatively short period of time and the electric wire temperature Tw does not decrease to the environmental temperature Ta, the electric wire temperature Tw is calculated appropriately, and the electric conduction path 51 is appropriately protected. It can be performed. That is, according to the power supply control device 10 according to the present embodiment, the energization path 51 can be appropriately protected while having the sleep mode.

また、しきい値温度Tthは、環境温度Taに所定の温度値ΔT_lowerを加算したものとして設定される。そのため、電力供給制御装置10の設置状況に応じて、所定の温度値ΔT_lowerを適宜設定することによって、電力供給制御装置10の省電力化と電線保護の信頼性とのバランスを適宜調整することができる。   The threshold temperature Tth is set as a value obtained by adding a predetermined temperature value ΔT_lower to the environmental temperature Ta. Therefore, by appropriately setting a predetermined temperature value ΔT_lower according to the installation status of the power supply control device 10, the balance between power saving of the power supply control device 10 and reliability of wire protection can be adjusted as appropriate. it can.

<他の実施形態>
本発明は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような実施形態も本発明の技術的範囲に含まれる。
<Other embodiments>
The present invention is not limited to the embodiments described with reference to the above description and drawings. For example, the following embodiments are also included in the technical scope of the present invention.

(1)本実施形態においては、しきい値温度Tthが、環境温度Taに所定の温度値(判定上昇量ΔT_lower)を加算したものとして設定される例を示したが、これに限定されない。しきい値温度Tthを環境温度Taに依存しない、所定の一定温度として設定するようにしてもよい。この場合であっても、電線保護の信頼性を確保することができる。   (1) In the present embodiment, an example is shown in which the threshold temperature Tth is set as a value obtained by adding a predetermined temperature value (determination increase amount ΔT_lower) to the environmental temperature Ta. However, the present invention is not limited to this. The threshold temperature Tth may be set as a predetermined constant temperature that does not depend on the environmental temperature Ta. Even in this case, the reliability of wire protection can be ensured.

(2)上記実施形態では、電流検出手段を、電流検出回路23およびセンストランジスタ32によって構成する例を示したが、これに限られない。通電電流の検出を、例えば、シャント抵抗を用いて行うようにしてもよいし、あるいはメインスイッチ(NチャネルFET)のドレイン−ソース間電圧Vdsに基づいて行うようにしてもよい。   (2) In the above embodiment, the example in which the current detection unit is configured by the current detection circuit 23 and the sense transistor 32 has been described, but the present invention is not limited thereto. The detection of the energization current may be performed using, for example, a shunt resistor, or may be performed based on the drain-source voltage Vds of the main switch (N channel FET).

(3)上記実施形態では、スリープモード設定回路をSW入力検出回路40とする例を示したが、これに限られない。SW入力検出回路40とは別個に、スリープモード設定回路を設けるようにしてもよい。   (3) In the above embodiment, an example in which the sleep mode setting circuit is the SW input detection circuit 40 has been described, but the present invention is not limited to this. A sleep mode setting circuit may be provided separately from the SW input detection circuit 40.

(4)上記実施形態において、電力供給制御装置10の各回路を個別の回路として構成する例を示したが、これに限れない。例えば、環境温度センサ24を除く通電路保護回路20とSW入力検出回路40とを、ASIC(特定用途向け集積回路)によって構成するようにしてもよい。   (4) In the above-described embodiment, an example is shown in which each circuit of the power supply control device 10 is configured as an individual circuit, but the present invention is not limited to this. For example, the energization path protection circuit 20 excluding the environmental temperature sensor 24 and the SW input detection circuit 40 may be configured by an ASIC (application-specific integrated circuit).

10…電力供給制御装置
20…通電路保護回路
21…通電判断制御回路
22…電線温度演算回路
23…電流検出回路(電流検出手段)
24…環境温度センサ(温度検出手段)
30…スイッチ回路
31…メインスイッチ(スイッチ回路)
32…センストランジスタ(電流検出手段)
40…SW入力検出回路(スリープモード設定回路)
I…通電電流
Ta…環境温度
Tth…しきい値温度
Tw…通電路の温度(電線温度)
ΔTw…通電路の上昇温度
ΔT_lower…判定上昇量(所定の温度値)
DESCRIPTION OF SYMBOLS 10 ... Electric power supply control apparatus 20 ... Current path protection circuit 21 ... Current supply judgment control circuit 22 ... Electric wire temperature calculation circuit 23 ... Current detection circuit (current detection means)
24. Environmental temperature sensor (temperature detection means)
30 ... Switch circuit 31 ... Main switch (switch circuit)
32... Sense transistor (current detection means)
40 ... SW input detection circuit (sleep mode setting circuit)
I ... Energizing current Ta ... Environment temperature Tth ... Threshold temperature Tw ... Energizing path temperature (wire temperature)
ΔTw: Increase temperature of current path ΔT_lower: Determination increase amount (predetermined temperature value)

Claims (8)

電源から負荷への電力供給を制御する電力供給制御装置であって、前記電源から前記負荷へ電力を供給する通電路に接続され、消費電流を抑えたスリープモードの動作モードを有する電力供給制御装置において、
前記電源と前記通電路との間に設けられ、前記電源から前記負荷への電力供給の許可および禁止を切替えるスイッチ回路と、
前記負荷への通電の開始または終了を指示する通電指示信号に応じて前記スイッチ回路の切替を制御するとともに、前記通電路の温度を、前記負荷への通電の有無にかかわらず算出し、前記スリープモードでは算出せず、算出された前記通電路の温度が所定の上限値に達した場合、前記スイッチ回路の通電を禁止して前記通電路の保護を行う通電路保護回路と、
前記通電路の温度が所定の温度条件を満たす場合、該電力供給制御装置を前記スリープモードに設定するスリープモード設定回路と、
を備える電力供給制御装置。
A power supply control device for controlling power supply from a power supply to a load, wherein the power supply control device is connected to an energization path for supplying power from the power supply to the load, and has a sleep mode operation mode with reduced current consumption In
A switch circuit that is provided between the power source and the energization path and switches permission and prohibition of power supply from the power source to the load;
The switching of the switch circuit is controlled according to an energization instruction signal instructing the start or end of energization to the load, the temperature of the energization path is calculated regardless of whether the load is energized, and the sleep When the calculated temperature of the energization path reaches a predetermined upper limit without calculating in the mode, the energization path protection circuit that prohibits energization of the switch circuit and protects the energization path;
When the temperature of the energization path satisfies a predetermined temperature condition, a sleep mode setting circuit that sets the power supply control device to the sleep mode;
A power supply control device comprising:
前記所定の温度条件は、前記負荷への通電の終了を指示する通電指示を受け取った後において、前記通電路の温度が所定のしきい値温度まで低下することである、請求項1に記載の電力供給制御装置。   The predetermined temperature condition is that the temperature of the energization path decreases to a predetermined threshold temperature after receiving an energization instruction instructing the end of energization of the load. Power supply control device. 前記しきい値温度は、環境温度に所定の温度値を加算した温度である、請求項2に記載の電力供給制御装置。 The power supply control device according to claim 2, wherein the threshold temperature is a temperature obtained by adding a predetermined temperature value to the environmental temperature. 前記通電路保護回路は、
前記負荷に流れる通電電流を検出する電流検出手段と、
環境温度を検出する温度検出手段と、
前記通電路の前記環境温度からの上昇温度を、前記通電路に流れる通電電流による前記通電路の発熱と、前記通電路の放熱との差に基づいて算出し、前記通電路の温度を、前記環境温度に前記通電路の前記上昇温度を加算して算出する電線温度演算回路と、
前記通電指示信号にしたがって前記スイッチ回路のオン・オフを制御するとともに、前記通電路の温度が所定の上限値に達した場合、前記スイッチ回路をオフする通電判断制御回路とを含む、請求項1から3のいずれか一項に記載の電力供給制御装置。
The current path protection circuit is:
Current detection means for detecting an energization current flowing through the load;
Temperature detection means for detecting the environmental temperature;
The temperature rise from the environmental temperature of the energization path is calculated based on the difference between the heat generation of the energization path due to the energization current flowing through the energization path and the heat dissipation of the energization path, and the temperature of the energization path is An electric wire temperature calculation circuit for calculating the ambient temperature by adding the rising temperature of the energization path;
Controls the on-off of the switching circuit in accordance with the energization indication signal, when the temperature of the current path has reached a predetermined upper limit value, and a current judgment control circuit for turning off the switching circuit, according to claim 1 To 4. The power supply control device according to any one of claims 1 to 3 .
電源から負荷へ電力を供給する通電路に接続され、前記電源から前記負荷への電力供給を制御する電力供給制御装置であって、前記電源から前記負荷への電力供給の許可および禁止を切替えるスイッチ回路と、消費電流を抑えたスリープモードの動作モードとを有する電力供給制御装置の制御方法において、
前記通電路の温度を、前記負荷への通電の有無にかかわらず算出する算出工程と、
前記算出された通電路の温度が所定の上限値に達した場合、前記スイッチ回路の通電を禁止する禁止工程と、
前記通電路の温度が所定の温度条件を満たす場合、該電力供給制御装置を前記スリープモードに設定する設定工程と、
を含む、電力供給制御装置の制御方法。
A power supply control device for controlling power supply from the power supply to the load, the switch being connected to an energization path for supplying power from the power supply to the load, wherein the switch for switching permission and prohibition of power supply from the power supply to the load In a control method of a power supply control device having a circuit and an operation mode of a sleep mode with reduced current consumption,
A calculation step of calculating the temperature of the current path regardless of whether the load is energized;
A prohibiting step of prohibiting energization of the switch circuit when the calculated temperature of the energization path reaches a predetermined upper limit;
When the temperature of the energization path satisfies a predetermined temperature condition, a setting step of setting the power supply control device to the sleep mode;
A control method for a power supply control device.
前記所定の温度条件は、前記負荷への通電の終了を指示する通電指示を受け取った後において、前記通電路の温度が所定のしきい値温度まで低下することである、請求項5に記載の電力供給制御装置の制御方法。   The predetermined temperature condition is that the temperature of the energization path decreases to a predetermined threshold temperature after receiving an energization instruction instructing the end of energization of the load. Control method of power supply control device. 前記しきい値温度は、前記環境温度に所定の温度値を加算した温度である、請求項6に記載の電力供給制御装置の制御方法。 The control method of the power supply control device according to claim 6, wherein the threshold temperature is a temperature obtained by adding a predetermined temperature value to the environmental temperature. 前記負荷への通電の開始を指示する通電指示に応じて、前記負荷に流れる通電電流および環境温度を検出する検出工程をさらに含み、
前記算出工程は、
前記環境温度からの前記通電路の上昇温度を、前記通電電流による前記通電路の発熱と、前記通電路の放熱との差に基づいて算出し、前記環境温度に前記通電路の上昇温度を加算して前記通電路の温度を算出する、請求項5から7のいずれか一項に記載の電力供給制御装置の制御方法。
A detection step of detecting an energization current flowing through the load and an environmental temperature in response to an energization instruction instructing the start of energization of the load;
The calculation step includes
The temperature rise of the current path from the ambient temperature is calculated based on the difference between the heat generated in the current path due to the current flow and the heat dissipation of the current path, and the temperature rise of the current path is added to the environmental temperature. The method for controlling the power supply control device according to claim 5 , wherein the temperature of the energization path is calculated.
JP2009087534A 2009-03-31 2009-03-31 Power supply control device and control method thereof Active JP5381248B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2009087534A JP5381248B2 (en) 2009-03-31 2009-03-31 Power supply control device and control method thereof
CN201080014620.0A CN102369643B (en) 2009-03-31 2010-03-30 Power supply controller and control method thereof
PCT/JP2010/055635 WO2010113916A1 (en) 2009-03-31 2010-03-30 Power supply control device and control method thereof
DE112010001323.3T DE112010001323B4 (en) 2009-03-31 2010-03-30 Power supply control and control method therefor
US13/259,596 US8918222B2 (en) 2009-03-31 2010-03-30 Controlling and protecting power-supply paths from thermal overloads

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009087534A JP5381248B2 (en) 2009-03-31 2009-03-31 Power supply control device and control method thereof

Publications (2)

Publication Number Publication Date
JP2010239835A JP2010239835A (en) 2010-10-21
JP5381248B2 true JP5381248B2 (en) 2014-01-08

Family

ID=42828206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009087534A Active JP5381248B2 (en) 2009-03-31 2009-03-31 Power supply control device and control method thereof

Country Status (5)

Country Link
US (1) US8918222B2 (en)
JP (1) JP5381248B2 (en)
CN (1) CN102369643B (en)
DE (1) DE112010001323B4 (en)
WO (1) WO2010113916A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10326266B2 (en) 2015-02-27 2019-06-18 Autonetworks Technologies, Ltd. Interrupting device, interrupting method, and computer program

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008039334B4 (en) * 2008-08-22 2016-01-14 Airbus Defence and Space GmbH Method and device for optimized energy management
CN102549867B (en) * 2009-09-25 2014-08-06 株式会社自动网络技术研究所 Power supply control device
JP5482055B2 (en) * 2009-09-25 2014-04-23 株式会社オートネットワーク技術研究所 Power supply control device
JP5639868B2 (en) * 2010-12-06 2014-12-10 矢崎総業株式会社 Load circuit protection device
JP2013229966A (en) * 2012-04-24 2013-11-07 Yazaki Corp Protection apparatus for current flowing circuit
JP5876367B2 (en) * 2012-04-24 2016-03-02 矢崎総業株式会社 Protection device for energization circuit
JP6262931B2 (en) * 2012-04-24 2018-01-17 矢崎総業株式会社 Protection device for energization circuit
FR2996081B1 (en) * 2012-09-21 2015-08-21 Continental Automotive France DEVICE FOR HOLDING IN A SLEEP MODE AND SWITCHING IN AN ACTIVE MODE OF A MOTOR VEHICLE CALCULATOR COMPRISING A MICROPROCESSOR
JP2014209824A (en) * 2013-04-16 2014-11-06 株式会社オートネットワーク技術研究所 Interrupting device
JP6176003B2 (en) * 2013-09-05 2017-08-09 株式会社オートネットワーク技術研究所 Control device
JP6102714B2 (en) 2013-12-11 2017-03-29 トヨタ自動車株式会社 Power storage system
JP6511819B2 (en) * 2015-01-15 2019-05-15 株式会社オートネットワーク技術研究所 Power supply control device
JP6260552B2 (en) * 2015-02-26 2018-01-17 株式会社オートネットワーク技術研究所 Power supply
US11303126B1 (en) 2015-05-22 2022-04-12 Michael Lee Staver Thermal management of power delivery
TWM519348U (en) * 2015-07-16 2016-03-21 鋐寶科技股份有限公司 Power supply system
JP6394535B2 (en) * 2015-08-20 2018-09-26 株式会社オートネットワーク技術研究所 Wire protector
US11404866B2 (en) 2016-04-08 2022-08-02 Infineon Technologies Ag Electronic switching and protection circuit with several operation modes
DE102017106896B4 (en) * 2017-03-30 2023-02-02 Infineon Technologies Ag Electronic switch for electronic fuse
JP6702294B2 (en) * 2017-11-27 2020-06-03 アンデン株式会社 Overcurrent protection device
US11561010B2 (en) * 2020-12-01 2023-01-24 Midea Group Co., Ltd. Gas cooking appliance with temperature-based power supply overload protection
US20220263142A1 (en) * 2021-02-18 2022-08-18 Schneider Electric It Corporation Battery module supporting automated low-voltage charging

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3702921A (en) * 1971-09-01 1972-11-14 Bell Telephone Labor Inc Precision temperature control circuit with improved reliability
US4432030A (en) * 1982-03-29 1984-02-14 Carrier Corporation Short circuit protection system
JP2990834B2 (en) * 1991-04-16 1999-12-13 三菱電機株式会社 Transmission line overload control device
JPH0763619A (en) * 1993-08-31 1995-03-10 Toshiba Lighting & Technol Corp Temperature detecting apparatus, power controlling apparatus and electric device
US6089456A (en) * 1995-06-07 2000-07-18 E-Comm Incorporated Low power telecommunication controller for a host computer server
JPH08331768A (en) * 1995-06-02 1996-12-13 Internatl Business Mach Corp <Ibm> Overdischarge protective circuit for battery
JP3541546B2 (en) * 1996-03-08 2004-07-14 ソニー株式会社 Battery pack and battery control method
JP3384522B2 (en) * 1996-07-30 2003-03-10 矢崎総業株式会社 Switching device
JP3706515B2 (en) * 1998-12-28 2005-10-12 矢崎総業株式会社 Power supply control device and power supply control method
JP2001217696A (en) * 2000-02-04 2001-08-10 Auto Network Gijutsu Kenkyusho:Kk Overcurrent-detecting circuit
JP4474662B2 (en) * 2001-06-06 2010-06-09 日本精工株式会社 Control device for electric power steering device
JP4207600B2 (en) * 2003-02-25 2009-01-14 トヨタ自動車株式会社 Electric circuit monitoring device and monitoring method
GB0427761D0 (en) * 2004-12-20 2005-01-19 Kreit Darran Position encoder for a rotor
JP2006345654A (en) * 2005-06-09 2006-12-21 Mitsubishi Electric Corp Overcurrent protective device
JP2007053894A (en) * 2005-07-20 2007-03-01 Asmo Co Ltd Motor control device
US7321213B2 (en) * 2005-07-20 2008-01-22 Asmo Co., Ltd. Motor controller
JP4818847B2 (en) * 2005-11-07 2011-11-16 アスモ株式会社 Motor control device
DE102006033044A1 (en) * 2006-07-14 2008-01-17 Brose Fahrzeugteile Gmbh & Co. Kommanditgesellschaft, Coburg Device for monitoring electrical components of supply line for electrical load in thermal overload, particularly supply line of vehicle electrical system, has thermal calculation model, which calculates effective temperature
US7843088B2 (en) * 2008-03-07 2010-11-30 Harry Leonard Perper Energy conserving (stand-by mode) power saving design for battery chargers and power supplies
JP2010225720A (en) * 2009-03-23 2010-10-07 Mitsubishi Electric Corp Power module
JP2010283977A (en) * 2009-06-04 2010-12-16 Yazaki Corp Protection device for load circuit
JP5660358B2 (en) * 2009-09-25 2015-01-28 株式会社オートネットワーク技術研究所 Power supply control device
JP5482055B2 (en) * 2009-09-25 2014-04-23 株式会社オートネットワーク技術研究所 Power supply control device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10326266B2 (en) 2015-02-27 2019-06-18 Autonetworks Technologies, Ltd. Interrupting device, interrupting method, and computer program

Also Published As

Publication number Publication date
CN102369643B (en) 2015-02-11
CN102369643A (en) 2012-03-07
JP2010239835A (en) 2010-10-21
US20120022708A1 (en) 2012-01-26
WO2010113916A1 (en) 2010-10-07
DE112010001323B4 (en) 2016-11-24
US8918222B2 (en) 2014-12-23
DE112010001323T5 (en) 2012-08-02

Similar Documents

Publication Publication Date Title
JP5381248B2 (en) Power supply control device and control method thereof
JP5660358B2 (en) Power supply control device
US8243407B2 (en) Semiconductor switch control device
JP5516825B2 (en) Insulated gate switching element drive circuit
JP4964536B2 (en) Motor abnormality detection device and method
JP4579293B2 (en) Power supply control device
US8693156B2 (en) Protection apparatus for load circuit
WO2011037175A1 (en) Power supply control device
US9413159B2 (en) Switching circuit protector
JP2009171728A (en) Power supply apparatus
JP5413642B2 (en) Power supply control circuit
JP2010104079A (en) Load driver
JP4802948B2 (en) Load drive control device
US8730635B2 (en) Power supply controller
JP5390837B2 (en) Load circuit protection device
JP2000308253A (en) Controller and method for power supply
JP5776946B2 (en) Power supply control device
JP4651100B2 (en) Power supply control device
JP2019186880A (en) Load drive device
JP4806360B2 (en) Load drive device
JP2009261088A (en) Device for protecting load circuit
JP2005151766A (en) Motor locking detection circuit and motor control circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130620

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130916

R150 Certificate of patent or registration of utility model

Ref document number: 5381248

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150