JP5380818B2 - Method for producing glass particulate deposit - Google Patents

Method for producing glass particulate deposit Download PDF

Info

Publication number
JP5380818B2
JP5380818B2 JP2007280758A JP2007280758A JP5380818B2 JP 5380818 B2 JP5380818 B2 JP 5380818B2 JP 2007280758 A JP2007280758 A JP 2007280758A JP 2007280758 A JP2007280758 A JP 2007280758A JP 5380818 B2 JP5380818 B2 JP 5380818B2
Authority
JP
Japan
Prior art keywords
glass
deposit
fine particle
particulate deposit
glass particulate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007280758A
Other languages
Japanese (ja)
Other versions
JP2009107874A (en
Inventor
雅春 竹本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2007280758A priority Critical patent/JP5380818B2/en
Publication of JP2009107874A publication Critical patent/JP2009107874A/en
Application granted granted Critical
Publication of JP5380818B2 publication Critical patent/JP5380818B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01486Means for supporting, rotating or translating the preforms being formed, e.g. lathes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/60Relationship between burner and deposit, e.g. position
    • C03B2207/62Distance
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/70Control measures

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Description

本発明は、ガラス微粒子を堆積させたガラス微粒子堆積体の製造方法に関する。   The present invention relates to a method for producing a glass fine particle deposit in which glass fine particles are deposited.

光ファイバ用のガラス母材となるガラス微粒子堆積体を製造する方法として、出発棒を回転させながら、この出発棒に向かってバーナの火炎中に生成したガラス微粒子を吹き付けることにより、ガラス微粒子を堆積させ、軸方向に成長させていくVAD法がある。
このVAD法によってガラス微粒子堆積体を製造する際には、ガラス微粒子が堆積している下端部の高さ位置を光学的に検出し、その検出結果に基づいて、出発棒の引き上げ速度やバーナへ供給するガスの流量等を制御し、堆積体の成長速度を一定に保ちながら堆積を行っている(例えば、特許文献1参照)。
As a method for producing a glass particulate deposit that is a glass base material for an optical fiber, glass particulates are deposited by blowing glass particulates generated in a burner flame toward the starting rod while rotating the starting rod. There is a VAD method that grows in the axial direction.
When producing a glass particulate deposit by this VAD method, the height position of the lower end where the glass particulate is deposited is optically detected, and based on the detection result, the starting rod pulling speed and the burner are detected. Deposition is performed while controlling the flow rate of the gas to be supplied and keeping the growth rate of the deposited body constant (see, for example, Patent Document 1).

特開2004−307235号公報JP 2004-307235 A

しかしながら、ガラス微粒子堆積体の下端部の高さ位置が一定に保たれていても、バーナの交換後などに、このバーナの取り付け位置にずれが生じていると、ガラス微粒子の堆積位置に偏りが生じてガラス微粒子堆積体が軸対称にならないことがある。ガラス微粒子堆積体に変形が生じて非軸対称になると、その後にガラス微粒子堆積体を透明ガラス化したものを線引きして光ファイバとした際に、コアが非円形となり、偏波モード分散(PMD)に影響することがある。   However, even if the height position of the lower end of the glass particulate deposit is kept constant, if the burner mounting position is shifted after the burner is replaced, the glass particulate deposition position is biased. As a result, the glass particulate deposit may not be axisymmetric. When the glass particle deposit is deformed and becomes non-axisymmetric, the core becomes non-circular when the glass particle deposit is transparently vitrified to form an optical fiber, and polarization mode dispersion (PMD) ) May be affected.

ガラス微粒子堆積体が非軸対称になる堆積異常による変形は、作業者が目視にて監視しているが、この変形は、熟練者でないと発見することが難しく、特に、変形が微妙なずれである場合、熟練者であっても発見が困難であった。
そして、この変形は、その発見が遅れるほど不良箇所が多くなり廃却損が増加し、生産性に影響してしまう。
Deformation due to deposition anomalies that cause the glass particulate deposit to become non-axisymmetric is visually monitored by the operator, but this deformation is difficult to detect unless it is an expert, and in particular, the deformation is subtle. In some cases, even a skilled person was difficult to find.
And this deformation | transformation will increase the number of defective parts and the discard loss will increase, and the productivity will be affected as the discovery is delayed.

そこで本発明は、ガラス微粒子堆積体が非軸対称になる変形を迅速に検出して、良好な生産性で高品質なガラス微粒子堆積体を製造することが可能なガラス微粒子堆積体の製造方法を提供することを目的としている。   Accordingly, the present invention provides a method for producing a glass particulate deposit capable of quickly detecting a deformation in which the glass particulate deposit becomes non-axisymmetric and producing a high quality glass particulate deposit with good productivity. It is intended to provide.

上記課題を解決することのできる本発明に係るガラス微粒子堆積体の製造方法は、出発棒をその軸回りに回転させつつ、バーナにより生成したガラス微粒子を前記出発棒の軸方向に堆積させるガラス微粒子堆積体の製造方法であって、所定位置に照射した光の一部を前記ガラス微粒子堆積体の下端部が遮るようにして、受光される受光強度に基づいて前記ガラス微粒子堆積体の下端部位置を検出し、この検出した前記ガラス微粒子堆積体の下端部位置を一定に保つように前記出発棒を引き上げつつガラス微粒子を堆積させる際に、前記ガラス微粒子堆積体が非軸対称になることにより前記受光強度が所定範囲を超えて変動することを検出して、前記ガラス微粒子堆積体の変形の発生を報知することを特徴とする。
また、前記報知があった後に、前記バーナの位置調整を行うことが好ましい。

The method for producing a glass particulate deposit according to the present invention that can solve the above-mentioned problems is a glass particulate that deposits glass particulates generated by a burner in the axial direction of the starting rod while rotating the starting rod about its axis. A method of manufacturing a deposit, wherein the lower end portion of the glass particulate deposit is based on the received light intensity such that a part of the light irradiated to a predetermined position is blocked by the lower end of the glass particulate deposit And when depositing the glass particles while pulling up the starting rod so as to keep the position of the lower end of the detected glass particle deposits constant, the glass particle deposits become non-axisymmetric, It detects that the received light intensity varies beyond a predetermined range, and wherein the notifying occurrence of deformation of the glass particles deposit.
Moreover, it is preferable to adjust the position of the burner after the notification.

本発明のガラス微粒子堆積体の製造方法によれば、ガラス微粒子堆積体の下端部位置を検出するために照射した光の受光強度が、ガラス微粒子堆積体の下端部が非軸対称であると変動することを利用して、ガラス微粒子堆積体が非軸対称になる変形を迅速に検出することができ、その結果、良好な生産性にて高品質なガラス微粒子堆積体を製造することができる。   According to the method for producing a glass fine particle deposit of the present invention, the received light intensity of light irradiated for detecting the position of the lower end of the glass fine particle deposit varies when the lower end of the glass fine particle deposit is non-axisymmetric. By utilizing this, it is possible to quickly detect a deformation in which the glass fine particle deposit becomes non-axisymmetric, and as a result, it is possible to manufacture a high-quality glass fine particle deposit with good productivity.

以下、本発明に係るガラス微粒子堆積体の製造方法の実施形態について図面を参照して説明する。
図1は本発明のガラス微粒子堆積体の製造方法が適用可能な製造装置の概略構成図である。
図1に示す製造装置11は、所謂VAD法により、反応容器12の内側の空間内で出発棒13に対してガラス微粒子を堆積させてガラス微粒子堆積体14を形成するものである。
反応容器12は、ガラス微粒子を生成して堆積させる際の高温の環境条件においても、塩素ガス等による腐食が極めて起こりにくい、二酸化珪素、炭化珪素、ニッケル、ニッケル合金等の材料を用いて形成されている。
Hereinafter, an embodiment of a method for producing a glass particulate deposit according to the present invention will be described with reference to the drawings.
FIG. 1 is a schematic configuration diagram of a production apparatus to which the method for producing a glass fine particle deposit according to the present invention can be applied.
The manufacturing apparatus 11 shown in FIG. 1 forms glass fine particle deposits 14 by depositing glass fine particles on a starting rod 13 in a space inside a reaction vessel 12 by a so-called VAD method.
The reaction vessel 12 is formed using a material such as silicon dioxide, silicon carbide, nickel, or a nickel alloy, which is extremely unlikely to be corroded by chlorine gas or the like even under high temperature environmental conditions when generating and depositing glass particles. ing.

反応容器12の中には、垂直方向に昇降可能な把持具15が収容されている。この把持具15は、長尺状の出発棒13の上端を把持して、出発棒13を垂直方向に支持している。また、把持具15は、その上方で回転昇降装置16に接続されている。回転昇降装置16は、把持具15及び把持した出発棒13を、その軸回りに回転させることができる。   In the reaction vessel 12, a gripping tool 15 that can be moved up and down in the vertical direction is housed. The gripping tool 15 grips the upper end of the elongated starting bar 13 and supports the starting bar 13 in the vertical direction. Further, the gripping tool 15 is connected to the rotary lifting device 16 above the gripping tool 15. The rotary lifting device 16 can rotate the gripping tool 15 and the gripped starting bar 13 around its axis.

反応容器12の中には、コア用バーナ21及びクラッド用バーナ22が設けられている。これらバーナ21,22は、ガスを吹き出す複数のポートを有しており、そのポートからそれぞれ燃焼ガスやガラス原料ガス等を吹き出し、燃焼ガスの燃焼により生じる酸水素火炎中において、ガラス原料を加水分解反応させて、ガラス微粒子を生成するものである。   In the reaction vessel 12, a core burner 21 and a cladding burner 22 are provided. These burners 21 and 22 have a plurality of ports for blowing out gas, and each of these ports blows combustion gas, glass raw material gas, etc., and hydrolyzes the glass raw material in the oxyhydrogen flame generated by combustion of the combustion gas. By reacting, glass fine particles are generated.

なお、燃焼ガスには、水素(H)と酸素(O)が含まれ、ガラス原料ガスには四塩化珪素(SiCl)が含まれ、特に、コア用バーナ21では、ガラス原料ガスにドーパントとしてゲルマニウム(Ge)が含まれる。
これらバーナ21,22は、生成したガラス微粒子を出発棒13に堆積させるように、出発棒13に向けて斜め上方に傾けて配置されている。そして、これらバーナ21,22には、ガス供給装置23から、適宜調整された流量のガスが供給される。
The combustion gas contains hydrogen (H 2 ) and oxygen (O 2 ), and the glass raw material gas contains silicon tetrachloride (SiCl 4 ). In particular, in the core burner 21, the glass raw material gas contains Germanium (Ge) is included as a dopant.
These burners 21 and 22 are disposed so as to be inclined obliquely upward toward the starting bar 13 so that the generated glass particles are deposited on the starting bar 13. The burners 21 and 22 are supplied with a gas having an appropriately adjusted flow rate from the gas supply device 23.

さらに、反応容器12は、側壁部分に排気口25を備えており、出発棒13に堆積されなかった余剰のガラス微粒子を含む内部の排気ガスが排気口25から送り出される。
また、反応容器12の下端近傍には、互いに対向するように設けられたレーザ発振器31及びレーザ受光器32が設けられており、レーザ発振器31からのレーザ光Lがレーザ受光器32にて受光されるようになっている。このレーザ発振器31は、照射したレーザ光Lが出発棒13の鉛直下方位置の所定位置を通るように配置されている。そして、出発棒13に堆積されたガラス微粒子堆積体14の下端部14aがその所定位置にあると、図2及び図3に示すように、レーザ発振器31から照射されたレーザ光Lは、ガラス微粒子堆積体14の下端部14aによってその一部が遮られる。
Further, the reaction vessel 12 includes an exhaust port 25 in the side wall portion, and an internal exhaust gas containing excess glass fine particles not deposited on the starting bar 13 is sent out from the exhaust port 25.
Further, a laser oscillator 31 and a laser receiver 32 provided so as to face each other are provided near the lower end of the reaction vessel 12, and the laser light L from the laser oscillator 31 is received by the laser receiver 32. It has become so. The laser oscillator 31 is arranged so that the irradiated laser light L passes through a predetermined position vertically below the starting bar 13. When the lower end portion 14a of the glass particulate deposit 14 deposited on the starting rod 13 is in the predetermined position, the laser light L emitted from the laser oscillator 31 is converted into glass particulates as shown in FIGS. Part of the deposited body 14 is blocked by the lower end portion 14a.

すなわち、レーザ受光器32において受光された受光強度が100%であると、ガラス微粒子堆積体14の下端部14aが所定位置より上にあり、受光強度が0%であると、ガラス微粒子堆積体14の下端部14aが所定位置より下にあり、受光強度が0%でも100%でもないと、ガラス微粒子堆積体14の下端部14aが所定位置またはその近傍にあることが検出される。   That is, when the received light intensity received by the laser receiver 32 is 100%, the lower end portion 14a of the glass fine particle deposit 14 is above a predetermined position, and when the received light intensity is 0%, the glass fine particle deposit 14 is obtained. If the lower end portion 14a is below the predetermined position and the received light intensity is neither 0% nor 100%, it is detected that the lower end portion 14a of the glass particulate deposit 14 is at or near the predetermined position.

レーザ受光器32は、制御装置33に接続されており、レーザ受光器32からの受光信号が制御装置33へ送信される。
制御装置33は、レーザ受光器32からの受光信号に基づいて、受光したレーザ光Lの強度を割り出し、そのレーザ光Lの強度に基づいて、回転昇降装置16を制御する。
The laser receiver 32 is connected to the control device 33, and a light reception signal from the laser receiver 32 is transmitted to the control device 33.
The control device 33 determines the intensity of the received laser beam L based on the light reception signal from the laser receiver 32 and controls the rotary lifting device 16 based on the intensity of the laser beam L.

具体的には、制御装置33は、レーザ受光器32における受光強度が30〜40%の範囲に入るように、回転昇降装置16を制御する。これにより、ガラス微粒子堆積体14は、その下端部14aが所定の高さ位置に維持されつつ一定の密度にてガラス微粒子が堆積され、安定した品質にて製造される。   Specifically, the control device 33 controls the rotary lifting device 16 so that the received light intensity in the laser receiver 32 falls within the range of 30 to 40%. As a result, the glass particulate deposit 14 is manufactured with a stable quality by depositing glass particulates at a constant density while maintaining the lower end portion 14a at a predetermined height position.

次に、上記構成の製造装置11によるガラス微粒子堆積体14の製造方法について説明する。
まず、把持具15によって反応容器12内に吊り下げた出発棒13をその軸回りに回転させる。
そして、出発棒13を軸回りに回転させながら、上方向に徐々に引き上げ、出発棒13にバーナ21,22によってガラス微粒子を吹き付けて堆積させる。
Next, the manufacturing method of the glass particulate deposit body 14 by the manufacturing apparatus 11 having the above configuration will be described.
First, the starting bar 13 suspended in the reaction vessel 12 by the gripping tool 15 is rotated around its axis.
Then, while rotating the starting bar 13 around the axis, the starting bar 13 is gradually pulled upward, and glass particles are sprayed and deposited on the starting bar 13 by the burners 21 and 22.

制御装置33は、ガラス微粒子を出発棒13に堆積させてガラス微粒子堆積体14を軸方向に成長させる際に、前述のように、所定位置に照射したレーザ光Lの一部をガラス微粒子堆積体14の下端部14aが遮るようにして、レーザ受光器32により受光される受光強度が30〜40%の範囲内に収まるように、出発棒13の引き上げ速度を制御する。これにより、ガラス微粒子堆積体14は、その下端部14aが一定の高さ位置(前記所定位置)とされ、一定密度にてガラス微粒子が堆積される。   The control device 33 deposits glass particles on the starting rod 13 and grows the glass particle deposit 14 in the axial direction, as described above, a part of the laser beam L irradiated to a predetermined position is used as the glass particle deposit. 14, the lifting speed of the starting bar 13 is controlled so that the received light intensity received by the laser receiver 32 falls within the range of 30 to 40%. As a result, the lower end portion 14a of the glass particulate deposit body 14 is set to a constant height position (the predetermined position), and the glass particulates are deposited at a constant density.

ここで、ガラス微粒子堆積体14の下端部14aの高さ位置が一定に保たれていても、バーナ21,22の交換後などに、このバーナ21,22の取り付け位置にずれが生じていると、ガラス微粒子堆積体14の下端部14aにガラス微粒子が偏って堆積し、下端部14aの形状が非軸対称に変形することがある。変形した場合には、得られたガラス微粒子堆積体14を透明ガラス化した後に線引きして光ファイバとした際に、コアが非円形となり、偏波モード分散(PMD)に影響することがある。   Here, even if the height position of the lower end portion 14a of the glass particle deposit 14 is kept constant, the burner 21 and 22 are attached at different positions after the burners 21 and 22 are replaced. In some cases, the glass fine particles are deposited unevenly on the lower end portion 14a of the glass fine particle deposit 14, and the shape of the lower end portion 14a is deformed non-axisymmetrically. In the case of deformation, when the obtained glass particulate deposit 14 is made into transparent glass and then drawn into an optical fiber, the core becomes non-circular, which may affect polarization mode dispersion (PMD).

このため、制御装置33は、製造しているガラス微粒子堆積体14の変形の有無を監視する変形監視制御を実行する。なお、ガラス微粒子の堆積開始時は、ガラス微粒子が必ずしも軸対称に堆積せず、光ファイバの母材として用いられない非有効部となる。したがって、制御装置33は、この非有効部が既に形成され、光ファイバの母材として有効に用いられる有効部の形成の開始後に、変形監視制御を行う。
つまり、制御装置33は、ガラス微粒子の堆積の開始から有効部の形成開始までの所定時間経過後に、変形監視制御を開始する。
For this reason, the control device 33 executes deformation monitoring control for monitoring the presence or absence of deformation of the glass particulate deposit 14 being manufactured. At the start of the deposition of the glass fine particles, the glass fine particles are not necessarily axisymmetrically deposited and become an ineffective portion that is not used as a base material for the optical fiber. Therefore, the control device 33 performs the deformation monitoring control after the ineffective portion is already formed and the formation of the effective portion that is effectively used as the optical fiber preform is started.
That is, the control device 33 starts the deformation monitoring control after a predetermined time elapses from the start of the deposition of the glass fine particles to the start of the formation of the effective portion.

次に、この変形監視制御について説明する。
ガラス微粒子堆積体14の下端部14aが非軸対称に変形すると、図4に模式的に示すように、レーザ光Lの照射範囲に対するガラス微粒子堆積体14の下端部14aの位置が、回転に伴って変動する。
Next, the deformation monitoring control will be described.
When the lower end portion 14a of the glass fine particle deposit 14 is deformed non-axisymmetrically, the position of the lower end portion 14a of the glass fine particle deposit 14 with respect to the irradiation range of the laser light L is rotated as shown in FIG. Fluctuate.

具体的には、このガラス微粒子堆積体14の下端部14aの位置は、レーザ光Lの照射範囲に対して左側にずれた状態(図4における(a)の状態)から90°回転すると、一旦、レーザ光Lの照射範囲の中央に移動し(図4における(b)の状態)、さらに90°回転すると、レーザ光Lの照射範囲に対して右側にずれる(図4における(c)の状態)。その後、90°回転すると、一旦、レーザ光Lの照射範囲の中央に移動し(図4における(d)の状態)、さらに90°回転すると、レーザ光Lの照射範囲に対して左側にずれる(図4における(a)の状態)。
これにより、レーザ受光器32におけるレーザ光Lの受光強度は、ガラス微粒子堆積体14の回転に伴って変動する。
Specifically, when the position of the lower end portion 14a of the glass fine particle deposit 14 is rotated by 90 ° from a state shifted to the left side with respect to the irradiation range of the laser light L (state (a) in FIG. 4), When moved to the center of the irradiation range of the laser beam L (state (b) in FIG. 4) and further rotated by 90 °, it shifts to the right side with respect to the irradiation range of the laser beam L (state (c) in FIG. 4). ). Thereafter, when it is rotated by 90 °, it is once moved to the center of the irradiation range of the laser light L (state (d) in FIG. 4), and when it is further rotated by 90 °, it is shifted to the left with respect to the irradiation range of the laser light L ( (State (a) in FIG. 4).
As a result, the received light intensity of the laser light L in the laser receiver 32 varies with the rotation of the glass particulate deposit 14.

図5は、レーザ受光器32におけるレーザ光Lの受光強度を示すグラフ図である。
図5に示すように、ガラス微粒子堆積体14に変形がない正常時では、レーザ受光器32における受光強度は、ほとんど変動することがない(図5における点線参照)。これに対して、ガラス微粒子堆積体14に変形が生じて非軸対称となると、ガラス微粒子堆積体14の回転周期T内にて、レーザ受光器32における受光強度が、ガラス微粒子堆積体14の回転に伴って繰り返し大きく変動する(図5における実線参照)。
FIG. 5 is a graph showing the light receiving intensity of the laser beam L in the laser receiver 32.
As shown in FIG. 5, when the glass particulate deposit 14 is in a normal state without deformation, the received light intensity in the laser receiver 32 hardly varies (see the dotted line in FIG. 5). On the other hand, when the glass particulate deposit 14 is deformed and becomes non-axisymmetric, the received light intensity in the laser receiver 32 is the rotation of the glass particulate deposit 14 within the rotation period T of the glass particulate deposit 14. As shown in FIG.

具体的には、このレーザ受光器32における受光強度は、ガラス微粒子堆積体14の下端部14aの位置がレーザ光Lの照射範囲に対して左側にずれると増加し(図5における(a)の状態)、その状態からガラス微粒子堆積体14が90°回転して下端部14aがレーザ光Lの照射範囲の中央に移動すると低下する(図5における(b)の状態)。その後、ガラス微粒子堆積体14が90°回転して下端部14aがレーザ光Lの照射範囲に対して右側にずれると、受光強度は再び増加し(図5における(c)の状態)、さらに90°回転して下端部14aがレーザ光Lの照射範囲の中央に移動すると再び低下する(図5における(d)の状態)。   Specifically, the intensity of light received by the laser receiver 32 increases when the position of the lower end portion 14a of the glass particle deposit 14 is shifted to the left with respect to the irradiation range of the laser light L (see (a) in FIG. 5). State), the glass particle deposit 14 is rotated by 90 ° from that state, and the lower end portion 14a is lowered to the center of the irradiation range of the laser light L (state (b) in FIG. 5). Thereafter, when the glass particulate deposit 14 is rotated 90 ° and the lower end portion 14a is shifted to the right side with respect to the irradiation range of the laser light L, the received light intensity increases again (state (c) in FIG. 5), and further 90 When it rotates and the lower end part 14a moves to the center of the irradiation range of the laser beam L, it lowers again (state (d) in FIG. 5).

このように、ガラス微粒子堆積体14の下端部14aに変形が生じて非軸対称となると、レーザ受光器32における受光強度は、ガラス微粒子堆積体14の半回転(T/2)毎に周期的に増減する。   As described above, when the lower end portion 14a of the glass fine particle deposit 14 is deformed and becomes non-axisymmetric, the light receiving intensity in the laser receiver 32 is periodically generated every half rotation (T / 2) of the glass fine particle deposit 14. Increase or decrease.

そして、制御装置33は、変形監視制御にて、レーザ受光器32におけるレーザ光Lの受光強度を監視し、この受光強度が、予め設定されている良好範囲Aからの逸脱を監視する変形監視制御を行う。なお、良好範囲Aは、受光強度の平均値(例えば、30〜40%の受光時における受光強度)を中心として定められた範囲であり、透明ガラス化したガラス母材を線引きして光ファイバとした際に、良品として用いることが可能な許容範囲である。   And the control apparatus 33 monitors the light reception intensity | strength of the laser beam L in the laser receiver 32 by deformation | transformation monitoring control, and this light reception intensity | strength monitors the deviation | deviation from the favorable range A set beforehand. I do. The good range A is a range determined around an average value of received light intensity (for example, received light intensity at the time of receiving light of 30 to 40%). This is an allowable range that can be used as a non-defective product.

制御装置33は、変形監視制御にて、レーザ受光器32におけるレーザ光Lの受光強度が良好範囲Aから外れたことを検出すると、ガラス微粒子堆積体14に変形が生じていると判断し、警報器(図示省略)からアラームを発し、作業者に報知して製造装置11を停止させる。
これにより、作業者は、警報によって異常が生じていることを迅速に認識し、バーナ21,22を支持しているXYテーブルなどを操作してバーナ21,22の角度や位置の修正を行うことができる。なお、作業者に報知する手段は、警報器によるアラームの他にも、ランプの点灯やディスプレイの表示などであってもよい。
When the control device 33 detects that the received light intensity of the laser beam L from the laser receiver 32 is out of the favorable range A in the deformation monitoring control, the control device 33 determines that the glass particulate deposit 14 is deformed, and issues an alarm. An alarm is issued from a container (not shown) to notify the operator and stop the manufacturing apparatus 11.
As a result, the operator quickly recognizes that an abnormality has occurred due to the alarm, and operates the XY table that supports the burners 21 and 22 to correct the angles and positions of the burners 21 and 22. Can do. The means for notifying the worker may be lighting of a lamp, display on the display, etc. in addition to the alarm by the alarm.

このように、上記実施形態のガラス微粒子堆積体の製造方法によれば、レーザ光Lの受光強度に基づいて制御装置33がガラス微粒子堆積体14の変形の発生を報知するので、作業者が目視にて監視する場合と比較して、熟練を要することなく迅速に異常を把握することができる。
これにより、不良箇所を極力抑えて、良好な生産性にて高品質なガラス微粒子堆積体14を製造することができる。
Thus, according to the manufacturing method of the glass particulate deposit of the above embodiment, since the control device 33 notifies the occurrence of the deformation of the glass particulate deposit 14 based on the received light intensity of the laser beam L, the operator can visually check. Compared with the case where monitoring is carried out by, abnormalities can be quickly grasped without requiring skill.
Thereby, it is possible to manufacture a high-quality glass fine particle deposit 14 with good productivity while suppressing defective portions as much as possible.

なお、上記実施形態では、制御装置33がアラームを発するとともに製造装置11を停止させたが、製造装置11を停止させずにアラームを発するようにしても良い。   In the above embodiment, the control device 33 issues an alarm and stops the manufacturing apparatus 11. However, the control apparatus 33 may issue an alarm without stopping the manufacturing apparatus 11.

本発明のガラス微粒子堆積体の製造方法が適用可能な製造装置の概略構成図である。It is a schematic block diagram of the manufacturing apparatus which can apply the manufacturing method of the glass particulate deposits of the present invention. レーザ光に沿うガラス微粒子堆積体の下端部の側面図である。It is a side view of the lower end part of the glass fine particle deposit along a laser beam. レーザ光に直交するガラス微粒子堆積体の下端部の側面図である。It is a side view of the lower end part of the glass particulate deposition object orthogonal to a laser beam. ガラス微粒子堆積体の下端部によるレーザ光の遮蔽状態を示す図である。It is a figure which shows the shielding state of the laser beam by the lower end part of a glass particulate deposit. レーザ受光器におけるレーザ光の受光強度を示すグラフ図である。It is a graph which shows the light reception intensity | strength of the laser beam in a laser receiver.

符号の説明Explanation of symbols

13 出発棒
14 ガラス微粒子堆積体
14a 下端部
21 コア用バーナ(バーナ)
22 クラッド用バーナ(バーナ)
A 良好範囲(所定範囲)
L レーザ光(光)
13 Starting bar 14 Glass particulate deposit 14a Lower end 21 Core burner (burner)
22 Burner for clad (burner)
A Good range (predetermined range)
L Laser light (light)

Claims (2)

出発棒をその軸回りに回転させつつ、バーナにより生成したガラス微粒子を前記出発棒の軸方向に堆積させるガラス微粒子堆積体の製造方法であって、
所定位置に照射した光の一部を前記ガラス微粒子堆積体の下端部が遮るようにして、受光される受光強度に基づいて前記ガラス微粒子堆積体の下端部位置を検出し、この検出した前記ガラス微粒子堆積体の下端部位置を一定に保つように前記出発棒を引き上げつつガラス微粒子を堆積させる際に、前記ガラス微粒子堆積体が非軸対称になることにより前記受光強度が所定範囲を超えて変動することを検出して、前記ガラス微粒子堆積体の変形の発生を報知することを特徴とするガラス微粒子堆積体の製造方法。
A method for producing a glass particulate deposit, wherein glass particulates generated by a burner are deposited in the axial direction of the starting rod while rotating the starting rod about its axis,
The lower end portion of the glass fine particle deposit is shielded by the lower end portion of the glass fine particle deposit so as to block a part of the light irradiated to a predetermined position, and the lower end position of the glass fine particle deposit is detected based on the received light intensity. When depositing glass particulates while pulling up the starting rod so as to keep the position of the lower end of the particulate deposit body constant, the received light intensity varies beyond a predetermined range due to the glass particulate deposit body becoming non-axisymmetric. And detecting the occurrence of deformation of the glass fine particle deposit, and a method for producing the glass fine particle deposit.
請求項1に記載のガラス微粒子堆積体の製造方法であって、
前記報知があった後に、前記バーナの位置調整を行うことを特徴とするガラス微粒子堆積体の製造方法。
A method for producing a glass particulate deposit according to claim 1,
A method of manufacturing a glass particulate deposit, wherein the burner position is adjusted after the notification.
JP2007280758A 2007-10-29 2007-10-29 Method for producing glass particulate deposit Expired - Fee Related JP5380818B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007280758A JP5380818B2 (en) 2007-10-29 2007-10-29 Method for producing glass particulate deposit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007280758A JP5380818B2 (en) 2007-10-29 2007-10-29 Method for producing glass particulate deposit

Publications (2)

Publication Number Publication Date
JP2009107874A JP2009107874A (en) 2009-05-21
JP5380818B2 true JP5380818B2 (en) 2014-01-08

Family

ID=40776814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007280758A Expired - Fee Related JP5380818B2 (en) 2007-10-29 2007-10-29 Method for producing glass particulate deposit

Country Status (1)

Country Link
JP (1) JP5380818B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5578024B2 (en) * 2010-10-27 2014-08-27 住友電気工業株式会社 Manufacturing method of glass base material
CN103739196B (en) * 2012-12-06 2016-01-20 成都富通光通信技术有限公司 VAD prepares equipment and the method for porous plug
CN103833214B (en) * 2013-12-25 2016-03-30 中天科技精密材料有限公司 A kind of laser control apparatus and control method thereof controlling optical fiber prefabricated rod mandrel growth
CN108929031B (en) * 2018-07-27 2021-11-09 长飞光纤光缆股份有限公司 Device and method for preparing optical fiber preform base material by VAD
JP7010803B2 (en) * 2018-11-20 2022-02-10 信越化学工業株式会社 Manufacturing method of porous glass base material for optical fiber
WO2022186341A1 (en) * 2021-03-03 2022-09-09 住友電気工業株式会社 Apparatus for producing glass base material, and method for producing glass base material

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5738334A (en) * 1980-08-06 1982-03-03 Nippon Telegr & Teleph Corp <Ntt> Controlling method for deposition of oxide powder in vapor axial deposition method
JPS6325243A (en) * 1986-07-18 1988-02-02 Furukawa Electric Co Ltd:The Production of parent material for optical fiber
JPH07196327A (en) * 1993-12-29 1995-08-01 Fujikura Ltd Glass molding unit
JP3680357B2 (en) * 1995-06-22 2005-08-10 住友電気工業株式会社 Glass base flame processing equipment
JPH0967130A (en) * 1995-08-28 1997-03-11 Fujikura Ltd Apparatus for producing porous glass body

Also Published As

Publication number Publication date
JP2009107874A (en) 2009-05-21

Similar Documents

Publication Publication Date Title
JP5380818B2 (en) Method for producing glass particulate deposit
US8844321B2 (en) Apparatus and method for manufacturing vitreous silica crucible
JP2012091965A (en) Method for producing glass preform
JP6432220B2 (en) Manufacturing method of glass preform for optical fiber
JP2013056808A (en) Method for producing glass preform
JP2012176861A (en) Method and apparatus for producing porous glass fine particle deposit
CN103708722A (en) Mother rod for deposition optical fiber preform and manufacturing method thereof
KR102545711B1 (en) Apparatus and method for manufacturing porous glass preform
CN213266281U (en) Core rod preparation device for large-size optical fiber perform
JP2008069023A (en) Method of manufacturing optical fiber preform
JP2000044276A (en) Production of optical fiber preform and apparatus for producing optical fiber preform
US9540272B2 (en) Burner shield to reduce soot buildup
KR102608269B1 (en) Optical Fiber Preform Deposition Apparatus, Deposition Method And Optical Fiber Preform Using The Same
JP2012006791A (en) Method for producing optical fiber preform
JP2013060321A (en) Quartz burner and method of producing glass preform for optical fiber
JP2010064934A (en) Burner for producing synthetic silica glass, and apparatus for producing synthetic silica glass using the burner
JP5087929B2 (en) Method for producing glass particulate deposit
JP5603025B2 (en) Method for producing porous preform for optical fiber
US20100050696A1 (en) Method for manufacturing optical fiber preform
JP2014024693A (en) Method for producing glass preform
JP2000272929A (en) Production of optical fiber preform
JP2003226545A (en) Method for manufacturing optical fiber preform and device for manufacturing optical fiber preform
JP2023017290A (en) Method and apparatus for manufacturing glass fine particle deposit
JP4434083B2 (en) Manufacturing apparatus and manufacturing method of glass fine particle deposit
JP2003286033A (en) Method and apparatus for manufacturing glass particulate deposit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120130

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130916

R150 Certificate of patent or registration of utility model

Ref document number: 5380818

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees