JP5370273B2 - Star-shaped polyphenylene ether and process for producing the same - Google Patents

Star-shaped polyphenylene ether and process for producing the same Download PDF

Info

Publication number
JP5370273B2
JP5370273B2 JP2010124293A JP2010124293A JP5370273B2 JP 5370273 B2 JP5370273 B2 JP 5370273B2 JP 2010124293 A JP2010124293 A JP 2010124293A JP 2010124293 A JP2010124293 A JP 2010124293A JP 5370273 B2 JP5370273 B2 JP 5370273B2
Authority
JP
Japan
Prior art keywords
ppe
star
polyphenylene ether
linear
molecular weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010124293A
Other languages
Japanese (ja)
Other versions
JP2011246681A (en
Inventor
祐二 芝崎
好行 大石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Engineering Plastics Corp
Iwate University
Original Assignee
Mitsubishi Engineering Plastics Corp
Iwate University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Engineering Plastics Corp, Iwate University filed Critical Mitsubishi Engineering Plastics Corp
Priority to JP2010124293A priority Critical patent/JP5370273B2/en
Publication of JP2011246681A publication Critical patent/JP2011246681A/en
Application granted granted Critical
Publication of JP5370273B2 publication Critical patent/JP5370273B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Polyethers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide star PPE which is excellent in compatibility with linear polyphenylene ether (PPE), has heat resistance and other characteristics equal to those of PPE, and also can effectively improve the fluidity of PPE. <P>SOLUTION: The star polyphenylene ether has a benzene ring as a nucleus and three or more polyphenylene ether chains extended from carbon atoms on the benzene ring. The polyphenylene ether chains are preferably coupled to carbon atoms of the first, third and fifth positions on the benzene ring. <P>COPYRIGHT: (C)2012,JPO&amp;INPIT

Description

本発明は、星形ポリフェニレンエーテルおよびその製造方法に関する。詳しくは、線状ポリフェニレンエーテルの流動性の向上に有用な星形ポリフェニレンエーテルと、この星形ポリフェニレンエーテルを製造する方法に関する。
本発明はまた、この星形ポリフェニレンエーテルを配合したポリフェニレンエーテル混合物と、この星形ポリフェニレンエーテルを含むポリフェニレンエーテル用流動性向上剤に関する。
The present invention relates to a star-shaped polyphenylene ether and a method for producing the same. Specifically, the present invention relates to a star-shaped polyphenylene ether useful for improving the fluidity of linear polyphenylene ether and a method for producing the star-shaped polyphenylene ether.
The present invention also relates to a polyphenylene ether mixture containing the star-shaped polyphenylene ether and a fluidity improver for polyphenylene ether containing the star-shaped polyphenylene ether.

ポリフェニレンエーテル(PPE)、例えば、2,6−ジメチルフェノールの触媒的酸化重合により得られるポリ(2,6−ジメチル−1,4−フェニレンエーテル)は、高いガラス転移温度を有し、また、耐酸性や耐アルカリ性、並びに機械特性、電気絶縁特性、低吸湿性、寸法安定性などの特性バランスのとれたエンジニアリングプラスチックであり、幅広く使用されている。   Polyphenylene ether (PPE), for example poly (2,6-dimethyl-1,4-phenylene ether) obtained by catalytic oxidative polymerization of 2,6-dimethylphenol, has a high glass transition temperature and is also resistant to acid. Engineering plastics that have a good balance of properties such as mechanical properties, alkali resistance, mechanical properties, electrical insulation properties, low hygroscopicity, and dimensional stability.

従来の一般的なPPEは、複数のフェニレンエーテル構造単位が直鎖状に伸びる線状構造を有するものである。以下において、このような従来の一般的なPPEを「線状PPE」と称す場合があるが、本明細書において、単に「ポリフェニレンエーテル」又は「PPE」と記載した場合、このように複数のフェニレンエーテル構造単位が直鎖状に伸びる線状構造を有する「線状ポリフェニレンエーテル」をさす。   Conventional general PPE has a linear structure in which a plurality of phenylene ether structural units extend linearly. Hereinafter, such a conventional general PPE may be referred to as “linear PPE”. In the present specification, when simply described as “polyphenylene ether” or “PPE”, a plurality of phenylene “Linear polyphenylene ether” having a linear structure in which ether structural units extend linearly.

しかし、PPEは空気下での熱安定性が低く(250℃で酸化劣化が始まる)、溶融成形時に、変色、酸化劣化等の種々の問題が生じる。即ち、樹脂のガラス転移温度が210℃であるため、溶融成形温度は250℃以上とする必要があるが、このような温度では酸化劣化が起こる。   However, PPE has low thermal stability under air (oxidation deterioration starts at 250 ° C.), and various problems such as discoloration and oxidation deterioration occur during melt molding. That is, since the glass transition temperature of the resin is 210 ° C., the melt molding temperature needs to be 250 ° C. or more, but oxidation deterioration occurs at such a temperature.

このため、従来、PPEの成形加工温度の低温化のために、様々な技術が考案されている。例えば、ポリスチレン系樹脂とのブレンド(例えば、米国特許第3,383,435号明細書)、飽和多脂環式樹脂やテルペンフェノールなどの流動促進剤の添加(例えば、特開2001−152006号公報、特開平10−81818号公報、特公昭57−13584号公報、特開昭58−129050号公報、特開昭58−129051号公報、特開昭59−126460号公報、特開昭47−3136号公報、特開平9−59508公報)などである。しかしながら、ポリスチレン、テルペンフェノール、その他の流動促進剤は、PPEの加熱撓み温度を下げ、通例UL94標準プロトコルで測定される樹脂の燃焼性を増大させてしまう。   For this reason, conventionally, various techniques have been devised for lowering the molding processing temperature of PPE. For example, blends with polystyrene resins (for example, US Pat. No. 3,383,435), addition of glidants such as saturated polyalicyclic resins and terpene phenols (for example, JP-A-2001-152006) JP-A-10-81818, JP-B-57-13484, JP-A-58-129050, JP-A-58-129051, JP-A-59-126460, JP-A-47-3136. And Japanese Patent Laid-Open No. 9-59508). However, polystyrene, terpene phenol, and other glidants lower the heat deflection temperature of PPE and increase the flammability of the resin, typically measured by the UL94 standard protocol.

そこで開発されたのが、ポリエステル系樹枝状のオリゴマー(重量平均分子量1000〜5000)を添加する方法である(例えば、特公昭59−41663号公報、特表昭61−502195号公報、特開昭63−10655号公報)。   Thus, a method of adding a polyester dendritic oligomer (weight average molecular weight 1000 to 5000) was developed (for example, Japanese Patent Publication No. 59-41663, Japanese Patent Publication No. 61-502195, Japanese Patent Laid-Open No. 63-10655).

しかし、ポリスチレンはPPEと相溶可能であるが、その他のポリマー(ポリアミド、ポリオレフィン、ポリウレタン)はPPEと相溶し難い。従来法では、高温押し出しなどの特殊条件下で化学反応させることで相溶化を達成しているが、本質的にはこれらのポリマーはPPEと相溶しないため、このようにPPEと非相溶性のポリマーを配合した複合樹脂組成物では、得られる成形品の機械的強度が低下する。   However, polystyrene is compatible with PPE, but other polymers (polyamide, polyolefin, polyurethane) are hardly compatible with PPE. In the conventional method, compatibilization is achieved by chemical reaction under special conditions such as high temperature extrusion. However, since these polymers are essentially incompatible with PPE, they are thus incompatible with PPE. In the composite resin composition in which the polymer is blended, the mechanical strength of the obtained molded product is lowered.

相溶性の向上と耐熱性などの諸特性の維持を目的として、超低分子量PPEとの配合技術が開発されている(特表2003−531234号公報)。しかし、溶融粘度を下げるためには非常に低分子量のPPEを添加する必要があり、この結果、得られる成形品の機械特性が損なわれる。   For the purpose of improving compatibility and maintaining various properties such as heat resistance, a blending technique with ultra-low molecular weight PPE has been developed (Japanese Patent Publication No. 2003-53234). However, in order to lower the melt viscosity, it is necessary to add very low molecular weight PPE. As a result, the mechanical properties of the resulting molded article are impaired.

米国特許第3383435号明細書US Pat. No. 3,383,435 特開2001−152006号公報JP 2001-152006 A 特開平10−81818号公報JP-A-10-81818 特公昭57−13584号公報Japanese Patent Publication No.57-13484 特開昭58−129050号公報JP 58-129050 A 特開昭58−129051号公報JP 58-129051 A 特開昭59−126460号公報JP 59-126460 A 特開昭47−3136号公報JP-A-47-3136 特開平9−59508公報JP-A-9-59508 特公昭59−41663号公報Japanese Patent Publication No.59-41663 特表昭61−502195号公報JP-T 61-502195 特開昭63−10655号公報JP-A 63-10655 特表2003−531234号公報Special table 2003-53234 gazette

線状PPEの加工性の向上のためには、異種ポリマーのブレンドよりも、線状PPE自体の空気下における耐熱性の向上、もしくは線状PPEと非常に相溶しやすくかつPPEなみの耐熱性を有する高流動化剤の開発が望まれる。   In order to improve the processability of linear PPE, the heat resistance of the linear PPE itself in the air is better than the blend of different polymers, or it is very compatible with the linear PPE and has the same heat resistance as PPE. It is desired to develop a high fluidizing agent having a high viscosity.

本発明は、線状PPEとの相溶性に優れると共に、線状PPEと同等の耐熱性、その他の特性を有し、しかも線状PPEの流動性向上に有効な星形PPEを提供することを課題とする。   The present invention provides a star-shaped PPE that has excellent compatibility with linear PPE, has heat resistance equivalent to that of linear PPE, and other characteristics, and is effective in improving the fluidity of linear PPE. Let it be an issue.

本発明者らは、上記課題を解決すべく鋭意検討を重ね、PPEの星形ポリマーを合成し、それを線状PPEに配合すると、溶液粘度が大幅に低下すること、従って、成形時の加工性の向上に有効であることを見出し、本発明を完成させた。   The present inventors have intensively studied to solve the above-mentioned problems, and when a PPE star polymer is synthesized and blended with linear PPE, the viscosity of the solution is greatly reduced. As a result, the present invention was completed.

即ち、本発明は以下を要旨とする。   That is, the gist of the present invention is as follows.

[1] ベンゼン環を核とし、該ベンゼン環上の炭素原子から伸びる3本以上のポリフェニレンエーテル鎖を有することを特徴とする星形ポリフェニレンエーテル。 [1] A star-shaped polyphenylene ether having a benzene ring as a nucleus and having three or more polyphenylene ether chains extending from carbon atoms on the benzene ring.

[2] [1]において、前記ポリフェニレンエーテル鎖はオキシメチレン基を有し、前記ベンゼン環上の炭素原子とオキシメチレン基を介して結合していることを特徴とする星形ポリフェニレンエーテル。 [2] The star-shaped polyphenylene ether according to [1], wherein the polyphenylene ether chain has an oxymethylene group and is bonded to a carbon atom on the benzene ring via an oxymethylene group.

[3] [1]又は[2]において、1本当たりの前記ポリフェニレンエーテル鎖の重量平均分子量が1,000以上であることを特徴とする星形ポリフェニレンエーテル。 [3] A star-shaped polyphenylene ether according to [1] or [2], wherein the polyphenylene ether chain per one chain has a weight average molecular weight of 1,000 or more.

[4] [1]ないし[3]のいずれかにおいて、重量平均分子量が7,000〜20,000であることを特徴とする星形ポリフェニレンエーテル。 [4] A star-shaped polyphenylene ether according to any one of [1] to [3], wherein the weight average molecular weight is 7,000 to 20,000.

[5] [1]ないし[4]のいずれかにおいて、前記ポリフェニレンエーテル鎖が前記ベンゼン環上の1位、3位および5位の炭素原子に結合していることを特徴とする星形ポリフェニレンエーテル。 [5] A star-shaped polyphenylene ether according to any one of [1] to [4], wherein the polyphenylene ether chain is bonded to the 1st, 3rd and 5th carbon atoms on the benzene ring. .

[6] 3個以上のブロモメチル基で置換されたブロモメチルベンゼンと、ポリフェニレンエーテルとを触媒の存在下に反応させることを特徴とする[1]ないし[5]のいずれかに記載の星形ポリフェニレンエーテルの製造方法。 [6] The star-shaped polyphenylene according to any one of [1] to [5], wherein bromomethylbenzene substituted with three or more bromomethyl groups is reacted with polyphenylene ether in the presence of a catalyst. A method for producing ether.

[7] [6]において、前記ブロモメチルベンゼンが1,3,5−トリスブロモメチルベンゼンであることを特徴とする星形ポリフェニレンエーテルの製造方法。 [7] A method for producing a star-shaped polyphenylene ether according to [6], wherein the bromomethylbenzene is 1,3,5-trisbromomethylbenzene.

[8] [1]ないし[5]のいずれかに記載の星形ポリフェニレンエーテルと、ポリフェニレンエーテルとを含むことを特徴とするポリフェニレンエーテル混合物。 [8] A polyphenylene ether mixture comprising the star-shaped polyphenylene ether according to any one of [1] to [5] and polyphenylene ether.

[9] [1]ないし[5]のいずれかに記載の星形ポリフェニレンエーテルを含むポリフェニレンエーテル用流動性向上剤。 [9] A fluidity improver for polyphenylene ether comprising the star-shaped polyphenylene ether according to any one of [1] to [5].

本発明の星形PPEは、機械特性、熱特性、絶縁特性、寸法安定性等の特性は、そのPPE鎖に由来して、線状PPEと同等の優れた機械的、熱的特性バランスを有する一方で、PPE鎖がベンゼン核から放射状に伸びる星形であるという特異的な形状により、優れた流動性を示す。   The star PPE of the present invention has excellent mechanical and thermal property balance equivalent to that of linear PPE in terms of mechanical properties, thermal properties, insulation properties, dimensional stability, and the like. On the other hand, it has excellent fluidity due to its unique shape in which the PPE chain has a star shape extending radially from the benzene nucleus.

従って、本発明の星形PPEを線状PPEと混合してなるPPE混合物は、スチレン系樹脂等の他樹脂とアロイ化することなく、十分な流動性を確保することができ、成形加工の選択肢が広がる。さらに、耐熱性が非常に優れているため、より高度な耐熱性が要求される、電気・電子部品、機械・機構部品、車両部品および建材等、広範囲な分野に非常に有用である。   Therefore, the PPE mixture obtained by mixing the star-shaped PPE of the present invention with the linear PPE can ensure sufficient fluidity without being alloyed with other resins such as styrene-based resins, and is an option for molding processing. Spread. Furthermore, since it is extremely excellent in heat resistance, it is very useful in a wide range of fields such as electric / electronic parts, machine / mechanical parts, vehicle parts and building materials that require higher heat resistance.

比較例1で得られた線状PPEのH−NMRスペクトルである。2 is a 1 H-NMR spectrum of the linear PPE obtained in Comparative Example 1. 実施例1で得られた3本鎖星形PPEのH−NMRスペクトルである。2 is a 1 H-NMR spectrum of a triple-stranded star PPE obtained in Example 1. 比較例1で得られた線状PPE、参考例2で得られた3置換体モデル、および実施例1で得られた3本鎖星形PPEのNMRスペクトルの7.2〜7.8ppm領域の拡大図である。In the 7.2-7.8 ppm region of the NMR spectrum of the linear PPE obtained in Comparative Example 1, the three-substitution model obtained in Reference Example 2, and the three-chain star PPE obtained in Example 1. It is an enlarged view. 実施例1で得られた3本鎖星形PPEの空気下における熱分解曲線を示すグラフである。2 is a graph showing a thermal decomposition curve of the three-chain star PPE obtained in Example 1 under air. 比較例1,3,4,5で得られた線状PPEと実施例3で得られた3本鎖星形PPEのHugginsプロット(クロロホルム溶媒、30℃)を示すグラフである。6 is a graph showing a Huggins plot (chloroform solvent, 30 ° C.) of the linear PPE obtained in Comparative Examples 1, 3, 4, and 5 and the three-stranded star PPE obtained in Example 3. FIG. 実施例3で得られた3本鎖星形PPEのHugginsプロットおよびMead−Fuossプロット(クロロホルム溶媒、30℃)を示すグラフである。4 is a graph showing a Huggins plot and a Mead-Fuoss plot (chloroform solvent, 30 ° C.) of the triple-stranded star PPE obtained in Example 3. FIG. 比較例1〜5で得られた線状PPEと実施例1〜4で得られた3本鎖星形PPEのMark−Howink−桜田プロット(クロロホルム溶媒、30℃)を示すグラフである。It is a graph which shows the Mark-Howink-Sakurada plot (chloroform solvent, 30 degreeC) of the linear PPE obtained in Comparative Examples 1-5 and the triple chain star-shaped PPE obtained in Examples 1-4. 比較例6で得られた線状PPE(Mw=188,000)と、(A)比較例4で得られた線状PPE(Mw=9,000)又は(B)実施例2で得られた3本鎖星形PPE(Mw=10,000)との混合物における、混合物中の線状PPE(Mw=188,000)の重量割合(重量%)と固有粘度(溶液粘度)との関係を示すグラフである。The linear PPE obtained in Comparative Example 6 (Mw = 188,000) and (A) the linear PPE obtained in Comparative Example 4 (Mw = 9,000) or (B) obtained in Example 2. The relationship between the weight ratio (weight%) of linear PPE (Mw = 188,000) in a mixture and intrinsic viscosity (solution viscosity) in a mixture with a three-chain star PPE (Mw = 10,000) is shown. It is a graph.

以下に本発明の実施の形態を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

[星形PPE]
本発明の星形PPEは、ベンゼン環を核とし、該ベンゼン環上の炭素原子から伸びる3本以上のPPE鎖を有することを特徴とする。
[Star-shaped PPE]
The star PPE of the present invention is characterized by having three or more PPE chains having a benzene ring as a nucleus and extending from a carbon atom on the benzene ring.

このPPE鎖が2本以下では、流動性において線状PPEと大差はなく、PPE鎖は3本以上必要である。
本発明の星形PPEのPPE鎖は、3〜6本の範囲で任意に形成することができるが、合成の容易さから3〜4本、特に3本であることが好ましく、とりわけ、ベンゼン環の1位、3位および5位にPPE鎖が結合していることが好ましい(以下、PPE鎖が3本導入された星形PPEを「3本鎖星形PPE」と称す場合がある。)。
When the number of PPE chains is 2 or less, there is no great difference in flowability from linear PPE, and 3 or more PPE chains are required.
The PPE chain of the star-shaped PPE of the present invention can be arbitrarily formed in the range of 3 to 6, but it is preferably 3 to 4 and particularly preferably 3 for ease of synthesis. It is preferable that a PPE chain is bonded to the 1-position, 3-position, and 5-position of the above (hereinafter, a star PPE in which three PPE chains are introduced may be referred to as a “three-chain star PPE”). .

本発明の星形PPEのPPE鎖の分子量は、過度に小さいとPPEとしての機械特性が低下する傾向にあり、過度に大きいと合成上、星形PPEを高純度で合成することが困難であること、さらに現在流通している直鎖状PPEの重量平均分子量が30,000であることから、これ以上の分子量の星形PPEを合成することは低粘度化の意味が低くなる傾向にある。そのため、星形PPEのPPE鎖の重量平均分子量としては1,000〜10,000、特に3,000〜10,000であることが好ましい。なお、このPPE鎖1本当たりの重量平均分子量とは、この星形PPEの製造に用いた線状PPEの重量平均分子量とほぼ同等である。   If the molecular weight of the PPE chain of the star PPE of the present invention is excessively small, mechanical properties as PPE tend to be reduced. If it is excessively large, it is difficult to synthesize the star PPE with high purity. In addition, since the weight average molecular weight of the linear PPE currently in circulation is 30,000, synthesizing a star PPE having a molecular weight higher than this tends to lower the meaning of lowering the viscosity. Therefore, the weight average molecular weight of the PPE chain of the star-shaped PPE is preferably 1,000 to 10,000, particularly 3,000 to 10,000. The weight average molecular weight per PPE chain is substantially equal to the weight average molecular weight of the linear PPE used for the production of the star PPE.

また、本発明の星形PPE自体の分子量は、後掲の実施例の項で測定される重量平均分子量として3,000〜30,000、さらに7,000〜30,000、特に9,000〜30,000であることが好ましい。これは、現行の線状PPEの重量平均分子量が30,000程度であり、上記下限未満ではフィルム形成が困難な傾向にあり、上記上限を超えると射出成形時の溶融粘度が高くなりすぎてシリンダー内でやけが発生する場合があるためである。   In addition, the molecular weight of the star PPE itself of the present invention is 3,000 to 30,000, more preferably 7,000 to 30,000, particularly 9,000 to the weight average molecular weight measured in the Examples section below. 30,000 is preferred. This is because the current linear PPE has a weight average molecular weight of about 30,000, and if it is less than the above lower limit, film formation tends to be difficult. If the upper limit is exceeded, the melt viscosity at the time of injection molding becomes too high, and the cylinder This is because burns may occur in the interior.

また、後掲の実施例の項で測定される重量平均分子量(Mw)と数平均分子量(Mn)の比で表される分子量分布(Mw/Mn)は、通常1〜5であり、好ましくは1〜3.5、より好ましくは1〜2である。DSC法によるガラス転移温度は、150〜220℃、特に170〜210℃であることがより好ましい。ガラス転移温度が150℃未満であると、耐熱性が低下しやすい傾向にあり、220℃を超えると成形加工時の樹脂流動性が低下しやすい傾向にある。   Moreover, the molecular weight distribution (Mw / Mn) represented by the ratio of the weight average molecular weight (Mw) and the number average molecular weight (Mn) measured in the Examples section below is usually 1 to 5, preferably 1 to 3.5, more preferably 1 to 2. The glass transition temperature by DSC method is more preferably 150 to 220 ° C, particularly 170 to 210 ° C. When the glass transition temperature is less than 150 ° C., the heat resistance tends to decrease, and when it exceeds 220 ° C., the resin fluidity during molding tends to decrease.

[星形PPEの製造方法]
上述の本発明の星形PPEを製造する方法としては特に制限はないが、好ましくは本発明の星形PPEの製造方法に従って、次のようにして製造される。
[Production method of star-shaped PPE]
Although there is no restriction | limiting in particular as a method of manufacturing the above-mentioned star-shaped PPE of this invention, Preferably, it manufactures as follows according to the manufacturing method of the star-shaped PPE of this invention.

本発明の星形PPEの製造方法では、まず、PPE鎖を導入する部位にブロモメチルを有するブロモメチルベンゼンを準備する。例えば、ベンゼン環の1位、3位および5位にPPE鎖を有する星形PPEを製造するには、1,3,5−トリスブロモメチルベンゼン(1,3,5−トリスブロモメシチレン)を準備する。このブロモメチルベンゼンは、後述の参考例3にも示されるように、メチルベンゼンを用いて常法に従って製造することができる。   In the method for producing a star PPE of the present invention, first, bromomethylbenzene having bromomethyl at a site where a PPE chain is introduced is prepared. For example, 1,3,5-trisbromomethylbenzene (1,3,5-trisbromomesitylene) is prepared to produce star-shaped PPE having PPE chains at the 1-position, 3-position and 5-position of the benzene ring. To do. This bromomethylbenzene can be produced according to a conventional method using methylbenzene as shown in Reference Example 3 described later.

別に、PPE鎖となる線状PPEを製造する。この線状PPEの製造は、常法に従って行うことができる。この線状PPEの製造方法については、後述の本発明のPPE混合物の項で説明する。   Separately, a linear PPE that becomes a PPE chain is produced. The production of the linear PPE can be performed according to a conventional method. The method for producing the linear PPE will be described in the section of the PPE mixture of the present invention described later.

このPPE鎖となる線状PPEは、その重量平均分子量が、前述の本発明の星形PPEの1本当たりのPPE鎖の重量平均分子量となるように製造する。   The linear PPE used as this PPE chain is manufactured so that the weight average molecular weight becomes the weight average molecular weight of the PPE chain per one star PPE of the present invention described above.

次いで、ブロモメチルベンゼンと線状PPEとを触媒の存在下に反応させて、ブロモメチルベンゼンの臭素原子部分をPPE鎖で置換してPPE鎖を導入する。   Next, bromomethylbenzene and linear PPE are reacted in the presence of a catalyst, and the bromine atom portion of bromomethylbenzene is replaced with the PPE chain to introduce the PPE chain.

この反応に用いる触媒としては、PPE鎖の末端の水酸基の水素を引き抜けるものであればよく、特に制限はないが、炭酸セシウム、炭酸カリウム、炭酸ナトリウム等の無機塩基触媒の他、ピリジン、4,4−ジメチルアミノピリジン、ジアザビシクロウンデセン等の有機塩基触媒を用いることができる。これらの触媒は1種を単独で用いてもよく、2種以上を混合して用いてもよい。
触媒は、PPE鎖のOH末端に対して1.1〜2モル量程度用いることが、反応効率および経済性の面で好ましい。
The catalyst used in this reaction is not particularly limited as long as it pulls out the hydrogen of the hydroxyl group at the end of the PPE chain. In addition to inorganic base catalysts such as cesium carbonate, potassium carbonate, sodium carbonate, pyridine, 4, Organic base catalysts such as 4-dimethylaminopyridine and diazabicycloundecene can be used. These catalysts may be used individually by 1 type, and 2 or more types may be mixed and used for them.
The catalyst is preferably used in an amount of about 1.1 to 2 mol relative to the OH terminal of the PPE chain from the viewpoint of reaction efficiency and economy.

反応は、通常、溶媒の存在下で実施され、用いる溶媒としては、トルエン、キシレン等の芳香族系溶媒、ジメチルホルムアミド、ジメチルアセトアミド、メチルピロリドン等のアミド系溶媒、テトラヒドロフラン、ニトロベンゼン、クロロベンゼン等の有機溶媒を用いることができる。これらの溶媒は、1種を単独で用いてもよく、2種以上を混合して用いてもよい。
特に、芳香族炭化水素系のトルエンとアミド系溶媒の混合溶媒は、ポリマーの溶解性とともに、求核反応の促進に好都合であり推奨される。
溶媒の使用量は特に制限はないが、反応系内のPPE濃度が1〜20重量%となるような程度に用いることが、反応効率、取り扱い性の面で好ましい。
The reaction is usually carried out in the presence of a solvent. Examples of the solvent used include aromatic solvents such as toluene and xylene, amide solvents such as dimethylformamide, dimethylacetamide and methylpyrrolidone, and organic solvents such as tetrahydrofuran, nitrobenzene and chlorobenzene. A solvent can be used. These solvents may be used alone or in a combination of two or more.
In particular, a mixed solvent of an aromatic hydrocarbon-based toluene and an amide-based solvent is convenient and recommended for promoting the nucleophilic reaction together with the solubility of the polymer.
Although there is no restriction | limiting in particular in the usage-amount of a solvent, it is preferable from the surface of reaction efficiency and handling property to use to such an extent that the PPE density | concentration in a reaction system will be 1-20 weight%.

反応温度は50〜200℃、特に70〜150℃が好ましい。反応温度が低過ぎると反応速度が小さく、高過ぎると用いたアミド系溶媒の分解等でポリマーが着色しやすいためである。   The reaction temperature is preferably 50 to 200 ° C, particularly preferably 70 to 150 ° C. If the reaction temperature is too low, the reaction rate is low, and if it is too high, the polymer is likely to be colored due to decomposition of the amide solvent used.

反応時間は通常12〜72時間程度である。反応時間が短過ぎると、目的とする本数のPPE鎖が導入された星形PPEを得ることができず、長過ぎてもそれ以上の反応成績の向上は見られず、効率的でない。   The reaction time is usually about 12 to 72 hours. If the reaction time is too short, a star-shaped PPE in which the desired number of PPE chains are introduced cannot be obtained. If the reaction time is too long, no further improvement in reaction results is observed, which is not efficient.

なお、反応は窒素等の不活性ガス雰囲気下で行うことが、ポリマーの酸化劣化による着色を抑える点で好ましい。
反応後は、常法に従って生成物を分離回収し、再結晶等により精製する。
In addition, it is preferable to perform reaction in inert gas atmosphere, such as nitrogen, at the point which suppresses the coloring by the oxidative degradation of a polymer.
After the reaction, the product is separated and recovered according to a conventional method and purified by recrystallization or the like.

このようにして得られる本発明の星形PPEは、反応に供したPPE鎖が、ブロモメチルベンゼンの臭素原子と置換し、ベンゼン環上の炭素原子に対してPPE鎖がオキシメチレン基を介して結合したものである。   In the star PPE of the present invention thus obtained, the PPE chain subjected to the reaction is substituted with a bromine atom of bromomethylbenzene, and the PPE chain is bonded to the carbon atom on the benzene ring via the oxymethylene group. It is a combination.

なお、上記反応では、すべてのブロモメチル基部分にPPE鎖が導入されていないものも生成する場合がある。即ち、例えば、1,3,5−トリスブロモメシチレンと線状PPEとを反応させた場合に、PPE鎖が1本のみのものや、PPE鎖が2本のみのものも、3本鎖星形PPEと共に生成する。これにより、得られる3本鎖星形PPEの重量平均分子量は、必ずしもPPE鎖導入のために用いた線状PPEの重量平均分子量の約3倍の重量平均分子量とはならない。しかしながら、このような生成物は本発明の星形PPEの用途において特に問題になることはなく、そのまま目的物と共に用いることができる。ただし、必要に応じて、このようなものは、カラムクロマトグラフィー等で分離することもできる。   In the above reaction, there may be a case in which no PPE chain is introduced into all bromomethyl groups. That is, for example, when 1,3,5-trisbromomesitylene and linear PPE are reacted, those having only one PPE chain and those having only two PPE chains are also three-stranded stars. Generate with PPE. Thereby, the weight average molecular weight of the obtained three-chain star PPE does not necessarily become a weight average molecular weight of about 3 times the weight average molecular weight of the linear PPE used for introducing the PPE chain. However, such a product is not particularly problematic in the application of the star PPE of the present invention, and can be used as it is together with the target product. However, if necessary, such a product can be separated by column chromatography or the like.

本発明の星形PPEは、後述の実施例の項で測定される純度として0.7以上、特に0.8以上であれば、目的とする用途に十分に用いることができる。   The star-shaped PPE of the present invention can be sufficiently used for the intended application as long as the purity is 0.7 or more, particularly 0.8 or more, as measured in the Examples section below.

[PPE混合物・PPE用流動性向上剤]
本発明の星形PPEは、その機械特性、熱特性、絶縁特性、寸法安定性等の特性においては、PPE鎖に由来して線状PPEと同等の優れた特性を有する一方で、流動性については、星形であることにより、線状PPEに比べて格段に優れたものとなる。従って、線状PPEに混合して、PPE本来の特性を損なうことなく、流動性を高め、成形加工性を改善するための流動性向上剤として有効に用いることができる。
[PPE mixture / PPE fluidity improver]
The star PPE of the present invention has excellent characteristics equivalent to linear PPE derived from the PPE chain in terms of its mechanical properties, thermal properties, insulation properties, dimensional stability, etc. Is much better than linear PPE due to its star shape. Therefore, it can be effectively used as a fluidity improver for mixing with linear PPE and improving fluidity and improving molding processability without impairing the original properties of PPE.

以下に、本発明の星形PPEを流動性向上剤として配合して、PPE混合物を得るための線状PPEについて説明する。   Below, the linear PPE for blending the star PPE of the present invention as a fluidity improver to obtain a PPE mixture will be described.

この線状PPE自体は従来一般的に提供されているものでよく、通常、下記一般式(I)で表されるオルト位置換フェニレン構造を構成単位として有する重合体又は共重合体である。   The linear PPE itself may be one that has been conventionally provided and is usually a polymer or copolymer having an ortho-substituted phenylene structure represented by the following general formula (I) as a structural unit.

Figure 0005370273
Figure 0005370273

(一般式(I)中、2つのRは同一でも異なっていてもよく、水素原子、ハロゲン原子、炭化水素基又は置換炭化水素基を表し、2つのRは同一でも異なっていてもよく、水素原子、ハロゲン原子、炭化水素基又は置換炭化水素基を表す。ただし、2つのRがともに水素原子になることはない。) (In the general formula (I), two R 1 s may be the same or different and each represents a hydrogen atom, a halogen atom, a hydrocarbon group or a substituted hydrocarbon group, and two R 2 s may be the same or different. Represents a hydrogen atom, a halogen atom, a hydrocarbon group or a substituted hydrocarbon group, provided that two R 1 s are not hydrogen atoms.)

一般式(I)中のR,Rにおける炭化水素基としては、例えば、炭素原子数1〜30の直鎖又は分岐のアルキル基、炭素原子数3〜30のシクロアルキル基、炭素原子数6〜30のアリール基、炭素原子数7〜30のアラルキル基等が挙げられる。なお、本発明において、「炭素原子数」とは、炭化水素基が置換基を有する場合、当該置換基の炭素原子数も含めた合計の炭素原子数をさす。 Examples of the hydrocarbon group for R 1 and R 2 in the general formula (I) include a linear or branched alkyl group having 1 to 30 carbon atoms, a cycloalkyl group having 3 to 30 carbon atoms, and the number of carbon atoms. A 6-30 aryl group, a C7-30 aralkyl group, etc. are mentioned. In the present invention, “the number of carbon atoms” refers to the total number of carbon atoms including the number of carbon atoms of the substituent when the hydrocarbon group has a substituent.

,Rの炭化水素基としては、具体的には、メチル基、エチル基、イソプロピル基、n−プロピル基、n−ブチル基、sec−ブチル基、イソブチル基、t−ブチル基、n−ペンチル基、イソペンチル基、シクロペンチル基、ヘキシル基、オクチル基、1−エチルプロピル基、2−メチルブチル基、2,3−ジメチルブチル基、2−、3−若しくは4−メチルペンチル基又はヘプチル基、ベンジル基、フェニル基、1−ナフチル基、2−ナフチル基等が挙げられる。 Specific examples of the hydrocarbon group for R 1 and R 2 include methyl group, ethyl group, isopropyl group, n-propyl group, n-butyl group, sec-butyl group, isobutyl group, t-butyl group, n -Pentyl group, isopentyl group, cyclopentyl group, hexyl group, octyl group, 1-ethylpropyl group, 2-methylbutyl group, 2,3-dimethylbutyl group, 2-, 3- or 4-methylpentyl group or heptyl group, Examples include benzyl group, phenyl group, 1-naphthyl group, 2-naphthyl group and the like.

一般式(I)中のR,Rにおける置換炭化水素基としては、例えば、ハロゲン原子、アルコキシ基、ハロアルコキシ基、アミノ基等で置換された炭化水素基を表す。置換炭化水素基の置換される炭化水素基としては、上記R,Rの炭化水素基で例示したものと同様のものを挙げることができる。炭化水素基で置換された炭化水素基としては、例えば1−メチルフェニル基、2−メチルフェニル基、4−メチルフェニル基、4−エチルフェニル基等が挙げられる。 The substituted hydrocarbon group in R 1 and R 2 in the general formula (I) represents, for example, a hydrocarbon group substituted with a halogen atom, an alkoxy group, a haloalkoxy group, an amino group or the like. Examples of the hydrocarbon group to be substituted with the substituted hydrocarbon group include the same as those exemplified for the hydrocarbon groups of R 1 and R 2 above. Examples of the hydrocarbon group substituted with a hydrocarbon group include 1-methylphenyl group, 2-methylphenyl group, 4-methylphenyl group, 4-ethylphenyl group and the like.

としては、炭素原子数1〜20の第1級若しくは第2級アルキル基、炭素原子数6〜8のアリール基が好ましい。
第1級アルキル基の好適な例としては、メチル基、エチル基、n−プロピル基、n−ブチル基、n−ペンチル、イソペンチル基、2−メチルブチル基、2,3−ジメチルブチル基、2−、3−若しくは4−メチルペンチル基又はヘプチル基が挙げられる。
第2級アルキル基の好適な例としては、例えば、イソプロピル基、sec−ブチル基又は1−エチルプロピル基が挙げられる。
は第1級若しくは第2級の炭素原子数1〜4のアルキル基又はフェニル基であることがさらに好ましく、特にメチル基であることが好ましい。
R 1 is preferably a primary or secondary alkyl group having 1 to 20 carbon atoms and an aryl group having 6 to 8 carbon atoms.
Preferable examples of the primary alkyl group include methyl group, ethyl group, n-propyl group, n-butyl group, n-pentyl, isopentyl group, 2-methylbutyl group, 2,3-dimethylbutyl group, 2- , 3- or 4-methylpentyl group or heptyl group.
Preferable examples of the secondary alkyl group include isopropyl group, sec-butyl group, and 1-ethylpropyl group.
R 1 is more preferably a primary or secondary alkyl group having 1 to 4 carbon atoms or a phenyl group, and particularly preferably a methyl group.

としては、水素原子、炭素原子数1〜20の第1級若しくは第2級アルキル基、炭素原子数6〜8のアリール基が好ましい。
第1級アルキル基の好適な例としては、メチル基、エチル基、n−プロピル基、n−ブチル基、n−ペンチル、イソペンチル基、2−メチルブチル基、2,3−ジメチルブチル基、2−、3−若しくは4−メチルペンチル基又はヘプチル基が挙げられる。
第2級アルキル基の好適な例としては、例えば、イソプロピル基、sec−ブチル基又は1−エチルプロピル基が挙げられる。
は、水素原子、第1級若しくは第2級の炭素原子数1〜4のアルキル基又はフェニル基であることがさらに好ましく、特に水素原子であることが好ましい。
R 2 is preferably a hydrogen atom, a primary or secondary alkyl group having 1 to 20 carbon atoms, or an aryl group having 6 to 8 carbon atoms.
Preferable examples of the primary alkyl group include methyl group, ethyl group, n-propyl group, n-butyl group, n-pentyl, isopentyl group, 2-methylbutyl group, 2,3-dimethylbutyl group, 2- , 3- or 4-methylpentyl group or heptyl group.
Preferable examples of the secondary alkyl group include isopropyl group, sec-butyl group, and 1-ethylpropyl group.
R 2 is more preferably a hydrogen atom, a primary or secondary alkyl group having 1 to 4 carbon atoms, or a phenyl group, and particularly preferably a hydrogen atom.

本発明で用いる線状PPEに含まれる一般式(I)で表されるオルト位置換フェニレン構造は2種以上であってもよいが、通常、1種であることが好ましい。   Two or more ortho-substituted phenylene structures represented by the general formula (I) contained in the linear PPE used in the present invention may be used, but usually one is preferable.

本発明のこの線状PPEは直鎖状であってもよいし分岐していてもよいが、直鎖状であることが好ましい。直鎖状とするか分岐状とするかは、酸化カップリング重合時の雰囲気、溶媒種、触媒種、反応温度、反応時間等、特に、適切な触媒種を選択することにより調整することができる。酸化カップリング重合の位置選択性を向上させ、PPEの分岐を抑制するためには、触媒として後述の銅−アミン触媒を用いることが好ましい。   The linear PPE of the present invention may be linear or branched, but is preferably linear. Whether it is linear or branched can be adjusted by selecting an appropriate catalyst type, such as the atmosphere during oxidative coupling polymerization, solvent type, catalyst type, reaction temperature, reaction time, etc. . In order to improve the regioselectivity of oxidative coupling polymerization and suppress the branching of PPE, it is preferable to use a copper-amine catalyst described later as a catalyst.

本発明の星形PPEと混合する線状PPEの分子量は、後述の実施例の項で測定される重量平均分子量として20,000〜1,000,000、特に30,000〜200,000であることが好ましい。   The molecular weight of the linear PPE mixed with the star PPE of the present invention is 20,000 to 1,000,000, particularly 30,000 to 200,000 as the weight average molecular weight measured in the Examples section below. It is preferable.

線状PPEの分子量が小さ過ぎると耐熱性、機械特性が損なわれる傾向にあり、大き過ぎると、本発明の星形PPEを混合しても十分な流動性が得られず、好ましくない。   If the molecular weight of the linear PPE is too small, heat resistance and mechanical properties tend to be impaired. If it is too large, sufficient fluidity cannot be obtained even when the star PPE of the present invention is mixed, which is not preferable.

この線状PPEは、少なくとも下記一般式(II)で表される2,5−二置換フェノールを酸化カップリング重合することより製造することができる。   This linear PPE can be produced by oxidative coupling polymerization of at least a 2,5-disubstituted phenol represented by the following general formula (II).

Figure 0005370273
Figure 0005370273

(一般式(II)中、2つのRは同一でも異なっていてもよく、水素原子、ハロゲン原子、炭化水素基又は置換炭化水素基を表し、2つのRは同一でも異なっていてもよく、水素原子、ハロゲン原子、炭化水素基又は置換炭化水素基を表す。ただし、2つのRがともに水素原子になることはない。) (In the general formula (II), two R 3 s may be the same or different and each represents a hydrogen atom, a halogen atom, a hydrocarbon group or a substituted hydrocarbon group, and two R 4 s may be the same or different. Represents a hydrogen atom, a halogen atom, a hydrocarbon group or a substituted hydrocarbon group, provided that two R 3 s are not hydrogen atoms.)

一般式(II)中のRの炭化水素基又は置換炭化水素基としては、一般式(I)中のRの炭化水素基又は置換炭化水素基で例示したものと同様のものを挙げることができ、その好適例についても同様である。
一般式(II)中のRの炭化水素基又は置換炭化水素基としては、一般式(I)中のRの炭化水素基又は置換炭化水素基で例示してものと同様のものを挙げることができ、その好適例についても同様である。
Examples of the hydrocarbon group or substituted hydrocarbon group for R 3 in general formula (II) include the same as those exemplified for the hydrocarbon group or substituted hydrocarbon group for R 1 in general formula (I). The same applies to the preferred examples.
Examples of the hydrocarbon group or substituted hydrocarbon group for R 4 in formula (II) include the same as those exemplified for the hydrocarbon group or substituted hydrocarbon group for R 2 in formula (I). The same applies to the preferred examples.

反応は、目的とする線状PPEが得られるように、雰囲気、溶媒種、触媒種、反応温度、反応時間等の重合条件を調整して実施される。   The reaction is carried out by adjusting the polymerization conditions such as atmosphere, solvent species, catalyst species, reaction temperature, reaction time and the like so as to obtain the desired linear PPE.

触媒としては、例えば、銅、マンガン、コバルト等の重金属化合物とアミン化合物とからなる触媒が挙げられ、特に、十分な分子量のPPEを得るためには、アミン化合物に銅化合物を配位させた銅−アミン触媒を用いることが好ましい。   Examples of the catalyst include a catalyst composed of a heavy metal compound such as copper, manganese, and cobalt and an amine compound. In particular, in order to obtain a PPE having a sufficient molecular weight, copper obtained by coordinating a copper compound with an amine compound. It is preferred to use an amine catalyst.

銅−アミン触媒に用いる銅化合物としては、例えば、塩化第一銅、臭化第一銅、ヨウ化第一銅、酢酸第一銅、硫酸第一銅、硝酸第一銅、塩化第二銅、臭化第二銅、ヨウ化第二銅、酢酸第二銅、硫酸第一銅、硝酸第二銅等が挙げられ、これらは2種以上を併用してもよい。中でも、塩化第一銅、臭化第一銅、ヨウ化第一銅等のハロゲン化第一銅が好ましい。   Examples of the copper compound used for the copper-amine catalyst include cuprous chloride, cuprous bromide, cuprous iodide, cuprous acetate, cuprous sulfate, cuprous nitrate, cupric chloride, Examples include cupric bromide, cupric iodide, cupric acetate, cuprous sulfate, cupric nitrate, and the like, and two or more of these may be used in combination. Of these, cuprous halides such as cuprous chloride, cuprous bromide and cuprous iodide are preferred.

アミン化合物としては、脂肪族アミン化合物、芳香族アミン化合物が挙げられる。
脂肪族アミン化合物としては、トリメチルアミン、トリエチルアミン、トリプロピルアミン、トリブチルアミン、トリイソブチルアミン、ジメチルエチルアミン、ジメチルプロピルアミン、ジメチル−n−ブチルアミン、ジエチルイソプロピルアミン、N−メチルシクロヘキシルアミン等の脂環式3級アミンを含めた脂肪族3級アミン、ジメチルアミン、ジエチルアミン、ジ−n−プロピルアミン、ジ−イソプロピルアミン、ジ−n−ブチルアミン、ジイソブチルアミン、ジ−t−ブチルアミン、ジペンチルアミン、ジヘキシルアミン、ジオクチルアミン、メチルエチルアミン、メチルプロピルアミン、メチルブチルアミン、シクロヘキシルアミン等の脂環式2級アミンを含めた脂肪族2級アミン、テトラメチルエチレンジアミン、テトラエチルエチレンジアミン、テトラプロピルエチレンジアミン、テトラブチルエチレンジアミン、テトラペンチルエチレンジアミン等のテトラアルキルエチレンジアミンが挙げられ、これらは2種以上を併用してもよい。中でも、テトラメチルエチレンジアミン、テトラエチルエチレンジアミン、テトラプロピルエチレンジアミン、テトラブチルエチレンジアミン、テトラペンチルエチレンジアミン等のテトラアルキルエチレンジアミンが好ましい。
Examples of amine compounds include aliphatic amine compounds and aromatic amine compounds.
Aliphatic amine compounds such as trimethylamine, triethylamine, tripropylamine, tributylamine, triisobutylamine, dimethylethylamine, dimethylpropylamine, dimethyl-n-butylamine, diethylisopropylamine, N-methylcyclohexylamine, etc. Aliphatic tertiary amines including tertiary amines, dimethylamine, diethylamine, di-n-propylamine, di-isopropylamine, di-n-butylamine, diisobutylamine, di-t-butylamine, dipentylamine, dihexylamine, dioctyl Aliphatic secondary amines including alicyclic secondary amines such as amine, methylethylamine, methylpropylamine, methylbutylamine, cyclohexylamine, tetramethylethylenediamine, tetraethyl Ethylene diamine, tetra ethylenediamine, tetrabutyl ethylenediamine, include tetraalkyl ethylenediamine such as tetrapentyl ethylenediamine, it may be used in combination of two or more. Of these, tetraalkylethylenediamine such as tetramethylethylenediamine, tetraethylethylenediamine, tetrapropylethylenediamine, tetrabutylethylenediamine, and tetrapentylethylenediamine are preferable.

芳香族アミン化合物としては、例えば、2−フェニルピリジン、2−トルイルピリジン、2−ニトロフェニルピリジン、2−メトキシピリジン、2−メチルピリジン、2−エチルピリジン、2−n−プロピルピリジン、2−イソプロピルピリジン、2,6−ジメチルピリジン、2,6−ジエチルピリジン、2,6−n−プロピルピリジン、2−メチル−6−フェニルピリジン、2−メチルキノリン、2−エチルキノリン、2−n−プロピルキノリン等のピリジン環を有するアミン化合物が挙げられ、これらは2種以上を併用してもよい。中でも、2−フェニルピリジン、2−トルイルピリジン、2−ニトロフェニルピリジン、2−メトキシピリジンが好ましい。   Examples of the aromatic amine compound include 2-phenylpyridine, 2-toluylpyridine, 2-nitrophenylpyridine, 2-methoxypyridine, 2-methylpyridine, 2-ethylpyridine, 2-n-propylpyridine, 2-isopropyl. Pyridine, 2,6-dimethylpyridine, 2,6-diethylpyridine, 2,6-n-propylpyridine, 2-methyl-6-phenylpyridine, 2-methylquinoline, 2-ethylquinoline, 2-n-propylquinoline The amine compound which has pyridine rings, such as these, is mentioned, These may use 2 or more types together. Of these, 2-phenylpyridine, 2-toluylpyridine, 2-nitrophenylpyridine, and 2-methoxypyridine are preferable.

上記の脂肪族、芳香族アミン化合物の中では、銅化合物中の銅イオンへのアミン化合物の配位能力が高く、十分な活性を有する触媒が形成され、PPEの重合反応が効率よく進行し、さらに重合の位置選択性が向上することにより直鎖状のPPEが得られやすい点から、テトラメチルエチレンジアミン、テトラエチルエチレンジアミン、テトラプロピルエチレンジアミンが特に好ましい。   Among the above aliphatic and aromatic amine compounds, the coordination ability of the amine compound to the copper ion in the copper compound is high, a catalyst having sufficient activity is formed, and the polymerization reaction of PPE proceeds efficiently, Furthermore, tetramethylethylenediamine, tetraethylethylenediamine, and tetrapropylethylenediamine are particularly preferable from the viewpoint that linear PPE is easily obtained by improving the regioselectivity of polymerization.

銅−アミン触媒は、銅化合物とアミン化合物を適当な溶媒中で反応させ、単離・精製することにより製造することができる。反応に供する銅化合物由来の銅イオンに対するアミン化合物の割合は、アミン化合物が脂肪族アミン化合物である場合は銅イオンに対して0.01〜50当量であることが好ましく、0.1〜40当量であることがより好ましく、1〜30当量であることがさらに好ましい。脂肪族アミン化合物の割合が0.01当量未満であると、酸化カップリング重合における位置選択性が低下する傾向にあり、50当量を超えると酸化カップリング重合が速やかに進行しない場合がある。また、アミン化合物が芳香族アミン化合物である場合は、銅イオンに対して50〜300当量であることが好ましく、60〜200当量であることがより好ましく、70〜150当量であることがさらに好ましい。芳香族アミン化合物の割合が50当量未満であると、酸化カップリング重合における位置選択性が低下する傾向にあり、300当量を超えると酸化カップリング重合が速やかに進行しない場合がある。
また、銅−アミン触媒は、該銅化合物を、酸化カップリング重合に用いる反応溶媒中で該アミン化合物に配位させて用いることもできる。
The copper-amine catalyst can be produced by reacting a copper compound and an amine compound in an appropriate solvent, and isolating and purifying the copper compound. When the amine compound is an aliphatic amine compound, the ratio of the amine compound to the copper ion derived from the copper compound used for the reaction is preferably 0.01 to 50 equivalents relative to the copper ions, and 0.1 to 40 equivalents. It is more preferable that it is 1-30 equivalent. If the ratio of the aliphatic amine compound is less than 0.01 equivalent, the regioselectivity in the oxidative coupling polymerization tends to decrease, and if it exceeds 50 equivalents, the oxidative coupling polymerization may not proceed rapidly. Moreover, when an amine compound is an aromatic amine compound, it is preferable that it is 50-300 equivalent with respect to a copper ion, It is more preferable that it is 60-200 equivalent, It is further more preferable that it is 70-150 equivalent. . If the ratio of the aromatic amine compound is less than 50 equivalents, the regioselectivity in the oxidative coupling polymerization tends to decrease, and if it exceeds 300 equivalents, the oxidative coupling polymerization may not proceed rapidly.
The copper-amine catalyst can also be used by coordinating the copper compound to the amine compound in a reaction solvent used for oxidative coupling polymerization.

酸化カップリング重合に際し、銅−アミン触媒は任意の量で用いることができるが、一般的には、酸化カップリング重合に用いる全フェノール性モノマーに対する銅イオンのモル量として0.01〜5モル%となるように用いることが好ましく、0.1〜4.5モル%となるように用いることがより好ましく、1〜4モル%となるように用いることがさらに好ましい。全フェノール性モノマーに対する銅イオンのモル量が0.01モル%未満では、酸化カップリング重合が進行しにくい傾向にあり、5モル%を超えると酸化カップリング重合における位置選択性が低下する場合がある。   In the oxidative coupling polymerization, the copper-amine catalyst can be used in an arbitrary amount, but generally 0.01 to 5 mol% as a molar amount of copper ions with respect to all phenolic monomers used in the oxidative coupling polymerization. It is preferable to use so that it may become, It is more preferable to use so that it may become 0.1-4.5 mol%, It is further more preferable to use so that it may become 1-4 mol%. If the molar amount of copper ions relative to the total phenolic monomer is less than 0.01 mol%, the oxidative coupling polymerization tends to be difficult to proceed, and if it exceeds 5 mol%, the regioselectivity in the oxidative coupling polymerization may be reduced. is there.

酸化カップリング重合は、反応溶媒の存在下で行ってもよいし、不存在下で行ってもよいが、十分な分子量を得るためには反応溶媒の存在下で行うことが好ましい。溶媒は、フェノール性モノマーに対して不活性であり、かつ、反応温度において液体であるものが好ましく、例えば、ベンゼン、o−ジクロロベンゼン、トルエン、キシレン、クロロベンゼン、ニトロベンゼン、アセトニトリル、ベンゾニトリル、メタノール、エタノール、n−プロピルアルコール、ジオキサン、テトラヒドロフラン、エチレングリコールジメチルエーテル、N,N−ジメチルホルムアミド等が挙げられ、これらは2種以上を混合して用いてもよい。中でも、o−ジクロロベンゼン、トルエン、キシレン、クロロベンゼン、ニトロベンゼンが好ましい。   The oxidative coupling polymerization may be performed in the presence or absence of a reaction solvent, but is preferably performed in the presence of a reaction solvent in order to obtain a sufficient molecular weight. The solvent is preferably inert to the phenolic monomer and liquid at the reaction temperature. For example, benzene, o-dichlorobenzene, toluene, xylene, chlorobenzene, nitrobenzene, acetonitrile, benzonitrile, methanol, Ethanol, n-propyl alcohol, dioxane, tetrahydrofuran, ethylene glycol dimethyl ether, N, N-dimethylformamide and the like may be mentioned, and these may be used in combination of two or more. Of these, o-dichlorobenzene, toluene, xylene, chlorobenzene, and nitrobenzene are preferable.

酸化カップリング重合の雰囲気としては、酸素、空気などを採用することができる。   As the oxidative coupling polymerization atmosphere, oxygen, air, or the like can be employed.

酸化カップリング重合の反応温度は、反応媒体が液状を保つ温度であれば問題はないが、15〜100℃であることが好ましく、15〜60℃であることがより好ましく、20〜40℃であることが特に好ましい。反応温度が15℃未満では、酸化カップリング重合が速やかに進行しにくい傾向にあり、100℃を超えると酸化カップリング重合における位置選択性が低下したり、得られるPPEの耐熱性の低下やゲル化が起こりやすい傾向がある。   The reaction temperature of the oxidative coupling polymerization is not a problem as long as the reaction medium is kept in a liquid state, but is preferably 15 to 100 ° C, more preferably 15 to 60 ° C, and more preferably 20 to 40 ° C. It is particularly preferred. If the reaction temperature is less than 15 ° C., the oxidative coupling polymerization tends not to proceed rapidly. If the reaction temperature exceeds 100 ° C., the regioselectivity in the oxidative coupling polymerization is reduced, or the heat resistance and gel of the resulting PPE are reduced. Tends to occur.

また、酸化カップリング重合の反応時間は1〜24時間であることが好ましく、1〜12時間であることがより好ましい。反応時間が1時間未満であると、十分な分子量のPPEが得られない場合があり、24時間を超えると、酸化カップリング重合における位置選択性の高いPPEが得られにくい傾向がある。   The reaction time for oxidative coupling polymerization is preferably 1 to 24 hours, and more preferably 1 to 12 hours. If the reaction time is less than 1 hour, PPE having a sufficient molecular weight may not be obtained. If it exceeds 24 hours, PPE having high regioselectivity in oxidative coupling polymerization tends to be difficult to obtain.

本発明のPPE混合物において、線状PPEと本発明の星形PPEとの混合割合には特に制限はなく、目的に応じて任意に設定することができる。即ち、本発明の星形PPEは、そのPPE鎖に由来して、通常の線状PPEとの相溶性に優れるため、線状PPEを任意の混合割合で混合することができる。従って、目的とする流動性に応じて本発明の星形PPEの混合割合を増減すればよい。通常、本発明の星形PPEは、線状PPEと星形PPEとの合計100重量%に対して0.05〜20重量%、特に0.1〜10重量%の範囲で用いられる。   In the PPE mixture of the present invention, the mixing ratio of the linear PPE and the star PPE of the present invention is not particularly limited and can be arbitrarily set according to the purpose. That is, since the star-shaped PPE of the present invention is derived from the PPE chain and has excellent compatibility with ordinary linear PPE, the linear PPE can be mixed at an arbitrary mixing ratio. Therefore, the mixing ratio of the star PPE of the present invention may be increased or decreased according to the intended fluidity. Usually, the star PPE of the present invention is used in the range of 0.05 to 20% by weight, particularly 0.1 to 10% by weight, based on 100% by weight of the total of linear PPE and star PPE.

本発明のPPE混合物は、線状PPEと本発明の星形PPEとをドライブレンドしたものでもよく、ドライブレンドした後に溶融混練したものであってもよい。ドライブレンドに際しては、タンブラー、ヘンシェルミキサー、リボンブレンダー等の混合機を使用することができ、溶融混練に際しては、一軸又は多軸混練押出機、ロール、バンバリーミキサー等を使用することができる。混練温度は、PPE混合物中の本発明の星形PPEの分子量およびその混合割合や線状PPEの分子量にもよるが、通常150〜350℃、好ましくは180〜320℃である。   The PPE mixture of the present invention may be one obtained by dry blending linear PPE and the star PPE of the present invention, or may be one obtained by dry blending and then melt-kneading. A mixer such as a tumbler, a Henschel mixer, or a ribbon blender can be used for dry blending, and a uniaxial or multiaxial kneading extruder, roll, Banbury mixer, or the like can be used for melt kneading. The kneading temperature is usually 150 to 350 ° C., preferably 180 to 320 ° C., although it depends on the molecular weight of the star PPE of the present invention in the PPE mixture, the mixing ratio thereof and the molecular weight of the linear PPE.

なお、本発明のPPE混合物は、必要に応じて、更に、他の樹脂や添加剤を配合した樹脂組成物として用いることができる。   In addition, the PPE mixture of this invention can be further used as a resin composition which mix | blended other resin and additive as needed.

他の樹脂としては、熱可塑性樹脂、熱硬化性樹脂が挙げられる。熱可塑性樹脂としては、例えば、ポリエチレン、ポリプロピレン等のポリオレフィン系樹脂、ポリスチレン、耐衝撃性ポリスチレン、ポリ(アクリロニトリル−ブタジエン−スチレン)(ABS樹脂)等のポリスチレン系樹脂、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリ(エチレン−2,6−ジナフタレート)等のポリエステル系樹脂、ポリアミド6、ポリアミド66、ポリメタキシリレンジアジパミド、ポリアミド6I/6T、ポリアミド6/66等のポリアミド系樹脂、ポリカーボネート、ポリオキシメチレン、ポリフェニレンサルファイド、ポリサルフォン、ポリエーテルサルフォン、ポリエーテルエーテルケトン、ポリイミド、ポリエーテルイミド、本発明の線状および星形PPE以外のポリフェニレンエーテル、ポリ塩化ビニル、ポリメタクリル酸メチル、ポリ酢酸ビニル、ポリアクリロニトリル等が挙げられ、これらは1種のみを用いてもよく、2種以上を混合して用いてもよい。   Examples of other resins include thermoplastic resins and thermosetting resins. Examples of the thermoplastic resin include polyolefin resins such as polyethylene and polypropylene, polystyrene resins such as polystyrene, high-impact polystyrene, poly (acrylonitrile-butadiene-styrene) (ABS resin), polyethylene terephthalate, polybutylene terephthalate, poly Polyester resins such as (ethylene-2,6-dinaphthalate), polyamide 6, polyamide 66, polymetaxylylene adipamide, polyamide 6I / 6T, polyamide 6/66 and other polyamide resins, polycarbonate, polyoxymethylene , Polyphenylene sulfide, polysulfone, polyether sulfone, polyether ether ketone, polyimide, polyetherimide, and polyphenylene ether other than the linear and star PPE of the present invention Le, polyvinyl chloride, polymethyl methacrylate, polyvinyl acetate, polyacrylonitrile, and the like. These may be used alone or may be used in combination of two or more.

熱硬化性樹脂としては、フェノール樹脂、尿素樹脂、メラミン樹脂、エポキシ樹脂等が挙げられる。これらは1種のみを用いてもよく、2種以上を混合して用いてもよい。   Examples of the thermosetting resin include phenol resin, urea resin, melamine resin, and epoxy resin. These may use only 1 type and may mix and use 2 or more types.

これらの他の樹脂は、本発明のPPE混合物、即ち、線状PPEと星形PPEとの合計量に対し、通常は50重量%以下、好ましくは40重量%の割合で混合して用いることができる。   These other resins are usually used by mixing at a ratio of 50% by weight or less, preferably 40% by weight, based on the total amount of the PPE mixture of the present invention, that is, linear PPE and star PPE. it can.

添加剤としては、熱可塑性樹脂に一般的に用いられるものが挙げられ、例えば、熱安定剤、離型剤、酸化防止剤、耐侯性改良剤、耐衝撃性改良剤、無機充填材、造核剤、発泡剤、難燃剤、滑剤、可塑剤、流動性改良剤、着色剤、分散剤、導電剤、摺動性改良剤等が挙げられる。   Examples of additives include those commonly used for thermoplastic resins, such as heat stabilizers, mold release agents, antioxidants, weather resistance improvers, impact resistance improvers, inorganic fillers, and nucleating agents. Agents, foaming agents, flame retardants, lubricants, plasticizers, fluidity improvers, colorants, dispersants, conductive agents, slidability improvers and the like.

本発明のPPE混合物或いはこれを含むPPE樹脂組成物は、熱可塑性樹脂について一般に用いられている成形法、すなわち射出成形、ガスアシスト射出成形、射出圧縮成形、中空成形、押出成形、シート成形、熱成形、回転成形、積層成形、プレス成形等の各種成形法によって成形し、各種の成形品とすることができる。特に好ましい成形法は、流動性の観点から射出成形である。射出成形にあたっては、樹脂温度を、例えば、270〜320℃にコントロールするのが好ましい。   The PPE mixture of the present invention or a PPE resin composition containing the same is a molding method generally used for thermoplastic resins, that is, injection molding, gas assist injection molding, injection compression molding, hollow molding, extrusion molding, sheet molding, heat It can be molded by various molding methods such as molding, rotational molding, laminate molding, press molding, etc., to obtain various molded products. A particularly preferable molding method is injection molding from the viewpoint of fluidity. In the injection molding, the resin temperature is preferably controlled to 270 to 320 ° C., for example.

以下に、実施例を挙げて本発明をさらに具体的に説明するが、本発明はその要旨を超えない限り、以下に示す実施例に限定されるものではない。   EXAMPLES The present invention will be described more specifically with reference to the following examples. However, the present invention is not limited to the examples shown below unless it exceeds the gist.

なお、以下において、得られたポリマー等の物性の測定方法は次の通りである。   In the following, methods for measuring physical properties of the obtained polymer and the like are as follows.

(1)数平均分子量(Mn)、重量平均分子量(Mw)、分子量分布(Mw/Mn):
各例で得られた目的物について、ゲルパーミエーションクロマトグラフィー接続光散乱装置(GPC−LALLS)により、下記条件で絶対重量平均分子量(Mw)、数平均分子量(Mn)、分子量分布(Mw/Mn)を測定した。
装置:東ソー社製「HLC−8220」に、下記に示す2本のカラム(直径5mmφ、長さ30mm)を接続し、さらにViscotek社製「T−60A」を接続した。検出器は屈折率計、粘度計、光散乱計を備えている。なお、屈折率増分は0.185、溶離液であるテトラヒドロフラン(THF)の流量と温度は1.0mL/min、40℃である。
カラム:東ソー社製「TSK−GEL GMHHR−M and GMHHR−N」(充填剤として、ポリスチレンゲルを充填したもの)
検量線:Polymer Laboratories社製の標準ポリスチレン(分子量;580(Mw/Mn=1.14)、950(Mw/Mn=1.13)、1250(Mw/Mn=1.10)、1700(Mw/Mn=1.06)、2450(Mw/Mn=1.05)、3250(Mw/Mn=1.04)、5050(Mw/Mn=1.05)、7000(Mw/Mn=1.04)、11600(Mw/Mn=1.03)、22000(Mw/Mn=1.03)、37900(Mw/Mn=1.01)、96400(Mw/Mn=1.01)、107000(Mw/Mn=1.05)および514000(Mw/Mn=1.02))を用いて作成した。
数平均分子量(Mn)は、上記記載の条件でGPC測定を行い、上記の方法で作成した検量線を用い、ポリスチレン換算の値として求めた。なお、屈折率増分は0.185である。
重量平均分子量(Mw)は、上記記載の条件で測定を行い、光散乱法により求めた。
分子量分布(Mw/Mn)は、ゲルパーミエーションクロマトグラフィーの屈折率計で求めた数平均分子量と、光散乱計で求めた重量平均分子量から算出した。
(1) Number average molecular weight (Mn), weight average molecular weight (Mw), molecular weight distribution (Mw / Mn):
For the target product obtained in each example, absolute weight average molecular weight (Mw), number average molecular weight (Mn), molecular weight distribution (Mw / Mn) under the following conditions by gel permeation chromatography connected light scattering device (GPC-LALLS). ) Was measured.
Apparatus: Two columns shown below (diameter 5 mmφ, length 30 mm) were connected to “HLC-8220” manufactured by Tosoh Corporation, and “T-60A” manufactured by Viscotek was further connected. The detector includes a refractometer, a viscometer, and a light scatterometer. The refractive index increment is 0.185, and the flow rate and temperature of tetrahydrofuran (THF) as an eluent are 1.0 mL / min, 40 ° C.
Column: “TSK-GEL GMHHR-M and GMHHR-N” manufactured by Tosoh Corporation (packed with polystyrene gel as a filler)
Calibration curve: Standard polystyrene manufactured by Polymer Laboratories (molecular weight: 580 (Mw / Mn = 1.14), 950 (Mw / Mn = 1.13), 1250 (Mw / Mn = 1.10), 1700 (Mw / Mn = 1.06), 2450 (Mw / Mn = 1.05), 3250 (Mw / Mn = 1.04), 5050 (Mw / Mn = 1.05), 7000 (Mw / Mn = 1.04) 11600 (Mw / Mn = 1.03), 22000 (Mw / Mn = 1.03), 37900 (Mw / Mn = 1.01), 96400 (Mw / Mn = 1.01), 107000 (Mw / Mn = 1.05) and 514000 (Mw / Mn = 1.02)).
The number average molecular weight (Mn) was determined as a value in terms of polystyrene using GPC measurement under the above-described conditions and using the calibration curve prepared by the above method. The refractive index increment is 0.185.
The weight average molecular weight (Mw) was measured by the light scattering method under the conditions described above.
The molecular weight distribution (Mw / Mn) was calculated from the number average molecular weight determined with a gel permeation chromatography refractometer and the weight average molecular weight determined with a light scatterometer.

(2)H−および13C−NMRスペクトル:
各例で得られた目的物について、400MHz(H)核磁気共鳴装置(ブルカー社製「Bruker AC−400P」)を用い、重クロロホルムを溶媒、テトラメチルシラン(TMS)を内部標準とし、NMR測定を行った。
目的物の数平均分子量は、NMRスペクトルにおけるポリフェニレンエーテルの末端水素とPPEの繰り返し単位の芳香族水素の積分比から算出した。
(2) 1 H- and 13 C-NMR spectra:
Using 400 MHz ( 1 H) nuclear magnetic resonance apparatus (“Bruker AC-400P” manufactured by Bruker) for the target product obtained in each example, deuterated chloroform as a solvent and tetramethylsilane (TMS) as an internal standard, NMR Measurements were made.
The number average molecular weight of the target product was calculated from the integral ratio of terminal hydrogen of polyphenylene ether and aromatic hydrogen of repeating units of PPE in NMR spectrum.

(3)3本鎖星形PPEの純度:
3本鎖星形PPEの純度とは、理論分子量に対する上記(1)GPC−LALLS測定によって得られた重量平均分子量の比で表すことができる。例えば、実施例1の場合は、以下の方法で求めることができる。
実施例1の反応においては、理論上は、中心分子のTBM1分子に対し、重量平均分子量が3,000のPPE鎖が3本反応するため、理論分子量は3,000×3=9,000となる。しかし、実際は、3本鎖ポリマー以外に、2本鎖ならびに1本鎖のポリマーが存在しているため、GPC−LALLS測定によって得られる重量平均分子量の値が、理論分子量よりも低くなっている。従って、実施例1の3本鎖PPEの純度は、
GPC−LALLS測定によって得られた重量平均分子量/理論分子量=7,500/(3,000×3)=0.83
と計算される。
(3) Purity of three-stranded star PPE:
The purity of the three-chain star PPE can be represented by the ratio of the weight average molecular weight obtained by the above (1) GPC-LALLS measurement to the theoretical molecular weight. For example, in the case of Example 1, it can obtain | require with the following method.
In the reaction of Example 1, theoretically, since three PPE chains having a weight average molecular weight of 3,000 react with one TBM molecule of the central molecule, the theoretical molecular weight is 3,000 × 3 = 9,000. Become. However, since there are actually double- and single-chain polymers in addition to the three-chain polymer, the value of the weight average molecular weight obtained by GPC-LALLS measurement is lower than the theoretical molecular weight. Therefore, the purity of the triple-stranded PPE of Example 1 is
Weight average molecular weight / theoretical molecular weight obtained by GPC-LALLS measurement = 7,500 / (3,000 × 3) = 0.83
Is calculated.

(4)固有粘度:
クロロホルムにてキャノンフェンスケ粘度計を洗浄し、ホールピペットにてクロロホルム10mLを粘度計に入れる。これを恒温槽に移し30℃に加温する。30分後に、クロロホルムの落下時間tをストップウオッチで3回測定し、平均値をとる。ただし、誤差範囲は±0.3秒である。次に、各例で得られたPPE 0.100gを精秤し、50mLのサンプル瓶に入れる。ここにホールピペットを用いてクロロホルム20mLを加え、栓をして完全に溶解させる(濃度c=0.500g/dL)。溶液を、注射器にて吸い取り、テフロンフィルターを使用して別のサンプル瓶に注入する。この溶液をホールピペットで10mL量り取り、先に使用したキャノンフェンスケ粘度計に移し、30℃の恒温槽にて30分間温める。落下時間t0.5を3回測定し、平均値を求める。同様にして、c=0.1、0.2、0.3、0.4g/dLのときの落下時間を測定する。これらから、還元粘度(ηsp/c)と濃度をプロット(Hugginsプロット)し、その外挿値から固有粘度(極限粘度)を求めた。
(4) Intrinsic viscosity:
Wash the Cannon Fenceke viscometer with chloroform, and put 10 mL of chloroform into the viscometer with a whole pipette. This is transferred to a thermostat and heated to 30 ° C. After 30 minutes, the falling time t 0 of chloroform was measured three times with a stopwatch, taking the average value. However, the error range is ± 0.3 seconds. Next, 0.100 g of PPE obtained in each example is precisely weighed and placed in a 50 mL sample bottle. Chloroform 20mL is added here using a whole pipette, and it stoppers and dissolves completely (concentration c = 0.500g / dL). The solution is drawn up with a syringe and injected into another sample bottle using a Teflon filter. 10 mL of this solution is weighed with a whole pipette, transferred to the previously used Canon Fenceke viscometer, and warmed in a thermostatic bath at 30 ° C. for 30 minutes. The fall time t 0.5 is measured three times, and the average value is obtained. Similarly, the drop time when c = 0.1, 0.2, 0.3, 0.4 g / dL is measured. From these, the reduced viscosity (η sp / c) and the concentration were plotted (Huggins plot), and the intrinsic viscosity (extreme viscosity) was obtained from the extrapolated value.

(5)熱重量測定(TG):
実施例1の3本鎖星形PPEおよび比較例1の線状PPEについて、熱重量測定装置(セイコーインスツルメンツ社製「SCC 5200 system」)を用いて測定を行った。空気下、40〜800℃、10℃/minの条件で昇温し、昇温開始前の重量から10%の重量減少が確認された温度(Td10)を測定した。この熱分解温度が高いほど、耐熱性が高いと判断できる。
(5) Thermogravimetry (TG):
The three-chain star PPE of Example 1 and the linear PPE of Comparative Example 1 were measured using a thermogravimetric apparatus (“SCC 5200 system” manufactured by Seiko Instruments Inc.). The temperature was raised under the conditions of 40 to 800 ° C. and 10 ° C./min in air, and the temperature (T d10 ) at which a weight reduction of 10% was confirmed from the weight before the start of temperature raising was measured. It can be judged that the higher the thermal decomposition temperature, the higher the heat resistance.

(6)ガラス転移温度:
各例で得られたPPEについて、示差走査熱量測定(DSC)装置(島津製作所社製「Shimadzu DSC−60」)を用い、窒素雰囲気下、40〜300℃、20℃/minの速度で昇温し、ガラス転移温度の測定を行った。
(6) Glass transition temperature:
About PPE obtained in each example, using a differential scanning calorimetry (DSC) apparatus (“Shimadzu DSC-60” manufactured by Shimadzu Corporation), the temperature was increased at a rate of 40 to 300 ° C. and 20 ° C./min in a nitrogen atmosphere. Then, the glass transition temperature was measured.

また、各例で用いた2,6−ジメチルフェノール(26−DMP)、塩化第一銅−N,N,N’,N’−テトラメチルエチレンジアミン錯体(Cu−TMEDA)、N,N,N’,N’−テトラメチルエチレンジアミン(TMEDA)、トルエン、メタノール、その他の試薬は市販品をそのまま用いた。   In addition, 2,6-dimethylphenol (26-DMP), cuprous chloride-N, N, N ′, N′-tetramethylethylenediamine complex (Cu-TMEDA), N, N, N ′ used in each example , N′-tetramethylethylenediamine (TMEDA), toluene, methanol, and other reagents were used as they were.

[参考例1:1置換体モデルの合成]

Figure 0005370273
[Reference Example 1: Synthesis of 1-substituted model]
Figure 0005370273

100mlナスフラスコに、2,6−DMP 1.230g(10.1mmol)、ベンジルブロミド1.714g(10.0mmol)、炭酸セシウム4.897g(15.0mmol)、トルエン17ml、およびジメチルホルムアミド(DMF)17mlを加え、50℃で6.5時間撹拌した。反応終了後、塩酸を加えて分液ロートに移し油層を抽出した。油層に硫酸マグネシウムを加えて水分を取り除き、自然濾過で硫酸マグネシウムを除去した。その後、エバポレーターで溶媒を除去し、橙色油状の生成物(収量:2.11g、収率:99.3%)を得た。このものは常温で液体のため単離が困難であった。   In a 100 ml eggplant flask, 1.230 g (10.1 mmol) of 2,6-DMP, 1.714 g (10.0 mmol) of benzyl bromide, 4.897 g (15.0 mmol) of cesium carbonate, 17 ml of toluene, and dimethylformamide (DMF) 17 ml was added and stirred at 50 ° C. for 6.5 hours. After completion of the reaction, hydrochloric acid was added and transferred to a separatory funnel to extract the oil layer. Magnesium sulfate was added to the oil layer to remove moisture, and magnesium sulfate was removed by natural filtration. Thereafter, the solvent was removed by an evaporator to obtain an orange oily product (yield: 2.11 g, yield: 99.3%). This product was difficult to isolate because it was liquid at room temperature.

H NMR(400MHz,CDCl3): δ2.29(s,9H,CH3),4.77(s,2H,O-CH2),7.00(t,1H,Ar-H),
7.02(t,2H,Ar-H),7.36(t,p-1H,Ar-H),7.37(t,m-2H,Ar-H),
7.45(d,2H,o-Ar-H)
1 H NMR (400 MHz, CDCl 3 ): δ 2.29 (s, 9H, CH 3 ), 4.77 (s, 2H, O—CH 2 ), 7.00 (t, 1H, Ar—H),
7.02 (t, 2H, Ar-H), 7.36 (t, p-1H, Ar-H), 7.37 (t, m-2H, Ar-H),
7.45 (d, 2H, o-Ar-H)

[参考例2:3置換体モデルの合成]

Figure 0005370273
[Reference Example 2: Synthesis of 3-substitution model]
Figure 0005370273

ジムロート冷却管を取り付け、窒素雰囲気にした100ml二口フラスコに2,6−DMP 0.367g(3.0mmol)、炭酸セシウム1.141g(3.5mmol)、トルエン15ml、およびDMF 15mlを加えて溶解させた。溶解後、後掲の参考例3で合成した1,3,5−トリスブロモメシチレン(TBM)0.357g(1.0mmol)を加え70℃で40時間反応させた。反応溶液にジエチルエーテルと塩化メチレンを加え、熱時濾過した。濾液に水、クロロホルムを加え、分液ロートで油層を抽出し、硫酸マグネシウムを加えて、水分を除去した。その後、エバポレーターで溶媒を除去した後、冷却し、析出した結晶に対してトルエン/ヘキサン混合溶媒を用いて再結晶を行い、黄色針状結晶の生成物(収率:85.6%)を得た。   Dimroth condenser was attached and dissolved in a 100 ml two-necked flask in a nitrogen atmosphere by adding 0.367 g (3.0 mmol) of 2,6-DMP, 1.141 g (3.5 mmol) of cesium carbonate, 15 ml of toluene, and 15 ml of DMF. I let you. After dissolution, 0.357 g (1.0 mmol) of 1,3,5-trisbromomesitylene (TBM) synthesized in Reference Example 3 described later was added and reacted at 70 ° C. for 40 hours. Diethyl ether and methylene chloride were added to the reaction solution and filtered while hot. Water and chloroform were added to the filtrate, the oil layer was extracted with a separatory funnel, and magnesium sulfate was added to remove moisture. Then, after removing the solvent with an evaporator, the mixture was cooled, and the precipitated crystals were recrystallized using a toluene / hexane mixed solvent to obtain a yellow needle crystal product (yield: 85.6%). It was.

H NMR(400MHz,CDCl3): δ2.34(s,18H,CH3),4.90(s,6H,CH2),6.96(t,3H,Ar-H),
7.05(d,6H,Ar-H),7.61(s,3H,Ar-H)
13C NMR(101MHz,CDCl3): δ16.5,73.6,76.7,77.0,77.4,124.1,126.2,128.9,131.1,
138.5,155.8
Anal.Calcd for C33H36O3; C:82.46%,H:7.55%
Found ; C:82.26%,H:7.54%
1 H NMR (400 MHz, CDCl 3 ): δ 2.34 (s, 18H, CH 3 ), 4.90 (s, 6H, CH 2 ), 6.96 (t, 3H, Ar—H),
7.05 (d, 6H, Ar-H), 7.61 (s, 3H, Ar-H)
13 C NMR (101 MHz, CDCl 3 ): δ16.5,73.6,76.7,77.0,77.4,124.1,126.2,128.9,131.1,
138.5,155.8
Anal.Calcd for C 33 H 36 O 3 ; C: 82.46%, H: 7.55%
Found; C: 82.26%, H: 7.54%

[参考例3:中心分子の合成]

Figure 0005370273
[Reference Example 3: Synthesis of central molecule]
Figure 0005370273

参考文献(Jiuyan Li et al.,Chem.Mater.2005,17,1208−1212)に従って合成した。
ジムロート冷却管を取り付けた300mlナスフラスコに、1,3,5−メシチレン6.000g(0.0499mol)、N−ブロモスクシンイミド(NBS)26.708g(0.1501mol)、過酸化ベンゾイル(BPO)0.242g(0.9991mmol)、およびベンゼン150mlを加え、加熱した。85℃付近で自発的な沸騰が始まり、沸騰がおさまってから、100℃で6時間還流した。析出した白色の副生成物を濾別し、濾液を水で洗浄した。油層をエバポレーターで濃縮したところ、褐色の液体が得られた。これにエタノールを加え、冷蔵庫に入れて放置したところ、白色針状結晶の生成物1,3,5−トリスブロモメシチレン(TBM)(収量:2.51g、収率:17.6%)を得た。
Synthesized according to the reference (Jiuyan Li et al., Chem. Mater. 2005, 17, 1208-1212).
A 300 ml eggplant flask equipped with a Dimroth condenser was charged with 6.000 g (0.0499 mol) of 1,3,5-mesitylene, 26.708 g (0.1501 mol) of N-bromosuccinimide (NBS), benzoyl peroxide (BPO) 0 .242 g (0.99991 mmol) and benzene 150 ml were added and heated. Spontaneous boiling started around 85 ° C., and after the boiling subsided, the mixture was refluxed at 100 ° C. for 6 hours. The precipitated white by-product was filtered off, and the filtrate was washed with water. When the oil layer was concentrated with an evaporator, a brown liquid was obtained. When ethanol was added to this and left in a refrigerator, a white needle-like crystal product 1,3,5-trisbromomesitylene (TBM) (yield: 2.51 g, yield: 17.6%) was obtained. It was.

H NMR(400MHz,CDCl3): δ4.48(s,6H,-CH2-),7.38(s,3H,Ar-H)
13C NMR(101MHz,CDCl3): δ32.0,129.4,138.9
FT-IR(KBr(cm-1)): 1604(C=C),1212(CH2),582(C-Br)
Anal.Calcd for C9H9Br3; C:30.29%,H:2.54%
Found ; C:30.29%, H:2.58%
1 H NMR (400 MHz, CDCl 3 ): δ 4.48 (s, 6H, -CH 2- ), 7.38 (s, 3H, Ar-H)
13 C NMR (101 MHz, CDCl 3 ): δ32.0, 129.4, 138.9
FT-IR (KBr (cm -1 )): 1604 (C = C), 1212 (CH 2 ), 582 (C-Br)
Anal.Calcd for C 9 H 9 Br 3 ; C: 30.29%, H: 2.54%
Found; C: 30.29%, H: 2.58%

[比較例1:線状PPEの合成]

Figure 0005370273
[Comparative Example 1: Synthesis of linear PPE]
Figure 0005370273

酸素風船を取り付けた300mlナスフラスコに、2,6−DMP 12.216g(100mmol)、Cu−TMEDA 1.393g(3mmol)、TMEDA 3.486g(30mmol)、およびトルエン100mlと撹拌子を入れ、室温で3時間撹拌して重合を行った。その後、反応溶液を、塩酸を少量加えたメタノールに注ぎ、析出物を濾別し、これを60℃で6時間減圧乾燥した。乾燥後、少量のクロロホルムに溶解させ、メタノールで再沈殿させた。析出した沈殿物を吸引濾過し、80℃で8時間減圧乾燥したところ、白色粉末状の生成物(収量:4.10g、収率:34%)が得られた。   A 300 ml eggplant flask equipped with an oxygen balloon was charged with 12.216 g (100 mmol) of 2,6-DMP, 1.393 g (3 mmol) of Cu-TMEDA, 3.486 g (30 mmol) of TMEDA, and 100 ml of toluene and a stirrer. The mixture was stirred for 3 hours for polymerization. Thereafter, the reaction solution was poured into methanol to which a small amount of hydrochloric acid was added, the precipitate was filtered off, and dried under reduced pressure at 60 ° C. for 6 hours. After drying, it was dissolved in a small amount of chloroform and reprecipitated with methanol. The deposited precipitate was suction filtered and dried under reduced pressure at 80 ° C. for 8 hours to obtain a white powder product (yield: 4.10 g, yield: 34%).

H NMR(400MHz,CDCl3): δ2.12(s,6H,CH3),4.27(s,1H,OH),
6.50(s,2H,Ar-H)
FT-IR(Film(cm-1)): 2953(C-H),1604(C=C),1189(C-O),856(Ar-H)
1 H NMR (400 MHz, CDCl 3 ): δ2.12 (s, 6H, CH 3 ), 4.27 (s, 1H, OH),
6.50 (s, 2H, Ar-H)
FT-IR (Film (cm -1 )): 2953 (CH), 1604 (C = C), 1189 (CO), 856 (Ar-H)

[比較例2〜6:線状PPEの合成]
重合時間を表1に示す時間に変えたこと以外は、比較例1と同様にして酸化カップリング重合を行った。
[Comparative Examples 2 to 6: Synthesis of linear PPE]
Oxidative coupling polymerization was performed in the same manner as in Comparative Example 1 except that the polymerization time was changed to the time shown in Table 1.

比較例1〜6で得られた線状PPEの収率、分子量、ガラス転移温度(Tg)およびTd10の測定結果を表1に示す。 Table 1 shows the measurement results of the yield, molecular weight, glass transition temperature (Tg), and Td10 of the linear PPE obtained in Comparative Examples 1-6.

Figure 0005370273
Figure 0005370273

[実施例1:3本鎖星形PPEの合成]

Figure 0005370273
[Example 1: Synthesis of three-stranded star PPE]
Figure 0005370273

ジムロート冷却管と窒素風船を取り付けた300mlナスフラスコに、比較例1で合成したPPE0.901g(Mw=3,000:0.3mmol)とトルエン50mlを加えて溶解させ、さらに参考例3で合成したTBM 0.036g(0.1mmol)、炭酸セシウム0.147g(0.45mmol)、およびDMF 50mlを加えて90℃で40時間反応させた。反応後、塩酸を加えて分液ロートで油層を抽出し、硫酸マグネシウムを加えて水分を除去した。自然濾過で硫酸マグネシウムを取り除いた後、エバポレーターでトルエンを除去し、メタノールに加えた。析出した粗成生物を60℃で6時間減圧乾燥し、乾燥後、クロロホルムに溶解させ、メタノールで再沈殿させて沈殿物を回収した。これを80℃で10時間減圧乾燥し、白色粉末状の生成物を得た。   In a 300 ml eggplant flask equipped with a Dimroth condenser and a nitrogen balloon, 0.901 g (Mw = 3,000: 0.3 mmol) of PPE synthesized in Comparative Example 1 and 50 ml of toluene were added and dissolved, and further synthesized in Reference Example 3. 0.036 g (0.1 mmol) of TBM, 0.147 g (0.45 mmol) of cesium carbonate, and 50 ml of DMF were added and reacted at 90 ° C. for 40 hours. After the reaction, hydrochloric acid was added, the oil layer was extracted with a separatory funnel, and magnesium sulfate was added to remove water. After removing magnesium sulfate by natural filtration, toluene was removed by an evaporator and added to methanol. The precipitated crude product was dried under reduced pressure at 60 ° C. for 6 hours, dried, dissolved in chloroform, and reprecipitated with methanol to collect the precipitate. This was dried under reduced pressure at 80 ° C. for 10 hours to obtain a white powdery product.

H NMR(400MHz,CDCl3): δ2.11(s,6H,CH3),6.49(d,2H,Ar-H) 1 H NMR (400 MHz, CDCl 3 ): δ2.11 (s, 6H, CH 3 ), 6.49 (d, 2H, Ar—H)

[実施例2〜4:3本鎖星形PPEの合成]
原料のPPEとして表2に示す分子量のものを用いたこと以外は、実施例1と同様にして反応を行った。
[Examples 2 to 4: Synthesis of three-stranded star PPE]
The reaction was carried out in the same manner as in Example 1 except that the raw material PPE having the molecular weight shown in Table 2 was used.

実施例1〜4で得られた3本鎖星形PPEの分子量、ガラス転移温度(Tg)およびTd10の測定結果を表2に示す。 Table 2 shows the measurement results of the molecular weight, glass transition temperature (Tg), and Td10 of the triple-stranded star PPE obtained in Examples 1 to 4.

Figure 0005370273
Figure 0005370273

[評価]
<NMR>
線状PPEの一例として、比較例1で得られた線状PPEのH−NMRスペクトルを図1に、3本鎖星形PPEの一例として実施例1で得られた3本鎖星形PPEのH−NMRスペクトルを図2に示す。また、比較例1で得られた線状PPE、参考例2で得られた3置換体モデル、および実施例1で得られた3本鎖星形PPEのH−NMRスペクトルの7.2〜7.8ppm付近の拡大図を図3(a)〜(c)に示す。
[Evaluation]
<NMR>
As an example of the linear PPE, the 1 H-NMR spectrum of the linear PPE obtained in Comparative Example 1 is shown in FIG. 1, and the triple-stranded star PPE obtained in Example 1 is shown as an example of the triple-stranded star PPE. The 1 H-NMR spectrum of is shown in FIG. Further, the linear PPE obtained in Comparative Example 1, the 3-substitution model obtained in Reference Example 2, and the 7.2-H of the 1 H-NMR spectrum of the three-chain star PPE obtained in Example 1 were used. Enlarged views around 7.8 ppm are shown in FIGS.

この線状PPEは2,6−ジメチルフェノールの酸化カップリングで得られるポリマーである。即ち、2,6−ジメチルフェノールが1電子酸化されラジカル種が生成する。これが別のラジカル種とカップリングすることで2量体になる。この際、カップリング位置は1位の酸素同士(O−O)、1,4位の酸素と炭素(O−C)、4位の炭素同士(C−C)の3通りが起こりうる。O−Oカップリングした場合には生成するパーオキシドの安定性が低いため再度均一解離して原系の2つのラジカル種になる。従って、実際に考える必要のある反応は前者2つである。Hayらは塩化銅に100倍以上のピリジンを入れることでC−Cカップリングをほぼ抑制できると報告している(Journal of Polymer Science:Part A:Polymer Chemistry,Vol.36,505-517(1998))。塩化銅−テトラメチルエチレンジアミン(TMEDA)錯体の場合には、TMEDAの添加量が塩化銅に対して2倍以上でC−Cカップリングの抑制が可能と報告している。   This linear PPE is a polymer obtained by oxidative coupling of 2,6-dimethylphenol. That is, 2,6-dimethylphenol is one-electron oxidized to generate radical species. This becomes a dimer by coupling with another radical species. In this case, there are three possible coupling positions: oxygen at the 1st position (OO), oxygen and carbon at the 1st and 4th positions (OC), and carbon at the 4th position (CC). In the case of O—O coupling, the generated peroxide is low in stability, so that it is uniformly dissociated again to become the original two radical species. Therefore, there are two former reactions that need to be considered in practice. Hay et al. Reported that CC coupling can be substantially suppressed by adding pyridine more than 100 times to copper chloride (Journal of Polymer Science: Part A: Polymer Chemistry, Vol. 36, 505-517 (1998)). . In the case of a copper chloride-tetramethylethylenediamine (TMEDA) complex, it has been reported that the amount of TMEDA added is at least twice that of copper chloride and that C—C coupling can be suppressed.

図1を見ると、大きなシグナルが0、2.09(e)、6.47(f)、7.25ppmに観測されている。これらはそれぞれ、テトラメチルシラン(内部標準物質)、PPEのメチル水素、PPEの芳香核水素、溶媒である重クロロホルムが一部水素化したものである。これらに加え、1.59、2.17(c,g)、4.24(j)、6.36(d)、7.09(h)、7.35(i)ppmに小さなシグナルが観測される。これらはそれぞれ、NMR溶媒中の水、ポリマー両末端ユニットのメチル水素(c,g)、末端のOH(j)、フェノール末端の芳香核水素(d)、フェニレンエーテル末端の芳香核水素(h)、およびビフェニルユニットの芳香核水素(i)である。従って、C−Oカップリングだけでなく、C−Cカップリングが若干量生じていることが分かる。C−Cカップリングからは両末端OHのテレケリックポリマーが生成するので、片末端OHポリマーとテレケリックポリマーのモル比は、hとiのシグナル強度から計算して、0.88:0.12となる。また、末端基水素であるhと繰り返し単位の水素f、さらにテレケリックポリマーの存在量を考慮すると、NMRから計算した数平均分子量は2,100であり、これは表1のGPCから見積もった相対分子量とよい一致を示している。分子量分布が1.5であることから、重量平均分子量は3,150となり、光散乱法で求めた絶対重量平均分子量3,000とよい一致をみている。   As shown in FIG. 1, large signals are observed at 0, 2.09 (e), 6.47 (f), and 7.25 ppm. These are obtained by partially hydrogenating tetramethylsilane (internal standard substance), methyl hydrogen of PPE, aromatic nucleus hydrogen of PPE, and deuterated chloroform as a solvent. In addition to these, small signals are observed at 1.59, 2.17 (c, g), 4.24 (j), 6.36 (d), 7.09 (h), and 7.35 (i) ppm. Is done. These are water in NMR solvent, methyl hydrogen (c, g) at both terminal units of the polymer, OH (j) at the terminal, aromatic hydrogen at the phenol terminal (d), aromatic hydrogen at the phenylene ether terminal (h) And the aromatic nucleus hydrogen (i) of the biphenyl unit. Therefore, it can be seen that not only the C—O coupling but also a small amount of C—C coupling occurs. Since a C-C coupling produces a telechelic polymer with both terminal OHs, the molar ratio of the one-terminal OH polymer and the telechelic polymer is 0.88: 0.12 calculated from the signal intensity of h and i. It becomes. In addition, in consideration of the terminal group hydrogen h, the repeating unit hydrogen f, and the abundance of the telechelic polymer, the number average molecular weight calculated from NMR is 2,100, which is a relative value estimated from GPC in Table 1. It shows a good agreement with the molecular weight. Since the molecular weight distribution is 1.5, the weight average molecular weight is 3,150, which is in good agreement with the absolute weight average molecular weight 3,000 determined by the light scattering method.

図2の3本鎖星形PPEでは、図1におけると同様にPPE主鎖骨格に由来するシグナルが観測される他、4.24(j)、4.82(b)、7.09(h)、7.34(i)、7.55(a)ppmに小さなシグナルが観測された。これらはそれぞれ、末端OH(j)、3本鎖星形ポリマーの中心ベンジル水素(b)、フェニレンエーテル末端の芳香核水素(h)、ビフェニルユニットの芳香核水素(i)、および3本鎖星形ポリマーの中心芳香核水素(a)である。   In the three-stranded star PPE of FIG. 2, signals derived from the PPE main chain skeleton are observed as in FIG. 1, and 4.24 (j), 4.82 (b), 7.09 (h ), 7.34 (i), 7.55 (a) ppm, a small signal was observed. These are the terminal OH (j), the central benzylic hydrogen (b) of the three-stranded star polymer, the aromatic nuclear hydrogen (h) at the phenylene ether terminal, the aromatic nuclear hydrogen (i) of the biphenyl unit, and the three-stranded star, respectively. The central aromatic hydrogen (a) of the shaped polymer.

原料である比較例1の線状PPEには、12%のビフェニル骨格が混入していた。図2の積分値から、hとiの積分値は原料と生成物でほぼ変化しておらず、3本鎖星形PPE生成時に、C−Cカップリングがこれ以上起きていないことを示している。また、hの水素数を3と考えた時、原料であるPPEの末端OH数は1.04個(テレケリックが入っているため若干多めに出る)、生成物である3本鎖星形PPEのOH数は0.3である。すなわち原料の直鎖PPEの末端OHのうち、約71%が中心分子である1,3,5−トリスブロモメシチレンと反応し、残り29%は未反応のまま残っている。テレケリックポリマーには両末端にOHがあることを考えれば、3本鎖星形PPE:直鎖PPE=0.8:0.2(モル比)となる。以上のことより、本反応で得られた3本鎖星形PPEの純度は0.8(80%)であると言える。この値は、光散乱から計算された3本鎖星形PPEの純度0.83と比較的良い一致をみており、光散乱からの計算値が純度の決定に有用であることが分かる。   The linear PPE of Comparative Example 1 as a raw material was mixed with 12% biphenyl skeleton. From the integrated values in FIG. 2, it is shown that the integrated values of h and i are almost unchanged between the raw material and the product, and no more CC coupling occurs when the three-chain star PPE is generated. Yes. When the number of hydrogens in h is considered to be 3, the number of terminal OHs of the raw material PPE is 1.04 (a little more because it contains telechelic), and the product of the three-chain star PPE The OH number is 0.3. That is, about 71% of the terminal OH of the raw linear PPE reacts with 1,3,5-trisbromomesitylene, which is the central molecule, and the remaining 29% remains unreacted. Considering that the telechelic polymer has OH at both ends, it becomes a three-chain star PPE: linear PPE = 0.8: 0.2 (molar ratio). From the above, it can be said that the purity of the three-stranded star PPE obtained by this reaction is 0.8 (80%). This value is in good agreement with the purity 0.83 of the triple-stranded star PPE calculated from light scattering, and it can be seen that the calculated value from light scattering is useful for determining the purity.

そこで、同様にして実施例2〜4で得られた3本鎖星形PPEに関しても純度を求めたところ、それぞれ0.83、0.88、0.78であった。   Thus, the purity of the three-chain star PPE obtained in the same manner as in Examples 2 to 4 was also found to be 0.83, 0.88, and 0.78, respectively.

<熱特性>
図4に、実施例1で得られた3本鎖星形PPEの空気下における熱重量測定の結果を示した。10%熱重量損失温度は446℃であり、線状PPEのそれとほぼ等しい。また、DSC測定では、星形PPEのガラス転移温度は195〜200℃であり、線状PPEのそれとほぼ等しかった。これらのことは、PPEの物理的耐熱性(軟化温度)は、主鎖のフェニレンエーテルの回転運動に大きく依存し、分子間相互作用にはあまり影響を受けないことを示唆している。すなわち、一般には線状の方が星形より分子間パッキング構造をとりやすく、凝集して熱運動が小さいと考えられるが、PPEの場合にはジメチル基の影響でパッキング構造がそれほど密ではなく、線状、星形のいずれにおいても熱運動の大きさは同等である。また、PPEの化学的耐熱性に関しては、熱重量減少温度がほぼ等しいことから、星形、線状の分子形状によらず、ある一点から分子が分解していくといえる。
<Thermal characteristics>
FIG. 4 shows the results of thermogravimetry of the three-stranded star PPE obtained in Example 1 under air. The 10% thermogravimetric loss temperature is 446 ° C., approximately equal to that of linear PPE. In DSC measurement, the glass transition temperature of star-shaped PPE was 195 to 200 ° C., which was almost equal to that of linear PPE. These facts suggest that the physical heat resistance (softening temperature) of PPE is largely dependent on the rotational motion of the main chain phenylene ether and is not significantly affected by intermolecular interactions. That is, in general, the linear shape is easier to take an intermolecular packing structure than the star shape, and it is thought that the thermal motion is small due to aggregation, but in the case of PPE, the packing structure is not so dense due to the influence of the dimethyl group, The magnitude of thermal motion is the same for both linear and star shapes. In addition, regarding the chemical heat resistance of PPE, the thermogravimetric reduction temperature is almost equal, so it can be said that the molecule is decomposed from one point regardless of the star-shaped or linear molecular shape.

<固有粘度>
比較例1,3,4,5で得られた線状PPEおよび実施例3で得られた3本鎖星形PPEのHugginsプロットを図5に示す。すべてのプロットはほぼ直線で近似され、濃度0における還元粘度を求め、これを固有粘度(極限粘度)とした。
線状PPE(比較例1,3,4,5)では、分子量が大きくなるにつれて固有粘度が増大している。実施例3の3本鎖星形PPEの重量平均分子量は16,000であり、これと同程度の固有粘度を有する線状PPEの重量平均分子量は9,000(比較例4の線状PPE)であった。
このことは、3本鎖星形PPEの固有粘度は、同一分子量で比較した場合、線状PPEの固有粘度と比べて大幅に低く、加工性が格段に優れていると言える。
<Intrinsic viscosity>
FIG. 5 shows a Huggins plot of the linear PPE obtained in Comparative Examples 1, 3, 4, and 5 and the three-stranded star PPE obtained in Example 3. All the plots were approximated by a straight line, and the reduced viscosity at a concentration of 0 was determined and used as the intrinsic viscosity (intrinsic viscosity).
In linear PPE (Comparative Examples 1, 3, 4, and 5), the intrinsic viscosity increases as the molecular weight increases. The weight average molecular weight of the three-chain star PPE of Example 3 is 16,000, and the weight average molecular weight of the linear PPE having the same intrinsic viscosity as this is 9,000 (linear PPE of Comparative Example 4). Met.
This indicates that the intrinsic viscosity of the three-chain star PPE is significantly lower than that of the linear PPE when compared with the same molecular weight, and the processability is remarkably excellent.

図6に、実施例3で得られた3本鎖星形PPEのMead−FuossプロットおよびHugginsプロットを示す。   FIG. 6 shows a Mead-Fuoss plot and a Huggins plot of the triple-stranded star PPE obtained in Example 3.

また、下記式よりHuggins定数を求めた。
ηsp/c=[η]+Kh[η]
Moreover, the Huggins constant was calculated | required from the following formula.
η sp / c = [η] + Kh [η] 2 c

Huggins定数は分子間の相互作用力を示しており、この値が小さいほど相互作用が弱く、分子鎖同士の凝集が小さいと言える。実施例3の3本鎖星形PPEのHuggins定数の値0.26は、線状PPEの0.31と比べて明らかに小さく、分子間相互作用が低いと言える。   The Huggins constant indicates the interaction force between molecules, and the smaller the value, the weaker the interaction and the smaller the aggregation of the molecular chains. The Huggins constant value 0.26 of the three-stranded star PPE of Example 3 is clearly smaller than 0.31 of the linear PPE, and it can be said that the intermolecular interaction is low.

図7は、比較例1〜5で得られた線状PPEと実施例1〜4で得られた3本鎖星形PPEの重量平均分子量と極限粘度の関係をプロットしたものである。このプロットは下式に示すMark−Howink−桜田の式で近似される。
[η]=K[Mw]α
FIG. 7 is a plot of the relationship between the weight average molecular weight and the intrinsic viscosity of the linear PPE obtained in Comparative Examples 1 to 5 and the three-chain star PPE obtained in Examples 1 to 4. This plot is approximated by the Mark-Howink-Sakurada equation shown below.
[Η] = K [Mw] α

プロットの傾きは式中のαであり、この値は、ある溶媒中における分子の形状を表している。αの値が0.5のときにはθ状態にある屈曲性鎖であり、0.7〜0.8では排除体積効果を受けた屈曲性鎖、0.8以上の時は半屈曲性もしくは剛直性鎖である。
3本鎖星形PPEでは、α=0.52であり、線状PPEでは0.68であった。すなわち、3本鎖星形PPEは中心分子により強制的に結合されているため、線状PPEと比べて分子内の凝集力がより大きくなっていると言える。
The slope of the plot is α in the formula, and this value represents the shape of the molecule in a certain solvent. When the value of α is 0.5, it is a bendable chain in the θ state, when it is 0.7 to 0.8, it is a bendable chain that has undergone an excluded volume effect, and when it is 0.8 or more, it is semi-flexible or rigid. Is a chain.
For triple-stranded star PPE, α = 0.52 and for linear PPE, 0.68. That is, it can be said that the three-strand star PPE is forcibly bonded by the central molecule, and therefore the cohesive force in the molecule is larger than that of the linear PPE.

以上の結果を表3にまとめる。   The results are summarized in Table 3.

Figure 0005370273
Figure 0005370273

以上の固有粘度(クロロホルム中、30℃での溶液粘度)の検討結果より、3本鎖星形PPEは中心分子による強制的な結合のため、自身での凝集力が強く、嵩高い骨格のため、ポリマー間の相互作用が低減されており、結果として、溶液粘度を大幅に減少させていると言える。   From the above examination results of intrinsic viscosity (solution viscosity at 30 ° C in chloroform), the three-chain star PPE has a strong cohesive force and a bulky skeleton due to forced binding by the central molecule. It can be said that the interaction between the polymers is reduced, and as a result, the solution viscosity is greatly reduced.

図8に、比較例6で得られた重量平均分子量188,000の線状PPEに、(A)比較例4で得られた重量平均分子量9,000の線状PPE又は(B)実施例2で得られた重量平均分子量10,000の3本鎖星形PPEを混ぜた時の固有粘度の推移を示した。
図8より、3本鎖星形PPEは線状PPEのものよりも効率的に粘度低下剤として機能していることが分かる。これは、溶液中でPPE分子間の相互作用をより効果的に星形PPEが遮断していることを示している。溶融時には、分子間相互作用がより顕著に表れることから、粘性をより劇的に減少させることが可能であると考えられる。
FIG. 8 shows a linear PPE having a weight average molecular weight of 188,000 obtained in Comparative Example 6, (A) a linear PPE having a weight average molecular weight of 9,000 obtained in Comparative Example 4, or (B) Example 2. The transition of the intrinsic viscosity when the three-chain star-shaped PPE having a weight average molecular weight of 10,000 obtained in the above was mixed was shown.
It can be seen from FIG. 8 that the three-chain star PPE functions as a viscosity reducing agent more efficiently than that of the linear PPE. This shows that the star PPE more effectively blocks the interaction between PPE molecules in solution. It is considered that the viscosity can be reduced more drastically because the intermolecular interaction becomes more prominent during melting.

Claims (9)

ベンゼン環を核とし、該ベンゼン環上の炭素原子から伸びる3本以上のポリフェニレンエーテル鎖を有することを特徴とする星形ポリフェニレンエーテル。   A star-shaped polyphenylene ether having a benzene ring as a nucleus and having three or more polyphenylene ether chains extending from carbon atoms on the benzene ring. 請求項1において、前記ポリフェニレンエーテル鎖はオキシメチレン基を有し、前記ベンゼン環上の炭素原子とオキシメチレン基を介して結合していることを特徴とする星形ポリフェニレンエーテル。   2. The star-shaped polyphenylene ether according to claim 1, wherein the polyphenylene ether chain has an oxymethylene group and is bonded to a carbon atom on the benzene ring via an oxymethylene group. 請求項1又は2において、1本当たりの前記ポリフェニレンエーテル鎖の重量平均分子量が1,000以上であることを特徴とする星形ポリフェニレンエーテル。   3. The star-shaped polyphenylene ether according to claim 1, wherein the polyphenylene ether chain per one has a weight average molecular weight of 1,000 or more. 請求項1ないし3のいずれか1項において、重量平均分子量が7,000〜20,000であることを特徴とする星形ポリフェニレンエーテル。   The star-shaped polyphenylene ether according to any one of claims 1 to 3, wherein the weight average molecular weight is 7,000 to 20,000. 請求項1ないし4のいずれか1項において、前記ポリフェニレンエーテル鎖が前記ベンゼン環上の1位、3位および5位の炭素原子に結合していることを特徴とする星形ポリフェニレンエーテル。   5. The star-shaped polyphenylene ether according to claim 1, wherein the polyphenylene ether chain is bonded to the 1-position, 3-position and 5-position carbon atoms on the benzene ring. 3個以上のブロモメチル基で置換されたブロモメチルベンゼンと、ポリフェニレンエーテルとを触媒の存在下に反応させることを特徴とする請求項1ないし5のいずれか1項に記載の星形ポリフェニレンエーテルの製造方法。   6. The production of star-shaped polyphenylene ether according to any one of claims 1 to 5, wherein bromomethylbenzene substituted with 3 or more bromomethyl groups is reacted with polyphenylene ether in the presence of a catalyst. Method. 請求項6において、前記ブロモメチルベンゼンが1,3,5−トリスブロモメチルベンゼンであることを特徴とする星形ポリフェニレンエーテルの製造方法。   The method for producing a star-shaped polyphenylene ether according to claim 6, wherein the bromomethylbenzene is 1,3,5-trisbromomethylbenzene. 請求項1ないし5のいずれか1項に記載の星形ポリフェニレンエーテルと、ポリフェニレンエーテルとを含むことを特徴とするポリフェニレンエーテル混合物。   A polyphenylene ether mixture comprising the star-shaped polyphenylene ether according to any one of claims 1 to 5 and polyphenylene ether. 請求項1ないし5のいずれか1項に記載の星形ポリフェニレンエーテルを含むポリフェニレンエーテル用流動性向上剤。   A fluidity improver for polyphenylene ether comprising the star-shaped polyphenylene ether according to any one of claims 1 to 5.
JP2010124293A 2010-05-31 2010-05-31 Star-shaped polyphenylene ether and process for producing the same Active JP5370273B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010124293A JP5370273B2 (en) 2010-05-31 2010-05-31 Star-shaped polyphenylene ether and process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010124293A JP5370273B2 (en) 2010-05-31 2010-05-31 Star-shaped polyphenylene ether and process for producing the same

Publications (2)

Publication Number Publication Date
JP2011246681A JP2011246681A (en) 2011-12-08
JP5370273B2 true JP5370273B2 (en) 2013-12-18

Family

ID=45412345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010124293A Active JP5370273B2 (en) 2010-05-31 2010-05-31 Star-shaped polyphenylene ether and process for producing the same

Country Status (1)

Country Link
JP (1) JP5370273B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI510517B (en) 2013-04-30 2015-12-01 Ind Tech Res Inst Polyphenylene ether oligomer and article employing the same
JP6343516B2 (en) * 2014-07-31 2018-06-13 旭化成株式会社 Automotive interior parts made of reinforced polyphenylene ether resin composition
CN114514260B (en) * 2019-09-24 2024-04-30 东洋纺Mc株式会社 Polyphenylene ether melt-extruded molded article and method for producing polyphenylene ether melt-extruded molded article

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07196353A (en) * 1993-12-28 1995-08-01 Japan Synthetic Rubber Co Ltd Cement admixture and cement composition
US6414084B1 (en) * 2000-04-13 2002-07-02 General Electric Company High flow polyphenylene ether formulations with dendritic polymers
KR100612079B1 (en) * 2003-10-09 2006-08-11 주식회사 엘지화학 Radially multi branched polymer and porous film using the same
JP2009041008A (en) * 2007-07-18 2009-02-26 Toray Ind Inc Thermoplastic resin composition and molded article thereof
JP2012506466A (en) * 2008-10-23 2012-03-15 ビーエーエスエフ ソシエタス・ヨーロピア Branched polyarylene ether and thermoplastic molding material containing the same

Also Published As

Publication number Publication date
JP2011246681A (en) 2011-12-08

Similar Documents

Publication Publication Date Title
JP4320171B2 (en) Compositions and methods for making functionalized polyphenylene ether resins
CA1056098A (en) Process for the preparation of polyphenylene oxides with hydrolytically stable copper catalysts
JP5515168B2 (en) Phosphorus-containing compounds and their preparation and use
KR101772287B1 (en) Phthalonitrile resin
KR101919046B1 (en) Phthalonitrile resin
JP5370273B2 (en) Star-shaped polyphenylene ether and process for producing the same
JPS5853012B2 (en) polyphenylene oxide
JPH0395221A (en) Manufacture of aryloxytriazine-capped polyphenylene ether
TWI841650B (en) Polyaryletherketone resin and its production method, resin composition and molded body
KR102602949B1 (en) Method for preparing a poly(phenylene ether) and poly(phenylene ether) prepared thereby
EP0211201B1 (en) Mixtures including polyphenylene ethers and lactams and resinous compositions prepared therefrom
EP3546496A2 (en) Compound
JP5625259B2 (en) Polyphenylene ether copolymer and process for producing the same
JP3431560B2 (en) Crystalline poly (2,5-disubstituted-1,4-phenylene oxide)
JPS5974124A (en) Continuous manufacture of polyphenylene ether resin using high concentration bromide ion
JPS6088034A (en) Bromomethylation of polyphenylene ether
JP5343227B2 (en) Phenazacillin polymer with epoxy group in side chain
JPS6213370B2 (en)
Gajbhiye Synthesis and Physico-Chemical Characterisation of Polyphenylene Oxides
JPH05148356A (en) Production of polyphenylene ether resin and resin composition
JP5256498B2 (en) Polymer ligand, aluminum complex and method for producing polylactide
JPS60229923A (en) Preparation of polyphenylene oxide
JP2952412B1 (en) Oxidative polymerization of aromatic hydroxycarboxylic acids
JP4812929B2 (en) 2,5-disubstituted phenol oxidation copolymer having functional group
JP2001302788A (en) Method for manufacturing crystalline poly(2,5- disubstituted-1,4-phenyleneoxide)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130902

R150 Certificate of patent or registration of utility model

Ref document number: 5370273

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250