JP5365795B2 - Exhaust gas purification device for internal combustion engine - Google Patents

Exhaust gas purification device for internal combustion engine Download PDF

Info

Publication number
JP5365795B2
JP5365795B2 JP2009170205A JP2009170205A JP5365795B2 JP 5365795 B2 JP5365795 B2 JP 5365795B2 JP 2009170205 A JP2009170205 A JP 2009170205A JP 2009170205 A JP2009170205 A JP 2009170205A JP 5365795 B2 JP5365795 B2 JP 5365795B2
Authority
JP
Japan
Prior art keywords
exhaust gas
casing
flow
spray
generation chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009170205A
Other languages
Japanese (ja)
Other versions
JP2011026963A (en
Inventor
博昭 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Fuso Truck and Bus Corp
Original Assignee
Mitsubishi Fuso Truck and Bus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Fuso Truck and Bus Corp filed Critical Mitsubishi Fuso Truck and Bus Corp
Priority to JP2009170205A priority Critical patent/JP5365795B2/en
Publication of JP2011026963A publication Critical patent/JP2011026963A/en
Application granted granted Critical
Publication of JP5365795B2 publication Critical patent/JP5365795B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust emission control device of an internal combustion engine capable of mixing a reducer with exhaust gas while sufficiently securing an opportunity of the contact of the reducer and the exhaust gas utilizing a casing having a wide space. <P>SOLUTION: An airflow generating chamber 25 for changing an exhaust gas flow from one end into a doughnut-shaped vortex flow &beta; in which small vortex flows are arranged continuously along the body inner surface of the casing is formed in the casing 6. A spray nozzle 20 for spraying the reducer in a wide angle from the center toward the doughnut-shaped vortex flow &beta; generated on the body inner surface is provided at the other end side wall surface of the airflow generating chamber. Since the reducer is sprayed into the doughnut-shaped vortex flow of the exhaust gas swirling on the body section inner surface of the casing from the center of the vortex flow toward the vortex flow, the reducer and the exhaust gas can be sufficiently mixed. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、内燃機関から排出される排気ガスの浄化を行う内燃機関の排気浄化装置に関する。   The present invention relates to an exhaust gas purification apparatus for an internal combustion engine that purifies exhaust gas discharged from the internal combustion engine.

ディーゼルエンジン(内燃機関)の排気浄化装置には、内燃機関から排出された排ガス中に還元剤を噴射して浄化する構造がある。多くは、ディーゼルパティキュレートフィルタ(以下、DPFという)を収めた前段側のケーシングと、浄化触媒となる選択還元型NOx触媒(以下、SCR触媒という)を収めた後段側のケーシングとの間を通路でつなぎ、SCR触媒の上流側から、噴霧ノズルで排ガス中に還元剤としての尿素水溶液を噴霧させる構造が用いられる。   BACKGROUND ART An exhaust emission control device for a diesel engine (internal combustion engine) has a structure in which a reducing agent is injected into an exhaust gas exhausted from the internal combustion engine for purification. In many cases, a passage is provided between a front-stage casing containing a diesel particulate filter (hereinafter referred to as DPF) and a rear-stage casing containing a selective reduction NOx catalyst (hereinafter referred to as SCR catalyst) serving as a purification catalyst. Therefore, a structure is used in which an aqueous urea solution as a reducing agent is sprayed into the exhaust gas with a spray nozzle from the upstream side of the SCR catalyst.

ところで、噴霧ノズルから噴霧される尿素水溶液は、排ガスの排気熱、排ガス中の水蒸気により加水分解されるアンモニアを用いて、SCR触媒でNOx還元作用を得て、排ガス中のNOxを還元させる。そのため、還元剤たる尿素水溶液は、排ガスに十分に混合させて、SCR触媒に均等にアンモニアを供給することが求められる。
そこで、排気浄化装置では、選択還元型NOx触媒の上流側に配置されている通路から、排ガスの流通方向に沿って尿素水溶液を噴霧する構造を用いて、尿素水溶液を排ガス中に混合させることが行われている(例えば特許文献1などを参照)。
By the way, the urea aqueous solution sprayed from the spray nozzle uses the exhaust heat of the exhaust gas and ammonia that is hydrolyzed by the water vapor in the exhaust gas to obtain a NOx reduction action with the SCR catalyst, thereby reducing NOx in the exhaust gas. Therefore, it is required that the urea aqueous solution as the reducing agent is sufficiently mixed with the exhaust gas to supply ammonia evenly to the SCR catalyst.
Therefore, in the exhaust purification device, the urea aqueous solution can be mixed into the exhaust gas using a structure in which the urea aqueous solution is sprayed along the flow direction of the exhaust gas from the passage arranged upstream of the selective reduction type NOx catalyst. (See, for example, Patent Document 1).

特開2008−274878号公報JP 2008-274878 A

ところが、同構造の噴霧ノズルは、通路方向に沿って尿素水溶液を噴射するため、通路内に収まる狭角の噴霧形状で、排ガス中に尿素水溶液を噴霧することが余儀なくされる。このため、排ガスと尿素水溶液が接触する機会が限られ、尿素水溶液は十分に排ガスと混合できないことがある。特に、通路の長さは、排気浄化装置のコンパクト化により抑える傾向にあるので、特許文献1に見られるように通路内で気流変化を生じさせる手段を講じても、尿素水溶液を排ガスに混合させるには限界があった。   However, since the spray nozzle having the same structure injects the urea aqueous solution along the passage direction, the urea aqueous solution is forced to be sprayed into the exhaust gas with a narrow-angle spray shape that fits in the passage. For this reason, the opportunity for contact between the exhaust gas and the urea aqueous solution is limited, and the urea aqueous solution may not be sufficiently mixed with the exhaust gas. In particular, since the length of the passage tends to be suppressed by downsizing the exhaust gas purification device, the urea aqueous solution is mixed with the exhaust gas even if a means for causing an air flow change in the passage is taken as seen in Patent Document 1. There were limits.

そこで、本発明の目的は、広い空間をもつケーシングを活用して、還元剤と排ガスとが接触する機会を十分に確保しながら、還元剤と排ガスとの混合が行える内燃機関の排気浄化装置を提供することにある。   Accordingly, an object of the present invention is to provide an exhaust gas purification apparatus for an internal combustion engine that can mix a reducing agent and exhaust gas while sufficiently ensuring an opportunity for the reducing agent and exhaust gas to contact each other by utilizing a casing having a wide space. It is to provide.

請求項1の発明は、上記目的を達成するために、ケーシング内に、一端側からの排ガス流をケーシングの胴部内面の周方向に沿って小渦巻き流が連なるドーナツ状の渦巻き流に変える気流生成室を設け、気流生成室の他端側の壁面に、中心側から胴部内面に生成されるドーナツ状の渦巻き流へ向け、還元剤を広角的に噴霧する噴霧ノズルを設け、気流生成室を、ケーシングの他端壁から内側の離れた地点に、中央に収束通孔を有する隔壁を設けて構成し、収束通孔の通過で収束された排ガス流が他端壁との衝突で周囲に拡散することによって、隔壁と他端壁間の空間に、小渦巻き流が胴部内面の周方向に沿って連なるドーナツ状の渦巻き流を生成し、噴霧ノズルを、気流生成室の他端側の壁面中央に噴霧部を配置して、当該噴霧部から還元剤を中空コーン状の噴霧形状で、噴霧部の周囲で生成されるドーナツ状の渦巻き流に向かって噴霧するものとし、ケーシングの出口部を、気流生成室の周壁のうち、渦巻き流を持続したまま排ガスが流出される地点に設けたことにある。
同構成によると、還元剤と排ガスとの混合は、ケーシングの胴部内面で渦巻く排ガスのドーナツ状の渦巻き流の中心側から、還元剤を渦巻き流に向け噴霧することで行われる。これにより、還元剤は、広いケーシング内で渦巻く排ガス流に十分に拡散され、還元剤と排ガスとが接触する機会が大幅に確保され、十分に還元剤と排ガスとが混合される。
In order to achieve the above object, the invention of claim 1 converts an exhaust gas flow from one end into a donut-shaped swirl flow in which small swirl flows continue along the circumferential direction of the inner surface of the body of the casing. the product chamber is provided, the other end of the wall surface of the air flow generating chamber, toward the center side to the toroidal vortex generated in the barrel inner surface, provided with a spray nozzle for spraying a reducing agent wide manner, air flow generating chamber A partition wall having a converging through hole is provided in the center at a point away from the other end wall of the casing, and the exhaust gas flow converged by passing through the converging through hole is caused to collide with the other end wall. By diffusing, a donut-shaped spiral flow is generated in the space between the partition wall and the other end wall along the circumferential direction of the inner surface of the trunk, and the spray nozzle is connected to the other end side of the air flow generation chamber. Placing a spraying part in the center of the wall, reducing agent from the spraying part It is sprayed toward the donut-shaped swirl generated around the spraying part in a hollow cone-shaped spray shape, and the outlet part of the casing is the exhaust gas while maintaining the swirl of the peripheral wall of the airflow generation chamber It is in the point where the
According to this configuration, the reducing agent and the exhaust gas are mixed by spraying the reducing agent toward the spiral flow from the center side of the doughnut-shaped spiral flow of the exhaust gas swirling on the inner surface of the body portion of the casing. As a result, the reducing agent is sufficiently diffused in the swirling exhaust gas flow in the wide casing, and the opportunity for the reducing agent and the exhaust gas to contact each other is greatly ensured, so that the reducing agent and the exhaust gas are sufficiently mixed.

請求項1の発明によれば、還元剤は、広いケーシング内でドーナツ状に渦巻く排ガス流に十分に拡散され、排ガスと還元剤とを接触する機会が大幅に増える。
それ故、還元剤は排ガスと十分に混合される。特にドーナツ状の渦巻き流は、ケーシングの胴部内の空間を最大限に利用して最大に生成される渦巻き流なので、十分に還元剤と排ガスとが接触する機会が与えられ、十分な混合成果が期待できる。
According to the first aspect of the present invention, the reducing agent is sufficiently diffused into the exhaust gas flow swirling in a donut shape in a wide casing, and the chance of contacting the exhaust gas with the reducing agent is greatly increased.
Therefore, the reducing agent is well mixed with the exhaust gas. In particular, the donut-shaped swirl flow is a swirl flow that is generated to the maximum by making the most of the space in the casing body of the casing, so that the opportunity for sufficient contact between the reducing agent and the exhaust gas is given, and sufficient mixing results are achieved. I can expect.

しかも、中央に収束通孔を有する隔壁をケーシング内に設けるという簡単な構造で、ケーシング内にドーナツ状の渦巻き流を生成することができる。
そのうえ、還元剤は、中空コーン状の噴霧形状で、ドーナツ状の渦巻き流へ噴霧されるので、噴霧された還元剤と排ガスとが接触する機会を多く確保でき、一層、排ガスと還元剤とを効果的に混合させることができる。
In addition , a donut-shaped spiral flow can be generated in the casing with a simple structure in which a partition wall having a converging through hole in the center is provided in the casing.
In addition , since the reducing agent is sprayed into a donut-shaped spiral flow in a hollow cone-like spray shape, it is possible to secure many opportunities for the sprayed reducing agent and exhaust gas to contact each other, further reducing the exhaust gas and reducing agent. Can be mixed effectively.

加えて、排ガスは、渦巻き流を持続したまま、ケーシングの出口部から流出して、浄化触媒へ向かうので、浄化触媒に至る経路中でも、排ガスと還元剤との混合が続き、より一層、効果的に排ガスと還元剤とを混合させることができる。 In addition, since the exhaust gas flows out from the outlet of the casing and continues to the purification catalyst while maintaining the swirl flow, mixing of the exhaust gas and the reducing agent continues even in the path to the purification catalyst, making it even more effective. The exhaust gas and the reducing agent can be mixed.

本発明の第1の実施形態に係る排気浄化装置を示す一部切欠した斜視図。1 is a partially cutaway perspective view showing an exhaust gas purification apparatus according to a first embodiment of the present invention. 図1中のA−A線に沿う断面図。Sectional drawing which follows the AA line in FIG. 図1中のB−B線に沿う断面図。Sectional drawing which follows the BB line in FIG. ドーナツ状の渦巻き流に対する還元剤の噴霧を説明するための斜視図。The perspective view for demonstrating spray of the reducing agent with respect to a donut-shaped spiral flow. 本発明の第2の実施形態の要部を示す断面図。Sectional drawing which shows the principal part of the 2nd Embodiment of this invention.

以下、本発明を図1ないし図4に示す第1の実施形態にもとづいて説明する。
図1中1は、内燃機関としてのディーゼルエンジンを示している。このディーゼルエンジン1の排気管1aには、同エンジン1から排出される排ガスを浄化する排気浄化装置2が設けられている。排気浄化装置2には、例えば前段側の浄化部3と後段側の浄化部10を通路である連結パイプ17で連結した構造が用いられている。
Hereinafter, the present invention will be described based on a first embodiment shown in FIGS.
In FIG. 1, reference numeral 1 denotes a diesel engine as an internal combustion engine. The exhaust pipe 1 a of the diesel engine 1 is provided with an exhaust purification device 2 that purifies exhaust gas discharged from the engine 1. For example, a structure in which the front-stage purification unit 3 and the rear-stage purification unit 10 are connected by a connection pipe 17 that is a passage is used for the exhaust purification device 2.

このうち浄化部3は、上流側(本願の一端側に相当)の端部に入口部4を有し、下流側の端部に出口部5を有する円筒形のケーシング6をもつ。入口部4がディーゼルエンジン1の排気管1aに接続される。ケーシング6内には、排気ガス中のパティキュレートマター(以下、PMという)を捕集するディーゼルパティキュレートフィルタ7(以下、DPF7という)が、同DPF7を連続再生する前段酸化触媒8(前段触媒)と共に収められている。つまり、DPF7の再生を行いながら、排ガス中からPMを取り除ける構造にしてある。   Among these, the purification | cleaning part 3 has the inlet_port | entrance part 4 in the edge part of an upstream (equivalent to the one end side of this application), and has the cylindrical casing 6 which has the outlet part 5 in the downstream edge part. The inlet 4 is connected to the exhaust pipe 1 a of the diesel engine 1. In the casing 6, a diesel particulate filter 7 (hereinafter referred to as DPF 7) that collects particulate matter (hereinafter referred to as PM) in the exhaust gas, a pre-stage oxidation catalyst 8 (pre-stage catalyst) that continuously regenerates the DPF 7. It is stored with. That is, the structure is such that PM can be removed from the exhaust gas while the DPF 7 is regenerated.

浄化部10も、同様に上流側の端部に入口部11を有し、下流側の端部に出口部12を有する円筒形のケーシング13をもつ。このうち入口部11が、上記連結パイプ17を介してケーシング6の出口部5に連結される。また出口部12は大気開放側となる。ケーシング13内には、本願の浄化触媒に相当するアンモニア選択還元型NOx触媒14(以下、SCR触媒14という)が、同SCR触媒14から流出したアンモニアを抑える後段酸化触媒15(後段触媒)と共に収められている。   Similarly, the purification unit 10 has a cylindrical casing 13 having an inlet 11 at an upstream end and an outlet 12 at a downstream end. Of these, the inlet 11 is connected to the outlet 5 of the casing 6 via the connecting pipe 17. Moreover, the exit part 12 becomes an air release side. In the casing 13, an ammonia selective reduction type NOx catalyst 14 (hereinafter referred to as SCR catalyst 14) corresponding to the purification catalyst of the present application is housed together with a rear-stage oxidation catalyst 15 (rear-stage catalyst) that suppresses the ammonia flowing out from the SCR catalyst 14. It has been.

またSCR触媒14の上流側には、排ガス中に、SCR触媒14の作動に要する還元剤、例えば尿素水溶液を噴霧するリキッドオンリ式の尿素水噴射ノズル20(本願の噴霧ノズルに相当、以下、単に噴射ノズル20という)が設けられる。つまり、噴霧された尿素水溶液(還元剤)が、排ガスの排気熱、排ガス中の水蒸気により加水分解することによって、SCR触媒14のNOx還元作用をもたらすアンモニアが生成されるようにしている。これにより、ディーゼルエンジン1から排出された排ガス中のNOxは、SCR触媒14のNOx還元作用により浄化される。   Further, on the upstream side of the SCR catalyst 14, a liquid-only urea water injection nozzle 20 (which corresponds to the spray nozzle of the present application, hereinafter simply spraying a reducing agent required for the operation of the SCR catalyst 14, for example, an aqueous urea solution, into the exhaust gas. A spray nozzle 20). That is, the sprayed urea aqueous solution (reducing agent) is hydrolyzed by the exhaust heat of the exhaust gas and the water vapor in the exhaust gas, so that ammonia that produces the NOx reduction action of the SCR catalyst 14 is generated. Thereby, NOx in the exhaust gas discharged from the diesel engine 1 is purified by the NOx reduction action of the SCR catalyst 14.

ここで、NOxの浄化(NOx還元作用による)に用いられる尿素水溶液は、排ガスに十分に混合させることが求められる。そのため、本実施形態では、ケーシング6内の空間を活用したミキサ部21を採用している。具体的には、ここではDPF7の出口端に形成されている排気受け室23を活用して、同受け室23の一部に、DPF7からの排ガス流を、ケーシング6の胴部6の内周面に沿って小渦巻き流が連なるドーナツ状の渦巻き流に変える気流生成室25を形成し、噴射ノズル20で同渦巻き流の中心側から尿素水溶液を噴霧させるミキサ構造が採用してある。図2および図3は、同ミキサ部21の各断面が示されている(図1中のA−A線に沿う断面図、断面B−B線に沿う断面図)。   Here, the urea aqueous solution used for NOx purification (by NOx reduction action) is required to be sufficiently mixed with the exhaust gas. Therefore, in this embodiment, the mixer unit 21 utilizing the space in the casing 6 is employed. Specifically, the exhaust gas receiving chamber 23 formed at the outlet end of the DPF 7 is used here, and the exhaust gas flow from the DPF 7 is supplied to a part of the receiving chamber 23 to the inner periphery of the trunk portion 6 of the casing 6. A mixer structure is employed in which an air flow generation chamber 25 that is changed into a donut-shaped spiral flow in which small spiral flows are formed along the surface and an aqueous urea solution is sprayed from the center side of the spiral flow by the injection nozzle 20 is adopted. 2 and 3 show cross sections of the mixer unit 21 (a cross-sectional view taken along the line AA in FIG. 1 and a cross-sectional view taken along the line BB).

詳しくは気流生成室25は、図1〜図3に示されるように排気受け室23のうち、DPF7の出口端から所定に離れた下流側の地点に、排ガス流を収束させるための収束通孔、例えば円形の通孔26を中央に有する隔壁27を設けて、排気受け室23を仕切り、下流側(出口側)に環状の扁平状な室を形成してなる。すなわち、扁平状の気流生成室25は、図2に示されるようにDPF7の出口端から流出する排ガス流が出口部に至る間に、通孔26による収束、同収束した排ガス流が端壁27の中央部と衝突、同衝突によって排ガスが周囲に拡散、同拡散した排ガス流が渦巻くという挙動を生じさせ、排ガスの流通方向沿いに渦巻く小渦巻き流α(旋回流)を生成させる構造としてある。この通孔26の周囲で渦巻く小渦巻き流α群が、胴部6aの内周面に沿いに連なる形状の渦巻き流、すなわちドーナツ状の渦巻き流βとなる。 Specifically, as shown in FIGS. 1 to 3, the air flow generation chamber 25 is a converging through hole for converging the exhaust gas flow at a downstream side of the exhaust receiving chamber 23 that is a predetermined distance away from the outlet end of the DPF 7. For example, a partition wall 27 having a circular through hole 26 in the center is provided to partition the exhaust receiving chamber 23, and an annular flat chamber is formed on the downstream side (exit side). That is, as shown in FIG. 2, the flat airflow generation chamber 25 converges through the through-hole 26 while the exhaust gas flow flowing out from the outlet end of the DPF 7 reaches the outlet portion 5 , and the exhaust gas flow that has converged is the end wall. The structure is such that the exhaust gas diffuses to the surroundings by the collision with the central portion of the No. 27, the behavior of the diffused exhaust gas flow swirls, and a small swirl flow α (swirl flow) swirling along the flow direction of the exhaust gas is generated. . The small spiral flow α group swirling around the through hole 26 becomes a spiral flow having a shape continuous along the inner peripheral surface of the body portion 6a, that is, a donut-shaped spiral flow β.

噴射ノズル20は、図2に示されるように気流生成室25を挟んで通孔26とは反対側の壁面、ここでは端壁27の中央に設けられている。噴射ノズル20は、図示はしないが尿素水溶液を供給する尿素水溶液タンクや尿素水溶液ポンプなどで構成される尿素水供給部に接続されている。また噴射ノズル20の先端部は、尿素水溶液を中空コーン状の噴霧形状aで周囲に広角的に噴霧する噴霧部20aをもつ。この噴霧部20aは、生成される渦巻き流βの中心部に相当する、端壁27の壁面中央から気流生成室25に突き出ている。これで尿素水溶液は、噴霧部20aから同噴霧部20aの周囲で生成されるドーナツ状の渦巻き流βに向かって噴霧されるようにしてある。   As shown in FIG. 2, the injection nozzle 20 is provided on the wall surface opposite to the through hole 26 with the airflow generation chamber 25 interposed therebetween, here in the center of the end wall 27. Although not shown, the injection nozzle 20 is connected to a urea water supply unit configured by a urea aqueous solution tank or a urea aqueous solution pump for supplying a urea aqueous solution. The tip of the injection nozzle 20 has a spray portion 20a that sprays a urea aqueous solution in a hollow cone-like spray shape a at a wide angle. The spray part 20a protrudes from the center of the wall surface of the end wall 27 into the airflow generation chamber 25, which corresponds to the center part of the generated spiral flow β. Thus, the urea aqueous solution is sprayed from the spray unit 20a toward the donut-shaped spiral flow β generated around the spray unit 20a.

尿素水溶液は、こうした胴部6aの内周面上に形成されるドーナツ状の渦巻き流βと、中心側からドーナツ状の渦巻き流β各部に広角的に尿素水溶液を噴霧する構造との組み合わせから、ケーシング6の広い空間を用いて排ガス中に混合できるようにしている。
また連結パイプ17と連通する出口部5は、気流生成室25で生じた排ガスの渦巻き流αを持続したまま、流出する地点、例えば気流生成室25の周壁のうち、気流生成室25の中心を通る地点に形成されている。これにより、排ガスは、小渦巻き流α(旋回流)を持続させたまま、連結パイプ17を通して、SCR14まで導けるようにしている。
The urea aqueous solution has a combination of a donut-shaped swirl flow β formed on the inner peripheral surface of the barrel portion 6a and a structure in which the urea aqueous solution is sprayed at a wide angle to each part of the donut-shaped swirl flow β from the center side. A wide space of the casing 6 is used to allow mixing in the exhaust gas.
In addition, the outlet portion 5 communicating with the connection pipe 17 keeps the swirl flow α of the exhaust gas generated in the airflow generation chamber 25 while maintaining the center of the airflow generation chamber 25 in the outflow point, for example, the peripheral wall of the airflow generation chamber 25. It is formed at a passing point. As a result, the exhaust gas can be guided to the SCR 14 through the connecting pipe 17 while maintaining the small spiral flow α (swirl flow).

こうしたミキサ構造によると、尿素水溶液は、ケーシング6内の広い領域に生成されるドーナツ状の渦巻き流βがもたらす拡散効果により、十分に排ガスと混合される。
すなわち、ドーナツ状の渦巻き流βは、図3および図4に示されるように通孔26の通過で収束された排ガス流が、端壁27の中央と衝突することで、気流生成室25の周囲に拡散し、この拡散した排ガス流が通孔26を通過する排ガス流を受けて、排ガス流通方向に渦巻くことで生ずる。詳しくはドーナツ状の渦巻き流βは、このとき気流生成室25の周側に生ずる小渦巻き流α群がなす。
According to such a mixer structure, the urea aqueous solution is sufficiently mixed with the exhaust gas by the diffusion effect brought about by the donut-shaped spiral flow β generated in a wide area in the casing 6.
That is, the doughnut-shaped spiral flow β is generated by the exhaust gas flow converged by passing through the through hole 26 colliding with the center of the end wall 27 as shown in FIGS. The diffused exhaust gas flow is generated by receiving the exhaust gas flow passing through the through hole 26 and swirling in the exhaust gas circulation direction. Specifically, the donut-shaped spiral flow β is formed by a small spiral flow α group generated on the circumferential side of the air flow generation chamber 25 at this time.

一方、尿素水溶液は、図1〜図3に示されるように噴霧部20aから、中空コーン状の噴霧形状aで、ドーナツ状の渦巻き流βの中心側から、同渦巻き流βを形成している小渦巻き流αに向けて噴霧される。
すると、尿素水溶液は、胴部6a内側の広い空間を渦巻いている排ガス中に十分に拡散される。これにより、尿素水溶液は、排ガスと接触する機会を十分に確保しながら、排ガスと混合される。これで尿素水溶液は、排気ガスの排気熱や排ガス中の水蒸気により加水分解され、アンモニアとなる。続いて排ガスは、図3に示されるように渦巻き流αを持続したまま出口部5からSCR14へ導かれ、一層、尿素水溶液の加水分解が進む。
On the other hand, as shown in FIGS. 1 to 3, the urea aqueous solution forms the same swirl flow β from the center of the doughnut-shaped swirl flow β from the spray portion 20 a in a hollow cone-shaped spray shape a. Sprayed toward the small swirl flow α.
Then, the urea aqueous solution is sufficiently diffused in the exhaust gas swirling in the wide space inside the trunk portion 6a. Thereby, urea aqueous solution is mixed with waste gas, ensuring the opportunity to contact waste gas sufficiently. Thus, the urea aqueous solution is hydrolyzed by the exhaust heat of the exhaust gas and the water vapor in the exhaust gas to become ammonia. Subsequently, as shown in FIG. 3, the exhaust gas is guided from the outlet 5 to the SCR 14 while maintaining the spiral flow α, and the hydrolysis of the urea aqueous solution further proceeds.

したがって、ドーナツ状の渦巻き流βと広角的な噴霧とを組み合わせると、尿素水溶液と排ガスとが接触する機会が大幅に増やせるので、還元剤たる尿素水溶液と排ガスとを十分に混合させることができる。これにより、十分にアンモニアが生成され、SCR14を十分に機能させることができる。特にドーナツ状の渦巻き流βは、ケーシング6の胴部6a内の空間を最大限に利用して生成される渦巻き流なので、十分に尿素水溶液と排ガスとが接触する機会を確保され、十分な混合成果を期待することができる。   Accordingly, when the doughnut-shaped spiral flow β and the wide-angle spray are combined, the chance of contact between the urea aqueous solution and the exhaust gas can be greatly increased, so that the urea aqueous solution serving as the reducing agent and the exhaust gas can be sufficiently mixed. Thereby, ammonia is sufficiently generated and the SCR 14 can function sufficiently. In particular, the donut-shaped spiral flow β is a spiral flow that is generated by maximally utilizing the space in the body portion 6a of the casing 6, so that the opportunity of sufficient contact between the aqueous urea solution and the exhaust gas is ensured and sufficient mixing is achieved. We can expect results.

しかも、尿素水溶液は、噴霧部20aから中空コーン状の噴霧形状aで、ドーナツ状の渦巻き流βへ噴霧するので、尿素水溶液と排ガスとが接触する機会を多く確保でき、一層、尿素水溶液と排ガスとを効果的に混合させることができる。そのうえ、出口部5は、渦巻き流αを持続したまま排ガスが流出される地点に設けたから、ケーシング6からSCR14に至る経路を利用して、尿素水溶液と排ガスとの混合が持続でき、一層、効果的に尿素水溶液と排ガスとを混合させることができる。   Moreover, since the urea aqueous solution is sprayed from the spraying portion 20a to the doughnut-shaped spiral flow β in a hollow cone-like spray shape a, it is possible to secure many opportunities for contact between the urea aqueous solution and the exhaust gas. Can be mixed effectively. In addition, since the outlet portion 5 is provided at a point where the exhaust gas flows out while maintaining the swirl flow α, the mixing of the urea aqueous solution and the exhaust gas can be continued using the path from the casing 6 to the SCR 14, which is further effective. In particular, the urea aqueous solution and the exhaust gas can be mixed.

特にこうした効果をもたらす気流生成室25は、通孔26を有する隔壁27をケーシング6内に設置するだけでよく、簡単な構造ですむ。
図5は、本発明の第2の実施形態を示す。
本実施形態は、第1の実施形態のようにケーシング13の出口部12を単に気流生成室25の周壁に形成したのではなく、気流生成室25の周壁のうち、気流生成室25の接線方向となる地点に形成したものである。
In particular, the air flow generation chamber 25 that brings about such an effect is only required to install the partition wall 27 having the through holes 26 in the casing 6 and has a simple structure.
FIG. 5 shows a second embodiment of the present invention.
In the present embodiment, the outlet 12 of the casing 13 is not simply formed on the peripheral wall of the airflow generation chamber 25 as in the first embodiment, but the tangential direction of the airflow generation chamber 25 among the peripheral walls of the airflow generation chamber 25. It is formed at the point.

このようにしても、渦巻き流αを持続したまま排ガスを流出させることができ、第1の実施形態と同様の効果を奏する。
但し、第2の実施形態において、第1の実施形態と同じ部分には同一符号を付してその説明を省略した。
なお、本発明は上述したいずれの実施形態に限定されるものではなく、本発明の主旨を逸脱しない範囲内で種々可変して実施しても構わない。例えば上述したいずれの実施形態でも、気流生成室25は、ケーシング6内を仕切るよう隔壁27を設けただけの構造を挙げたが、ドーナツ状の渦巻き流が生成しやすくなるよう、例えば図2中の二点鎖線に示されるように気流生成室25(環状の扁平状な室)の外周側の壁面に、円弧形のガイド面部30を設けてもよい。また上述した実施形態は、DPF7、前段酸化触媒8、SCR14、後段酸化触媒15を用いた排気浄化装置に本発明を適用したものを挙げたが、これに限らず、他の触媒を用いて構成される排気浄化装置に適用してもよく、要は排ガス中に還元剤を噴霧する構造の排気浄化装置であればよい。
Even if it does in this way, exhaust gas can be made to flow out, maintaining spiral flow (alpha), and there exists an effect similar to 1st Embodiment.
However, in the second embodiment, the same parts as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
Note that the present invention is not limited to any of the above-described embodiments, and various modifications may be made without departing from the spirit of the present invention. For example, in any of the above-described embodiments, the air flow generation chamber 25 has a structure in which the partition wall 27 is provided so as to partition the inside of the casing 6, but in order to easily generate a donut-shaped spiral flow, for example, in FIG. As shown by the two-dot chain line, an arcuate guide surface portion 30 may be provided on the outer peripheral wall surface of the airflow generation chamber 25 (annular flat chamber). Moreover, although embodiment mentioned above mentioned what applied this invention to the exhaust gas purification apparatus using DPF7, the front | former stage oxidation catalyst 8, SCR14, and the back | latter stage oxidation catalyst 15, it does not restrict to this but comprises using another catalyst. The present invention may be applied to an exhaust gas purification apparatus, and in short, any exhaust gas purification apparatus having a structure in which a reducing agent is sprayed into exhaust gas may be used.

2 排気浄化装置
4 入口部
5 出口部
6 ケーシング
6a 胴部
14 アンモニア選択還元型NOx触媒(浄化触媒)
17 連結パイプ(通路)
20 尿素水噴射ノズル(噴霧ノズル)
23 排気受け室
23a 端壁(他端壁)
25 気流生成室
26 通孔(収束通孔)
27 隔壁
α 小渦巻き流
β ドーナツ状の渦巻き流
2 Exhaust purification device 4 Inlet part 5 Outlet part 6 Casing 6a Body part 14 Ammonia selective reduction type NOx catalyst (purification catalyst)
17 Connection pipe (passage)
20 Urea water injection nozzle (spray nozzle)
23 Exhaust receiving chamber 23a End wall (other end wall)
25 Airflow generation chamber 26 Through hole (converging through hole)
27 Bulkhead α Small spiral flow β Donut-shaped spiral flow

Claims (1)

内燃機関の排ガスを一端側から胴部を通じて他端側へ流通させ、出口部から浄化触媒へ導くケーシングを有し、前記浄化触媒の上流側から排ガス中に還元剤が噴霧される内燃機関の排気浄化装置であって、
前記ケーシング内には、一端側からの排ガス流を前記ケーシングの胴部内面の周方向に沿って小渦巻き流が連なるドーナツ状の渦巻き流に変える気流生成室が設けられ、
前記気流生成室の他端側の壁面には、中心側から前記胴部内面に生成されるドーナツ状の渦巻き流へ向け、前記浄化触媒の作動に要する還元剤を広角的に噴霧する噴霧ノズルが設けられ、
前記気流生成室が、前記ケーシングの他端壁から内側の離れた地点に、中央に収束通孔を有する隔壁を設けて構成され、前記収束通孔の通過で収束された排ガス流が他端壁との衝突で周囲に拡散することによって、前記隔壁と他端壁間の空間に、小渦巻き流が前記胴部内面の周方向に沿って連なるドーナツ状の渦巻き流を生成し、
前記噴霧ノズルは、前記気流生成室の他端側の壁面中央に噴霧部が配置され、当該噴霧部から前記還元剤を中空コーン状の噴霧形状で、前記噴霧部の周囲で生成されるドーナツ状の渦巻き流に向かって噴霧するものとし、
前記ケーシングの出口部が、前記気流生成室の周壁のうち、渦巻き流を持続したまま排ガスが流出される地点に設けられる
ことを特徴とする内燃機関の排気浄化装置。
Exhaust gas from an internal combustion engine having a casing that circulates exhaust gas of the internal combustion engine from one end side to the other end side through the body portion and leads from the outlet portion to the purification catalyst, and in which the reducing agent is sprayed into the exhaust gas from the upstream side of the purification catalyst A purification device,
In the casing, there is provided an air flow generation chamber that changes the exhaust gas flow from one end side into a donut-shaped spiral flow in which a small spiral flows along the circumferential direction of the inner surface of the body portion of the casing,
On the wall surface on the other end side of the air flow generation chamber, there is a spray nozzle for spraying a reducing agent required for the operation of the purification catalyst in a wide angle toward the donut-shaped spiral flow generated on the inner surface of the body portion from the center side. provided it is,
The air flow generation chamber is configured by providing a partition wall having a converging through hole in the center at a point away from the other end wall of the casing, and the exhaust gas flow converged by passing through the converging through hole is the other end wall. Diffusing to the surroundings by collision with the partition wall, and in the space between the partition wall and the other end wall, a small spiral flow generates a donut-shaped spiral flow that continues along the circumferential direction of the inner surface of the body part,
The spray nozzle has a spray portion disposed in the center of the wall surface on the other end side of the air flow generation chamber, and the reducing agent is generated from the spray portion in a hollow cone-shaped spray shape and is generated around the spray portion. Shall spray toward the spiral flow of
An exhaust gas purification apparatus for an internal combustion engine , wherein the outlet portion of the casing is provided at a point on the peripheral wall of the airflow generation chamber where exhaust gas flows out while maintaining a spiral flow .
JP2009170205A 2009-07-21 2009-07-21 Exhaust gas purification device for internal combustion engine Expired - Fee Related JP5365795B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009170205A JP5365795B2 (en) 2009-07-21 2009-07-21 Exhaust gas purification device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009170205A JP5365795B2 (en) 2009-07-21 2009-07-21 Exhaust gas purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2011026963A JP2011026963A (en) 2011-02-10
JP5365795B2 true JP5365795B2 (en) 2013-12-11

Family

ID=43635983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009170205A Expired - Fee Related JP5365795B2 (en) 2009-07-21 2009-07-21 Exhaust gas purification device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP5365795B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5316796B2 (en) * 2009-08-04 2013-10-16 三菱ふそうトラック・バス株式会社 Engine exhaust purification system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11166410A (en) * 1997-12-04 1999-06-22 Hino Motors Ltd Exhaust emission control device
JP3536733B2 (en) * 1999-08-20 2004-06-14 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
JP2008138654A (en) * 2006-12-01 2008-06-19 Sango Co Ltd Exhaust emission control device
JP2008240722A (en) * 2007-03-26 2008-10-09 Sango Co Ltd Exhaust emission control device

Also Published As

Publication number Publication date
JP2011026963A (en) 2011-02-10

Similar Documents

Publication Publication Date Title
JP3892452B2 (en) Engine exhaust purification system
JP5985822B2 (en) Exhaust purification device
EP2803833B1 (en) Exhaust gas purification device
JP5339079B2 (en) Exhaust gas purification device for internal combustion engine
JP5714844B2 (en) Exhaust gas purification device
US11193412B2 (en) Automotive exhaust aftertreatment system
WO2016158993A1 (en) Exhaust purification unit
JP2005273580A (en) Muffler with exhaust cleaning function
WO2013099313A1 (en) Reducing agent aqueous solution mixing device and exhaust gas after-treatment device
US20150308316A1 (en) Integrated mixing system for exhaust aftertreatment system
WO2015018971A1 (en) Method, apparatus and system for aftertreatment of exhaust gas
JP2009036186A (en) Exhaust emission control device
JP2010144569A (en) Selective reduction catalyst device
JP4651560B2 (en) Exhaust gas purification device for internal combustion engine
JP2005127271A (en) Urea water vaporizer
JP2008144644A (en) Exhaust emission control device for internal combustion engine
US20190120110A1 (en) Exhaust purification system
JP5500909B2 (en) Exhaust purification device
JP6636907B2 (en) Exhaust gas purification device
JP5365795B2 (en) Exhaust gas purification device for internal combustion engine
JP2011106412A (en) Exhaust emission control device for internal combustion engine
JP2008267225A (en) Exhaust emission control device
WO2019163598A1 (en) Reducing agent injecting device
JP6756629B2 (en) Exhaust gas purification device
CN111980784B (en) Vehicle tail gas mixing device and working method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130403

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130814

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130827

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees