JP5361312B2 - Membrane cartridge - Google Patents

Membrane cartridge Download PDF

Info

Publication number
JP5361312B2
JP5361312B2 JP2008247491A JP2008247491A JP5361312B2 JP 5361312 B2 JP5361312 B2 JP 5361312B2 JP 2008247491 A JP2008247491 A JP 2008247491A JP 2008247491 A JP2008247491 A JP 2008247491A JP 5361312 B2 JP5361312 B2 JP 5361312B2
Authority
JP
Japan
Prior art keywords
groove
membrane
filter plate
permeate
channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008247491A
Other languages
Japanese (ja)
Other versions
JP2010075850A (en
Inventor
公博 石川
一博 山▲崎▼
智彦 佐々木
好男 松崎
Original Assignee
株式会社クボタ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クボタ filed Critical 株式会社クボタ
Priority to JP2008247491A priority Critical patent/JP5361312B2/en
Publication of JP2010075850A publication Critical patent/JP2010075850A/en
Application granted granted Critical
Publication of JP5361312B2 publication Critical patent/JP5361312B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/08Flat membrane modules
    • B01D63/082Flat membrane modules comprising a stack of flat membranes, e.g. plate-and-frame devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis, ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/18Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/14Specific spacers
    • B01D2313/146Specific spacers on the permeate side
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2315/00Details relating to the membrane module operation
    • B01D2315/06Submerged-type; Immersion type
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1236Particular type of activated sludge installations
    • C02F3/1268Membrane bioreactor systems
    • C02F3/1273Submerged membrane bioreactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Description

本発明は、例えは活性汚泥等の固液分離等に用いられる浸漬型膜分離装置を構成する膜カートリッジに関する。   The present invention relates to a membrane cartridge constituting a submerged membrane separation device used for solid-liquid separation of activated sludge, for example.

従来、例えば膜分離活性汚泥処理においては、下水等を活性汚泥処理する反応槽内に浸漬型の膜分離装置を浸漬している。この膜分離装置には、本体ケーシングの内部に複数枚の有機平膜型の膜カートリッジを所定間隔で平行に配列し充填したものがある。   Conventionally, for example, in membrane separation activated sludge treatment, a submerged membrane separation apparatus is immersed in a reaction tank that treats sewage or the like with activated sludge. In this membrane separator, there is one in which a plurality of organic flat membrane type membrane cartridges are arranged in parallel at a predetermined interval inside a main casing.

図9,図10に示すように、膜カートリッジ10は、上下方向Aに長い長方形状の濾板11と、濾板11の表裏両方の濾板面に配置された濾過膜12とを有している。濾板11の表裏両濾板面には、濾過膜12を透過した透過液が流れる複数の流路溝13が形成されている。これら流路溝13は、上下方向A(縦方向)に長く形成され、濾板11の幅方向Bにおいて平行に配列されている。   As shown in FIGS. 9 and 10, the membrane cartridge 10 includes a rectangular filter plate 11 that is long in the vertical direction A, and a filter membrane 12 that is disposed on both the front and back of the filter plate 11. Yes. A plurality of flow channel grooves 13 through which the permeate that has permeated the filtration membrane 12 flows are formed on both the front and back filter plate surfaces of the filter plate 11. These flow channel grooves 13 are long in the vertical direction A (longitudinal direction), and are arranged in parallel in the width direction B of the filter plate 11.

濾板11の上端部には、各流路溝13内の透過液を集める集液部14が形成されている。集液部14は濾板11の表裏両濾板面に貫通しており、各流路溝13の上端は集液部14に連通している。尚、上記流路溝13と集液部14とによって透過液流路17が構成される。また、濾板11の上縁部には、集液部14に集められた透過液を膜カートリッジ10の外部へ取り出す透過液取出ノズル15が設けられている。   At the upper end portion of the filter plate 11, a liquid collection portion 14 that collects the permeate in each flow channel groove 13 is formed. The liquid collection part 14 penetrates both the front and back filter plate surfaces of the filter plate 11, and the upper end of each flow channel groove 13 communicates with the liquid collection part 14. The flow channel 17 and the liquid collecting part 14 constitute a permeate flow channel 17. In addition, a permeate extraction nozzle 15 that extracts the permeate collected in the liquid collector 14 to the outside of the membrane cartridge 10 is provided at the upper edge of the filter plate 11.

これによると、膜カートリッジ10を固液分離に使用する場合、吸引ポンプを用いて透過液取出ノズル15に吸引圧(負圧)を作用させることにより、吸引圧が透過液取出ノズル15を通して透過液流路17(すなわち流路溝13と集液部14)に作用し、槽内混合液18(被処理液)が濾過膜12で濾過され、濾過膜12を透過した濾過液は、各流路溝13内を通り、集液部14に流入して集められ、集液部14から透過液取出ノズル15を通って膜カートリッジ10の外部へ取り出される。   According to this, when the membrane cartridge 10 is used for solid-liquid separation, a suction pressure (negative pressure) is applied to the permeate take-out nozzle 15 using a suction pump, so that the suction pressure passes through the permeate take-out nozzle 15. The filtrate that acts on the flow path 17 (that is, the flow path groove 13 and the liquid collecting portion 14), the mixed liquid 18 (liquid to be treated) in the tank is filtered by the filtration membrane 12, and permeates the filtration membrane 12. It passes through the groove 13 and flows into the liquid collecting part 14 to be collected, and is taken out from the liquid collecting part 14 to the outside of the membrane cartridge 10 through the permeated liquid taking-out nozzle 15.

尚、上記のように濾板11に流路溝13と集液部14とが設けられた膜カートリッジ10については、例えば下記特許文献1に記載されている。
また、膜カートリッジ10の透過液流路17に吸引圧を作用させた際、膜カートリッジ10の下部ほど透過液取出ノズル15までの圧力損失が増大するため、濾板11の濾板面には図11に示すような吸引圧の圧力分布が生じる。図11において、各等圧線19a〜19eは圧力が等しい位置を示しており、下位の等圧線19a〜19eほど低い圧力値を示す。これによると、各等圧線19a〜19eは透過液取出ノズル15の直下が下向きに膨らんだ曲線となり、透過液取出ノズル15から離れた位置ほど吸引圧は低下する。また、幅方向Bにおける圧力分布については、透過液取出ノズル15の直下から幅方向Bに離れるほど吸引圧が低下する。
特開平8−281264
Note that the membrane cartridge 10 in which the filter plate 11 is provided with the flow channel groove 13 and the liquid collecting portion 14 as described above is described in, for example, Patent Document 1 below.
Further, when a suction pressure is applied to the permeate flow path 17 of the membrane cartridge 10, the pressure loss up to the permeate take-out nozzle 15 increases toward the bottom of the membrane cartridge 10. A pressure distribution as shown in FIG. In FIG. 11, each of the isobaric lines 19 a to 19 e indicates a position where the pressure is equal, and the lower isobaric lines 19 a to 19 e indicate lower pressure values. According to this, each of the isobaric lines 19a to 19e is a curve in which a portion directly below the permeate extraction nozzle 15 swells downward, and the suction pressure decreases as the position is away from the permeate extraction nozzle 15. Further, with respect to the pressure distribution in the width direction B, the suction pressure decreases as the distance in the width direction B increases from directly below the permeate extraction nozzle 15.
JP-A-8-281264

しかしながら上記の従来形式では、図11に示すように、濾板11の下部では、濾板面の幅方向Bにおいて圧力差(圧力分布、圧力のばらつき)が増大するため、濾板11の両側下部20へ向うほど透過液を効率良く集水することが困難となり、濾過膜12を全面的に有効に使用することが困難であるという問題がある。   However, in the above conventional type, as shown in FIG. 11, the pressure difference (pressure distribution, pressure variation) increases in the width direction B of the filter plate surface at the lower portion of the filter plate 11. There is a problem that it becomes more difficult to efficiently collect the permeate as it goes to 20, and it is difficult to effectively use the filtration membrane 12 entirely.

また、図12に示すように、隣り合う一対の膜カートリッジ10の膜間に固形分等の付着物24が詰まるなどして、膜カートリッジ10の表裏いずれか一方の面で膜面閉塞が起こった場合、膜面閉塞の発生部分では濾過が行なわれないので、膜カートリッジ10の表裏一方の面において透過液が得られる有効な濾過膜面積は表裏他方の面において透過液が得られる有効な濾過膜面積よりも減少し、膜カートリッジ10の表裏一方の面から得られる透過液の量が表裏他方の面から得られる透過液の量よりも減少してしまう。このように、膜カートリッジ10の表裏いずれかの面で膜面閉塞が起こると、膜カートリッジ10の表側から得られる透過液の量と裏側から得られる透過液の量とに差が生じるといった問題がある。   Also, as shown in FIG. 12, the adhering material 24 such as a solid content is clogged between the membranes of a pair of membrane cartridges 10 adjacent to each other, and the membrane surface is blocked on either the front or back surface of the membrane cartridge 10. In this case, since filtration is not performed at the portion where the membrane surface is blocked, the effective filtration membrane area where the permeate can be obtained on one surface of the membrane cartridge 10 is effective filtration membrane where the permeate can be obtained on the other surface. The amount of permeated liquid obtained from one surface of the membrane cartridge 10 is smaller than the amount of permeated liquid obtained from the other surface. As described above, when the membrane surface is blocked on either of the front and back surfaces of the membrane cartridge 10, there is a problem that a difference occurs between the amount of permeate obtained from the front side of the membrane cartridge 10 and the amount of permeate obtained from the back side. is there.

本発明は、透過液を効率良く集水することにより、濾過膜を全面的に有効に使用することが可能であり、また、膜面閉塞等の原因によって生じる表側から得られる透過液量と裏側から得られる透過液量との差を小さくすることができる膜カートリッジを提供することを目的とする。   In the present invention, it is possible to effectively use the filtration membrane entirely by collecting the permeate efficiently, and the permeate amount obtained from the front side due to causes such as membrane surface blockage and the back side. An object of the present invention is to provide a membrane cartridge capable of reducing the difference from the amount of permeate obtained from the above.

上記目的を達成するために、本第1発明は、濾板の少なくとも表裏いずれか一方の濾板面に濾過膜を配置し、
濾過膜で覆われた濾板面に、濾過膜を透過した透過液が流れる流路溝パターンを形成し、
濾板の周縁部に、流路溝パターンを流れる透過液を集めて取り出す透過液取出口を設けた浸漬型膜分離装置を構成する膜カートリッジであって、
流路溝パターンは複数の流路溝を有し、
濾板に、流路溝パターンが形成されている領域を横断する圧力差緩和溝が形成され、
流路溝パターンが形成されている領域は圧力差緩和溝によって複数の集水区域に区分けされ、
圧力差緩和溝は複数の流路溝を介してのみ透過液取出口に連通し、
圧力差緩和溝の流路断面積が流路溝の流路断面積よりも大きいものである。
In order to achieve the above object, according to the first aspect of the present invention, a filtration membrane is disposed on at least one of the front and back filter plates of the filter plate,
On the surface of the filter plate covered with the filtration membrane, a channel groove pattern is formed in which the permeate that has permeated the filtration membrane flows.
A membrane cartridge constituting a submerged membrane separation device provided with a permeate outlet for collecting and taking out permeate flowing through a flow path groove pattern at the peripheral edge of a filter plate,
The channel groove pattern has a plurality of channel grooves,
A pressure difference relaxation groove is formed in the filter plate across the region where the channel groove pattern is formed,
The area where the channel groove pattern is formed is divided into a plurality of water collection areas by pressure difference relief grooves,
The pressure difference relief groove communicates with the permeate outlet only through a plurality of flow passage grooves.
The cross-sectional area of the pressure difference relief groove is larger than the cross-sectional area of the flow groove.

これによると、膜カートリッジを用いて被処理液を固液分離する際、透過液取出口を通して膜カートリッジの内側に吸引圧を作用させることにより、被処理液が濾過膜で濾過され、濾過膜を透過した透過液が、流路溝と圧力差緩和溝とを流れ、透過液取出口から膜カートリッジの外部に取り出される。   According to this, when the liquid to be processed is separated into solid and liquid using the membrane cartridge, the liquid to be processed is filtered by the filtration membrane by applying a suction pressure to the inside of the membrane cartridge through the permeate outlet. The permeated liquid that has permeated flows through the flow channel groove and the pressure difference relief groove, and is taken out from the permeated liquid outlet to the outside of the membrane cartridge.

この際、圧力差緩和溝よりも透過液取出口から遠い集水区域の流路溝を流れる透過液は、透過液取出口に達するまでの途中で、流路溝から圧力差緩和溝に集められる。圧力差緩和溝は、流路断面積が流路溝の流路断面積よりも大きく、且つ、流路溝パターンが形成されている領域を横断しているため、圧力差緩和溝を流れる透過液の流速が流路溝を流れる透過液の流速よりも低下する。   At this time, the permeate flowing through the channel groove in the water collection area farther from the permeate outlet than the pressure difference relief groove is collected from the channel groove to the pressure difference relief groove in the middle of reaching the permeate outlet. . Since the cross-sectional area of the pressure difference relief groove is larger than the cross-sectional area of the flow groove and crosses the region where the flow groove pattern is formed, the permeate flowing through the pressure difference relief groove Is lower than the flow rate of the permeate flowing through the flow channel.

これにより、圧力差緩和溝よりも透過液取出口に近い集水区域における吸引圧のばらつきが圧力差緩和溝の長さ方向において平均化されて緩和され、これにより、圧力差緩和溝よりも透過液取出口から遠い集水区域における吸引圧が圧力差緩和溝の長さ方向において平均化されるため、膜面全体を使って効果的に透過液を得ることができる。   As a result, the variation in the suction pressure in the water collection area closer to the permeate outlet than the pressure difference relief groove is averaged and relaxed in the length direction of the pressure difference relief groove, and thereby the permeation pressure is more permeable than the pressure difference relief groove. Since the suction pressure in the water collection area far from the liquid outlet is averaged in the length direction of the pressure difference relaxation groove, the permeated liquid can be obtained effectively using the entire membrane surface.

本第2発明は、濾板は縦横の長さが異なる形状であり、
濾板の長手方向を立設させた際に、透過液取出口は濾板の上端部又は上端部近傍に設けられ、
圧力差緩和溝は濾板の一側辺から他側辺にわたり設けられているものである。
In the second aspect of the invention, the filter plate has different shapes in length and width.
When the longitudinal direction of the filter plate is erected, the permeate outlet is provided at or near the upper end of the filter plate,
The pressure difference relaxation groove is provided from one side of the filter plate to the other side.

これによると、縦長形状の濾板において濾過膜を全面的に有効に使用するには、濾板面の幅方向での吸引圧のばらつきを抑えることが有効である。圧力差緩和溝を濾板の一側辺から他側辺にわたり設けたため、圧力差緩和溝よりも透過液取出口に近い集水区域における吸引圧のばらつきは、圧力差緩和溝によって、濾板面の幅方向において平均化される。これにより、圧力差緩和溝よりも透過液取出口から遠い集水区域における吸引圧が濾板面の幅方向において平均化されるため、濾過膜を全面的に使用することができる。   According to this, in order to effectively use the filter membrane entirely in the vertically long filter plate, it is effective to suppress variations in suction pressure in the width direction of the filter plate surface. Since the pressure difference relaxation groove is provided from one side of the filter plate to the other side, the variation in suction pressure in the water collection area closer to the permeate outlet than the pressure difference relaxation groove is caused by the pressure difference relaxation groove. Are averaged in the width direction. Thereby, since the suction pressure in the water collection area farther from the permeate outlet than the pressure difference relief groove is averaged in the width direction of the filter plate surface, the filtration membrane can be used entirely.

本第3発明は、流路溝は、直線状に形成され、且つ、平行に配列されているものである。
これによると、透過液が流路溝内を流れるときの流路抵抗が低減される。
According to the third aspect of the present invention, the channel grooves are linearly formed and arranged in parallel.
According to this, the channel resistance when the permeate flows in the channel groove is reduced.

本第4発明は、流路溝パターンは隣り合った流路溝同士を連通させる複数の連通溝を有しているものである。
これによると、透過液は、透過液取出口に向って流路溝と連通溝とを流れ、透過液取出口から膜カートリッジの外部に取り出される。この際、圧力差緩和溝よりも透過液取出口から遠い集水区域において濾過膜を透過した透過液は、透過液取出口に達するまでの途中で、圧力差緩和溝に集められる。
According to the fourth aspect of the present invention, the flow channel pattern has a plurality of communication grooves that allow adjacent flow channels to communicate with each other.
According to this, the permeate flows through the channel groove and the communication groove toward the permeate outlet, and is taken out of the membrane cartridge from the permeate outlet. At this time, the permeate that has permeated through the filtration membrane in the water collection area farther from the permeate outlet than the pressure difference relief groove is collected in the pressure difference relief groove in the middle of reaching the permeate outlet.

本第5発明は、連通溝と流路溝とがT字状に交差しているものである。
これによると、連通溝と流路溝とが交差する交差部分では、濾過膜は周囲を連通溝と流路溝とで区切られたセルの二つの角と流路溝の片側縁とで支持(すなわち二点と一本の直線部とで支持)される。これにより、例えば連通溝と流路溝とがX字状に交差している場合と比べて、濾過膜を支持する領域が多くなるため、濾過膜の伸びを抑制したり、濾過膜が流路溝や連通溝に食い込んでこれら溝の有効流路断面積を減少させるのを防止することができる。
In the fifth aspect of the present invention, the communication groove and the flow path groove intersect in a T shape.
According to this, at the intersection where the communication groove and the flow groove intersect, the filtration membrane is supported by the two corners of the cell that are separated by the communication groove and the flow groove and one side edge of the flow groove ( That is, it is supported by two points and one straight part). Thereby, compared with the case where the communication groove and the flow path groove intersect with each other in an X shape, for example, the region for supporting the filtration membrane is increased. It is possible to prevent the effective channel cross-sectional area of these grooves from being reduced by biting into the grooves or the communication grooves.

本第6発明は、濾過膜と流路溝パターンと圧力差緩和溝とが濾板の表裏両方の濾板面に設けられ、
圧力差緩和溝に、濾板の表裏両側に連通する連通孔が形成されているものである。
In the sixth aspect of the present invention, the filtration membrane, the flow channel groove pattern, and the pressure difference relaxation groove are provided on both the front and back filter plate surfaces,
A communication hole communicating with both the front and back sides of the filter plate is formed in the pressure difference relaxation groove.

これによると、連通孔を通じて濾板の表側と裏側との吸引圧の差が減少するため、濾板の表側と裏側とで濾過が偏ることを抑制することができる。
例えば、膜カートリッジの表裏いずれか一方の面で膜面閉塞が起こった場合、膜面閉塞が起こった箇所からは透過液が得られないため、膜カートリッジの表裏一方の面において透過液が得られる有効な濾過膜面積は表裏他方の面において透過液が得られる有効な濾過膜面積よりも減少し、これにより、表裏一方の面の濾過膜面における吸引圧の平均値が表裏他方の面の濾過膜面における吸引圧の平均値よりも増大する。
According to this, since the difference in the suction pressure between the front side and the back side of the filter plate is reduced through the communication hole, it is possible to prevent the filtration from being biased between the front side and the back side of the filter plate.
For example, if the membrane surface is clogged on either the front or back side of the membrane cartridge, the permeate cannot be obtained from the location where the membrane surface clog occurs, so the permeate can be obtained on the front or back side of the membrane cartridge. The effective filtration membrane area is smaller than the effective filtration membrane area where the permeate can be obtained on the other side of the front and back surfaces, so that the average value of the suction pressure on the filtration membrane surface on the front and back sides is filtered The average value of the suction pressure on the film surface increases.

これにより、表裏他方の面の濾過膜を透過した透過液の一部は、表裏他方の流路溝を流れ、表裏他方の圧力差緩和溝から連通孔を通って表裏一方の圧力差緩和溝へ流れ込み、表裏一方の濾過膜を透過した透過液と共に、表裏一方の流路溝を流れて透過液取出口から膜カートリッジの外部に取り出される。   As a result, part of the permeate that has permeated through the filtration membrane on the other side of the front and back flows through the flow path groove on the other side of the front and back, and passes from the pressure difference relief groove on the other side to the pressure difference relief groove on the front and back side through the communication hole. The permeate that flows in and permeates through one of the front and back filtration membranes, flows through the flow channel groove on the front and back sides, and is taken out from the permeate outlet to the outside of the membrane cartridge.

このように、膜面閉塞が起こった場合、連通孔がバイパス流路として機能し、これにより、膜カートリッジの膜面閉塞が起こった側の吸引圧を利用して、膜カートリッジの膜面閉塞が起こっていない側の透過液の一部は上記膜面閉塞が起こった側へ流れて透過液取出口から取り出されるため、膜面閉塞によって膜カートリッジの表裏いずれかの有効な濾過膜面積が減少しても、膜カートリッジの表側から得られる透過液量と裏側から得られる透過液量との差を小さくすることができる。   In this way, when the membrane surface is clogged, the communication hole functions as a bypass flow path, so that the membrane surface of the membrane cartridge is clogged by using the suction pressure on the side where the membrane surface of the membrane cartridge is clogged. Since a part of the permeate on the non-occurring side flows to the side where the membrane surface clogging occurs and is taken out from the permeate outlet, the effective membrane area on either the front or back of the membrane cartridge is reduced by the membrane surface clogging. However, the difference between the permeate amount obtained from the front side of the membrane cartridge and the permeate amount obtained from the back side can be reduced.

以上のように、本発明では、透過液を効率良く集水することにより、濾過膜を全面的に有効に使用することが可能である。また、膜面閉塞等の原因によって生じる膜カートリッジの表側から得られる透過液量と裏側から得られる透過液量との差を小さくすることができる。   As described above, in the present invention, it is possible to effectively use the filtration membrane entirely by collecting the permeate efficiently. Further, it is possible to reduce the difference between the amount of permeate obtained from the front side of the membrane cartridge and the amount of permeate obtained from the back side caused by the cause of the membrane surface blockage or the like.

以下、本発明における第1の実施の形態を、図1〜図4を参照して説明する。
図1に示すように、31は、下水等を活性汚泥処理する反応槽(図示省略)の内部に設けられた浸漬型の膜分離装置である。この膜分離装置31は、上下両端部が開放された四角形状の本体ケーシング33と、本体ケーシング33の内部に設けられた複数枚の有機平膜型の膜カートリッジ34と、これら膜カートリッジ34の下方に設けられた散気装置35とを有している。
Hereinafter, a first embodiment of the present invention will be described with reference to FIGS.
As shown in FIG. 1, 31 is a submerged membrane separation device provided inside a reaction tank (not shown) for treating sewage or the like with activated sludge. The membrane separation device 31 includes a rectangular main body casing 33 whose upper and lower ends are open, a plurality of organic flat membrane type membrane cartridges 34 provided inside the main body casing 33, and a lower portion of these membrane cartridges 34. And an air diffuser 35 provided in the.

尚、隣接する各膜カートリッジ34は、対向する膜面間に所定間隔をあけて、平行に配列されている。また、各膜カートリッジ34同士は所定間隔をあけて離間しているが、少なくとも側辺部で接触していてもよい。この場合は、本体ケーシング33の側面を開放してもよく、又は、本体ケーシング33を不要にしてもよい。   The adjacent membrane cartridges 34 are arranged in parallel with a predetermined interval between the opposing membrane surfaces. The membrane cartridges 34 are separated from each other by a predetermined interval, but may be in contact with each other at least on the side portion. In this case, the side surface of the main casing 33 may be opened, or the main casing 33 may be unnecessary.

図2に示すように、膜カートリッジ34は、上下方向Aに長い長方形状(縦横の長さが異なる形状の一例)の濾板36と、濾板36の表裏両方の濾板面に取り付けられた濾過膜37とを有している。濾過膜37の周縁部は濾板36に溶着又は接着等により固着されている。   As shown in FIG. 2, the membrane cartridge 34 was attached to a filter plate 36 having a rectangular shape (an example of a shape having different vertical and horizontal lengths) long in the vertical direction A and both the filter plate surfaces of the filter plate 36. And a filtration membrane 37. The peripheral edge of the filter membrane 37 is fixed to the filter plate 36 by welding or adhesion.

濾板36の表裏両方の濾板面にはそれぞれ、濾過膜37を透過した透過液が流れる流路溝パターン38と、吸引圧を濾板面の幅方向Bにおいて平均化する第1および第2のヘッダー溝43,44とが形成されている。   On both the front and back filter plate surfaces of the filter plate 36, a flow path groove pattern 38 through which the permeate that has passed through the filter membrane 37 flows, and a first and a second that average the suction pressure in the width direction B of the filter plate surface. Header grooves 43 and 44 are formed.

流路溝パターン38とヘッダー溝43,44とは濾過膜37で覆われている。また、濾板36の上端部には、流路溝パターン38内の透過液を集めて膜カートリッジ34の外部に取り出す透過液取出ノズル39(透過液取出口の一例)が設けられている。   The channel groove pattern 38 and the header grooves 43 and 44 are covered with a filtration membrane 37. A permeate take-out nozzle 39 (an example of a permeate take-out port) that collects the permeate in the channel groove pattern 38 and takes it out of the membrane cartridge 34 is provided at the upper end of the filter plate 36.

流路溝パターン38は、鉛直方向に対して傾斜した直線状の複数の流路溝38aと、隣り合う流路溝38a同士を連通させる複数の連通溝38bとによって形成されている。尚、各流路溝38aは所定間隔をあけて互いに平行に配列されており、各流路溝38aの上端部(長さ方向の片端部)が透過液取出ノズル39側に向いている。また、図2,図3に示すように、流路溝パターン38を形成することにより、濾板36の表裏両方の濾板面には、周囲を流路溝38aと連通溝38bとで区切られた複数の長方形状のセル40が形成されている。流路溝38aと連通溝38bとはT字状に交差しており、流路溝38aの流路断面積と連通溝38bの流路断面積とは同一である。   The channel groove pattern 38 is formed by a plurality of linear channel grooves 38a that are inclined with respect to the vertical direction and a plurality of communication grooves 38b that allow adjacent channel grooves 38a to communicate with each other. The channel grooves 38a are arranged in parallel with each other at a predetermined interval, and the upper end portion (one end portion in the length direction) of each channel groove 38a faces the permeate extraction nozzle 39 side. As shown in FIGS. 2 and 3, by forming the channel groove pattern 38, the filter plate surfaces on both the front and back sides of the filter plate 36 are separated by a channel groove 38a and a communication groove 38b. A plurality of rectangular cells 40 are formed. The channel groove 38a and the communication groove 38b intersect in a T shape, and the channel cross-sectional area of the channel groove 38a and the channel cross-sectional area of the communication groove 38b are the same.

第1および第2のヘッダー溝43,44は、濾板36の上下両端辺に平行で且つ濾板36の幅方向Bに長い直線状であり、濾板36の一側辺から他側辺にわたり形成されている。尚、第2のヘッダー溝44(圧力差緩和溝の一例)は、流路溝パターン38が形成されている領域を幅方向Bに横断するように形成されている。流路溝パターン38が形成されている領域は、第2のヘッダー溝44によって、上部の集水区域46と下部の集水区域47とに区分けされている。   The first and second header grooves 43 and 44 are linear in parallel to the upper and lower ends of the filter plate 36 and long in the width direction B of the filter plate 36, and extend from one side of the filter plate 36 to the other side. Is formed. The second header groove 44 (an example of a pressure difference relaxation groove) is formed so as to cross the region in which the flow channel groove pattern 38 is formed in the width direction B. The region where the channel groove pattern 38 is formed is divided into an upper water collection area 46 and a lower water collection area 47 by the second header groove 44.

透過液取出ノズル39は、濾板36の上端部から上向きに突出したノズル本体部39aと、ノズル本体部39aに形成された孔部39bとを有している。尚、孔部39bの一端はノズル本体部39aの先端に開口し、他端は第1のヘッダー溝43に連通している。これにより、透過液取出ノズル39と第2のヘッダー溝44とは第1のヘッダー溝43と上部の集水区域46内の流路溝38aと連通溝38bとを介して連通している。また、下部の集水区域47内の流路溝38aは第2のヘッダー溝44に連通している。   The permeate extraction nozzle 39 has a nozzle main body 39a that protrudes upward from the upper end of the filter plate 36, and a hole 39b formed in the nozzle main body 39a. One end of the hole 39 b opens at the tip of the nozzle body 39 a and the other end communicates with the first header groove 43. Thereby, the permeate extraction nozzle 39 and the second header groove 44 communicate with each other through the first header groove 43 and the flow channel groove 38a and the communication groove 38b in the upper water collecting area 46. The channel groove 38 a in the lower water collection area 47 communicates with the second header groove 44.

第1および第2のヘッダー溝43,44の各々の幅W1は流路溝38aの幅W2よりも大きく形成され、第1および第2のヘッダー溝43,44の各々の深さは流路溝38aの深さと同一に形成されており、これにより、ヘッダー溝43,44の各々の流路断面積は流路溝38aの流路断面積よりも大きい。尚、第1のヘッダー溝43の流路断面積と第2のヘッダー溝44の流路断面積とは同一である。   The width W1 of each of the first and second header grooves 43 and 44 is formed larger than the width W2 of the flow path groove 38a, and the depth of each of the first and second header grooves 43 and 44 is determined by the flow path groove. The flow path cross-sectional area of each of the header grooves 43 and 44 is larger than the flow path cross-sectional area of the flow path groove 38a. The flow path cross-sectional area of the first header groove 43 and the flow path cross-sectional area of the second header groove 44 are the same.

図1に示すように、本体ケーシング33の一側上方には、各膜カートリッジ34の透過液取出ノズル39から吸引された透過液を集める集水管50が設けられている。透過液取出ノズル39と集水管50とは接続管51を介して接続されている。   As shown in FIG. 1, a water collection pipe 50 that collects the permeate sucked from the permeate take-out nozzle 39 of each membrane cartridge 34 is provided above one side of the main body casing 33. The permeate extraction nozzle 39 and the water collecting pipe 50 are connected via a connecting pipe 51.

集水管50には、透過液を槽外へ導出する導出管52が接続されている。また、導出管52には、透過液を吸引するための吸引圧(負圧)を膜カートリッジ34の内側に発生させる吸引ポンプ(図示省略)が設けられている。尚、吸引ポンプを用いずに、反応槽32内の被処理液53の水頭圧を濾過駆動圧として利用し、吸引圧を発生させてもよい。   A drain pipe 52 for leading the permeate to the outside of the tank is connected to the water collecting pipe 50. Further, the outlet pipe 52 is provided with a suction pump (not shown) that generates a suction pressure (negative pressure) for sucking the permeated liquid inside the membrane cartridge 34. Instead of using the suction pump, the water head pressure of the liquid 53 to be treated in the reaction tank 32 may be used as the filtration driving pressure to generate the suction pressure.

以下、上記構成における作用を説明する。
濾過運転中は、散気装置35から散気を行ないながら、吸引ポンプを駆動して、透過液取出ノズル39を吸引することにより、吸引圧が透過液取出ノズル39を通してヘッダー溝43,44と流路溝38aと連通溝38bとに作用し、膜カートリッジ34の内側が減圧され、被処理液53中の汚泥等の固形分が濾過膜37で捕捉され、散気によって濾過膜37の表面から除去される。この際、濾過膜37を透過した透過液は、第1および第2のヘッダー溝43,44と流路溝38aと連通溝38bとを流れ、透過液取出ノズル39から膜カートリッジ34の外部に取り出され、接続管51を経て集水管50に集められ、集水管50から導出管52を通って槽外へ導出される。
Hereinafter, the operation of the above configuration will be described.
During the filtration operation, the suction pump is driven while sucking air from the air diffuser 35 to suck the permeate take-out nozzle 39, so that the suction pressure flows through the permeate take-out nozzle 39 and the header grooves 43 and 44. It acts on the channel groove 38a and the communication groove 38b, the inside of the membrane cartridge 34 is depressurized, and solids such as sludge in the liquid 53 to be treated are captured by the filtration membrane 37 and removed from the surface of the filtration membrane 37 by aeration. Is done. At this time, the permeated liquid that has passed through the filtration membrane 37 flows through the first and second header grooves 43 and 44, the flow path groove 38 a, and the communication groove 38 b, and is taken out from the permeated liquid extraction nozzle 39 to the outside of the membrane cartridge 34. Then, the water is collected in the water collecting pipe 50 through the connecting pipe 51 and led out of the tank through the water collecting pipe 50 through the outlet pipe 52.

この際、下部の集水区域47(すなわち第2のヘッダー溝44よりも透過液取出ノズル39から遠い集水区域)の流路溝38aと連通溝38bとを流れる透過液は、透過液取出ノズル39に達するまでの途中で、流路溝38aから第2のヘッダー溝44に集められる。第2のヘッダー溝44は、流路断面積が流路溝38aの流路断面積よりも大きく、且つ、流路溝パターン38が形成されている領域を幅方向Bに横断しているため、第2のヘッダー溝44を流れる透過液の流速が流路溝38aを流れる透過液の流速よりも低下する。   At this time, the permeate flowing through the flow channel groove 38a and the communication groove 38b in the lower water collection area 47 (that is, the water collection area farther from the permeate extraction nozzle 39 than the second header groove 44) is passed through the permeate extraction nozzle. In the middle of reaching 39, the fluid is collected in the second header groove 44 from the flow path groove 38a. Since the second header groove 44 has a channel cross-sectional area larger than the channel cross-sectional area of the channel groove 38a and crosses the region where the channel groove pattern 38 is formed in the width direction B, The flow rate of the permeate flowing through the second header groove 44 is lower than the flow rate of the permeate flowing through the flow channel groove 38a.

これにより、上部の集水区域46(すなわち第2のヘッダー溝44よりも透過液取出ノズル39に近い集水区域)における吸引圧のばらつきが第2のヘッダー溝44の長さ方向(すなわち濾板面の幅方向B)において平均化されて緩和され、これにより、下部の集水区域47における吸引圧が第2のヘッダー溝44の長さ方向(すなわち濾板面の幅方向B)において平均化されるため、膜面全体を使って効果的に透過液を得ることができる。   As a result, the variation in the suction pressure in the upper water collecting area 46 (that is, the water collecting area closer to the permeate take-out nozzle 39 than the second header groove 44) is changed in the length direction of the second header groove 44 (that is, the filter plate). In the width direction B) of the surface, it is averaged and relaxed, so that the suction pressure in the lower water collection area 47 is averaged in the length direction of the second header groove 44 (ie in the width direction B of the filter plate surface). Therefore, the permeated liquid can be effectively obtained using the entire membrane surface.

図4は濾板36の濾板面の吸引圧の圧力分布を示しており、上記のように濾板面の幅方向Bにおいて吸引圧が平均化されることにより、下部の集水区域47では、等圧線54が、従来の膜カートリッジのものよりも、平坦化する。これにより、下部の集水区域47では、濾板面の幅方向Bにおける吸引圧の差(ばらつき)が縮小され、濾板36の下部において、従来では有効に濾過膜から透過液を得ることが困難であった濾板36の両側下部55からも透過液を効率良く集水することができ、濾過膜37を全面的に有効に使用することができる。   FIG. 4 shows the pressure distribution of the suction pressure on the filter plate surface of the filter plate 36. By averaging the suction pressure in the width direction B of the filter plate surface as described above, The isobaric line 54 is flattened more than that of the conventional membrane cartridge. Thereby, in the lower water collecting section 47, the difference (variation) in the suction pressure in the width direction B of the filter plate surface is reduced, and conventionally, the permeate can be effectively obtained from the filter membrane at the lower portion of the filter plate 36. The permeate can be efficiently collected also from the lower portions 55 on both sides of the filter plate 36, which has been difficult, and the filtration membrane 37 can be used effectively over the entire surface.

また、第2のヘッダー溝44に集められた透過液と上部の集水区域46において濾過膜37を透過した透過液とは、上部の集水区域46の流路溝38aと連通溝38bとを流れて第1のヘッダー溝43に集められ、第1のヘッダー溝43から透過液取出ノズル39の孔部39bに流れる。   In addition, the permeate collected in the second header groove 44 and the permeate permeated through the filtration membrane 37 in the upper water collection area 46 are connected to the flow channel 38 a and the communication groove 38 b in the upper water collection area 46. It flows and is collected in the first header groove 43, and flows from the first header groove 43 to the hole 39 b of the permeate extraction nozzle 39.

また、上部および下部の集水区域46,47の各流路溝38aは直線状に形成されているため、透過液がスムーズに流路溝38aを流れ、流路抵抗が低減される。
また、図3に示すように、流路溝38aと連通溝38bとがT字状に交差する交差部分58では、濾過膜37は隣り合う二つのセル40の角59a,59bと流路溝38aの片側縁59cとで支持(すなわち二点と一本の直線部とで支持)される。このため、膜カートリッジ34の内側に吸引圧を与えた際、例えば流路溝と連通溝とがX字状に交差して複数のセルの角のみで濾過膜を支持(複数点支持)するものと比べて、交差部分58において濾過膜37を十分に支持することができる。これにより、交差部分58において濾過膜37が流路溝38a内に食い込んで流路溝38aの有効流路断面積が縮小するのを防止することができる。
Moreover, since each flow path groove 38a of the upper and lower water collection areas 46 and 47 is formed in a straight line, the permeate smoothly flows through the flow path groove 38a, and the flow path resistance is reduced.
Further, as shown in FIG. 3, at the intersection 58 where the channel groove 38a and the communication groove 38b intersect in a T shape, the filtration membrane 37 has corners 59a, 59b of two adjacent cells 40 and the channel groove 38a. Is supported by one side edge 59c (that is, supported by two points and one straight portion). For this reason, when a suction pressure is applied to the inside of the membrane cartridge 34, for example, the flow channel groove and the communication groove intersect with each other in an X shape to support the filtration membrane only at the corners of a plurality of cells (multiple points support) As compared with the above, the filtration membrane 37 can be sufficiently supported at the intersecting portion 58. Thereby, it is possible to prevent the filtration membrane 37 from biting into the channel groove 38a at the intersection 58 and reducing the effective channel cross-sectional area of the channel groove 38a.

次に、本発明における第2の実施の形態を、図5〜図7を参照して説明する。
第2のヘッダー溝44には、濾板36の表裏両側に連通する複数個(図5では二個)の連通孔63が形成されている。図6に示すように、各連通孔63の一端は濾板36の表裏いずれか一方の第2のヘッダー溝44内に開口し、他端は表裏他方の第2のヘッダー溝44内に開口している。
Next, a second embodiment of the present invention will be described with reference to FIGS.
In the second header groove 44, a plurality of (two in FIG. 5) communication holes 63 communicating with both the front and back sides of the filter plate 36 are formed. As shown in FIG. 6, one end of each communication hole 63 opens into the second header groove 44 on either the front or back side of the filter plate 36, and the other end opens into the second header groove 44 on the other side of the front or back side. ing.

以下、上記構成における作用を説明する。
連通孔63を通じて濾板36の表側と裏側との吸引圧の差が減少するため、濾板36の表側と裏側とで濾過が偏ることを抑制することができる。
Hereinafter, the operation of the above configuration will be described.
Since the difference in the suction pressure between the front side and the back side of the filter plate 36 is reduced through the communication hole 63, it is possible to prevent the filtration from being biased between the front side and the back side of the filter plate 36.

また、例えば、図7に示すように、膜カートリッジ34の表裏いずれか一方S1の濾過膜37に付着物64が付着して、膜カートリッジ34の表裏一方S1の上部の集水区域46内で膜面閉塞が起こった場合、膜面閉塞が起こった箇所からは透過液が得られないため、膜カートリッジ34の表裏一方S1の面において透過液が得られる有効な濾過膜面積は表裏他方S2の面において透過液が得られる有効な濾過膜面積よりも減少し、これにより、表裏一方S1の面の濾過膜37の膜面における吸引圧の平均値が表裏他方S2の面の濾過膜37の膜面における吸引圧の平均値よりも増大する。   Further, for example, as shown in FIG. 7, the deposit 64 adheres to the filtration membrane 37 of either the front or back side of the membrane cartridge 34, and the membrane within the water collecting area 46 on the upper side of the front or back side S <b> 1 of the membrane cartridge 34. When the surface blockage occurs, the permeate cannot be obtained from the location where the membrane surface blockage occurs. Therefore, the effective filtration membrane area where the permeate can be obtained on the surface of the front and back side S1 of the membrane cartridge 34 is the surface of the front and back side S2. Therefore, the average suction pressure on the membrane surface of the filtration membrane 37 on the one side of the front and back S1 is the membrane surface of the filtration membrane 37 on the other side of the front and back S2. It increases from the average value of the suction pressure.

これにより、表裏他方S2の濾過膜37を透過した透過液の一部は、表裏他方S2の流路溝38aを流れ、表裏他方S2の第2のヘッダー溝44から連通孔63を通って表裏一方S1の第2のヘッダー溝44へ流れ込み、表裏一方S1の濾過膜37を透過した透過液と共に、表裏一方S1の流路溝38aを流れて透過液取出ノズル39から膜カートリッジ34の外部に取り出される。   As a result, a part of the permeated liquid that has passed through the filtration membrane 37 of the other side S2 flows through the flow channel groove 38a of the other side S2 and passes through the communication hole 63 from the second header groove 44 of the other side S2. It flows into the second header groove 44 of S1 and flows through the flow channel groove 38a of the front and back side S1 together with the permeate that has passed through the filtration membrane 37 of the front and back side S1, and is taken out from the permeate take-out nozzle 39 to the outside of the membrane cartridge 34. .

このように、膜面閉塞が起こった場合、連通孔63がバイパス流路として機能し、これにより、膜カートリッジ34の膜面閉塞が起こった側(S1)の吸引圧を利用して、膜面閉塞が起こっていない側(S2)の透過液の一部は上記膜面閉塞が起こった側(S1)へ流れて透過液取出ノズル39から取り出されるため、膜面閉塞によって膜カートリッジ34の表裏いずれかの有効な濾過膜面積が減少しても、膜カートリッジ34の表側から得られる透過液量と裏側から得られる透過液量との差を小さくすることができる。   As described above, when the membrane surface is blocked, the communication hole 63 functions as a bypass flow path, and thereby, using the suction pressure on the side (S1) where the membrane surface of the membrane cartridge 34 is blocked, the membrane surface is used. A part of the permeate on the side (S2) where no blockage occurs flows to the side (S1) where the membrane surface is blocked and is taken out from the permeate discharge nozzle 39. Even if the effective filtration membrane area decreases, the difference between the permeate amount obtained from the front side of the membrane cartridge 34 and the permeate amount obtained from the back side can be reduced.

尚、上記第2の実施の形態では、図5に示すように、連通孔63を二個形成したが、二個以外の複数個又は一個のみ形成してもよい。
次に、本発明における第3〜第6の実施の形態を、図8を参照して説明する。
In the second embodiment, as shown in FIG. 5, two communication holes 63 are formed. However, a plurality other than the two holes or only one may be formed.
Next, third to sixth embodiments of the present invention will be described with reference to FIG.

上記第1の実施の形態では、図2に示すように、流路溝パターン38が形成されている領域を幅方向Bに横断する第2のヘッダー溝44は、濾板36の上下両端辺に対して平行に形成されているが、第3の実施の形態として、図8(a)に示すように、流路溝パターン38が形成されている領域を幅方向Bに横断する第2のヘッダー溝44は、濾板36の上下両端辺に対して傾斜して形成されてもよい。   In the first embodiment, as shown in FIG. 2, the second header grooves 44 that cross the region in which the flow path groove pattern 38 is formed in the width direction B are formed on the upper and lower ends of the filter plate 36. As shown in FIG. 8 (a), the second header that crosses the region in which the channel groove pattern 38 is formed in the width direction B is formed in parallel to the second embodiment. The groove 44 may be formed to be inclined with respect to the upper and lower ends of the filter plate 36.

上記第1の実施の形態では、図2に示すように、上部の集水区域46の流路溝パターン38と下部の集水区域47の流路溝パターン38とを同一のパターンにしたが、第4の実施の形態として、図8(b)に示すように、上部の集水区域46の流路溝パターン38と下部の集水区域47の流路溝パターン66とを異なったパターンにしてもよい。流路溝パターン66は複数の流路溝66aと連通溝66bとによって形成されている。   In the first embodiment, as shown in FIG. 2, the flow groove pattern 38 of the upper water collection area 46 and the flow groove pattern 38 of the lower water collection area 47 are made the same pattern. As a fourth embodiment, as shown in FIG. 8B, the channel groove pattern 38 in the upper water collecting area 46 and the channel groove pattern 66 in the lower water collecting area 47 are made different patterns. Also good. The channel groove pattern 66 is formed by a plurality of channel grooves 66a and communication grooves 66b.

上部の集水区域46の流路溝パターン38の各流路溝38aは、透過液取出ノズル39側に向いて、鉛直方向に対して一側方へ傾斜している。また、下部の集水区域47の流路溝パターン66の各流路溝66aは、鉛直方向に対して、上記流路溝38aと反対方向(他側方)へ向いて傾斜している。   Each flow channel groove 38a of the flow channel pattern 38 in the upper water collection area 46 is inclined toward one side with respect to the vertical direction toward the permeate extraction nozzle 39 side. In addition, each flow channel 66a of the flow channel pattern 66 in the lower water collection area 47 is inclined in the direction opposite to the flow channel 38a (on the other side) with respect to the vertical direction.

上記第1の実施の形態では、図2に示すように、濾板36の濾板面に上下二本のヘッダー溝43,44と上下二つの集水区域46,47とを設けたが、第5の実施の形態として、図8(c)に示すように、濾板36の濾板面に上下三本のヘッダー溝43,44,68と上下三つの集水区域46,47,69とを設けてもよい。また、第6の実施の形態として、図8(d)に示すように、濾板36の濾板面に上下四本のヘッダー溝43,44,68,70と上下四つの集水区域46,47,69,71とを設けてもよい。これによると、各ヘッダー溝43,44,68,70により、濾板面の幅方向Bにおいて吸引圧が平均化される。尚、ヘッダー溝を五本以上の複数本形成するとともに、集水区域を五つ以上の複数形成してもよい。   In the first embodiment, as shown in FIG. 2, the upper and lower header grooves 43 and 44 and the upper and lower water collecting areas 46 and 47 are provided on the filter plate surface of the filter plate 36. As an embodiment of FIG. 5, as shown in FIG. 8C, upper and lower three header grooves 43, 44, 68 and upper and lower water collecting areas 46, 47, 69 are formed on the filter plate surface of the filter plate 36. It may be provided. Further, as a sixth embodiment, as shown in FIG. 8 (d), the upper and lower four header grooves 43, 44, 68, 70 and the upper and lower four water collecting areas 46, 47, 69, 71 may be provided. According to this, the suction pressure is averaged in the width direction B of the filter plate surface by the header grooves 43, 44, 68 and 70. In addition, five or more header grooves may be formed, and five or more water collecting areas may be formed.

尚、上記第3〜第6の実施の形態で示した膜カートリッジ34のヘッダー溝に、上記第2の実施の形態と同様の連通孔63を形成してもよい。
上記各実施の形態では、濾板36の表裏両方の濾板面に、濾過膜37と流路溝パターン38,66とヘッダー溝43,44,68,70とを設けたが、表裏いずれか一方の濾板面のみに設けてもよい。また、ヘッダー溝43,44,68,70を濾板36の表裏両方の濾板面に貫通させてもよい。尚、ヘッダー溝43,44,68,70の深さは、ヘッダーとして機能するのに十分な溝の容積を備える範囲において特に限定されるものではない。
Note that a communication hole 63 similar to that of the second embodiment may be formed in the header groove of the membrane cartridge 34 shown in the third to sixth embodiments.
In each of the above embodiments, the filter membrane 37, the flow channel patterns 38 and 66, and the header grooves 43, 44, 68, and 70 are provided on both the front and back filter plates of the filter plate 36. It may be provided only on the filter plate surface. Further, the header grooves 43, 44, 68, 70 may be penetrated through both the front and back filter plate surfaces of the filter plate 36. The depth of the header grooves 43, 44, 68, 70 is not particularly limited as long as the groove has a sufficient volume to function as a header.

上記各実施の形態において、濾板36と濾過膜37との間に、濾過膜37の濾板36への密着を防止するためのスペーサー(不織布やスポンジ等)を配置してもよい。
上記各実施の形態では、透過液取出ノズル39を、濾板36の上端部に設けたが、濾板36の上端部近傍、例えば濾板36の側辺部の上部等に設けてもよい。
In each of the above embodiments, a spacer (nonwoven fabric, sponge, or the like) for preventing the filtration membrane 37 from sticking to the filter plate 36 may be disposed between the filter plate 36 and the filtration membrane 37.
In each of the above embodiments, the permeate extraction nozzle 39 is provided at the upper end portion of the filter plate 36, but may be provided near the upper end portion of the filter plate 36, for example, at the upper portion of the side portion of the filter plate 36.

上記各実施の形態では、膜カートリッジ34は、長辺を上下方向Aにして膜分離装置31内に配置されているが、長辺を幅方向Bにして膜分離装置31内に配置されるものであってもよい。   In each of the above embodiments, the membrane cartridge 34 is arranged in the membrane separation apparatus 31 with the long side in the vertical direction A, but is arranged in the membrane separation apparatus 31 with the long side in the width direction B. It may be.

本発明の第1の実施の形態における膜カートリッジを備えた膜分離装置の一部切欠き斜視図である。1 is a partially cutaway perspective view of a membrane separation apparatus including a membrane cartridge according to a first embodiment of the present invention. 同、膜カートリッジの一部切欠き正面図である。FIG. 3 is a partially cutaway front view of the membrane cartridge. 同、膜カートリッジの流路溝パターンの流路溝と連通溝との交差部分の拡大図である。FIG. 4 is an enlarged view of a crossing portion of the flow channel groove and the communication groove of the flow channel pattern of the membrane cartridge. 同、膜カートリッジの濾板の正面図である。It is a front view of the filter plate of a membrane cartridge. 本発明の第2の実施の形態における膜カートリッジの一部切欠き正面図である。It is a partially notched front view of the membrane cartridge in the 2nd Embodiment of this invention. 同、二枚の膜カートリッジの側面から見た縦断面図である。It is the longitudinal cross-sectional view seen from the side of two membrane cartridges. 同、二枚の膜カートリッジの側面から見た縦断面図であり、膜面閉塞が発生した状態を示す。FIG. 6 is a longitudinal sectional view of the two membrane cartridges as viewed from the side, showing a state where the membrane surface is blocked. 本発明の第3〜第6の実施の形態における膜カートリッジの濾板の正面図である。It is a front view of the filter plate of the membrane cartridge in the 3rd-6th embodiment of the present invention. 従来の膜カートリッジの一部切欠き正面図である。It is a partially cutaway front view of a conventional membrane cartridge. 同、二枚の膜カートリッジの側面から見た縦断面図である。It is the longitudinal cross-sectional view seen from the side of two membrane cartridges. 同、膜カートリッジの濾板の正面図である。It is a front view of the filter plate of a membrane cartridge. 同、二枚の膜カートリッジの側面から見た縦断面図であり、膜面閉塞が発生した状態を示す。FIG. 6 is a longitudinal sectional view of the two membrane cartridges as viewed from the side, showing a state where the membrane surface is blocked.

符号の説明Explanation of symbols

34 膜カートリッジ
36 濾板
37 濾過膜
38,66 流路溝パターン
38a,66a 流路溝
38b,66b 連通溝
39 透過液取出ノズル(透過液取出口)
44,68,70 ヘッダー溝(圧力差緩和溝)
46,47,69,71 集水区域
63 連通孔
A 上下方向
B 幅方向
34 Membrane cartridge 36 Filter plate 37 Filtration membranes 38, 66 Channel groove patterns 38a, 66a Channel grooves 38b, 66b Communication groove 39 Permeate outlet nozzle (permeate outlet)
44, 68, 70 Header groove (pressure difference relief groove)
46, 47, 69, 71 Catchment area 63 Communication hole A Vertical direction B Width direction

Claims (6)

濾板の少なくとも表裏いずれか一方の濾板面に濾過膜を配置し、
濾過膜で覆われた濾板面に、濾過膜を透過した透過液が流れる流路溝パターンを形成し、
濾板の周縁部に、流路溝パターンを流れる透過液を集めて取り出す透過液取出口を設けた浸漬型膜分離装置を構成する膜カートリッジであって、
流路溝パターンは複数の流路溝を有し、
濾板に、流路溝パターンが形成されている領域を横断する圧力差緩和溝が形成され、
流路溝パターンが形成されている領域は圧力差緩和溝によって複数の集水区域に区分けされ、
圧力差緩和溝は複数の流路溝を介してのみ透過液取出口に連通し、
圧力差緩和溝の流路断面積が流路溝の流路断面積よりも大きいことを特徴とする膜カートリッジ。
A filter membrane is disposed on at least one of the filter plate surfaces of the filter plate,
On the surface of the filter plate covered with the filtration membrane, a channel groove pattern is formed in which the permeate that has permeated the filtration membrane flows.
A membrane cartridge constituting a submerged membrane separation device provided with a permeate outlet for collecting and taking out permeate flowing through a flow path groove pattern at the peripheral edge of a filter plate,
The channel groove pattern has a plurality of channel grooves,
A pressure difference relaxation groove is formed in the filter plate across the region where the channel groove pattern is formed,
The area where the channel groove pattern is formed is divided into a plurality of water collection areas by pressure difference relief grooves,
The pressure difference relief groove communicates with the permeate outlet only through a plurality of flow passage grooves.
A membrane cartridge, characterized in that a cross-sectional area of the pressure difference relief groove is larger than a cross-sectional area of the flow groove.
濾板は縦横の長さが異なる形状であり、
濾板の長手方向を立設させた際に、透過液取出口は濾板の上端部又は上端部近傍に設けられ、
圧力差緩和溝は濾板の一側辺から他側辺にわたり設けられていることを特徴とする請求項1記載の膜カートリッジ。
The filter plate has different shapes in length and width,
When the longitudinal direction of the filter plate is erected, the permeate outlet is provided at or near the upper end of the filter plate,
2. The membrane cartridge according to claim 1, wherein the pressure difference relaxation groove is provided from one side of the filter plate to the other side.
流路溝は、直線状に形成され、且つ、平行に配列されていることを特徴とする請求項1又は請求項2記載の膜カートリッジ。 3. The membrane cartridge according to claim 1, wherein the channel grooves are formed in a straight line and are arranged in parallel. 流路溝パターンは隣り合った流路溝同士を連通させる複数の連通溝を有していることを特徴とする請求項1から請求項3のいずれか1項に記載の膜カートリッジ。 The membrane cartridge according to any one of claims 1 to 3, wherein the channel groove pattern has a plurality of communication grooves that allow adjacent channel grooves to communicate with each other. 連通溝と流路溝とがT字状に交差していることを特徴とする請求項4記載の膜カートリッジ。 5. The membrane cartridge according to claim 4, wherein the communication groove and the flow path groove intersect in a T shape. 濾過膜と流路溝パターンと圧力差緩和溝とが濾板の表裏両方の濾板面に設けられ、
圧力差緩和溝に、濾板の表裏両側に連通する連通孔が形成されていることを特徴とする請求項1から請求項5のいずれか1項に記載の膜カートリッジ。
A filtration membrane, a channel groove pattern, and a pressure difference relief groove are provided on both the front and back filter plate surfaces,
The membrane cartridge according to any one of claims 1 to 5, wherein a communication hole communicating with both sides of the filter plate is formed in the pressure difference relaxation groove.
JP2008247491A 2008-09-26 2008-09-26 Membrane cartridge Active JP5361312B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008247491A JP5361312B2 (en) 2008-09-26 2008-09-26 Membrane cartridge

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2008247491A JP5361312B2 (en) 2008-09-26 2008-09-26 Membrane cartridge
US13/063,043 US8377303B2 (en) 2008-09-26 2009-09-17 Membrane cartridge
PCT/JP2009/004665 WO2010035436A1 (en) 2008-09-26 2009-09-17 Membrane cartridge
ES09815858.7T ES2629465T3 (en) 2008-09-26 2009-09-17 Membrane cartridge
CN200980137327.0A CN102164654B (en) 2008-09-26 2009-09-17 Membrane cartridge
EP09815858.7A EP2332636B1 (en) 2008-09-26 2009-09-17 Membrane cartridge

Publications (2)

Publication Number Publication Date
JP2010075850A JP2010075850A (en) 2010-04-08
JP5361312B2 true JP5361312B2 (en) 2013-12-04

Family

ID=42059449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008247491A Active JP5361312B2 (en) 2008-09-26 2008-09-26 Membrane cartridge

Country Status (6)

Country Link
US (1) US8377303B2 (en)
EP (1) EP2332636B1 (en)
JP (1) JP5361312B2 (en)
CN (1) CN102164654B (en)
ES (1) ES2629465T3 (en)
WO (1) WO2010035436A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4920712B2 (en) * 2009-03-31 2012-04-18 株式会社日立プラントテクノロジー Membrane element in submerged membrane separator
TWI428168B (en) * 2011-09-27 2014-03-01 Wang Yung Chuan Lee Anti - fouling device for membrane filter
CN103785296A (en) * 2012-11-01 2014-05-14 河源海川科技有限公司 Biomembrane unit and membrane bioreactor
WO2014191299A1 (en) * 2013-05-30 2014-12-04 Napt - New Advanced Process Technology Ag Ceramic element for a fluid separating device
SG11201810860WA (en) * 2016-06-08 2019-01-30 Vito Nv Vlaamse Instelling Voor Tech Onderzoek Nv Membrane support made with preformed sheets

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3005408A1 (en) 1979-02-15 1980-08-21 Daicel Chem SEMIPERMEABLES MEMBRANE ELEMENT
JPS62204802A (en) 1986-03-04 1987-09-09 Sanki Eng Co Ltd Membrane separator
JPH0639250A (en) * 1992-07-23 1994-02-15 Kubota Corp Filter element
JP2897799B2 (en) 1992-12-16 1999-05-31 株式会社クボタ Filtration membrane module
US5651888A (en) * 1992-12-16 1997-07-29 Kubota Corporation Filtration membrane cartridge
JP3255821B2 (en) 1995-04-14 2002-02-12 株式会社クボタ Immersion type membrane cartridge
JPH09299969A (en) * 1996-05-20 1997-11-25 Kubota Corp Plate type membrane separation body for water treatment
WO2002045827A1 (en) 2000-12-04 2002-06-13 Kubota Corporation Multistage immersion type membrane separator and high-concentration wastewater treatment facility using same
JP3815996B2 (en) * 2001-10-12 2006-08-30 株式会社クボタ Flat membrane cartridge
JP4199976B2 (en) 2002-09-30 2008-12-24 株式会社神戸製鋼所 Immersion membrane separator
JP2007268388A (en) * 2006-03-31 2007-10-18 Kubota Corp Membrane cartridge and immersion type membrane separator
JP2008073680A (en) * 2006-09-22 2008-04-03 Membrane-Tec Co Ltd Cartridge for filtration

Also Published As

Publication number Publication date
US20110163025A1 (en) 2011-07-07
WO2010035436A1 (en) 2010-04-01
CN102164654B (en) 2014-10-08
JP2010075850A (en) 2010-04-08
EP2332636B1 (en) 2017-05-03
EP2332636A4 (en) 2012-05-02
US8377303B2 (en) 2013-02-19
ES2629465T3 (en) 2017-08-09
EP2332636A1 (en) 2011-06-15
CN102164654A (en) 2011-08-24

Similar Documents

Publication Publication Date Title
JP5361312B2 (en) Membrane cartridge
US20110005994A1 (en) Membrane element and membrane module
JP5361310B2 (en) Membrane cartridge
US8465644B2 (en) Membrane element in immersion type membrane separation apparatus
JP5473193B2 (en) Membrane cartridge
JP4192248B2 (en) Separation membrane module
CN112823051A (en) Closely spaced flat submerged membranes and fine bubble aeration
JP5105787B2 (en) Membrane cartridge
JP5442073B2 (en) Membrane cartridge
JP5747046B2 (en) Filtration device
JP4107819B2 (en) Multi-stage submerged membrane separator
JP3827288B2 (en) Solid-liquid separator and cleaning method thereof
JP2003175319A (en) Membrane element, membrane module, water making apparatus and water making method
JPH07275668A (en) Membrane separation device
WO2010073574A1 (en) Membrane unit and membrane module
US20080257838A1 (en) Cartridge based filter assembly for use in removing sub micronic particles from fluids
JPH09108549A (en) Diffuser
WO2009118786A1 (en) Membrane module and membrane cassette
JP2001321766A (en) Method of manufacturing filtration membrane element and permeate
JPWO2009128119A1 (en) Membrane module cleaning method and apparatus
JP2000246065A (en) Hollow fiber membrane unit and membrane separation apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130416

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130903

R150 Certificate of patent or registration of utility model

Ref document number: 5361312

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150