JP5343041B2 - Process for producing olefin polymer - Google Patents

Process for producing olefin polymer Download PDF

Info

Publication number
JP5343041B2
JP5343041B2 JP2010139655A JP2010139655A JP5343041B2 JP 5343041 B2 JP5343041 B2 JP 5343041B2 JP 2010139655 A JP2010139655 A JP 2010139655A JP 2010139655 A JP2010139655 A JP 2010139655A JP 5343041 B2 JP5343041 B2 JP 5343041B2
Authority
JP
Japan
Prior art keywords
catalyst
olefin
carbon atoms
acid catalyst
olefin polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010139655A
Other languages
Japanese (ja)
Other versions
JP2012001670A (en
Inventor
浩一 佐藤
義広 合志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
JX Nippon Oil and Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Oil and Energy Corp filed Critical JX Nippon Oil and Energy Corp
Priority to JP2010139655A priority Critical patent/JP5343041B2/en
Publication of JP2012001670A publication Critical patent/JP2012001670A/en
Application granted granted Critical
Publication of JP5343041B2 publication Critical patent/JP5343041B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、ジエン系炭化水素を抽出蒸留法で製造する際のラフィネート(抽出残油)から得られる、炭素数4 のオレフィンを主成分として含む液状の炭化水素原料を、酸触媒存在下に、水分濃度を調整の上重合するオレフィン重合体の製造方法に関するものである。   In the present invention, a liquid hydrocarbon raw material containing a olefin having 4 carbon atoms as a main component, obtained from raffinate (extraction residual oil) when producing diene hydrocarbons by extractive distillation, in the presence of an acid catalyst, The present invention relates to a method for producing an olefin polymer which is polymerized after adjusting the water concentration.

石油類の分解生成物として得られる、ジエン、オレフィンおよび飽和脂肪族炭化水素を含む炭素数4の炭化水素を主成分とする炭化水素混合物から、ジエン系炭化水素をエキストラクト(抽出物)とする抽出蒸留法によってジエン類を製造する際に得られるラフィネート中には主として炭素数4 のオレフィンが含まれる。この炭素数4のオレフィンを含む炭化水素を液状でルイス酸等の酸触媒の存在下に重合反応に供してオレフィン重合体を得るときに、特に高活性に注目してA l C l3 、B F3 、T i C l4 等のハロゲン含有酸触媒が好んで使用される。これらA l C l3 、B F3 、T i C l4 等のハロゲン含有酸触媒は、オレフィン重合体中にそのまま残存した場合に、長期的にはフィルム・シートその他製品の透明性を低下させる、あるいは、ハロゲン系不純物が残存することにより商品価値を低下させる、などの弊害が生ずる。そこで、通常、該触媒を失活処理および除去処理を行うが、これらの処理工程は、通常はアルカリ性水溶液等による失活、抽出、分離、精製、ろ過等の工程を含む煩雑な工程を含み、特に、当該触媒がオレフィンの重合工程において反応液に溶解性であると、アルカリ性水溶液等による失活、抽出を高効率で行なうことが困難となる等の問題がある。   Diene hydrocarbon is used as an extract from the hydrocarbon mixture mainly composed of C4 hydrocarbons including diene, olefin, and saturated aliphatic hydrocarbon obtained as a cracked product of petroleum. The raffinate obtained when producing dienes by the extractive distillation method mainly contains olefins having 4 carbon atoms. When a hydrocarbon containing this olefin having 4 carbon atoms is subjected to a polymerization reaction in the presence of a liquid acid catalyst such as a Lewis acid to obtain an olefin polymer, A 1 C 13, B F 3 And halogen-containing acid catalysts such as TiCl4 are preferably used. When these halogen-containing acid catalysts such as AlCl3, BF3, TiCl4 remain in the olefin polymer as they are, they will deteriorate the transparency of films, sheets and other products in the long term, or Deterioration of the commercial value is caused by the remaining halogen-based impurities. Therefore, normally, the catalyst is deactivated and removed, and these treatment steps usually include complicated steps including steps such as deactivation with an alkaline aqueous solution, extraction, separation, purification, filtration, and the like. In particular, if the catalyst is soluble in the reaction solution in the olefin polymerization step, there are problems such as deactivation by an alkaline aqueous solution or the like and difficulty in performing extraction with high efficiency.

ところで、酸触媒の効率を高めて使用量を低下させることは、触媒コストの低減のみならず、触媒の失活工程および除去工程の負担が軽減されることになるので、上記した問題点の根本的解決法のひとつとなる。このためには、反応系に溶解する触媒を使用し、反応を均一系で進行させることおよび/ または触媒を高活性化することが有効である。
しかしながら、A l C l 3、B F 3等のハロゲン含有酸触媒はそれらに配位子を組み合わせて活性を高めることができるが、該ハロゲン含有酸触媒はそれ自体は反応液を構成する炭化水素に溶解せず、また配位子を組み合わせても反応液を構成する炭化水素に不溶性である。一方、溶解性の触媒には上記のようなアルカリ性水溶液等による失活、抽出を高効率で行なうことが困難という後処理上の問題がある。
By the way, increasing the efficiency of the acid catalyst and reducing the amount of use not only reduces the catalyst cost, but also reduces the burden of the catalyst deactivation process and the removal process. One of the solutions. For this purpose, it is effective to use a catalyst that dissolves in the reaction system, to allow the reaction to proceed in a homogeneous system, and / or to make the catalyst highly active.
However, halogen-containing acid catalysts such as AlCl3 and BF3 can be combined with a ligand to increase the activity, but the halogen-containing acid catalyst itself is a hydrocarbon constituting the reaction solution. It does not dissolve and is insoluble in the hydrocarbon constituting the reaction solution even when a ligand is combined. On the other hand, the soluble catalyst has a problem in post-treatment that it is difficult to deactivate and extract with an alkaline aqueous solution as described above with high efficiency.

また、酸触媒による炭素数4のオレフィンの重合反応において、プロトンドナー(プロトン供与体)の添加は必須である。プロトンドナーとしては、アルコールないし水などが主に用いられている。しかしながら、それらアルコールや水は量が多すぎれば酸触媒自体を分解させてしまいむしろ失活剤として働いてしまう。そのため、酸触媒に対して適切な量のプロトンドナーを供給する必要があるが、適切な比率は従来必ずしも明確ではなかった。特に重合反応液に可溶なアルキルアルミニウムクロライド系の触媒に関しては全く不明であった。また、酸触媒として重合反応液に可溶なアルキルアルミニウムクロライド系の触媒を用いる場合、反応液中の触媒濃度は一般には極めて小さな値である(特許文献1)。そのような場合、プロトンドナーの適切な添加量は一般に極めて少量である。プロトンドナーを直接重合反応液に加えると、過剰添加になりやすい。特にプロトンドナーとして水を用いた場合、直接添加すると、触媒に対して過剰になりやすいうえに、反応液の水分溶解度を超過して遊離水が生ずるなどの弊害を起こし易い。(特許文献1)   In addition, in the polymerization reaction of a C4 olefin by an acid catalyst, addition of a proton donor (proton donor) is essential. Alcohol or water is mainly used as the proton donor. However, if the amount of alcohol or water is too large, the acid catalyst itself is decomposed and rather acts as a deactivator. Therefore, it is necessary to supply an appropriate amount of proton donor to the acid catalyst, but the appropriate ratio has not always been clear. In particular, the alkylaluminum chloride catalyst soluble in the polymerization reaction solution was completely unknown. When an alkylaluminum chloride-based catalyst that is soluble in the polymerization reaction solution is used as the acid catalyst, the catalyst concentration in the reaction solution is generally an extremely small value (Patent Document 1). In such cases, the appropriate amount of proton donor added is generally very small. When a proton donor is added directly to the polymerization reaction solution, it tends to be excessively added. In particular, when water is used as a proton donor, if it is added directly, it tends to be excessive with respect to the catalyst, and it is liable to cause adverse effects such as generation of free water exceeding the water solubility of the reaction solution. (Patent Document 1)

特開2005−30699公報JP 2005-30699 A

本発明の課題は、ジエン系炭化水素をエキストラクトとする抽出蒸留法のラフィネートであって、オレフィンとして炭素数4 のオレフィンを主成分として含んでなる液状炭化水素を原料とし、炭化水素に可溶性の触媒を使用してオレフィン重合体を製造する方法において、酸触媒に対する水分量を調整することで触媒効率を向上させること、さらには水分量を調整するための精度の良いかつ製造作業性の良い方法を提供することである。   An object of the present invention is a raffinate of an extractive distillation method using a diene hydrocarbon as an extract, the raw material being a liquid hydrocarbon containing a olefin having 4 carbon atoms as a main component, and being soluble in hydrocarbon. In a method for producing an olefin polymer using a catalyst, the catalyst efficiency is improved by adjusting the amount of water with respect to the acid catalyst, and further, a method with high accuracy and good workability for adjusting the amount of water Is to provide.

すなわち本発明の第1は、ジエン系炭化水素をエキストラクトとする抽出蒸留法のラフィネートから得られる炭化水素を含む、炭素数4のオレフィンを主成分として含むオレフィン5〜95質量%と炭素数4の飽和脂肪族炭化水素を主成分として含む飽和脂肪族炭化水素95〜5質量%(両者を合わせて100質量%とする。)からなる液状炭化水素を、酸触媒の存在下に、飽和水分を含有した液状炭化水素を添加して、水分を酸触媒に対してモル比で0.1〜0.5になるように調整した上で、オレフィンの一部または全部を重合させることを特徴とするオレフィン重合体の製造方法であって、前記酸触媒がハロゲン含有酸触媒であり、下式(1)、(2)のいずれかであることを特徴とするオレフィン重合体の製造方法に関するものである。
AlRmXn (1)
(ここで、Rは1〜8個の炭素原子を有するアルキル基、Xはハロゲン原子を表し、またm、nは1または2で、n=3−の関係にある。)
AlRpXq (2)
(ここで、Rは1〜8個の炭素原子を有するアルキル基、Xはハロゲン原子を表し、また、pは1以上5以下の整数、qは1以上5以下の整数でp+q=6の関係にある。)
That is, the first of the present invention is a hydrocarbon containing 5 to 95% by mass of an olefin containing 4 olefins as a main component and a hydrocarbon obtained from a raffinate of an extractive distillation method using a diene hydrocarbon as an extract and 4 carbon atoms. Liquid hydrocarbon composed of 95 to 5% by mass of saturated aliphatic hydrocarbon containing 100% by mass of saturated aliphatic hydrocarbon as a main component in the presence of an acid catalyst. The liquid hydrocarbon is added, and the water content is adjusted to a molar ratio of 0.1 to 0.5 with respect to the acid catalyst, and then a part or all of the olefin is polymerized. A method for producing an olefin polymer, wherein the acid catalyst is a halogen-containing acid catalyst and is any one of the following formulas (1) and (2): .
AlRmXn (1)
(Wherein R represents an alkyl group having 1 to 8 carbon atoms, X represents a halogen atom, and m and n are 1 or 2 and n = 3- m ).
Al 2 RpXq (2)
(Wherein R represents an alkyl group having 1 to 8 carbon atoms, X represents a halogen atom, p is an integer of 1 to 5 and q is an integer of 1 to 5 and p + q = 6) It is in.)

本発明の第は、本発明の第1において、前記オレフィンがイソブテンを含むことを特徴とするオレフィン重合体の製造方法に関するものである。 A second aspect of the present invention relates to a method for producing an olefin polymer according to the first aspect of the present invention, wherein the olefin contains isobutene.

本発明の第は、本発明の1または2において、前記ハロゲン含有酸触媒が炭化水素可溶性であることを特徴とするオレフィン重合体の製造方法に関するものである。 A third aspect of the present invention relates to a method for producing an olefin polymer according to the first or second aspect of the present invention, wherein the halogen-containing acid catalyst is hydrocarbon-soluble.

本発明の第は、本発明の第1〜3のいずれかにおいて、前記ハロゲン含有酸触媒がエチルアルミニウムジクロライドであることを特徴とするオレフィン重合体の製造方法に関するものである。 A fourth aspect of the present invention relates to a method for producing an olefin polymer according to any one of the first to third aspects of the present invention, wherein the halogen-containing acid catalyst is ethylaluminum dichloride.

本発明の方法によれば、抽出蒸留のラフィネートから得られる炭素数4のオレフィンを含有する脂肪族炭化水素を原料とし、ハロゲン含有酸触媒等のルイス酸触媒の存在下でオレフィン重合体を製造する方法において、当該触媒の効率を高め、その使用量を低減することができ、触媒に係る生産コストを低減出来る。また水やアルコールなどのプロトンドナーの添加量の調節も容易になるので重合反応の作業性を高めることが出来る。また重合反応後の触媒失活および/あるいは除去工程を簡素化あるいは省略することができる。   According to the method of the present invention, an olefin polymer is produced in the presence of a Lewis acid catalyst such as a halogen-containing acid catalyst using, as a raw material, an aliphatic hydrocarbon containing a olefin having 4 carbon atoms obtained from a raffinate obtained by extractive distillation. In the method, the efficiency of the catalyst can be increased, the amount of the catalyst used can be reduced, and the production cost for the catalyst can be reduced. Moreover, since the adjustment of the amount of proton donor such as water or alcohol can be easily adjusted, the workability of the polymerization reaction can be improved. Further, the catalyst deactivation and / or removal step after the polymerization reaction can be simplified or omitted.

以下、本発明を詳細に説明する。
本発明のオレフィン重合体は、末端に二重結合を有する、炭素数4のオレフィンを主成分とする重合体を意味する。本発明において、オレフィン重合体を得るための出発原料として、ジエン系炭化水素をエキストラクトとする抽出蒸留法のラフィネートから得られる、炭素数4のオレフィンを主成分として含むオレフィン含量5〜95質量%および炭素数4 の飽和脂肪族炭化水素を主成分として含む飽和脂肪族炭化水素を95〜5質量% (両者を合わせて100質量%とする。)からなる液状炭化水素を用いる。抽出蒸留の原料としては、石油精製または石油化学工業で得られるジエン、オレフィンおよび飽和脂肪族炭化水素の混合物が挙げられる。たとえば、ブタジエンを得る場合の原料としては、ナフサ分解によりエチレン・プロピレン等を製造する際に生成する主として炭素数4の留分(C4留分、粗ブタジエン、B−B留分等と称されている)、ガスオイルの高温分解によっても同様の留分が得られる。あるいは、流動接触分解(FCC)による石油類の分解生成物、ブタン、ブテンの接触脱水素反応生成物等から得られるものを使用できる。不純物としてペンタンやペンテンを含むC4留分も使用できる。炭素数5のジエンであるイソプレンを得る場合には、ナフサ分解等上記の方法によって得られる炭素数5の原料留分を使用する。
Hereinafter, the present invention will be described in detail.
The olefin polymer of this invention means the polymer which has a C4 olefin which has a double bond at the terminal as a main component. In the present invention, as a starting material for obtaining an olefin polymer, an olefin content of 5 to 95% by mass containing a olefin having 4 carbon atoms as a main component, obtained from an extractive distillation raffinate using a diene hydrocarbon as an extract. And a liquid hydrocarbon composed of 95 to 5% by mass of a saturated aliphatic hydrocarbon containing a C4 saturated aliphatic hydrocarbon as a main component (both are 100% by mass in total). Examples of the raw material for extractive distillation include a mixture of diene, olefin and saturated aliphatic hydrocarbon obtained in the petroleum refining or petrochemical industry. For example, as a raw material for obtaining butadiene, it is mainly referred to as a C4 fraction (C4 fraction, crude butadiene, BB fraction, etc.) produced when ethylene / propylene or the like is produced by naphtha decomposition. A similar fraction can be obtained by high-temperature decomposition of gas oil. Or what is obtained from the decomposition product of petroleum by fluid catalytic cracking (FCC), the catalytic dehydrogenation reaction product of butane, butene, etc. can be used. A C4 fraction containing pentane or pentene as impurities can also be used. When obtaining isoprene which is a diene having 5 carbon atoms, a raw material fraction having 5 carbon atoms obtained by the above-described method such as naphtha cracking is used.

このようなジエン含有原料からブタジエン等のジエンを分離することは、多くの化合物の沸点が近接していることおよび共沸混合物が形成されることから単蒸留では不可能である。そのため、溶剤を用い抽出蒸留によってジエンを得ることが広く行われている。本発明に用いられる抽出蒸留法には、特に制限はなく、公知の抽出蒸留法がいずれも好ましく使用できる。   Separation of a diene such as butadiene from such a diene-containing raw material is impossible by simple distillation because the boiling points of many compounds are close to each other and an azeotrope is formed. Therefore, diene is widely obtained by extractive distillation using a solvent. The extractive distillation method used in the present invention is not particularly limited, and any known extractive distillation method can be preferably used.

ブタジエンを製造する場合の抽出蒸留法の具体例を挙げる。イソプレンの場合もほぼ同様に行われる。気化したC4留分を抽出塔下部から送入し、抽出溶剤を同塔上部から加えると、当該溶剤とブタジエンの相互作用によりブタジエンの見かけ上の沸点が上昇し塔底部へ移行し、本発明に係るオレフィンとパラフィンを含有する炭化水素が塔頂部から抽出溶剤を含有するラフィネートとして留出し、塔底部からブタジエン等を含有する留分がエキストラクトとして抽出溶剤と共に抜出される。抽出溶剤を含有するラフィネートに同伴している抽出溶剤は水洗塔で散水水洗などの方法によりラフィネートから回収される。さらに、微量含有するジエン類、アセチレン結合を有する炭化水素類を、公知の方法により水素添加して適宜除去することが好ましい。以下、本明細書においてラフィネートという場合は、特に記載のある場合を除き、抽出蒸留塔から留出した後、抽出溶剤の分離工程において抽出溶剤を分離したものをいう。   Specific examples of the extractive distillation method for producing butadiene will be given. In the case of isoprene, the process is almost the same. When the vaporized C4 fraction is fed from the lower part of the extraction tower and the extraction solvent is added from the upper part of the extraction tower, the apparent boiling point of butadiene rises due to the interaction between the solvent and butadiene and shifts to the bottom of the tower. The hydrocarbon containing olefin and paraffin is distilled from the top of the column as a raffinate containing an extraction solvent, and the fraction containing butadiene and the like is extracted from the bottom of the column as an extract together with the extraction solvent. The extraction solvent accompanying the raffinate containing the extraction solvent is recovered from the raffinate by a method such as irrigation water washing in a washing tower. Furthermore, it is preferable to remove dienes contained in a trace amount and hydrocarbons having an acetylene bond by hydrogenation by a known method. Hereinafter, the term “raffinate” in the present specification refers to a product obtained by distilling from the extractive distillation column and then separating the extraction solvent in the extraction solvent separation step, unless otherwise specified.

オレフィンとしては、ビニル基を有するもの、すなわち末端に二重結合を有するものが特に好ましい。たとえば炭素数4のオレフィンとして1−ブテン、2−メチル−1−プロペン(イソブテン)が、炭素数5のオレフィンとして3−メチル−1― ブテン、1− ペンテンが、その外に1−ヘキセン、ビニルシクロヘキサン、4−メチル−1−ペンテン、2,4,4−トリメチル−1−ペンテン、1−デセン、1−ドデセンなどが挙げられる。生成重合体および原料炭化水素を含む反応系を液状に保つことの容易さ、オレフィンの反応性などから、炭素数4のものを含むものが最も好ましい。   As the olefin, those having a vinyl group, that is, those having a double bond at the terminal are particularly preferred. For example, 1-butene and 2-methyl-1-propene (isobutene) are used as olefins having 4 carbon atoms, 3-methyl-1-butene and 1-pentene are used as olefins having 5 carbon atoms, and 1-hexene and vinyl are also included. Examples include cyclohexane, 4-methyl-1-pentene, 2,4,4-trimethyl-1-pentene, 1-decene, and 1-dodecene. In view of the ease of keeping the reaction system containing the produced polymer and the raw material hydrocarbon in a liquid state, the reactivity of the olefin, etc., those containing 4 carbon atoms are most preferred.

オレフィンの含有率が5質量% 以下であるとオレフィン重合体の製造効率が低く、工業的に重合体を得ることが困難になる。一方95質量%を越えると、特に分子量が大きいオレフィン重合体の製造時に、反応系の粘度が高くなりすぎて、重合反応工程が円滑に行われないことがある。オレフィンの含有量は、例えば、炭素数4のオレフィンであるイソブテンを含む炭化水素から、数平均分子量1500〜10000の重合体(ポリブテン)を製造する工程では、イソブテン濃度は20〜70質量%の範囲にあることが好ましく、25〜60質量%の範囲にあることがさらに好ましい。   When the olefin content is 5% by mass or less, the production efficiency of the olefin polymer is low, and it is difficult to obtain a polymer industrially. On the other hand, if it exceeds 95% by mass, the viscosity of the reaction system becomes too high particularly during the production of an olefin polymer having a large molecular weight, and the polymerization reaction process may not be carried out smoothly. The olefin content is, for example, in the step of producing a polymer (polybutene) having a number average molecular weight of 1500 to 10000 from a hydrocarbon containing isobutene, which is an olefin having 4 carbon atoms, and the isobutene concentration is in the range of 20 to 70% by mass. It is preferable that it exists in the range of 25-60 mass%.

炭素数4のオレフィンを主として含有する炭化水素は、エチレンやプロピレン等の低級オレフィンを製造する、所謂ナフサクラッキング装置から留出するC4留分からブタジエンを抽出蒸留法により製造した際のラフィネートとして市場から容易に入手することができる。当該ラフィネートは通常、オレフィンとして40〜55質量%の範囲のイソブテンと10〜15質量%の範囲の1−ブテンとを含み、その外に7〜8質量%の2−ブテンを含む。ブタジエンは0.5質量%以下であり、微量の抽出溶剤を含んでいる。残余はブタン、イソブタン等の飽和炭化水素である。もちろん、当該ラフィネートに他のオレフィンまたは飽和炭化水素を追加しても使用できる。   Hydrocarbons mainly containing olefins with 4 carbon atoms are easily marketed as raffinates when butadiene is produced by the extractive distillation method from C4 fractions produced from so-called naphtha cracking equipment that produce lower olefins such as ethylene and propylene. Can be obtained. The raffinate usually contains isobutene in the range of 40-55% by weight and 1-butene in the range of 10-15% by weight as olefin, and additionally contains 7-8% by weight of 2-butene. Butadiene is 0.5 mass% or less and contains a trace amount of extraction solvent. The balance is saturated hydrocarbons such as butane and isobutane. Of course, other raffinates or saturated hydrocarbons can be added to the raffinate.

本発明における酸触媒としては、公知のオレフィンの重合用酸触媒であれば特に制限はないが、原料炭化水素に可溶性であることおよび活性の点からハロゲン含有触媒が好ましい。例えば、塩素系触媒、フッソ系触媒、これらの錯体触媒(米国特許第4152499号、第5408018号、第5068490号公報参照。)があげられる。
触媒は適当な溶剤、例えばノルマルヘキサン、ノルマルへプタン、イソオクタン、シクロヘキサン、シクロドデカン、トルエン、ベンゼン、ジクロロメタン、メチルクロリド、エチルクロリドなどで希釈して供給してもよい。
The acid catalyst in the present invention is not particularly limited as long as it is a known acid catalyst for olefin polymerization, but is preferably a halogen-containing catalyst from the viewpoint of solubility in raw material hydrocarbons and activity. Examples thereof include chlorine-based catalysts, fluorine-based catalysts, and complex catalysts thereof (see US Pat. Nos. 4,152,499, 5,408,018, and 5,068,490).
The catalyst may be supplied after being diluted with a suitable solvent such as normal hexane, normal heptane, isooctane, cyclohexane, cyclododecane, toluene, benzene, dichloromethane, methyl chloride, ethyl chloride and the like.

本発明に係るオレフィン重合体が特に高効率で得られる好ましい触媒は、酸性の強い触媒、あるいは、反応系に溶解する触媒であり、特に、下式(1)または(2)で表されるものである。
Al R m Xn (1)
(ここで、R は1〜 8個の炭素原子を有するアルキル基、Xはハロゲン原子を表し、m 、nは1 または2 で、m + n = 3 である。)
Al2 R p Xq (2)
(ここで、R は1〜 8個の炭素原子を有するアルキル基、Xはハロゲン原子を表し、また、p は1 以上5 以下の整数、q は1 以上5 以下の整数でp + q = 6 の関係にある。)
これらの中でも好ましい触媒は、C H3 A l C l2 、( C H3 )2 A l C l、C2 H 5 A l C l2 、( C2 H5 )2 A l C l、( C2 H5 )3 A l2 C l3 、( C H3 )3 C A l C l2 および[ ( C H3 )3 C ]2 A l C lが挙げられる。特に好ましいものは、安全性の高いC2 H 5 A l C l2 ( エチルアルミニウムジクロライド)である。
The preferred catalyst for obtaining the olefin polymer according to the present invention with particularly high efficiency is a highly acidic catalyst or a catalyst that dissolves in the reaction system, and is particularly represented by the following formula (1) or (2): It is.
Al R m Xn (1)
(Wherein R 1 represents an alkyl group having 1 to 8 carbon atoms, X represents a halogen atom, m 1 and n 2 are 1 or 2, and m + n = 3)
Al2 R p Xq (2)
(Wherein R 1 represents an alkyl group having 1 to 8 carbon atoms, X represents a halogen atom, p is an integer of 1 to 5 and q is an integer of 1 to 5 and p + q = 6 It is in a relationship.)
Among these, preferred catalysts are C H3 A 1 C 12, (C H3) 2 A 1 C 1, C 2 H 5 A 1 C 1 2, (C2 H5) 2 A 1 C 1, (C2 H5) 3 A 1 2 C l3, (CH3) 3CAlCl2 and [(CH3) 3C] 2AlCl. Particularly preferred is highly safe C2H5AlCl2 (ethylaluminum dichloride).

実質的に飽和水分を含有する液状炭化水素としては、オレフィンを含まない炭化水素に水を添加した後で振とうさせ、その上澄みを用いても良い。もしくは、重合反応終了後の触媒失活工程を経て蒸留分離された回収C4留分を用いることが出来る。これらは、流量を制御し、水分を酸触媒に対してモル比で0.1〜0.5になるように調整した上で、反応器中に導入する。なお、前記モル比は、前記した「炭素数4のオレフィンを主成分として含むオレフィン5〜95質量%と炭素数4の飽和脂肪族炭化水素を主成分として含む飽和脂肪族炭化水素95〜5質量% からなる液状炭化水素」から持ち込まれる水分量も併せて計算された値である。オレフィンを含まない炭化水素には特に制限はないが、重合温度において液相を保ち易い点から、炭素数4以上の炭化水素が好ましい。例えばヘキサン、ヘプタン、オクタン、トルエン、ベンゼン、キシレンなどが好ましく用いられる。   The liquid hydrocarbon containing substantially saturated water may be shaken after adding water to the hydrocarbon not containing olefin, and the supernatant thereof may be used. Alternatively, a recovered C4 fraction that has been distilled and separated through a catalyst deactivation step after completion of the polymerization reaction can be used. These are introduced into the reactor after controlling the flow rate and adjusting the water to a molar ratio of 0.1 to 0.5 with respect to the acid catalyst. In addition, the molar ratio is the above-mentioned “saturated aliphatic hydrocarbons 95 to 5 mass% including olefins 5 to 95 mass% mainly containing olefins having 4 carbon atoms and saturated aliphatic hydrocarbons 4 carbon atoms as main ingredients. The amount of water brought in from “liquid hydrocarbons consisting of%” is also a calculated value. There are no particular restrictions on hydrocarbons that do not contain olefins, but hydrocarbons having 4 or more carbon atoms are preferred from the standpoint of maintaining a liquid phase at the polymerization temperature. For example, hexane, heptane, octane, toluene, benzene, xylene and the like are preferably used.

重合反応はアルミニウム原子含有処理剤による処理を経た原料炭化水素および触媒を使用して、液相で行う。反応は回分式、連続式いずれの方法での行うことができるが、効率的な製造の点から連続式が好ましい。反応装置は、公知のものを使用することができる。原料炭化水素および触媒の供給は公知の方法で行う。重合温度および圧力は、反応系が液相に保たれる条件であれば特に制限はないが、好ましい温度は−40〜+10℃、圧力は0.1〜2MPaである。   The polymerization reaction is carried out in a liquid phase using raw material hydrocarbons and catalyst that have been treated with an aluminum atom-containing treating agent. The reaction can be carried out by either a batch method or a continuous method, but a continuous method is preferred from the viewpoint of efficient production. A well-known thing can be used for a reaction apparatus. The raw material hydrocarbon and catalyst are supplied by a known method. The polymerization temperature and pressure are not particularly limited as long as the reaction system is maintained in a liquid phase, but a preferred temperature is −40 to + 10 ° C. and a pressure is 0.1 to 2 MPa.

オレフィン重合体の数平均分子量は、オレフィン重合体が、重合反応系内において、未反応のオレフィンおよび飽和脂肪族炭化水素に溶解しており、また、該未反応のオレフィンおよび飽和脂肪族炭化水素から蒸留等で分離できる範囲あれば制限は無い。本発明によれば、炭素数4のオレフィンであるイソブテンを15〜45質量%含む炭化水素からは、2量体及び3量体から数平均分子量500以下の範囲にあるオリゴマー、数平均分子量1,500〜50,000の範囲にある粘性重合体、さらに、数平均分子量100,000以上のポリマー状重合体までの広い範囲を含むので相応の商品価値を有するイソブテン重合体を得ることができる。   The number average molecular weight of the olefin polymer is such that the olefin polymer is dissolved in the unreacted olefin and saturated aliphatic hydrocarbon in the polymerization reaction system, and from the unreacted olefin and saturated aliphatic hydrocarbon. There is no limitation as long as it can be separated by distillation or the like. According to the present invention, from hydrocarbons containing 15 to 45% by mass of isobutene, which is an olefin having 4 carbon atoms, oligomers having a number average molecular weight of 500 or less from dimers and trimers, a number average molecular weight of 1, Since it includes a wide range of viscous polymers in the range of 500 to 50,000 and polymer polymers having a number average molecular weight of 100,000 or more, an isobutene polymer having an appropriate commercial value can be obtained.

重合後は、公知の方法に従って、触媒の失活工程および/あるいは触媒の抽出除去工程等が行われるが、触媒添加量が低減されているために、これらの工程に要するエネルギー負荷や環境負荷は従来の方法に比べて小さくなる。また、これら工程の前後に適宜蒸留により未反応のオレフィン等を除去して目的の重合体を得る。またこのようにして得た重合体は、さらに適宜減圧蒸留して所望の数平均分子量を有するオレフィン重合体に分離することができる。なお、本発明においては、触媒添加量が低減されているため、脱ハロゲン処理塔(例えばアルミナ充填塔)を設置すれば、ハロゲン濃度が5ppm以下である重合体を容易に得ることができる。   After the polymerization, a catalyst deactivation step and / or a catalyst extraction / removal step are performed according to a known method. However, since the amount of catalyst addition is reduced, the energy load and environmental load required for these steps are reduced. Compared to conventional methods. Further, before and after these steps, unreacted olefins and the like are appropriately removed by distillation to obtain the desired polymer. Further, the polymer thus obtained can be further appropriately distilled under reduced pressure to be separated into an olefin polymer having a desired number average molecular weight. In the present invention, since the amount of catalyst added is reduced, a polymer having a halogen concentration of 5 ppm or less can be easily obtained by installing a dehalogenation treatment tower (for example, an alumina packed tower).

以上、主としてブテン系のオレフィン重合体を例にとって説明したが、段落[0017]に記載したオレフィンであれば本発明に係る効果はブテン系オレフィン重合体に限られるものではない。   As mentioned above, the explanation has been given mainly using the butene-based olefin polymer as an example, but the effect according to the present invention is not limited to the butene-based olefin polymer as long as it is the olefin described in paragraph [0017].

本発明に係るオレフィン重合体の製造方法および当該方法により得られるオレフィン重合体は、触媒添加量が低減されているため触媒に係る製造コストが低く、触媒の失活、除去に係る負荷が小さいため設備に係るコストが低く、また、得られたオレフィン重合体中の触媒残渣が極めて少ない。特に、ハロゲン含有触媒を使用した場合においては、そのオレフィン重合体からなる清浄剤等の潤滑油添加物を燃焼する場合においても、大気中へのハロゲンの放出が少なく、従って環境保全の面においても有用である。また、助触媒である水やアルコールなどのプロトンドナーの添加量の調節が容易に行なわれるため、高い触媒活性が得られ、且つ添加量の調節も容易であるため、作業性に優れ、重合体製造コストの低減に寄与する。   The method for producing an olefin polymer according to the present invention and the olefin polymer obtained by the method have a low production cost for the catalyst because the amount of the catalyst added is reduced, and the load for deactivation and removal of the catalyst is small. The cost relating to the equipment is low, and the catalyst residue in the obtained olefin polymer is extremely small. In particular, when a halogen-containing catalyst is used, even when a lubricating oil additive such as a detergent made of the olefin polymer is burned, the release of halogen into the atmosphere is small, and therefore in terms of environmental conservation. Useful. Further, since the addition amount of a proton donor such as water or alcohol as a co-catalyst is easily adjusted, high catalytic activity is obtained, and the addition amount can be easily adjusted. Contributes to the reduction of manufacturing costs.

以下、実施例を挙げて説明するが、本発明は実施例に限定されるものではない。
<実施例1>
(重合工程)
ナフサ分解によるエチレン製造装置から得られたC4留分からブタジエンを抽出した残りのラフィネート留分をイソブタンで希釈したものを原料とした。ガスクロマトグラフィーで分析した原料組成を表1 に示す。これをアルミナおよびモレキュラーシーブス3Aを充填したシリンダーに流通させて脱水および不純物除去処理を行った。処理後の原料中の水分は0.10ppmであった。この原料を内容積500mlのオートクレーブに、毎時280gフィードした。さらに、水分を調整するための飽和水分(80ppm)を持つイソオクタンと、触媒液としての1%エチルアルミニウムジクロライド/イソオクタン溶液とをそれぞれ液体クロマトグラフィー用のポンプで所定量供給し、ラインミキシングした。飽和水分(80ppm)を持つイソオクタンの供給量を調整し、原料中の水分を0.4ppmとした。これらの原料を供給しながら、反応圧力0.3MPa、反応温度−7℃で連続的に重合を行なった。その際、触媒液の供給量を調整しながら重合を行い、後述するイソブテン転化率が60%で安定したところで反応を継続し、水分/触媒のモル比と触媒/イソブテンモル比を求めた。
Hereinafter, although an example is given and explained, the present invention is not limited to an example.
<Example 1>
(Polymerization process)
A raw material was obtained by diluting the remaining raffinate fraction obtained by extracting butadiene from a C4 fraction obtained from an ethylene production apparatus by naphtha decomposition with isobutane. The raw material composition analyzed by gas chromatography is shown in Table 1. This was passed through a cylinder filled with alumina and molecular sieves 3A for dehydration and impurity removal treatment. The water content in the raw material after the treatment was 0.10 ppm. This raw material was fed to an autoclave having an internal volume of 500 ml per hour. Furthermore, a predetermined amount of isooctane having saturated water (80 ppm) for adjusting water and 1% ethylaluminum dichloride / isooctane solution as a catalyst solution were supplied by a liquid chromatography pump, and line mixing was performed. The supply amount of isooctane having saturated water (80 ppm) was adjusted, so that the water content in the raw material was 0.4 ppm. While supplying these raw materials, polymerization was continuously carried out at a reaction pressure of 0.3 MPa and a reaction temperature of -7 ° C. At that time, the polymerization was carried out while adjusting the supply amount of the catalyst solution, and the reaction was continued when the isobutene conversion rate described later was stabilized at 60%, and the water / catalyst molar ratio and the catalyst / isobutene molar ratio were determined.

Figure 0005343041
Figure 0005343041

<イソブテンのポリイソブテンへの転化率の算出>
重合反応前の原料および重合反応後の反応液(ポリイソブテンを含む)をそれぞれ密閉容器にサンプリングした。重合反応後の反応液については水酸化ナトリウム水溶液で中和処理して触媒を失活し、常温常圧に保った後、蒸発気体成分中のイソブテン濃度をガスクロマトグラフィーで分析した。重合反応前の原料についてもガスクロマトグラフィーでイソブテン濃度を分析した。イソブテンのポリイソブテンへの転化率(%)は以下の式から求めた。

Figure 0005343041
飽和水分(80ppm)を持つイソオクタンを混合後の原料供給量(毎時280gr)と、イソブテン転化率が60%となるように調整したエチルアルミニウムジクロライド/イソオクタン溶液の供給量とから、供給原料中の水分/触媒(モル比)およびそのときの触媒/イソブテン(モル比)を求めた結果を表2に示す。水分/触媒のモル比は0.17であり、イソブテン転化率が60%となる触媒/イソブテンモル比は1.5×10−5であった。 <Calculation of conversion of isobutene to polyisobutene>
The raw material before the polymerization reaction and the reaction liquid after the polymerization reaction (including polyisobutene) were sampled in sealed containers, respectively. The reaction solution after the polymerization reaction was neutralized with an aqueous sodium hydroxide solution to deactivate the catalyst, kept at room temperature and normal pressure, and then analyzed for isobutene concentration in the evaporated gas component by gas chromatography. The isobutene concentration of the raw material before the polymerization reaction was also analyzed by gas chromatography. The conversion rate (%) of isobutene to polyisobutene was determined from the following equation.
Figure 0005343041
Moisture in the feedstock from the feed rate of raw material (280 gr / h) after mixing isooctane with saturated moisture (80 ppm) and the feed rate of ethylaluminum dichloride / isooctane solution adjusted so that the isobutene conversion is 60% Table 2 shows the results of determining / catalyst (molar ratio) and catalyst / isobutene (molar ratio) at that time. The water / catalyst molar ratio was 0.17, and the catalyst / isobutene molar ratio at which the isobutene conversion was 60% was 1.5 × 10 −5 .

<実施例2>
飽和水分(80ppm)を持つイソオクタンを混合後の原料中の水分を1.5ppmとする以外は、実施例1と同様に行なった。同様にして求めた供給原料中の水分/触媒のモル比は0.28であり、イソブテン転化率が60%となる触媒/イソブテンモル比は3.5×10−5であった。
<Example 2>
The same operation as in Example 1 was conducted except that the water content in the raw material after mixing with isooctane having saturated water content (80 ppm) was 1.5 ppm. Similarly, the water / catalyst molar ratio in the feedstock was 0.28, and the catalyst / isobutene molar ratio at which the isobutene conversion was 60% was 3.5 × 10 −5 .

<比較例1>
飽和水分(80ppm)を持つイソオクタンを混合後の原料中の水分を0.8ppmとする以外は、実施例1と同様にして重合を行なったが、触媒液の供給量を触媒/イソブテンモル比で1.0×10−4としてもイソブテンの重合は進行しなかった。このときの水分/触媒のモル比は表2に示したように0.05であった。
<Comparative Example 1>
Polymerization was carried out in the same manner as in Example 1 except that the water content in the raw material after mixing with isooctane having saturated water content (80 ppm) was 0.8 ppm, but the supply amount of the catalyst solution was 1 in molar ratio of catalyst / isobutene. The polymerization of isobutene did not proceed even at 0.0 × 10 −4 . At this time, the molar ratio of water / catalyst was 0.05 as shown in Table 2.

<比較例2>
飽和水分(80ppm)を持つイソオクタンを混合後の原料中の水分を9ppmとする以外は、実施例1と同様に行なった。同様にして求めた原料中の水分/触媒のモル比は0.65であり、イソブテン転化率が60%となる触媒/イソブテンモル比は1.0×10−4であった。
<Comparative Example 2>
The same procedure as in Example 1 was conducted except that the water content in the raw material after mixing with isooctane having saturated water content (80 ppm) was 9 ppm. Similarly, the water / catalyst molar ratio in the raw material was 0.65, and the catalyst / isobutene molar ratio at which the isobutene conversion was 60% was 1.0 × 10 −4 .

実施例、比較例により得られた水分/触媒のモル比、イソブテン転化率が60%となる触媒/イソブテンモル比を表2に示した。

Figure 0005343041
表2の結果から、供給原料中の水分/触媒(モル比)が低すぎると活性が無く、高すぎると余計に触媒を必要とすることがわかる。 Table 2 shows the water / catalyst molar ratios obtained in Examples and Comparative Examples, and the catalyst / isobutene molar ratio at which the isobutene conversion is 60%.
Figure 0005343041
From the results in Table 2, it can be seen that if the moisture / catalyst (molar ratio) in the feedstock is too low, there is no activity, and if it is too high, an extra catalyst is required.

抽出蒸留の抽出残油から得られる炭素数4 のオレフィンを含有する脂肪族炭化水素を原料とし、触媒を用いてオレフィン重合体を製造する方法において、触媒に係る生産コストを低減し、かつ重合反応後の触媒失活および/あるいは除去工程を簡素化あるいは省略するなど製造工程の作業性を高めることが出来る。   In a method for producing an olefin polymer using a catalyst containing an aliphatic hydrocarbon containing a olefin having 4 carbon atoms obtained from extraction residue of extractive distillation, the production cost for the catalyst is reduced, and the polymerization reaction The operability of the manufacturing process can be improved by simplifying or omitting the subsequent catalyst deactivation and / or removal process.

Claims (4)

抽出蒸留法によりジエン系炭化水素を抽出物とする抽出残油から得られる炭化水素を含む、炭素数4のオレフィンを主成分として含むオレフィン5〜95質量%と炭素数4の飽和脂肪族炭化水素を主成分として含む飽和脂肪族炭化水素95〜5質量%とからなる両者を合わせて100質量%となる液状炭化水素を、酸触媒の存在下に、飽和水分を含有した液状炭化水素を添加して、水分を酸触媒に対してモル比で0.1〜0.5になるように調整した上で、オレフィンの一部または全部を重合させることを特徴とするオレフィン重合体の製造方法であって、前記酸触媒がハロゲン含有酸触媒であり、下式(1)、(2)のいずれかであることを特徴とするオレフィン重合体の製造方法。
AlRmXn (1)
(ここで、Rは1〜8個の炭素原子を有するアルキル基、Xはハロゲン原子を表し、またm、nは1または2で、n=3−の関係にある。)
AlRpXq (2)
(ここで、Rは1〜8個の炭素原子を有するアルキル基、Xはハロゲン原子を表し、また、pは1以上5以下の整数、qは1以上5以下の整数でp+q=6の関係にある。)
5 to 95% by mass of olefins mainly containing olefins having 4 carbon atoms and saturated aliphatic hydrocarbons having 4 carbon atoms, including hydrocarbons obtained from extractive residue using diene hydrocarbon as an extract by extractive distillation In the presence of an acid catalyst, a liquid hydrocarbon containing saturated water is added to a liquid hydrocarbon which is composed of 95 to 5% by mass of a saturated aliphatic hydrocarbon containing 95 to 5% by mass as a main component. Then, the water content is adjusted so that the molar ratio of the acid catalyst is 0.1 to 0.5, and then a part or all of the olefin is polymerized. The method for producing an olefin polymer is characterized in that the acid catalyst is a halogen-containing acid catalyst and is any one of the following formulas (1) and (2).
AlRmXn (1)
(Wherein R represents an alkyl group having 1 to 8 carbon atoms, X represents a halogen atom, and m and n are 1 or 2 and n = 3- m ).
Al 2 RpXq (2)
(Wherein R represents an alkyl group having 1 to 8 carbon atoms, X represents a halogen atom, p is an integer of 1 to 5 and q is an integer of 1 to 5 and p + q = 6) It is in.)
前記オレフィンがイソブテンを含むことを特徴とする請求項1に記載のオレフィン重合体の製造方法。   The said olefin contains isobutene, The manufacturing method of the olefin polymer of Claim 1 characterized by the above-mentioned. 前記ハロゲン含有酸触媒が炭化水素可溶性であることを特徴とする請求項1または2に記載のオレフィン重合体の製造方法。 Process for producing an olefin polymer according to claim 1 or 2, wherein the halogen-containing acid catalyst is a hydrocarbon soluble. 前記ハロゲン含有酸触媒がエチルアルミニウムジクロライドであることを特徴とする請求項のいずれかに記載のオレフィン重合体の製造方法。 The method for producing an olefin polymer according to any one of claims 1 to 3 , wherein the halogen-containing acid catalyst is ethylaluminum dichloride.
JP2010139655A 2010-06-18 2010-06-18 Process for producing olefin polymer Active JP5343041B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010139655A JP5343041B2 (en) 2010-06-18 2010-06-18 Process for producing olefin polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010139655A JP5343041B2 (en) 2010-06-18 2010-06-18 Process for producing olefin polymer

Publications (2)

Publication Number Publication Date
JP2012001670A JP2012001670A (en) 2012-01-05
JP5343041B2 true JP5343041B2 (en) 2013-11-13

Family

ID=45534016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010139655A Active JP5343041B2 (en) 2010-06-18 2010-06-18 Process for producing olefin polymer

Country Status (1)

Country Link
JP (1) JP5343041B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013118533A1 (en) * 2012-02-08 2013-08-15 日油株式会社 Paraffin mixture and method for producing same
EP2868310A4 (en) 2012-06-28 2015-12-02 Nof Corp Volatile oil for cosmetics
JP2014065666A (en) * 2012-09-24 2014-04-17 Nof Corp Volatile oil for skin external preparation
JP6065424B2 (en) * 2012-06-28 2017-01-25 日油株式会社 Volatile oil for hair cosmetics

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5454193A (en) * 1977-10-07 1979-04-28 Nippon Petrochemicals Co Ltd Preparation of butylene polymer
JPS58126820A (en) * 1982-01-22 1983-07-28 Nippon Zeon Co Ltd Separation method for butene-1 of high purity or butene-1/ isobutene mixture from 4c hydrocarbon fraction
GB9404368D0 (en) * 1994-03-07 1994-04-20 Bp Chem Int Ltd Production of polyisobutenes
DE10040618A1 (en) * 2000-08-16 2002-02-28 Basf Ag Process for the preparation of polyisobutenes
DE10250468A1 (en) * 2002-10-30 2004-05-19 Basf Ag Process for the preparation of oligomers derived from butenes
JP5227490B2 (en) * 2004-08-25 2013-07-03 Jx日鉱日石エネルギー株式会社 Process for producing olefin polymer
JP4863186B2 (en) * 2005-02-09 2012-01-25 Jx日鉱日石エネルギー株式会社 Process for producing olefin polymer

Also Published As

Publication number Publication date
JP2012001670A (en) 2012-01-05

Similar Documents

Publication Publication Date Title
JP3281088B2 (en) Method for producing butene polymer
JP4714424B2 (en) Method for producing α-olefin polymer
US10683460B2 (en) Ethylene oligomerization process for making hydrocarbon liquids
US20100234542A1 (en) Preparation of reactive, essentially halogen-free polyisobutenes from c4-hydrocarbon mixtures which are low in isobutene
KR101458404B1 (en) Method for preparing polybutene
TW201242928A (en) Integrated alkylation process using ionic liquid catalysts
EP2388069A1 (en) Method for dimerisation of ethylene into butene-1 using a composition including a titanium complex and an alcoxy ligand functionalised by a heteroatom
US20090054713A1 (en) Method for preparing polyolefinic bases of synthetic oils
JP5343041B2 (en) Process for producing olefin polymer
JP2013067613A (en) Method for separating 2-butene from c4 fraction containing 2-butene and 1-butene by selective oligomerization of 1-butene
JPH0237894B2 (en)
US3884988A (en) Production of synthetic lubricants from alpha-olefins through a ternary catalytic system
JPH0350730B2 (en)
US20240002316A1 (en) A process for producing alpha-olefins
JP5227490B2 (en) Process for producing olefin polymer
RU2452567C1 (en) Catalyst and method for oligomerisation of alpha-olefins
JP4863186B2 (en) Process for producing olefin polymer
JPH0350731B2 (en)
KR102311981B1 (en) Method for producing α-olefin oligomer
US20230406787A1 (en) A process for producing alpha-olefins
WO2022132749A1 (en) A process for producing alpha-olefins
KR20180047941A (en) Polyisobutene feed pretreatment method
US20220315677A1 (en) Metallocene Catalyzed Propylene Oligomerisation Without Separation of Alkane and Olefin
WO2022132711A1 (en) A process for producing alpha-olefins
WO2022132865A1 (en) A process for producing alpha-olefins

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130528

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130716

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130812

R150 Certificate of patent or registration of utility model

Ref document number: 5343041

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250