JP5340661B2 - Reinforced concrete member joint structure and building using the same - Google Patents

Reinforced concrete member joint structure and building using the same Download PDF

Info

Publication number
JP5340661B2
JP5340661B2 JP2008184953A JP2008184953A JP5340661B2 JP 5340661 B2 JP5340661 B2 JP 5340661B2 JP 2008184953 A JP2008184953 A JP 2008184953A JP 2008184953 A JP2008184953 A JP 2008184953A JP 5340661 B2 JP5340661 B2 JP 5340661B2
Authority
JP
Japan
Prior art keywords
column
pile
rebar
decompression
joint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008184953A
Other languages
Japanese (ja)
Other versions
JP2010024658A (en
Inventor
久廣 平石
訓祥 杉本
秀尊 舟木
弘幸 都祭
大作 佐野
和則 時本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Penta Ocean Construction Co Ltd
Okumura Corp
Toda Corp
Urban Renaissance Agency
Original Assignee
Obayashi Corp
Penta Ocean Construction Co Ltd
Okumura Corp
Toda Corp
Urban Renaissance Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp, Penta Ocean Construction Co Ltd, Okumura Corp, Toda Corp, Urban Renaissance Agency filed Critical Obayashi Corp
Priority to JP2008184953A priority Critical patent/JP5340661B2/en
Publication of JP2010024658A publication Critical patent/JP2010024658A/en
Application granted granted Critical
Publication of JP5340661B2 publication Critical patent/JP5340661B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、鉄筋コンクリート(以下、RCという)部材と固定端の接合構造を考慮に入れて、超高強度コンクリートの採用を前提とすることなく、圧壊の発生原因である曲げモーメントによる応力を、ヒンジが発生する箇所またはヒンジが発生する前にコンクリートの圧壊が顕著に生じ得る箇所に絞って効果的に低減することが可能なRC部材の接合構造およびそれを用いた建物に関する。   The present invention takes into account the joint structure between a reinforced concrete (hereinafter referred to as RC) member and a fixed end, and does not assume the use of ultra-high-strength concrete. The present invention relates to a joint structure of RC members that can be effectively reduced by narrowing down to a portion where concrete collapse may occur significantly before occurrence of a hinge or a hinge, and a building using the same.

RC柱部材は、上方からの軸力を負担する構造材である。例えば、建物一階のRC柱は、材端部である柱脚部が通常、一階の床スラブを含む基礎梁やフーチングなどの固定端に接合される。このRC柱が、上層階から高軸力を受けつつ、横方向の地震力を受けて変形が進むと、図10に示すように、固定端aと接合されたRC柱bの柱脚部c下端縁に、曲げモーメントに起因するヒンジが生じて、コンクリートの圧壊dが発生する。圧壊dが発生すると、RC柱bの曲げ耐力は急激に減少する。また、圧壊による断面欠損は、RC柱bの軸方向耐力を減少させる。   The RC column member is a structural material that bears an axial force from above. For example, an RC column on the first floor of a building is usually joined to a fixed end such as a foundation beam or a footing including a floor slab on the first floor. When this RC column receives a high axial force from the upper floor and undergoes deformation due to a lateral seismic force, as shown in FIG. 10, the column base portion c of the RC column b joined to the fixed end a, as shown in FIG. A hinge due to a bending moment is generated at the lower end edge, and concrete crushing d occurs. When the crushing d occurs, the bending strength of the RC column b decreases rapidly. Moreover, the cross-sectional defect | deletion by crushing reduces the axial direction yield strength of RC pillar b.

この種の現象は、建物全体を示した図11から理解されるように、地震力により建物eの高層部が低層部に対して建物e外方へ迫り出すように水平変位することで発生する曲げモーメントによって軸力fが増加する下層階の、特に外周のRC柱gで顕著に現れる。   As can be understood from FIG. 11 showing the entire building, this type of phenomenon occurs when the high-rise part of the building e is displaced horizontally by the seismic force so as to protrude outward from the low-rise part. The lower floor where the axial force f increases due to the bending moment, particularly in the outer RC column g, appears prominently.

下層階の外周柱に限らず、柱梁仕口部が固定端となる各階のRC柱部材の柱脚部でも、同様に起こり得る。RC柱部材については、この他にも、地震力で軸力が小さくなる、いわゆる引張側の柱であったり、コア壁で地震力を負担するようにした建物の外周柱等にあっても、同様のことが言える。さらに、建物最上階のRC柱部材の柱頭部とこれが接合される屋上スラブとの間でも、圧壊は生じ得る。   This may occur in the same manner not only in the outer peripheral columns of the lower floors but also in the column bases of RC column members on each floor where the column beam joints are fixed ends. For RC column members, in addition to this, the axial force is reduced by seismic force, so-called tension side columns, or the outer peripheral columns of buildings that are designed to bear the seismic force on the core wall, etc. The same can be said. Furthermore, crushing can also occur between the column head of the RC column member on the top floor of the building and the roof slab to which it is joined.

また、RC柱部材以外で、上方からの軸力を負担する構造材として、RC製の杭部材や壁杭部材、壁部材がある。杭部材や壁杭部材では、材端部となる杭頭部が基礎梁やフーチングなどの固定端に接合される。壁部材では、上端部や下端部が梁や床スラブなどの固定端に接合される。これら柱部材以外の構造材であっても、上方からの軸力を受けつつ、横方向の地震力を受けると、曲げモーメントに起因するヒンジが材端部に生じて、コンクリートの圧壊が発生し得る。   In addition to RC column members, there are RC pile members, wall pile members, and wall members as structural materials that bear the axial force from above. In a pile member or a wall pile member, a pile head as a material end is joined to a fixed end such as a foundation beam or a footing. In a wall member, an upper end part and a lower end part are joined to fixed ends, such as a beam and a floor slab. Even with structural materials other than these pillar members, when receiving a lateral seismic force while receiving an axial force from above, hinges due to bending moments occur at the end of the material, causing concrete collapse. obtain.

この種の問題に対処すべく、コンクリート柱のみを対象とした技術として、特許文献1の「鉄筋コンクリート柱構造」や特許文献2の「プレキャストコンクリート部材」が知られている。   In order to deal with this type of problem, “reinforced concrete column structure” in Patent Document 1 and “precast concrete member” in Patent Document 2 are known as techniques targeting only concrete columns.

特許文献1は、地震時のかぶりコンクリートの圧壊、剥離を防止するとともに材料費を低減することを目的として、柱の下端部のかぶりコンクリートと、その他の部分のコンクリートとが異なる配合のコンクリートで形成されている鉄筋コンクリート柱構造であって、前記下端部のかぶりコンクリートは、超高強度高靭性コンクリート製のプレキャスト筒体で形成されており、前記その他の部分のコンクリートは、超高強度コンクリートで形成されているものである。   Patent Document 1 is formed of concrete with a different mix of cover concrete at the lower end of the column and concrete at other parts for the purpose of preventing crushing and peeling of the cover concrete during an earthquake and reducing material costs. The cover concrete at the lower end is formed of a precast cylinder made of ultra-high strength and high-toughness concrete, and the other parts of concrete are formed of ultra-high-strength concrete. It is what.

特許文献2は、耐震性および耐久性に優れ、経済的で工期を短縮することができる高強度・高靭性・高耐久性のプレキャストコンクリート柱として使用することを目的として、超高強度コンクリートまたは超高強度モルタルで中空の外殻体を形成し、該外殻体の中空部を必要な耐震性能に応じた形状にし、大きな応力が作用する箇所を厚肉にし、小さな応力が作用する箇所を薄肉にするものである。
特開2005−146601号公報 特開2006−233548号公報
Patent Document 2 is intended to be used as a high-strength, high-toughness, high-durability precast concrete column that is excellent in earthquake resistance and durability, and is economical and can shorten the construction period. A hollow shell is formed with high-strength mortar, the hollow part of the shell is shaped according to the required seismic performance, the part where large stress is applied is thick, and the part where small stress is applied is thin. It is to make.
JP 2005-146601 A JP 2006-233548 A

これら特許文献では、RC柱部材単体で、圧壊を防止したり、靭性や耐久性の向上を狙って対策を施したものであって、RC柱部材が接合される相手である固定端まで考慮したものではなく、得られる構造性能に限界があるという課題があった。また、これら特許文献は、超高強度コンクリートを採用することを前提としていて、材料費が嵩んでしまうという課題があった。   In these patent documents, the RC column member is used alone to prevent crushing or to take measures to improve toughness and durability, and considers the fixed end to which the RC column member is joined. However, there is a problem that there is a limit to the structural performance to be obtained. Moreover, these patent documents are based on the premise that ultra-high strength concrete is adopted, and there is a problem that material costs increase.

本発明は上記従来の課題に鑑みて創案されたものであって、RC部材と固定端の接合構造を考慮に入れて、超高強度コンクリートの採用を前提とすることなく、圧壊の発生原因である曲げモーメントによる応力を、ヒンジが発生する箇所またはヒンジが発生する前にコンクリートの圧壊が顕著に生じ得る箇所に絞って効果的に低減することが可能なRC部材の接合構造およびそれを用いた建物を提供することを目的とする。   The present invention was devised in view of the above-mentioned conventional problems, taking into account the joint structure of the RC member and the fixed end, and without causing the use of ultra-high-strength concrete, RC member joint structure capable of effectively reducing stress caused by a certain bending moment to a location where a hinge occurs or a location where concrete collapse may occur significantly before the hinge is generated, and using the same The purpose is to provide buildings.

本発明にかかるRC部材の接合構造は、主筋およびフープ筋が埋設されるとともに、該フープ筋の内側であってかつ大きな圧縮応力が偏在する側の領域に、軸方向応力を負担する減圧用鉄筋が埋設された鉄筋コンクリート部材を、該減圧用鉄筋の定着端部を固定端に定着させて、当該固定端と接合し、前記鉄筋コンクリート部材はさらに、前記主筋と重ね継ぎ手で、若しくは該主筋に対し定着が得られる配置で一端側が埋設されるとともに、他端側が、前記固定端に定着された接合部鉄筋を備え、該接合部鉄筋は、一端側が上記鉄筋コンクリート部材の材軸端部周辺の一部範囲でコンクリートと付着されていないことを特徴とする。 The RC member joint structure according to the present invention is a decompression rebar that bears axial stress in a region where the main bar and the hoop bar are embedded and a large compressive stress is unevenly distributed inside the hoop bar. The reinforced concrete member in which the reinforced concrete member is embedded is fixed to the fixed end by fixing the fixing end of the decompression reinforcing bar to the fixed end, and the reinforced concrete member is further fixed to the main reinforcing member or to the main reinforcing member. One end side is embedded in the arrangement obtained, and the other end side is provided with a joint rebar fixed to the fixed end, and the joint rebar has a partial range around the material shaft end of the reinforced concrete member. It is characterized by not being attached to concrete .

前記減圧用鉄筋は、前記鉄筋コンクリート部材の材軸端部でコンクリートと付着されていないことを特徴とする。   The decompression reinforcing bar is not adhered to concrete at a material shaft end portion of the reinforced concrete member.

前記鉄筋コンクリート部材がコンクリート製杭部材であって、該コンクリート製杭部材の杭頭部の上方部分の外径寸法を、他の部分よりも縮径して形成したことを特徴とする。   The said reinforced concrete member is a concrete pile member, Comprising: The outer diameter dimension of the upper part of the pile head part of this concrete pile member was formed by reducing in diameter rather than another part, It is characterized by the above-mentioned.

本発明にかかる建物は、上記RC部材の接合構造が、建物外周に配置される少なくとも一部の鉄筋コンクリート部材と固定端との接合に用いられることを特徴とする。   The building according to the present invention is characterized in that the joint structure of the RC member is used for joining at least a part of the reinforced concrete members arranged on the outer periphery of the building and the fixed end.

本発明にかかるRC部材の接合構造およびそれを用いた建物にあっては、RC部材と固定端の接合構造を考慮に入れて、超高強度コンクリートの採用を前提とすることなく、圧壊の発生原因である曲げモーメントによる応力を、ヒンジが発生する箇所またはヒンジが発生する前にコンクリートの圧壊が顕著に生じ得る箇所に絞って効果的に低減することができる。また、コンクリートとの付着を断って鉄筋を伸び縮み可能として、圧縮応力および引張応力の双方を負担する接合部鉄筋を追加的に設けたので、減圧用鉄筋が作用している状況下で、RC部材と固定端との接合部における抵抗力を増強でき、これにより、応力負担を効果的に減圧用鉄筋に移して、RC部材と固定端との接合部周辺でヒンジが生じることによるRC部材の損傷発生を、より効果的に防止することができる。
In the RC member joint structure and the building using the same according to the present invention, the joint structure between the RC member and the fixed end is taken into consideration, and the occurrence of crushing is made without assuming the use of ultra high strength concrete. The stress due to the bending moment, which is the cause, can be effectively reduced by narrowing down to the location where the hinge is generated or the location where the concrete collapse may occur significantly before the hinge is generated. In addition, the joint reinforcement which bears both compressive stress and tensile stress is additionally provided so that the reinforcement can be expanded and contracted by refusing to adhere to the concrete. The resistance force at the joint between the member and the fixed end can be increased, thereby effectively transferring the stress burden to the decompression rebar and the hinge of the RC member due to the generation of a hinge around the joint between the RC member and the fixed end. Damage can be prevented more effectively.

以下に、本発明にかかるRC部材の接合構造の好適な実施形態を、添付図面を参照して詳細に説明する。図1には、本発明にかかるRC部材の接合構造の第1実施形態が示されている。第1実施形態では、上方から軸力を受けるRC部材として、上層階からの荷重を負担する建物1階のRC柱部材1を例示して説明する。図1(a)は1階のRC柱部材1周辺の概略正面図、図1(b)は当該RC柱部材1内部およびその周辺の配筋を示す概略正面断面図、図1(c)は同RC柱部材1内部の配筋を示す平面断面図である。   DESCRIPTION OF EMBODIMENTS Preferred embodiments of a RC member joining structure according to the present invention will be described below in detail with reference to the accompanying drawings. FIG. 1 shows a first embodiment of a joint structure of RC members according to the present invention. In the first embodiment, the RC column member 1 on the first floor of the building that bears the load from the upper floor will be described as an example of the RC member that receives the axial force from above. FIG. 1A is a schematic front view around the RC column member 1 on the first floor, FIG. 1B is a schematic front sectional view showing the inside of the RC column member 1 and the surrounding arrangement, and FIG. It is a plane sectional view showing the bar arrangement inside the RC column member.

建物1階のRC柱部材1の柱脚部1a周辺には、縦横に配設される基礎梁2の交差部に、杭部材3上に位置させてフーチング4が設けられる。基礎梁2上には、建物1階の床スラブ5が敷設される。これら基礎梁2や杭部材3、フーチング4、床スラブ5はRC構造で構築される。RC柱部材1は、基礎梁2から立ち上げて、床スラブ5上に設けられる。RC柱部材1の柱脚部1aは、床スラブ5を含む基礎梁2を固定端として接合してもよいし、フーチング4を固定端として接合してもよい。本実施形態にあっては、RC柱部材1は、床スラブ5を含む基礎梁2を固定端として、その他のフーチング4や杭部材3を含む建物基礎部分に接合されている。   In the vicinity of the column base 1a of the RC column member 1 on the first floor of the building, a footing 4 is provided on the pile member 3 at the intersection of the foundation beams 2 arranged vertically and horizontally. A floor slab 5 on the first floor of the building is laid on the foundation beam 2. The foundation beam 2, the pile member 3, the footing 4, and the floor slab 5 are constructed with an RC structure. The RC column member 1 rises from the foundation beam 2 and is provided on the floor slab 5. The column base 1a of the RC column member 1 may be joined using the foundation beam 2 including the floor slab 5 as a fixed end, or may be joined using the footing 4 as a fixed end. In this embodiment, the RC column member 1 is joined to a building foundation portion including other footings 4 and pile members 3 with the foundation beam 2 including the floor slab 5 as a fixed end.

RC柱部材1は基本的には、柱コンクリート6の内部に、柱の周方向に間隔を隔てて配筋した柱主筋7と、これら柱主筋7を取り囲んで柱の高さ方向に間隔を隔てて配筋したフープ筋8とを埋設して形成される。RC柱部材1の下端から下方へ柱主筋7およびフープ筋8からなる柱鉄筋籠9が突出され、当該柱鉄筋籠9が基礎梁2からフーチング4に達してそれらに定着されることにより、RC柱部材1は建物基礎部分に接合される。   The RC column member 1 basically has a column main reinforcement 7 arranged in the column concrete 6 at intervals in the circumferential direction of the column, and surrounds the column main reinforcement 7 with an interval in the height direction of the columns. It is formed by burying hoop muscles 8 arranged in a row. A column rebar bar 9 comprising column main bars 7 and hoop bars 8 is projected downward from the lower end of the RC column member 1, and the column bar bar 9 reaches the footing 4 from the base beam 2 and is fixed to them. The column member 1 is joined to the building foundation.

RC柱部材1の柱コンクリート6の材料としては、普通コンクリートでも、高強度・超高強度コンクリートであってもよく、また補強材として鋼繊維やカーボン繊維、樹脂繊維等を混入したものであってもよい。また、RC柱部材1は、中空外殻プレキャストコンクリート筒体内に中詰めコンクリートを充填したものであっても、中実プレキャストコンクリートであっても、コンクリートを現場打ちして構築されるものであってもよい。   The material of the column concrete 6 of the RC column member 1 may be ordinary concrete, high strength / ultra high strength concrete, or a mixture of steel fiber, carbon fiber, resin fiber or the like as a reinforcing material. Also good. In addition, the RC column member 1 is constructed by hitting concrete on-site, whether it is a hollow shell precast concrete cylinder filled with filled concrete or solid precast concrete. Also good.

本実施形態にあっては、このようにして形成されるRC柱部材1内部に追加して、減圧用鉄筋10が埋設される。減圧用鉄筋10も、その下端部10aである定着端部が床スラブ5から基礎梁2およびフーチング4に達してそれらに定着される。「減圧用」とは、RC柱部材1内部に発生する柱軸方向の圧縮応力や引張応力、特に圧縮応力に抵抗してこれを負担し、当該鉄筋10を有していない場合に比して、柱主筋7や柱コンクリート6の負担を軽減するように機能することを意味する。材質としては、一般的な鉄筋と同等であってよい。   In the present embodiment, in addition to the RC column member 1 formed in this manner, a decompression rebar 10 is embedded. The decompression rebar 10 is also fixed to the bottom end portion 10a of the reinforcing bar 10 by reaching the foundation beam 2 and the footing 4 from the floor slab 5. “For decompression” means to resist the compressive stress and tensile stress generated in the RC column member 1 in the axial direction, in particular compressive stress and bear this, compared to the case where the reinforcing bar 10 is not provided. It means that it functions so as to reduce the burden on the column main reinforcement 7 and the column concrete 6. As a material, it may be equivalent to a general rebar.

減圧用鉄筋10は、RC柱部材1において、必要なコンクリート被り厚が確保され、かつ柱主筋7との錯綜を生じないように、フープ筋8の内側に配筋される。また、減圧用鉄筋10は、RC柱部材1の平断面において、大きな圧縮応力が偏在する側の領域に配筋される。RC柱部材1の平断面において、大きな圧縮応力が偏在する側の領域は、応力解析によって推定可能である。簡単には、例えば平面外形輪郭が長方形状の建物の場合、建物外周に位置するRC柱部材1の建物外側に面する側が、大きな圧縮応力が偏在する領域である。   In the RC column member 1, the decompression reinforcing bar 10 is arranged inside the hoop bar 8 so that a necessary concrete covering thickness is ensured and no complication with the column main bar 7 occurs. In addition, the decompression reinforcing bar 10 is arranged in a region on the side where a large compressive stress is unevenly distributed in the plane cross section of the RC column member 1. The region on the side where a large compressive stress is unevenly distributed in the plane cross section of the RC column member 1 can be estimated by stress analysis. For example, in the case of a building having a rectangular planar outline, for example, the side of the RC column member 1 located on the outer periphery of the RC column member 1 that faces the outside of the building is a region in which large compressive stress is unevenly distributed.

減圧用鉄筋10の長さ寸法は、基礎梁2等に定着される下端部10aの定着長さに加えて、柱高さ方向における応力分布に応じ、RC柱部材1内部に発生する柱軸方向の圧縮応力や引張応力を負担して、柱主筋7や柱コンクリート6の負担を軽減することが必要な柱高さ範囲に設定される。   The length of the decompression rebar 10 is the direction of the column axis generated inside the RC column member 1 in accordance with the stress distribution in the column height direction in addition to the fixing length of the lower end portion 10a fixed to the foundation beam 2 and the like. It is set to a column height range in which it is necessary to reduce the burden on the column main reinforcement 7 and the column concrete 6 by bearing the compressive stress and tensile stress.

図示例にあっては、減圧用鉄筋10は、RC柱部材1の平断面において左側位置に寄せて、2本配筋されている。減圧用鉄筋10の配筋本数は、応力解析などの結果に従い、柱主筋7や柱コンクリート6の負担を軽減することが必要な程度で、1本もしくは複数本配筋される。また図示例にあっては、2本の減圧用鉄筋10が一列に直線状に並べて配筋されているが、二列以上としてもよく、また弧状に並べるなどしてもよい。さらに減圧用鉄筋10は、複数本を束ねて1セットとし、これらセットを複数セット配筋してもよい。減圧用鉄筋10の配筋位置、すなわちRC柱部材1の柱面からの深さxはこれも、応力解析の結果などに従って、適宜に設定すればよい。   In the illustrated example, two reinforcing bars 10 for pressure reduction are arranged near the left side in the plane cross section of the RC column member 1. According to the result of stress analysis or the like, the number of reinforcing bars 10 for decompression is one or a plurality of bars to the extent that it is necessary to reduce the burden on the column main bars 7 and the column concrete 6. In the illustrated example, the two decompression reinforcing bars 10 are arranged in a straight line in a line, but may be arranged in two or more lines, or may be arranged in an arc. Further, a plurality of decompression reinforcing bars 10 may be bundled into one set, and a plurality of these sets may be arranged. The bar arrangement position of the decompression rebar 10, that is, the depth x from the column surface of the RC column member 1 may be appropriately set according to the result of stress analysis.

減圧用鉄筋10の配筋作業は、柱主筋7やフープ筋8から結束用番線で位置決めするなどして行えばよい。減圧用鉄筋10は、RC柱部材1がプレキャスト製であるときは、予め一体的に埋設しておいたり、中詰めコンクリートの打設時に配筋すればよい。RC柱部材1が現場打ちの場合には、柱主筋7等の配筋と並行して配筋を行い、その後現場打ちコンクリートを打設すればよい。   The bar arrangement work of the decompression rebar 10 may be performed by positioning from the column main reinforcement 7 or the hoop reinforcement 8 with a binding wire. When the RC column member 1 is made of precast, the decompression rebar 10 may be embedded in advance in advance, or may be arranged at the time of placing concrete-filled concrete. In the case where the RC column member 1 is on-site placement, the reinforcement is performed in parallel with the reinforcement of the column main reinforcement 7 or the like, and then on-site concrete is placed.

減圧用鉄筋10は、柱鉄筋籠9とともに、基礎梁2からフーチング4に達してそれらに定着され、これによりRC柱部材1は基礎梁2等を含む建物基礎部分に接合される。   The decompression rebar 10 reaches the footing 4 from the foundation beam 2 together with the column reinforcement bar 9 and is fixed thereto, whereby the RC column member 1 is joined to the building foundation including the foundation beam 2 and the like.

本実施形態にあっては、RC柱部材1にはさらに、接合部鉄筋11が埋設される。材質としては、一般的な鉄筋と同等であってよい。接合部鉄筋11は、少なくとも上端側11aが、柱主筋7と重ね継ぎ手の配置でRC柱部材1に埋設されるとともに、下端側11bが、固定端となる床スラブ5を含む基礎梁2からフーチング4に亘って定着される。   In the present embodiment, a joint rebar 11 is further embedded in the RC column member 1. As a material, it may be equivalent to a general rebar. The joint rebar 11 has at least the upper end side 11a embedded in the RC column member 1 in the arrangement of the column main reinforcement 7 and the overlap joint, and the lower end side 11b is footed from the foundation beam 2 including the floor slab 5 serving as a fixed end. 4 is fixed.

本実施形態では、接合部鉄筋11は、建物基礎部分でも柱主筋7と重ね継ぎ手の配置となっている。重ね継ぎ手の配置とは、柱主筋7と接合部鉄筋11との間で応力伝達が行える程度に重なることをいい、重ね継ぎ手のように完全に重なる場合と定着のように少し離れる場合の双方を含む。定着は、ナット等の定着用の金物を用いる場合とフック状に折り曲げる場合などがある。   In the present embodiment, the joint rebar 11 is arranged at the building foundation portion with the column main reinforcement 7 and the lap joint. Arrangement of lap joints means that they are overlapped to such an extent that stress can be transmitted between the column main bars 7 and the joint rebars 11. Both the case where they overlap completely like a lap joint and the case where they are separated a little like fixing. Including. For fixing, there are a case where a fixing hardware such as a nut is used and a case where it is bent into a hook shape.

また、接合部鉄筋11は、上端側11aが床スラブ5上方の柱脚部1a周辺の一部範囲で、柱コンクリート6と付着されていない(以下、当該一部範囲を、「付着切り部P」という)。柱コンクリート6と付着させない付着切り部Pは、周知の手段で形成すればよく、例えば、接合部鉄筋11回りにグリースを塗布したり、布やスリーブを被せるなど、コンクリートの付着作用を阻止すればよい。   Further, the joint rebar 11 is not attached to the column concrete 6 at the upper end side 11a around the column base 1a above the floor slab 5 (hereinafter referred to as “attachment cutting portion P”). "). The adhesion cut portion P that does not adhere to the column concrete 6 may be formed by a known means. For example, if the grease is applied around the joint rebar 11 or is covered with a cloth or a sleeve, the adhesion action of the concrete is prevented. Good.

接合部鉄筋11は基本的に、接合部であるRC柱部材1の柱脚部1aと、床スラブ5を含む基礎梁2との境界において、付着切り部Pを形成した側の部材、本実施形態ではRC柱部材1に生じる曲げモーメントに起因する圧縮応力や引張応力の一部を負担する。さらに詳細には、接合部鉄筋11は、付着切り部Pを除くコンクリートと付着している範囲がRC柱部材1等の変形に追従する一方で、付着切り部Pがその範囲で、柱高さ方向に自由に伸び縮みし、さらに降伏するなどして、RC柱部材1と基礎梁2等との境界における柱軸方向の圧縮応力および引張応力の双方を効果的に負担する。   The joint rebar 11 is basically a member on the side where the adhesion cut portion P is formed at the boundary between the column base 1a of the RC column member 1 which is the joint and the foundation beam 2 including the floor slab 5. In the embodiment, a part of compressive stress and tensile stress due to the bending moment generated in the RC column member 1 is borne. More specifically, in the joint rebar 11, the range of adhesion with the concrete excluding the adhesion cut portion P follows the deformation of the RC column member 1 and the like, while the adhesion cut portion P is within the range and the column height. By freely expanding and contracting in the direction and further yielding, both the compressive stress and tensile stress in the column axis direction at the boundary between the RC column member 1 and the foundation beam 2 and the like are effectively borne.

従って、接合部鉄筋11を備えた場合、RC柱部材1と基礎梁2を含む建物基礎部分との接合においては、柱主筋7がRC柱部材1から基礎梁2およびフーチング4にわたって存在し、その周辺まで柱主筋7は周囲のコンクリートと付着しているので、柱脚部1aの付着切り部Pに対応する箇所にはコンクリートと一体となった柱主筋7が存在していて、ヒンジが発生するRC柱部材1の柱脚部1aに抵抗力を持たせることができる。   Therefore, in the case where the joint rebar 11 is provided, in the joining of the RC column member 1 and the building foundation portion including the foundation beam 2, the column main reinforcement 7 exists from the RC column member 1 to the foundation beam 2 and the footing 4. Since the column main reinforcement 7 adheres to the surrounding concrete to the periphery, the column main reinforcement 7 integrated with the concrete exists at a position corresponding to the adhesion cut portion P of the column base 1a, and a hinge is generated. The column base 1a of the RC column member 1 can be given resistance.

接合部鉄筋11は図示にあっては、すべての柱主筋7に対して配筋されているが、一部の柱主筋7に対して配筋するようにしてもよい。接合部鉄筋11の長さは、基礎梁2を含む建物基礎部分からRC柱部材1の柱脚部1a周辺を超える長さ寸法であれば、適宜に設定してよい。図示例にあっては、フーチング7から柱脚部1aよりも上方に達するように設定されている。   In the drawing, the joint reinforcing bars 11 are arranged with respect to all the column main reinforcing bars 7, but may be arranged with respect to a part of the column main reinforcing bars 7. The length of the joint rebar 11 may be appropriately set as long as the length exceeds the periphery of the column base 1 a of the RC column member 1 from the building foundation including the foundation beam 2. In the illustrated example, it is set so as to reach from the footing 7 above the column base 1a.

接合部鉄筋11と減圧用鉄筋10の長さ関係は、本実施形態にあっては、床スラブ5下の建物基礎部分で同じ定着長さであり、RC柱部材1内部で、接合部鉄筋11が減圧用鉄筋10よりも長くなるように設定されている。しかしながら、これら接合部用鉄筋11と減圧用鉄筋10の長さ関係は、応力解析の結果などに従って、適宜に設定すればよい。すなわち、減圧用鉄筋10は、RC柱部材1内部において、大きな圧縮応力が偏在する側の領域で柱軸方向の応力を負担する機能を有し、接合部鉄筋11は、接合部の抵抗力を増大する機能を有することから、それぞれが発揮すべき性能に従って、長さ関係を設定すればよい。接合部鉄筋11の配筋作業は、減圧用鉄筋10の配筋作業と同様にして行えばよい。   In the present embodiment, the length relationship between the joint rebar 11 and the decompression rebar 10 is the same fixing length in the building foundation portion under the floor slab 5, and the joint rebar 11 within the RC column member 1. Is set to be longer than the decompression rebar 10. However, the length relationship between the joint rebar 11 and the decompression rebar 10 may be appropriately set according to the result of stress analysis. That is, the decompression rebar 10 has a function of bearing the stress in the column axis direction in the region where the large compressive stress is unevenly distributed inside the RC column member 1, and the joint rebar 11 has the resistance of the joint. Since it has an increasing function, the length relationship may be set according to the performance to be exhibited by each. The bar arrangement work of the joint rebar 11 may be performed in the same manner as the bar arrangement work of the decompression rebar 10.

次に、第1実施形態にかかるRC部材の接合構造の作用について説明する。RC柱部材1を、基礎梁2を含む建物基礎部分に接合する作業は、上記減圧用鉄筋10および接合部鉄筋11を追加して配筋するだけであって、従来周知の種々の工法によって構築することができる。   Next, the effect | action of the joining structure of RC member concerning 1st Embodiment is demonstrated. The work of joining the RC column member 1 to the building foundation part including the foundation beam 2 is simply adding the rebar 10 and the joint rebar 11 and constructing it by various well-known methods. can do.

RC柱部材1は、軸力を負担している状態で横方向から地震力を受けると、その柱脚部1aに曲げモーメントが発生する。この曲げモーメントにより、柱脚部1aの平断面において、一方は引張側となり他方が圧縮側となって、ヒンジが生じる(図10参照)。すなわち、RC柱部材1には、その平断面において、大きな圧縮応力が偏在する領域が生じる。   When the RC column member 1 receives an earthquake force from the lateral direction while bearing an axial force, a bending moment is generated at the column base 1a. Due to this bending moment, in the flat cross section of the column base portion 1a, one becomes the tension side and the other becomes the compression side, and a hinge is generated (see FIG. 10). That is, the RC column member 1 has a region in which a large compressive stress is unevenly distributed in the plane cross section.

第1実施形態にあっては、RC柱部材1のこの領域に、床スラブ5を含む基礎梁2に下端部10aを定着させて、軸方向応力を負担する減圧用鉄筋10を埋設しているので、偏在する圧縮応力をこれに抵抗する減圧用鉄筋10に負担させることができ、またその応力を固定端である基礎梁2側へ流して、柱主筋7や柱コンクリート6が受ける圧縮応力を緩和することができる。   In the first embodiment, in this region of the RC column member 1, the lower end portion 10a is fixed to the foundation beam 2 including the floor slab 5, and the decompression rebar 10 that bears the axial stress is embedded. Therefore, the unevenly distributed compressive stress can be borne by the decompression rebar 10 which resists this, and the compressive stress received by the column main reinforcement 7 and the column concrete 6 by flowing the stress to the foundation beam 2 side which is a fixed end. Can be relaxed.

このように、基礎梁2側に定着させた減圧用鉄筋10によって、基礎梁2を含む建物基礎部分を含めて、圧縮応力を負担することができるので、柱脚部1aでの圧壊を遅延させたり、圧壊発生を防止することができる。これにより、RC柱部材1の曲げ耐力をより長く維持することができる。また、圧壊発生を防止できるので、RC柱部材1に断面欠損が生じることもなく、RC柱部材1の軸方向耐力も維持することができる。   Thus, the decompression rebar 10 fixed on the foundation beam 2 side can bear the compressive stress including the building foundation part including the foundation beam 2, so that the collapse at the column base 1 a is delayed. Or the occurrence of crushing can be prevented. Thereby, the bending strength of RC pillar member 1 can be maintained longer. Moreover, since crushing generation | occurrence | production can be prevented, a cross-sectional defect does not arise in RC pillar member 1, but the axial direction yield strength of RC pillar member 1 can also be maintained.

また、柱軸方向にコンクリートとの付着を断って鉄筋を伸び縮み可能とする付着切り部Pを備えて、圧縮応力および引張応力の双方を負担する接合部鉄筋11を追加的に設けたので、減圧用鉄筋10が作用している状況下で、RC柱部材1と固定端となる床スラブ5を含む基礎梁2との接合部における抵抗力を増強でき、これにより、応力負担を効果的に減圧用鉄筋10に移して、RC柱部材1と基礎梁2との接合部周辺でヒンジが生じることによるRC柱部材1の損傷発生を、より効果的に防止することができる。   In addition, since it has an adhesion cut portion P that prevents the adhesion to the concrete in the column axis direction and allows the reinforcement to expand and contract, and additionally provided the joint reinforcement 11 that bears both compressive stress and tensile stress, Under the situation where the rebar 10 for decompression is acting, it is possible to increase the resistance at the joint between the RC column member 1 and the foundation beam 2 including the floor slab 5 serving as a fixed end, thereby effectively reducing the stress burden. It is possible to more effectively prevent the RC column member 1 from being damaged due to the occurrence of a hinge around the joint between the RC column member 1 and the foundation beam 2 by moving to the decompression rebar 10.

以上説明したように、第1実施形態にかかるRC部材の接合構造によれば、RC柱部材1と床スラブ5を含む基礎梁2の接合構造を考慮に入れて、背景技術で述べられているような超高強度コンクリートの採用を前提とすることなく、圧壊の発生原因である曲げモーメントによる応力を、ヒンジが発生する箇所またはヒンジが発生する前にコンクリートの圧壊が顕著に生じ得る箇所に絞って効果的に低減することができる。   As described above, the RC member joint structure according to the first embodiment is described in the background art taking into account the joint structure of the foundation beam 2 including the RC column member 1 and the floor slab 5. Without assuming the use of such ultra-high-strength concrete, the stress due to the bending moment, which is the cause of crushing, is narrowed down to the location where the hinge occurs or where the concrete can be significantly collapsed before the hinge occurs. Can be effectively reduced.

また、当該接合構造の施工に際しては、柱鉄筋籠9に追加的に、減圧用鉄筋10および接合部鉄筋11を配筋するだけでよく、低コストかつ良好な施工性で、RC柱部材1の圧壊を防止することができる。減圧用鉄筋10は、フープ筋8の内側に配筋するので、柱主筋7との錯綜も防止して、配筋作業が複雑化することを防止しつつ、RC柱部材1の圧壊を防止できる。   Moreover, when constructing the joint structure, it is only necessary to additionally arrange the decompression rebar 10 and the joint rebar 11 to the column rebar rod 9, and the RC column member 1 can be constructed at low cost and with good workability. Crushing can be prevented. Since the decompression rebar 10 is arranged inside the hoop 8, it is possible to prevent the RC column member 1 from being crushed while preventing the complication of the bar arrangement by preventing the complication with the column main reinforcement 7. .

図2には、本発明にかかるRC部材の接合構造の第2実施形態が示されている。第2実施形態は、基礎梁2を備えていない建物に適用した例である。基礎梁2を備えていない建物の場合には、フーチング4の上面を固定端として考慮すればよい。   FIG. 2 shows a second embodiment of the RC member joining structure according to the present invention. The second embodiment is an example applied to a building that does not include the foundation beam 2. In the case of a building that does not include the foundation beam 2, the upper surface of the footing 4 may be considered as a fixed end.

第1実施形態と異なる点は、固定端がフーチング4上面となることから、接合部鉄筋11の付着切り部Pを、フーチング4上面を境界として設定する。この場合、減圧用鉄筋10は、図示しない土間スラブ上の露出された柱脚部1aまで設けることが好ましい。このような第2実施形態にあっても、固定端を考慮する位置が異なるだけで、第1実施形態と同様の作用効果を得ることができることはもちろんである。   The difference from the first embodiment is that the fixed end is the upper surface of the footing 4, and therefore the adhesion cut portion P of the joint rebar 11 is set with the upper surface of the footing 4 as a boundary. In this case, it is preferable that the decompression rebar 10 is provided up to the exposed column base 1a on the soil slab (not shown). Even in the second embodiment, it is needless to say that the same effects as those of the first embodiment can be obtained only by changing the position in consideration of the fixed end.

図3には第3実施形態が、図4には第4実施形態が示されている。これら実施形態は、第1および第2実施形態の接合部鉄筋11を省略したものである。減圧用鉄筋10は3本配筋されていて、当該減圧用鉄筋10によって得られる作用効果は、上記実施形態と同様である。   FIG. 3 shows a third embodiment, and FIG. 4 shows a fourth embodiment. In these embodiments, the joint rebar 11 of the first and second embodiments is omitted. Three reinforcing bars 10 for decompression are arranged, and the effects obtained by the reinforcing bars 10 for decompression are the same as in the above embodiment.

また特に、図3では、上記実施形態と同様に、減圧用鉄筋10が全体的にコンクリートと付着されているのに対し、図4では、減圧用鉄筋10は、上記第1および第2実施形態で説明した接合部鉄筋11と同様な構成で、その上端部10b側が床スラブ5上面もしくはフーチング4上面とRC柱部材1との接合位置を境界として、上方の柱脚部1a周辺の一部範囲で、柱コンクリート6と付着されていない(以下、当該一部範囲を、「非拘束伸縮部Q」という)。   Further, in particular, in FIG. 3, the decompression rebar 10 is adhered to concrete as a whole, as in the above embodiment, whereas in FIG. 4, the decompression rebar 10 is depicted in the first and second embodiments. The upper end 10b side is a partial range around the upper column base 1a, with the upper end 10b side being the boundary between the upper surface of the floor slab 5 or the upper surface of the footing 4 and the RC column member 1 in the same configuration as described in the above. Therefore, it is not attached to the column concrete 6 (hereinafter, the partial range is referred to as “unconstrained expansion / contraction portion Q”).

非拘束伸縮部Qでは、減圧用鉄筋10が負担する圧縮応力等は柱コンクリート6に伝達されることはない。このような非拘束伸縮部Qを形成することで、減圧用鉄筋10は、非拘束伸縮部Qを除くコンクリートと付着している範囲がRC柱部材1等の変形に追従する一方で、非拘束伸縮部Qがその範囲で、柱高さ方向に自由に伸び縮みしつつコンクリートを介さずに応力を伝達し、さらに降伏するなどして、付着を除去した範囲のコンクリートの応力を当該非拘束伸縮部Qの軸応力および曲げ応力で緩和するので、曲げモーメントに起因するヒンジが生じても、柱軸方向の圧縮応力および引張応力の双方をより効果的に負担して、柱脚部1aの曲げ耐力を維持することができる。減圧用鉄筋10は、引張降伏後、さらに効果的に圧縮力を負担していくので、非拘束伸縮部Qの形成はきわめて有効である。   In the unconstrained stretchable part Q, the compressive stress or the like borne by the decompression rebar 10 is not transmitted to the column concrete 6. By forming such an unconstrained expansion / contraction part Q, the decompression rebar 10 is not unconstrained while the range attached to the concrete excluding the unconstrained expansion / contraction part Q follows the deformation of the RC column member 1 and the like. The expansion / contraction part Q extends and contracts freely in the column height direction within that range, transmits stress without passing through the concrete, and further yields, for example, the unconstrained expansion and contraction of the concrete in the range where adhesion has been removed. Since the axial stress and the bending stress of the portion Q are alleviated, even if a hinge due to a bending moment occurs, both the compressive stress and the tensile stress in the column axial direction are more effectively borne and the column leg 1a is bent. Yield strength can be maintained. Since the decompression rebar 10 bears the compressive force more effectively after the tensile yield, the formation of the unconstrained expansion / contraction part Q is extremely effective.

図示しないけれども、第1および第2実施形態の減圧用鉄筋10に非拘束伸縮部Qを設けるようにしてもよい。   Although not shown, an unconstrained expansion / contraction portion Q may be provided in the decompression rebar 10 of the first and second embodiments.

図5には、本発明にかかるRC部材の接合構造の第5実施形態が示されている。第5実施形態では、上方から軸力を受けるRC部材として、フーチング4上からの荷重を負担するRC製の杭部材3を例示して説明する。図5(a)は杭頭部3a周辺の配筋を示す概略正面断面図、図5(b)は同杭頭部3a内部の配筋を示す平面断面図である。杭部材3としては、既製杭や場所打ち杭など、従来周知のどのような構造形式・施工形式のものであってもよい。図示例にあっては、基礎梁2は示されていないが、基礎梁2を備えた建物基礎部分であってもよい。杭部材3の杭頭部3a上には、フーチング4を介して、RC柱部材1が設けられる。   FIG. 5 shows a fifth embodiment of a joint structure of RC members according to the present invention. In the fifth embodiment, an RC pile member 3 that bears a load from above the footing 4 will be described as an example of an RC member that receives an axial force from above. FIG. 5A is a schematic front cross-sectional view showing the bar arrangement around the pile head 3a, and FIG. 5B is a plan cross-sectional view showing the bar arrangement inside the pile head 3a. The pile member 3 may be of any conventionally known structure type / construction type, such as a ready-made pile or a cast-in-place pile. In the illustrated example, the foundation beam 2 is not shown, but may be a building foundation portion provided with the foundation beam 2. An RC column member 1 is provided on a pile head 3 a of the pile member 3 via a footing 4.

杭部材3は基本的には、杭コンクリート12の内部に、杭の周方向に間隔を隔てて配筋した杭主筋13と、これら杭主筋13を取り囲んで杭の高さ方向に間隔を隔てて配筋したフープ筋14とからなる杭鉄筋籠15を埋設して形成される。このように形成された杭部材3の杭頭部3a上に、フーチング4が接合される。フーチング4の下面が杭部材3の固定端となる。   The pile member 3 is basically arranged inside the pile concrete 12 with pile main bars 13 arranged at intervals in the circumferential direction of the pile, and surrounding these pile main bars 13 with an interval in the height direction of the pile. It is formed by embedding a pile reinforcing bar 15 composed of hoop bars 14 that have been arranged. The footing 4 is joined on the pile head 3a of the pile member 3 formed in this way. The lower surface of the footing 4 is a fixed end of the pile member 3.

本実施形態にあっては、このようにして形成される杭部材3内部に追加して、減圧用鉄筋10が埋設される。減圧用鉄筋10は、その上端部10bである定着端部がフーチング4に定着される。減圧用鉄筋10は、第1実施形態のRC柱部材1の場合と同様に、必要なコンクリート被り厚が確保され、かつ杭主筋13との錯綜を生じないように、フープ筋14の内側に配筋される。また、減圧用鉄筋10は、杭部材3の平断面において、大きな圧縮応力が偏在する側の領域に配筋される。   In this embodiment, in addition to the pile member 3 formed in this manner, the decompression rebar 10 is embedded. The decompression rebar 10 is fixed to the footing 4 at the fixing end, which is the upper end 10 b. As in the case of the RC column member 1 of the first embodiment, the decompression rebar 10 is arranged inside the hoop bar 14 so that a necessary concrete covering thickness is ensured and no complication with the pile main bar 13 occurs. Be streaked. Further, the rebar 10 for decompression is arranged in a region where a large compressive stress is unevenly distributed in the plane cross section of the pile member 3.

減圧用鉄筋10の長さ寸法は、フーチング4に定着される上端部10bの定着長さに加えて、杭の深さ方向における応力分布に応じ、杭部材3内部に発生する杭軸方向の圧縮応力や引張応力を負担して、杭主筋13や杭コンクリート12の負担を軽減することが必要な杭深さ範囲に設定される。   The length of the decompression reinforcing bar 10 is the compression in the pile axial direction generated in the pile member 3 in accordance with the stress distribution in the depth direction of the pile in addition to the fixing length of the upper end portion 10b fixed to the footing 4. It is set to a pile depth range where it is necessary to reduce the load on the pile main bars 13 and the pile concrete 12 by bearing stress and tensile stress.

図示例にあっては、減圧用鉄筋10は、杭部材3の平断面において左側位置に寄せて、3本配筋されている。減圧用鉄筋10の配筋本数は、応力解析などの結果に従い、杭主筋13や杭コンクリート12の負担を軽減することが必要な程度で、1本もしくは複数本配筋される。また図示例にあっては、3本の減圧用鉄筋10が一列に直線状に並べて配筋されているが、二列以上としてもよく、また弧状に並べるなどしてもよい。さらに減圧用鉄筋10は、複数本を束ねて1セットとし、これらセットを複数セット配筋してもよい。減圧用鉄筋10の配筋位置、すなわち杭部材3の外面からの深さyはこれも、応力解析の結果などに従って、適宜に設定すればよい。   In the illustrated example, three reinforcing bars 10 for pressure reduction are arranged near the left side in the plane cross section of the pile member 3. The number of reinforcing bars 10 for decompression is set to one or more bars to the extent that it is necessary to reduce the load on the pile main bars 13 and the pile concrete 12 according to the result of stress analysis or the like. Further, in the illustrated example, the three decompression reinforcing bars 10 are arranged in a straight line in a line, but may be arranged in two or more lines, or may be arranged in an arc. Further, a plurality of decompression reinforcing bars 10 may be bundled into one set, and a plurality of these sets may be arranged. The bar arrangement position of the decompression rebar 10, that is, the depth y from the outer surface of the pile member 3 may be appropriately set according to the result of stress analysis.

減圧用鉄筋10の配筋作業は、杭主筋13やフープ筋14から結束用番線で位置決めするなどして行えばよい。減圧用鉄筋10は、杭部材3が既製杭であるときは、予め一体的に埋設しておいたり、中詰めコンクリートの打設時に配筋すればよい。杭部材3が現場打ちの場合には、杭主筋13等の配筋と並行して配筋を行い、その後現場打ちコンクリートを打設すればよい。減圧用鉄筋10は、フーチング4に定着され、これにより杭部材3はフーチング4と接合される。   The bar arrangement work of the decompression reinforcing bar 10 may be performed by positioning from the pile main reinforcing bar 13 or the hoop bar 14 with a binding wire. When the pile member 3 is an off-the-shelf pile, the decompression rebar 10 may be embedded in advance in advance, or may be arranged at the time of placing in-filled concrete. When the pile member 3 is placed on-site, the placement is performed in parallel with the reinforcement such as the pile main reinforcement 13 and then the on-site cast concrete is placed. The decompression rebar 10 is fixed to the footing 4, whereby the pile member 3 is joined to the footing 4.

本実施形態にあっても、杭部材3にはさらに、接合部鉄筋11が埋設される。接合部鉄筋11は、少なくとも下端側11bが、杭主筋13と重ね継ぎ手の配置で杭部材3に埋設されるとともに、上端側11aが、固定端となるフーチング4に定着される。また、接合部鉄筋11は、下端側11bが杭頭部3a周辺の一部範囲で、杭コンクリート12と付着されない付着切り部Pとされる。   Even in the present embodiment, the joint rebar 11 is further embedded in the pile member 3. At least the lower end side 11b of the joint rebar 11 is embedded in the pile member 3 in an arrangement of the pile main reinforcement 13 and the lap joint, and the upper end side 11a is fixed to the footing 4 serving as a fixed end. Moreover, the joining part reinforcement 11 is made into the adhesion cut part P which the lower end side 11b does not adhere to the pile concrete 12 in the partial range of the pile head 3a periphery.

接合部鉄筋11は基本的に、接合部である杭部材3の杭頭部3aと、フーチング4下面との境界において、付着切り部Pを形成した側の部材、本実施形態では杭部材3に生じる曲げモーメントに起因する圧縮応力や引張応力の一部を負担する。   The joint rebar 11 is basically a member on the side where the adhesion cut portion P is formed at the boundary between the pile head 3a of the pile member 3 which is a joint and the lower surface of the footing 4, which is the pile member 3 in this embodiment. It bears a part of the compressive stress and tensile stress caused by the generated bending moment.

接合部鉄筋11は図示にあっては、すべての杭主筋13に対して配筋されているが、一部の杭主筋13に対して配筋するようにしてもよい。接合部鉄筋11の長さは、フーチング4から杭部材3の杭頭部3a周辺を超える長さ寸法であれば、適宜に設定してよい。図示例にあっては、フーチング4から杭頭部3aよりも下方に達するように設定されている。   In the figure, the joint reinforcing bars 11 are arranged for all the pile main bars 13, but may be arranged for a part of the pile main bars 13. The length of the joint rebar 11 may be appropriately set as long as the length exceeds the periphery of the pile head 3 a of the pile member 3 from the footing 4. In the illustrated example, the footing 4 is set so as to reach the lower side than the pile head 3a.

接合部鉄筋11と減圧用鉄筋10の長さ関係は、本実施形態にあっては、フーチング4で同じ定着長さであり、杭部材3内部で、接合部鉄筋11が減圧用鉄筋10よりも長くなるように設定されている。しかしながら、これら接合部用鉄筋11と減圧用鉄筋10の長さ関係は、応力解析の結果などに従って、適宜に設定すればよい。すなわち、減圧用鉄筋10は、杭部材3内部において、大きな圧縮応力が偏在する側の領域で杭軸方向の応力を負担する機能を有し、接合部鉄筋11は、接合部の抵抗力を増大する機能を有することから、それぞれが発揮すべき性能に従って、長さ関係を設定すればよい。接合部鉄筋11の配筋作業は、減圧用鉄筋10の配筋作業と同様にして行えばよい。   In the present embodiment, the length relationship between the joint rebar 11 and the decompression rebar 10 is the same fixing length in the footing 4, and the joint rebar 11 is inside the pile member 3 more than the decompression rebar 10. It is set to be long. However, the length relationship between the joint rebar 11 and the decompression rebar 10 may be appropriately set according to the result of stress analysis. That is, the rebar 10 for decompression has a function to bear the stress in the pile axis direction in the region where the large compressive stress is unevenly distributed inside the pile member 3, and the joint rebar 11 increases the resistance of the joint. Therefore, the length relationship may be set in accordance with the performance to be exhibited by each. The bar arrangement work of the joint rebar 11 may be performed in the same manner as the bar arrangement work of the decompression rebar 10.

次に、第5実施形態にかかるRC部材の接合構造の作用について説明する。杭部材3を、フーチング4に接合する作業は、上記減圧用鉄筋10および接合部鉄筋11を追加して配筋するだけであって、従来周知の種々の工法によって構築することができる。   Next, the effect | action of the junction structure of RC member concerning 5th Embodiment is demonstrated. The operation of joining the pile member 3 to the footing 4 is simply adding and placing the decompression reinforcing bar 10 and the joining part reinforcing bar 11, and can be constructed by various well-known methods.

杭部材3は、軸力を負担している状態で横方向から地震力を受けると、その杭頭部3aに曲げモーメントが発生する。この曲げモーメントにより、杭頭部3aの平断面において、一方は引張側となり他方が圧縮側となって、ヒンジが生じる。すなわち、杭部材3には、その平断面において、大きな圧縮応力が偏在する領域が生じる。   When the pile member 3 receives an earthquake force from the lateral direction while bearing an axial force, a bending moment is generated in the pile head 3a. Due to this bending moment, in the plane cross section of the pile head 3a, one becomes the tension side and the other becomes the compression side, and a hinge is generated. That is, the pile member 3 has a region in which a large compressive stress is unevenly distributed in the plane cross section.

第5実施形態にあっては、杭部材3のこの領域に、フーチング4へ上端部10bを定着させて、軸方向応力を負担する減圧用鉄筋10を配筋しているので、偏在する圧縮応力をこれに抵抗する減圧用鉄筋10に負担させることができ、またその応力を固定端であるフーチング4側へ流して、杭主筋13や杭コンクリート12が受ける圧縮応力を緩和することができる。   In the fifth embodiment, the upper end portion 10b is fixed to the footing 4 in this region of the pile member 3, and the decompression rebar 10 that bears the axial stress is arranged, so that the compressive stress is unevenly distributed. Can be borne by the pressure-reducing reinforcing bar 10 that resists this, and the stress is passed to the footing 4 side, which is the fixed end, so that the compressive stress received by the pile main bar 13 and the pile concrete 12 can be relieved.

このように、フーチング4側に定着させた減圧用鉄筋10によって、建物基礎部分を含めて、圧縮応力を負担することができるので、杭頭部3aでの圧壊を遅延させたり、圧壊発生を防止することができる。これにより、杭部材3の曲げ耐力をより長く維持することができる。また、圧壊発生を防止できるので、杭部材3に断面欠損が生じることもなく、杭部材3の軸方向耐力も維持することができる。   In this way, the decompression rebar 10 fixed on the footing 4 side can bear the compressive stress including the building foundation, so that the collapse at the pile head 3a is delayed and the occurrence of the collapse is prevented. can do. Thereby, the bending strength of the pile member 3 can be maintained longer. Moreover, since crushing generation | occurrence | production can be prevented, a cross-sectional defect | deletion does not arise in the pile member 3, but the axial direction yield strength of the pile member 3 can also be maintained.

また、杭軸方向に鉄筋を伸び縮みさせる付着切り部Pを備えて、圧縮応力および引張応力の双方を負担する接合部鉄筋11を追加的に設けたので、減圧用鉄筋10が作用している状況下で、杭部材3と固定端となるフーチング4との接合部における抵抗力を増強でき、これにより、応力負担を効果的に減圧用鉄筋10に移して、杭部材3とフーチング4との接合部周辺でヒンジが生じることによる杭部材3の損傷発生を、より効果的に防止することができる。   Moreover, since the adhesion cut part P which makes a reinforcing bar expand and contract in a pile axial direction was provided, and the joint part reinforcement 11 which bears both a compressive stress and a tensile stress was additionally provided, the reinforcing bar 10 for pressure reduction is acting. Under the circumstances, the resistance force at the joint between the pile member 3 and the footing 4 serving as the fixed end can be increased, thereby effectively transferring the stress load to the rebar 10 for decompression, and the pile member 3 and the footing 4. It is possible to more effectively prevent damage to the pile member 3 due to the occurrence of hinges around the joint.

以上説明したように、第5実施形態にかかるRC部材の接合構造にあっても、杭部材3とフーチング4の接合構造を考慮に入れて、背景技術で述べられているような超高強度コンクリートの採用を前提とすることなく、圧壊の発生原因である曲げモーメントによる応力を、ヒンジが発生する箇所またはヒンジが発生する前にコンクリートの圧壊が顕著に生じ得る箇所に絞って効果的に低減することができる。   As described above, even in the RC member joint structure according to the fifth embodiment, the super high-strength concrete as described in the background art, taking into account the joint structure of the pile member 3 and the footing 4 Without presupposing the adoption of, the stress due to the bending moment, which is the cause of crushing, is effectively reduced by focusing on the location where the hinge occurs or the location where concrete crushing can occur significantly before the hinge occurs be able to.

また、当該接合構造の施工に際しては、杭鉄筋籠15に追加的に、減圧用鉄筋10および接合部鉄筋11を配筋するだけでよく、低コストかつ良好な施工性で、杭部材3の圧壊を防止することができる。減圧用鉄筋10は、フープ筋14の内側に配筋するので、杭主筋13との錯綜も防止して、配筋作業が複雑化することを防止しつつ、杭部材3の圧壊を防止できる。   Moreover, when constructing the joint structure, it is only necessary to additionally arrange the decompression rebar 10 and the joint rebar 11 to the pile rebar rod 15, and the pile member 3 can be crushed with low cost and good workability. Can be prevented. Since the decompression reinforcing bar 10 is arranged inside the hoop reinforcement 14, it is possible to prevent the pile member 3 from being collapsed while preventing complication with the pile main reinforcement 13 and preventing the reinforcement work from being complicated.

図6および図7には、第6および第7実施形態が示されている。これら実施形態は、杭部材3を対象とした、上記第3および第4実施形態に相当するRC部材の接合構造である。これら実施形態は、第5実施形態の接合部鉄筋11を省略したものである。   6 and 7 show sixth and seventh embodiments. These embodiments are RC member joint structures corresponding to the third and fourth embodiments, with the pile member 3 as a target. In these embodiments, the joint rebar 11 of the fifth embodiment is omitted.

図6では、上記実施形態と同様に、減圧用鉄筋10が全体的にコンクリートと付着されているのに対し、図7では、減圧用鉄筋10は、その下端部10a側がフーチング4下面と杭部材3との接合位置を境界として、下方の杭頭部3a周辺の一部範囲で非拘束伸縮部Qとされている。   In FIG. 6, as in the above embodiment, the decompression rebar 10 is attached to the concrete as a whole, whereas in FIG. 7, the decompression rebar 10 has a lower end portion 10 a side at the bottom of the footing 4 and a pile member. 3 is defined as an unconstrained expansion / contraction part Q in a partial range around the lower pile head 3a with the joint position as a boundary.

このように非拘束伸縮部Qを形成することで、減圧用鉄筋10は、非拘束伸縮部Qを除くコンクリートと付着している範囲が杭部材3等の変形に追従する一方で、非拘束伸縮部Qがその範囲で、杭深さ方向に自由に伸び縮みし、さらに降伏するなどして、曲げモーメントに起因するヒンジが生じても、杭軸方向の圧縮応力および引張応力の双方をより効果的に負担することができる。   By forming the unconstrained expansion and contraction portion Q in this manner, the decompression rebar 10 is in a non-constrained expansion and contraction range while the area adhering to the concrete excluding the unconstrained expansion and contraction portion Q follows the deformation of the pile member 3 and the like. Even if the part Q is freely expanded and contracted in the pile depth direction within that range and yields a hinge caused by a bending moment, both compression stress and tensile stress in the pile axis direction are more effective. Can be paid.

図示しないけれども、第5実施形態の減圧用鉄筋10に非拘束伸縮部Qを設けるようにしてもよい。   Although not shown, an unconstrained expansion / contraction portion Q may be provided in the decompression rebar 10 of the fifth embodiment.

図8には、第8実施形態が示されている。第8実施形態では、第5実施形態の構成に加えて、杭頭部3aの上方部分に、外径寸法が杭部材3の他の部分よりも縮径された縮径部16が形成される。縮径部16は、杭部材3の外回りから外方へはみ出さないように、杭部材3と同心で形成される。これにより、縮径部16を挟んで、フーチング4と杭部材3との間に、杭部材3の周方向に沿って環状の隙間Vが形成される。この隙間Vにより、杭部材3の杭頭部3aが曲げモーメントによる回転作用を受けたときに、杭部材3の杭頭部3aがフーチング4下面に押し付けられることを防止して、これによっても圧壊の発生を防止することができる。   FIG. 8 shows an eighth embodiment. In the eighth embodiment, in addition to the configuration of the fifth embodiment, a reduced-diameter portion 16 whose outer diameter dimension is smaller than the other portion of the pile member 3 is formed in the upper portion of the pile head 3a. . The reduced diameter portion 16 is formed concentrically with the pile member 3 so as not to protrude outward from the outer periphery of the pile member 3. Thus, an annular gap V is formed along the circumferential direction of the pile member 3 between the footing 4 and the pile member 3 with the reduced diameter portion 16 interposed therebetween. This gap V prevents the pile head 3a of the pile member 3 from being pressed against the lower surface of the footing 4 when the pile head 3a of the pile member 3 is subjected to a rotating action due to a bending moment, and this also crushes. Can be prevented.

また、縮径部16により杭部材3の杭頭部3aが絞られた形態となって応力が増大するけれども、接合部鉄筋11の付着切り部Pによって杭頭部3aとフーチング4との抵抗力を増大でき、縮径部16回りの応力を接合部鉄筋11に負担させて、杭部材3の健全性を確保することができる。図示しないけれども、第8実施形態の減圧用鉄筋10に非拘束伸縮部Qを設けるようにしてもよく、これにより、縮径部16周辺に対する応力緩和作用をさらに向上することができる。   In addition, the pile head 3 a of the pile member 3 is narrowed by the reduced diameter portion 16 and the stress increases, but the resistance force between the pile head 3 a and the footing 4 by the adhesion cut portion P of the joint rebar 11. The stress around the reduced diameter portion 16 can be borne by the joint rebar 11 and the soundness of the pile member 3 can be ensured. Although not shown, an unconstrained expansion / contraction portion Q may be provided in the decompression rebar 10 according to the eighth embodiment, whereby the stress relaxation effect on the periphery of the reduced diameter portion 16 can be further improved.

さらに、上記実施形態の変形例として、図4および図5に二点鎖線Zで示したように、RC柱部材1の下端や杭部材3の上端に凸球面部を形成するとともに、床スラブ5の上面やフーチング4下面に、対応する凹球面部を形成し、曲げモーメントによる回転作用を吸収するようにしてもよい。この際、凸球面部と凹球面部は、回転作用でRC柱部材1や杭部材3に圧壊などの損傷が生じない形状に設定することが好ましい。   Furthermore, as a modification of the above embodiment, as shown by a two-dot chain line Z in FIGS. 4 and 5, a convex spherical portion is formed at the lower end of the RC column member 1 and the upper end of the pile member 3, and the floor slab 5 A corresponding concave spherical surface portion may be formed on the upper surface or the lower surface of the footing 4 so as to absorb the rotational action caused by the bending moment. At this time, the convex spherical surface portion and the concave spherical surface portion are preferably set in a shape that does not cause damage such as crushing to the RC column member 1 or the pile member 3 by a rotating action.

図9には、本発明にかかる建物の好適な一実施形態の平面プランが示されている。本実施形態にあっては、建物外周に配置される少なくとも一部のRC部材と固定端との接合に、上記第1から第8実施形態に示したRC部材の接合構造が適用される。図示例にあっては、平面長方形状の建物Sが示されている。   FIG. 9 shows a plan of a preferred embodiment of a building according to the present invention. In the present embodiment, the RC member joining structure shown in the first to eighth embodiments is applied to the joining of at least some of the RC members arranged on the outer periphery of the building and the fixed end. In the illustrated example, a planar rectangular building S is shown.

図11に示したように、地震力により建物eの高層部が低層部に対して建物e外方へ迫り出すように水平変位すると、これにより発生する曲げモーメントによって、建物e外周の柱部材9や杭部材で軸力が顕著に増加する。そしてこれら建物e外周の柱部材g等の平断面において、建物e外側に面する領域で圧縮応力が偏在する。   As shown in FIG. 11, when the high-rise portion of the building e is horizontally displaced so as to protrude outward from the low-rise portion due to the seismic force, the column member 9 on the outer periphery of the building e is caused by the bending moment generated thereby. Axial force increases significantly with pile members. And in the plane cross section of the pillar member g etc. of these building e outer periphery, compressive stress is unevenly distributed in the area | region which faces the building e outer side.

本実施形態にあっては、建物Sの外周に位置する隅柱部材Jや側柱部材Kに、そしてまた図示しないけれども、建物S外周の四隅および外周位置直下に位置する杭部材に対し、上記実施形態にかかるRC部材の接合構造が適用される。例えば、側柱部材Kについては、建物S外側に面して減圧用鉄筋10が配筋される。隅柱部材Jについても、建物S外側に面して、L字状の配列で減圧用鉄筋10が配筋される。また、必要に応じて、接合部鉄筋11も配筋される。建物S内奥の柱部材Lについては、必要に応じて、上記実施形態にかかるRC部材の接合構造を適用してもよい。また、本実施形態にあっては、建物S外周のすべての柱部材J,Kに減圧用鉄筋10が配筋されているが、一部の柱部材J,Kに配筋するようにしてもよいことはもちろんである。   In the present embodiment, the corner pillar member J and the side pillar member K located on the outer periphery of the building S, and the pile member located immediately below the four corners of the outer periphery of the building S and the outer peripheral position, although not shown in the drawings, The RC member joining structure according to the embodiment is applied. For example, with respect to the side column member K, the decompression rebar 10 is arranged facing the outside of the building S. The corner post member J also faces the outside of the building S, and the decompression reinforcing bars 10 are arranged in an L-shaped arrangement. Moreover, the joint part reinforcement 11 is also arrange | positioned as needed. For the column member L in the back of the building S, the RC member joint structure according to the above embodiment may be applied as necessary. Further, in this embodiment, the decompression reinforcing bars 10 are arranged on all the column members J, K on the outer periphery of the building S. However, the reinforcement members 10 may be arranged on some of the column members J, K. Of course it is good.

本実施形態にかかる建物Sの作用について述べると、地震力が横方向に作用することで、建物Sの各柱部材J,K,L、特に外周の柱部材J,Kに大きな曲げモーメントが発生し、それに伴ってヒンジが生じる。これに対し、本実施形態にあっては、建物S外周に配置される少なくとも一部の柱部材J,Kや杭部材に上記実施形態にかかる減圧用鉄筋10や接合部鉄筋11を備えたRC部材の接合構造を適用するので、圧縮応力や引張応力を負担させることができ、これら外周の柱部材J,Kや杭部材に圧壊や断面欠損が発生することを防止できて、建物Sの健全性を向上することができる。   When the action of the building S according to the present embodiment is described, a large bending moment is generated in each column member J, K, L of the building S, in particular, the column members J, K on the outer periphery due to the seismic force acting in the lateral direction. As a result, a hinge is generated. On the other hand, in this embodiment, the RC including the decompression reinforcing bar 10 and the joint reinforcing bar 11 according to the above embodiment on at least some of the column members J, K and pile members arranged on the outer periphery of the building S. Since the joining structure of the members is applied, compressive stress and tensile stress can be borne, and it is possible to prevent the outer peripheral column members J and K and pile members from being crushed and the occurrence of cross-sectional defects, and the soundness of the building S Can be improved.

図示例にあっては、平面長方形状の建物Sを例示して説明したが、コの字状やロの字状、その他の平面外形輪郭の平面プランの建物Sであっても、建物Sの外形輪郭に沿った建物S外周に配置される少なくとも一部の柱部材J,Kや杭部材に適用することで、同様の作用効果を得ることができる。   In the illustrated example, the planar rectangular building S has been described as an example. However, even in the case of a planar plan building S having a U shape, a square shape, or other planar outline, The same effect can be obtained by applying to at least some of the column members J, K and pile members arranged on the outer periphery of the building S along the outer contour.

以上の実施形態にあっては、建物1階のRC柱部材1および杭部材3を例示して説明したが、各階の柱部材の場合には柱梁仕口部との接合部に、建築物最上階の柱部材の柱頭部と屋上スラブとの間では当該屋上スラブとの接合部に適用すればよい。またRC柱部材の柱脚部を固定端に接合する箇所であれば、いわゆる引張側の柱や、コア壁で地震力を負担するようにした建築物の外周柱等に対しても上記構成を適用することで、建物の健全性を向上することができる。   In the above embodiment, the RC column member 1 and the pile member 3 on the first floor of the building have been illustrated and described. However, in the case of the column member on each floor, the building is connected to the joint with the column beam joint. What is necessary is just to apply to the junction part with the said roof slab between the pillar head of the pillar member of a top floor, and a roof slab. In addition, if it is a place where the column base of the RC column member is joined to the fixed end, the above configuration is also applied to the so-called tension side column, the outer peripheral column of the building that bears the seismic force on the core wall, etc. By applying it, the soundness of the building can be improved.

例えば節付きの壁杭など、壁杭部材の場合にも、同様に適用することができる。壁部材であっても、上端部や下端部が接合される梁や床スラブとの接合に対し、同様に適用することができる。これらいずれの例にあっても、上記実施形態と同様に、構造材と固定端との間に生じる応力の一部を減圧用鉄筋で負担することができ、圧壊など損傷発生を効果的に防止することができる。   For example, the present invention can be similarly applied to a wall pile member such as a wall pile with a node. Even if it is a wall member, it can apply similarly with respect to joining with the beam and floor slab to which an upper end part and a lower end part are joined. In any of these examples, as in the above embodiment, part of the stress generated between the structural material and the fixed end can be borne by the decompression rebar, effectively preventing damage such as crushing. can do.

本発明にかかるRC部材の接合構造の第1実施形態を説明する説明図である。It is explanatory drawing explaining 1st Embodiment of the junction structure of RC member concerning this invention. 本発明にかかるRC部材の接合構造の第2実施形態を説明する説明図である。It is explanatory drawing explaining 2nd Embodiment of the junction structure of RC member concerning this invention. 本発明にかかるRC部材の接合構造の第3実施形態を説明する説明図である。It is explanatory drawing explaining 3rd Embodiment of the junction structure of RC member concerning this invention. 本発明にかかるRC部材の接合構造の第4実施形態を説明する説明図である。It is explanatory drawing explaining 4th Embodiment of the junction structure of RC member concerning this invention. 本発明にかかるRC部材の接合構造の第5実施形態を説明する説明図である。It is explanatory drawing explaining 5th Embodiment of the junction structure of RC member concerning this invention. 本発明にかかるRC部材の接合構造の第6実施形態を説明する説明図である。It is explanatory drawing explaining 6th Embodiment of the junction structure of RC member concerning this invention. 本発明にかかるRC部材の接合構造の第7実施形態を説明する説明図である。It is explanatory drawing explaining 7th Embodiment of the junction structure of RC member concerning this invention. 本発明にかかるRC部材の接合構造の第8実施形態を示す杭頭部周辺の配筋を示した概略正面図である。It is the schematic front view which showed the reinforcement arrangement | positioning around a pile head which shows 8th Embodiment of the junction structure of RC member concerning this invention. 本発明にかかるRC部材の接合構造を用いた建物の平面プランを示す図である。It is a figure which shows the plane plan of the building using the junction structure of RC member concerning this invention. 背景技術における課題を説明するための柱脚部周辺の概略拡大図である。It is a schematic enlarged view of the column base part periphery for demonstrating the subject in background art. 背景技術における課題を説明するための建物の概略側面図である。It is a schematic side view of the building for demonstrating the subject in background art.

符号の説明Explanation of symbols

1 RC柱部材
1a 柱脚部
2 基礎梁
3 RC製の杭部材
3a 杭頭部
4 フーチング
5 床スラブ
7 柱主筋
8,14 フープ筋
10 減圧用鉄筋
11 接合部鉄筋
13 杭主筋
16 縮径部
J 隅柱部材
K 側柱部材
P 付着切り部
Q 非拘束伸縮部
S 建物
DESCRIPTION OF SYMBOLS 1 RC column member 1a Column base 2 Foundation beam 3 RC pile member 3a Pile head 4 Footing 5 Floor slab 7 Column main reinforcement 8,14 Hoop reinforcement 10 Reinforcing bar 11 Joint reinforcement 13 Pile main reinforcement 16 Reduced diameter part J Corner column member K Side column member P Adhesion cut part Q Unconstrained expansion and contraction part S Building

Claims (4)

主筋およびフープ筋が埋設されるとともに、該フープ筋の内側であってかつ大きな圧縮応力が偏在する側の領域に、軸方向応力を負担する減圧用鉄筋が埋設された鉄筋コンクリート部材を、該減圧用鉄筋の定着端部を固定端に定着させて、当該固定端と接合し、
前記鉄筋コンクリート部材はさらに、前記主筋と重ね継ぎ手で、若しくは該主筋に対し定着が得られる配置で一端側が埋設されるとともに、他端側が、前記固定端に定着された接合部鉄筋を備え、該接合部鉄筋は、一端側が上記鉄筋コンクリート部材の材軸端部周辺の一部範囲でコンクリートと付着されていないことを特徴とする鉄筋コンクリート部材の接合構造。
A reinforced concrete member in which main bars and hoop bars are embedded, and a decompression reinforcing bar that bears axial stress is embedded in a region on the inner side of the hoop bars and where large compressive stress is unevenly distributed, is used for the decompression. Fix the fixed end of the reinforcing bar to the fixed end, and join it to the fixed end .
The reinforced concrete member is further provided with a joint rebar which is embedded at one end side at the joint where the main reinforcing bar is overlapped with the main reinforcing bar or is fixed to the main reinforcing bar, and the other end side is fixed to the fixed end. The joint structure of a reinforced concrete member, wherein the part reinforcing bar is not attached to the concrete at one end side in a part of the vicinity of the end portion of the shaft of the reinforced concrete member.
前記減圧用鉄筋は、前記鉄筋コンクリート部材の材軸端部でコンクリートと付着されていないことを特徴とする請求項1に記載の鉄筋コンクリート部材の接合構造。   The reinforced concrete member joining structure according to claim 1, wherein the decompression rebar is not attached to concrete at a material shaft end portion of the reinforced concrete member. 前記鉄筋コンクリート部材がコンクリート製杭部材であって、該コンクリート製杭部材の杭頭部の上方部分の外径寸法を、他の部分よりも縮径して形成したことを特徴とする請求項1または2に記載の鉄筋コンクリート部材の接合構造。 Wherein a reinforced concrete member concrete pile member, the outer diameter of the upper portion of the pile head of the concrete pile member, or claim 1, characterized in that formed by diameter than other portions 2. The joint structure of reinforced concrete members according to 2 . 請求項1〜3いずれかの項に記載の鉄筋コンクリート部材の接合構造が、建物外周に配置される少なくとも一部の鉄筋コンクリート部材と固定端との接合に用いられることを特徴とする建物。 The building characterized by using the joining structure of the reinforced concrete member according to any one of claims 1 to 3 for joining at least a part of the reinforced concrete member arranged on the outer periphery of the building and a fixed end.
JP2008184953A 2008-07-16 2008-07-16 Reinforced concrete member joint structure and building using the same Active JP5340661B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008184953A JP5340661B2 (en) 2008-07-16 2008-07-16 Reinforced concrete member joint structure and building using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008184953A JP5340661B2 (en) 2008-07-16 2008-07-16 Reinforced concrete member joint structure and building using the same

Publications (2)

Publication Number Publication Date
JP2010024658A JP2010024658A (en) 2010-02-04
JP5340661B2 true JP5340661B2 (en) 2013-11-13

Family

ID=41730738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008184953A Active JP5340661B2 (en) 2008-07-16 2008-07-16 Reinforced concrete member joint structure and building using the same

Country Status (1)

Country Link
JP (1) JP5340661B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012180671A (en) * 2011-03-01 2012-09-20 Toda Constr Co Ltd Aseismatic reinforcing structure of column or leg
JP6324762B2 (en) * 2014-03-11 2018-05-16 大成建設株式会社 Column connection structure
JP6704227B2 (en) * 2015-08-26 2020-06-03 大成建設株式会社 Reinforced concrete columns

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0216826B2 (en) * 1983-12-23 1990-04-18 Fujita Corp
JP3242628B2 (en) * 1999-08-23 2001-12-25 鹿島建設株式会社 Structure of the joint between a corner post and a beam in a tube frame
JP3418726B2 (en) * 2000-04-11 2003-06-23 京都大学長 High seismic performance RC pier with unbonded high strength core material
JP3661997B2 (en) * 2001-02-22 2005-06-22 大成建設株式会社 Support structure for structure foundation
JP2005082995A (en) * 2003-09-05 2005-03-31 Yahagi Construction Co Ltd Pile head connection structure
JP2006057371A (en) * 2004-08-23 2006-03-02 Sumitomo Mitsui Construction Co Ltd Rc structural body and axial power transmission structure of permanent substructural column

Also Published As

Publication number Publication date
JP2010024658A (en) 2010-02-04

Similar Documents

Publication Publication Date Title
Yee et al. Performance of IBS precast concrete beam-column connections under earthquake effects: a literature review
CN109944250B (en) Foundation pit forward and backward combined construction method of non-permanent vertical supporting system
JP2005105531A (en) Foundation structure of building and its construction method
JP5340661B2 (en) Reinforced concrete member joint structure and building using the same
JP4227557B2 (en) Reinforced wall construction method and existing wall structure of existing concrete wall
JP2010261270A (en) Composite structure and method for constructing composite structure building
JP6368584B2 (en) Foundation construction method
JP6815183B2 (en) Complex building
JP2006257710A (en) Joint structure of cast-in-situ concrete pile to foundation
JP2009097257A (en) Designing method for bridge pier joint structure
JP4449595B2 (en) Column-beam joint structure, method for constructing column-beam joint structure, method for constructing underground structure, and building
JP5399014B2 (en) Bonding structure of structural material and fixed end
JP5676800B1 (en) Method of introducing PS into constructed building later and its building
JP2005256546A (en) Foundation structure of building and its construction method
JP2018178364A (en) Earthquake reinforcement structure for building and construction method thereof
JP2018150681A (en) Column member reinforcement method using high performance fiber-reinforced cementitious composite and structure body
JP2005023603A (en) Reinforcing structure of column-beam joining part
JP6143068B2 (en) Underground structure of building
JP2004011209A (en) Yield predetermined-region surrounding structure of screw reinforcement and material-end fixing structure of component in reinforced concrete building
JP5319445B2 (en) Building construction method
JP5541520B2 (en) Underground construction
JP6873302B2 (en) Complex building
JP6968047B2 (en) Seismic retrofitting
JP4716216B2 (en) Pile head joint structure
JP3037177U (en) Earthquake-proof structure in a detached house

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110427

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120925

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130716

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130807

R150 Certificate of patent or registration of utility model

Ref document number: 5340661

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350