JP5329366B2 - Electric vehicle - Google Patents

Electric vehicle Download PDF

Info

Publication number
JP5329366B2
JP5329366B2 JP2009241566A JP2009241566A JP5329366B2 JP 5329366 B2 JP5329366 B2 JP 5329366B2 JP 2009241566 A JP2009241566 A JP 2009241566A JP 2009241566 A JP2009241566 A JP 2009241566A JP 5329366 B2 JP5329366 B2 JP 5329366B2
Authority
JP
Japan
Prior art keywords
power
electric vehicle
soc
parking
power storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009241566A
Other languages
Japanese (ja)
Other versions
JP2011091899A (en
Inventor
彰博 姉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2009241566A priority Critical patent/JP5329366B2/en
Publication of JP2011091899A publication Critical patent/JP2011091899A/en
Application granted granted Critical
Publication of JP5329366B2 publication Critical patent/JP5329366B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/003Supplying electric power to auxiliary equipment of vehicles to auxiliary motors, e.g. for pumps, compressors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • B60L50/62Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles charged by low-power generators primarily intended to support the batteries, e.g. range extenders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/15Preventing overcharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/20Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having different nominal voltages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/22Balancing the charge of battery modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/26Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/27Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/40Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for controlling a combination of batteries and fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by ac motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L8/00Electric propulsion with power supply from forces of nature, e.g. sun or wind
    • B60L8/003Converting light into electric energy, e.g. by using photo-voltaic systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L8/00Electric propulsion with power supply from forces of nature, e.g. sun or wind
    • B60L8/006Converting flow of air into electric energy, e.g. by using wind turbines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/10Air crafts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/32Waterborne vessels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electric vehicle wherein a power storing device can be discharged without bringing discomfort to an occupant. <P>SOLUTION: The electric vehicle includes an equalization circuit 62 that discharges the stored power of at least one of multiple unit cells 76 by discharging resistors 78 respectively connected in parallel with the unit cells 76 to equalize the amounts of stored power of the unit cells 76, a parking time predicting means for predicting the parking time of the electric vehicle, and a stored power control means that discharges the stored power of the power storing device 60 through the equalization circuit 62 in accordance with the parking time predicted by the parking time predicting means and thereby reduces the stored power of the power storing device 60. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

この発明は、複数の単位セルを組み合わせた組電池を有する蓄電装置からの電力により駆動する電動車両に関する。   The present invention relates to an electric vehicle driven by electric power from a power storage device having an assembled battery in which a plurality of unit cells are combined.

リチウムイオン電池等の単位セルを組み合わせた組電池を有する蓄電装置を用いた電動車両が開発されている(例えば、特許文献1)。特許文献1では、電動車両が停止し蓄電装置が充電及び放電のいずれも行っていない状態(ソーク状態)における蓄電装置の性能劣化を防止するため、イグニッションスイッチ(40)がオフにされたとき、バッテリファン(24)と空調装置(AC)を作動させて蓄電装置(4)を放電させ、当該蓄電装置の蓄電量を所定値以下まで低下させる(例えば、特許文献1の要約参照)。   An electric vehicle using a power storage device having an assembled battery in which unit cells such as a lithium ion battery are combined has been developed (for example, Patent Document 1). In Patent Document 1, when the ignition switch (40) is turned off in order to prevent performance deterioration of the power storage device in a state where the electric vehicle is stopped and the power storage device is neither charged nor discharged (soak state), The battery fan (24) and the air conditioner (AC) are operated to discharge the power storage device (4), and the power storage amount of the power storage device is reduced to a predetermined value or less (see, for example, the summary of Patent Document 1).

特開2007−185005号公報JP 2007-185005 A

特許文献1ではバッテリファンと空調装置を作動させることで蓄電装置の電力を消費させるため、バッテリファンや空調装置の作動音が発生し、当該作動音により搭乗者に違和感を与えるおそれがある。   In Patent Document 1, since the power of the power storage device is consumed by operating the battery fan and the air conditioner, an operation sound of the battery fan or the air conditioner is generated, and there is a concern that the passenger may feel uncomfortable due to the operation sound.

この発明はこのような課題を考慮してなされたものであり、搭乗者に違和感を与えることなく蓄電装置を放電することが可能な電動車両を提供することを目的とする。   The present invention has been made in view of such problems, and an object of the present invention is to provide an electric vehicle capable of discharging a power storage device without giving a sense of incongruity to a passenger.

この発明に係る電動車両は、複数の単位セルを組み合わせた組電池を有する蓄電装置からの電力により駆動するものであって、前記複数の単位セルそれぞれに並列に接続された放電抵抗により前記複数の単位セルのうち少なくとも1つの蓄電電力を放電させて前記複数の単位セルの蓄電量を均等化する均等化回路と、 前記電動車両の駐車時期を予測する駐車時期予測手段と、前記駐車時期予測手段により予測された駐車時期に応じて、前記蓄電装置の蓄電電力を前記均等化回路により放電させて前記蓄電装置の蓄電電力を目標蓄電電力まで低下させる蓄電電力制御手段とを備えることを特徴とする。
An electric vehicle according to the present invention is driven by electric power from a power storage device having an assembled battery in which a plurality of unit cells are combined, and the plurality of unit cells are connected to each of the plurality of unit cells in parallel. An equalization circuit that discharges at least one stored power among unit cells to equalize the amount of power stored in the plurality of unit cells; a parking time prediction unit that predicts a parking time of the electric vehicle; and the parking time prediction unit Storage power control means for discharging the stored power of the power storage device by the equalization circuit and reducing the stored power of the power storage device to a target stored power according to the parking time predicted by .

この発明によれば、予測された駐車時期に応じて、蓄電装置の蓄電電力を均等化回路の放電抵抗により放電させて蓄電装置の蓄電電力を低下させる。放電抵抗による放電は作動音を伴わないため、作動音に伴う違和感を搭乗者に与えることなく蓄電装置の蓄電電力を低下させることができる。
前記蓄電電力制御手段は、予測された駐車時期よりも前に前記均等化回路による放電を開始し、前記電動車両が実際に駐車した時に前記蓄電電力が前記目標蓄電電力よりも大きい場合、駐車後にも前記均等化回路による放電を継続してもよい。
According to the present invention, according to the predicted parking time, the stored power of the power storage device is discharged by the discharge resistance of the equalization circuit to reduce the stored power of the power storage device. Since the discharge due to the discharge resistor does not accompany the operation sound, the stored power of the power storage device can be reduced without giving the passenger a sense of discomfort associated with the operation sound.
The stored power control means starts discharging by the equalization circuit before the predicted parking time, and when the stored power is larger than the target stored power when the electric vehicle is actually parked, Alternatively, the discharge by the equalization circuit may be continued.

前記電動車両は、さらに、発電機と、前記発電機の出力を制御する発電制御手段とを備え、前記発電機の発電電力を前記蓄電装置に充電可能であり、前記蓄電電力制御手段は、前記予測された駐車時期に応じて、前記蓄電装置の蓄電量の許容上限値を低下させ、前記発電制御手段は、前記許容上限値の低下に応じて、前記発電機の出力を制限してもよい。これにより、予測された駐車時期に応じて、蓄電装置の発電量の許容上限値を低下させたとき、発電機の出力を制限する。従って、予測された駐車時期に応じて、発電機による余分な発電を防止することが可能となる。   The electric vehicle further includes a power generator and power generation control means for controlling the output of the power generator, and the power storage device can be charged with the power generated by the power generator. The allowable upper limit value of the power storage amount of the power storage device may be reduced according to the predicted parking time, and the power generation control unit may limit the output of the generator according to the decrease of the allowable upper limit value. . Thereby, when the allowable upper limit value of the power generation amount of the power storage device is reduced according to the predicted parking time, the output of the generator is limited. Therefore, it is possible to prevent excessive power generation by the generator according to the predicted parking time.

前記発電機は、燃料電池であり、前記蓄電電力制御手段は、前記燃料電池の劣化を招く前記燃料電池の発電電力の低下条件を設定し、前記蓄電装置の蓄電量の許容上限値を低下させているときに前記低下条件が満たされた場合、前記許容上限値の低下を中止してもよい。これにより、燃料電池の劣化を招く発電電力の低下があったときには、蓄電量の許容上限値の低下に伴う燃料電池の出力制限を中止し、燃料電池の出力低下を緩和することで燃料電池の劣化を防止することが可能となる。   The generator is a fuel cell, and the stored power control means sets a reduction condition of the generated power of the fuel cell that causes deterioration of the fuel cell, and reduces the allowable upper limit value of the stored power amount of the power storage device. If the lowering condition is satisfied when the upper limit value is satisfied, the lowering of the allowable upper limit value may be stopped. As a result, when there is a decrease in generated power that causes deterioration of the fuel cell, the output limitation of the fuel cell is stopped due to the decrease in the allowable upper limit value of the storage amount, and the decrease in the output of the fuel cell is alleviated. It becomes possible to prevent deterioration.

前記蓄電電力制御手段は、前記予測された駐車時期に応じた放電を行わない通常走行時には、前記通常走行時における前記蓄電装置の蓄電量の許容下限値である通常走行時許容下限値を前記蓄電装置の蓄電量が下回らないように前記蓄電量を制御し、前記予測された駐車時期に応じた放電を行う駐車準備時には、前記電動車両の駐車時における前記蓄電装置の蓄電量の目標値である駐車時目標蓄電量を設定し、前記駐車時において前記駐車時目標蓄電量と前記蓄電装置の蓄電量とが等しくなるように前記蓄電量を制御し、前記駐車時目標蓄電量は、前記通常走行時許容下限値よりも高く設定されてもよい。これにより、例えば、燃料電池が劣化し難い蓄電量の範囲の下限値を通常走行時許容下限値として設定すれば、電動車両の駐車時における蓄電装置の蓄電量を通常走行時許容下限値よりも高くすることができる。その結果、蓄電装置が自然放電しても通常走行時許容下限値を下回る可能性を低くすることが可能となる。また、これに伴って、蓄電装置に十分な電力を蓄えることが可能となるため、電動車両の次回の起動を確実に行うことが可能となる。   The power storage power control means stores a normal travel allowable lower limit value, which is an allowable lower limit value of the power storage amount of the power storage device during the normal travel, during normal travel without discharging according to the predicted parking time. It is a target value for the amount of electricity stored in the electricity storage device when the electric vehicle is parked, during parking preparation for controlling the amount of electricity stored so that the amount of electricity stored in the device does not fall below and discharging according to the predicted parking time. A target power storage amount is set during parking, and the power storage amount is controlled so that the target power storage amount during parking and the power storage amount of the power storage device are equal at the time of parking. It may be set higher than the hourly allowable lower limit value. Thus, for example, if the lower limit value of the storage amount range in which the fuel cell is less likely to deteriorate is set as the allowable lower limit value during normal travel, the stored power amount of the power storage device during parking of the electric vehicle is set to be lower than the allowable lower limit value during normal travel. Can be high. As a result, even if the power storage device spontaneously discharges, it is possible to reduce the possibility of falling below the allowable lower limit during normal driving. Further, along with this, it is possible to store sufficient power in the power storage device, so that the next start-up of the electric vehicle can be performed reliably.

この発明によれば、予測された駐車時期に応じて、蓄電装置の蓄電電力を均等化回路の放電抵抗により放電させて蓄電装置の蓄電電力を低下させる。放電抵抗による放電は作動音を伴わないため、作動音に伴う違和感を搭乗者に与えることなく蓄電装置の蓄電電力を低下させることができる。   According to the present invention, according to the predicted parking time, the stored power of the power storage device is discharged by the discharge resistance of the equalization circuit to reduce the stored power of the power storage device. Since the discharge due to the discharge resistor does not accompany the operation sound, the stored power of the power storage device can be reduced without giving the passenger a sense of discomfort associated with the operation sound.

この発明の第1実施形態に係る電動車両の概略構成図である。1 is a schematic configuration diagram of an electric vehicle according to a first embodiment of the present invention. 前記電動車両に含まれるバッテリユニットの一部に関する概略構成図である。It is a schematic block diagram regarding a part of battery unit contained in the said electric vehicle. 前記バッテリユニットの一部についての概略的な配置を示す平面図である。It is a top view which shows schematic arrangement | positioning about a part of said battery unit. 前記バッテリユニットの一部についての概略的な配置を示す正面図である。It is a front view which shows schematic arrangement | positioning about a part of said battery unit. 第1実施形態において燃料電池の発電電力及びバッテリの蓄電量を制御するフローチャートである。4 is a flowchart for controlling the power generated by the fuel cell and the amount of electricity stored in the battery in the first embodiment. 電動車両全体の負荷が必要としている電力(負荷要求電力)と燃料電池が発電すべき電力(FC要求電力)の関係の一例を示す図である。It is a figure which shows an example of the relationship between the electric power (load required electric power) which the load of the whole electric vehicle requires, and the electric power (FC required electric power) which a fuel cell should generate | occur | produce. バッテリの蓄電量と、FC要求電力の補正量との関係の一例を示す図である。It is a figure which shows an example of the relationship between the electrical storage amount of a battery, and the correction amount of FC request | requirement electric power. 第1実施形態における駐車予測制御の具体的処理を示すフローチャートである。It is a flowchart which shows the specific process of the parking prediction control in 1st Embodiment. 第1実施形態における駐車準備要否判断の具体敵処理を示すフローチャートである。It is a flowchart which shows the specific enemy process of parking preparation necessity judgment in 1st Embodiment. 第1実施形態における蓄電量と、電動車両の現在位置と目的地の間の距離と、均等化回路の動作との関係の一例を示すタイムチャートである。It is a time chart which shows an example of the relationship between the amount of electrical storage in 1st Embodiment, the distance between the present position and destination of an electric vehicle, and the operation | movement of an equalization circuit. 第2実施形態において燃料電池の発電電力及びバッテリの蓄電量を制御するフローチャートである。It is a flowchart which controls the electric power generated of a fuel cell and the electrical storage amount of a battery in 2nd Embodiment. バッテリの蓄電量が取り得る範囲における実際の蓄電量の位置を示す割合と、FC要求電力の補正量との関係の一例を示す図である。It is a figure which shows an example of the relationship between the ratio which shows the position of the actual electrical storage amount in the range which the electrical storage amount of a battery can take, and the correction amount of FC request | requirement electric power. 第2実施形態における駐車予測制御の具体的処理を示すフローチャートである。It is a flowchart which shows the specific process of the parking prediction control in 2nd Embodiment. 第2実施形態における駐車準備要否判断の具体的処理を示すフローチャートである。It is a flowchart which shows the specific process of parking preparation necessity determination in 2nd Embodiment. 電動車両の現在位置から目的地までの距離と、駐車準備の要否との関係等の一例を示す図である。It is a figure which shows an example, such as the relationship between the distance from the present position of an electric vehicle to the destination, and the necessity of parking preparation. 車速が所定の閾値以下である状態の継続時間と、駐車準備の要否との関係等の一例を示す図である。It is a figure which shows an example, such as the relationship between the continuation time of the state whose vehicle speed is below a predetermined threshold value, and the necessity of parking preparation. 第2実施形態におけるバッテリの蓄電量と、電動車両の現在位置と目的地の間の距離と、電動車両の車速と、FC目標電力と、均等化回路の動作との関係の一例を示すタイムチャートである。Time chart showing an example of the relationship between the amount of battery storage, the distance between the current position of the electric vehicle and the destination, the vehicle speed of the electric vehicle, the FC target power, and the operation of the equalization circuit in the second embodiment It is. 第2実施形態に係るバッテリの蓄電量の制御を行った場合における電動車両の走行時及び駐車時の蓄電量の頻度の分布の一例を示す図である。It is a figure which shows an example of distribution of the frequency of the electrical storage amount at the time of driving | running | working of an electric vehicle, and parking at the time of performing control of the electrical storage amount of the battery which concerns on 2nd Embodiment.

A.第1実施形態
1.電動車両10の構成
(1)全体構成
図1は、この発明の第1実施形態に係る電動車両10の回路図である。電動車両10は、電力システム12と、モータユニット14とを有する。電力システム12は、FCユニット16と、バッテリユニット18と、電力分配器20と、低電圧ユニット22と、統合制御部24{以下「統合ECU24」(ECU:Electric Control Unit)と称する。}とを有する。
A. First Embodiment 1. FIG. Configuration of Electric Vehicle 10 (1) Overall Configuration FIG. 1 is a circuit diagram of an electric vehicle 10 according to the first embodiment of the present invention. The electric vehicle 10 includes an electric power system 12 and a motor unit 14. The power system 12 is referred to as an FC unit 16, a battery unit 18, a power distributor 20, a low voltage unit 22, and an integrated control unit 24 {hereinafter referred to as “integrated ECU 24” (ECU: Electric Control Unit). }.

モータユニット14は、電動車両10の力行時には、走行用のモータ30を用いて電動車両10の走行駆動力を生成し、電動車両10の回生時には、モータ30が発生した回生電力(モータ回生電力Preg)[W]をバッテリユニット18及び低電圧ユニット22に供給する。   The motor unit 14 generates a travel driving force of the electric vehicle 10 using the travel motor 30 when the electric vehicle 10 is powered, and regenerative power generated by the motor 30 (motor regenerative power Preg) when the electric vehicle 10 is regenerated. ) [W] is supplied to the battery unit 18 and the low voltage unit 22.

FCユニット16は、電動車両10の力行時には、モータユニット14に対して燃料電池40(以下「FC40」と称する。)が発生した電力(FC発電電力Pfc)[W]を供給し、電動車両10の回生時には、FC発電電力Pfcをバッテリユニット18及び低電圧ユニット22に供給する。   The FC unit 16 supplies electric power (FC generated power Pfc) [W] generated by the fuel cell 40 (hereinafter referred to as “FC40”) to the motor unit 14 when the electric vehicle 10 is powered. During regeneration, the FC generated power Pfc is supplied to the battery unit 18 and the low voltage unit 22.

バッテリユニット18は、電動車両10の力行時には、エネルギストレージである蓄電装置60(以下「バッテリ60」と称する。)からの電力(バッテリ出力電力Pbat)[W]をモータユニット14に対して供給し、電動車両10の回生時には、モータ回生電力Preg及びFC発電電力Pfcをバッテリ60に蓄電する。   The battery unit 18 supplies power (battery output power Pbat) [W] from the power storage device 60 (hereinafter referred to as “battery 60”), which is energy storage, to the motor unit 14 when the electric vehicle 10 is powered. When the electric vehicle 10 is regenerated, the motor regenerative power Preg and the FC generated power Pfc are stored in the battery 60.

電力分配器20は、モータユニット14、FCユニット16、バッテリユニット18及び低電圧ユニット22の間で電力を分配する。低電圧ユニット22は、低電圧(例えば、5V)で動作する補機を有する。統合ECU24は、モータユニット14、FCユニット16、バッテリユニット18、電力分配器20及び低電圧ユニット22を制御する。詳細については後述する。   The power distributor 20 distributes power among the motor unit 14, the FC unit 16, the battery unit 18, and the low voltage unit 22. The low voltage unit 22 has an auxiliary machine that operates at a low voltage (for example, 5 V). The integrated ECU 24 controls the motor unit 14, the FC unit 16, the battery unit 18, the power distributor 20, and the low voltage unit 22. Details will be described later.

(2)モータユニット14
モータユニット14は、モータ30に加え、パワー・ドライブ・ユニット32(以下「PDU32」と称する。)と、減速機34と、シャフト36と、車輪38とを備える。
(2) Motor unit 14
In addition to the motor 30, the motor unit 14 includes a power drive unit 32 (hereinafter referred to as “PDU32”), a speed reducer 34, a shaft 36, and wheels 38.

PDU32は、電動車両10の力行時において、FC40からの出力電流(FC出力電流Ifc)[A]及びバッテリ60からの出力電流(バッテリ出力電流Ibat)[A]とを直流/交流変換し、モータ30を駆動する電流(モータ駆動電流Imd)[A]としてモータ30に供給する。このモータ駆動電流Imdの供給に伴うモータ30の回転は、減速機34、シャフト36を通じて車輪38に伝達される。   The PDU 32 performs DC / AC conversion between the output current (FC output current Ifc) [A] from the FC 40 and the output current (battery output current Ibat) [A] from the battery 60 when the electric vehicle 10 is powered. 30 is supplied to the motor 30 as a current for driving the motor 30 (motor driving current Imd) [A]. The rotation of the motor 30 accompanying the supply of the motor drive current Imd is transmitted to the wheel 38 through the speed reducer 34 and the shaft 36.

また、PDU32は、電動車両10の回生時において、モータ30からの回生電流(モータ回生電流Imr)[A]を交流/直流変換し、バッテリ充電電流Ibcとしてバッテリユニット18に供給する。このバッテリ充電電流Ibcの供給によりバッテリ60が充電される。バッテリ充電電流Ibcは、低電圧ユニット22の後述するナビゲーション装置82や低電圧バッテリ84に供給してもよい。   In addition, the PDU 32 performs AC / DC conversion of the regenerative current (motor regenerative current Imr) [A] from the motor 30 when the electric vehicle 10 is regenerated, and supplies it to the battery unit 18 as the battery charging current Ibc. The battery 60 is charged by the supply of the battery charging current Ibc. The battery charging current Ibc may be supplied to a navigation device 82 or a low voltage battery 84 described later of the low voltage unit 22.

第1実施形態において、モータ30及びPDU32の動作は、統合ECU24により制御される。代わりに、モータユニット14を制御するモータECUを設け、当該モータECUにより制御してもよい。   In the first embodiment, the operations of the motor 30 and the PDU 32 are controlled by the integrated ECU 24. Instead, a motor ECU that controls the motor unit 14 may be provided and controlled by the motor ECU.

(3)FCユニット16
FCユニット16は、FC40に加え、水素タンク42と、エアコンプレッサ44と、逆流防止用ダイオード46と、電圧センサ48と、電流センサ50とを有する。
(3) FC unit 16
The FC unit 16 includes, in addition to the FC 40, a hydrogen tank 42, an air compressor 44, a backflow prevention diode 46, a voltage sensor 48, and a current sensor 50.

FC40は、例えば固体高分子電解質膜をアノード電極とカソード電極とで両側から挟み込んで形成されたセルを積層したスタック構造にされている。FC40には、水素タンク42とエアコンプレッサ44が配管により接続されている。水素タンク42内の加圧水素は、FC40のアノード電極に供給される。また、エアコンプレッサ44により空気がFC40のカソード電極に供給される。第1実施形態において、水素タンク42及びエアコンプレッサ44の動作は、統合ECU24により制御される。代わりに、FCユニット16を制御する燃料電池ECUを設け、当該燃料電池ECUにより制御してもよい。FC40内で反応ガスである水素(燃料ガス)と空気(酸化剤ガス)の電気化学反応によりFC出力電流Ifcが生成される。FC出力電流Ifcは、電流センサ50及び逆流防止用ダイオード46を介し、例えば、電動車両10の力行時にはPDU32に供給され、回生時にはバッテリユニット18及び低電圧ユニット22に供給される。電圧センサ48による検出値としてのFC出力電圧Vfc[V]及び電流センサ50による検出値としてのFC出力電流Ifcは、FC40の動作制御等に用いられる。   The FC 40 has, for example, a stack structure in which cells formed by sandwiching a solid polymer electrolyte membrane between an anode electrode and a cathode electrode from both sides are stacked. A hydrogen tank 42 and an air compressor 44 are connected to the FC 40 by piping. Pressurized hydrogen in the hydrogen tank 42 is supplied to the anode electrode of the FC 40. Further, air is supplied to the cathode electrode of the FC 40 by the air compressor 44. In the first embodiment, the operations of the hydrogen tank 42 and the air compressor 44 are controlled by the integrated ECU 24. Instead, a fuel cell ECU that controls the FC unit 16 may be provided and controlled by the fuel cell ECU. An FC output current Ifc is generated by an electrochemical reaction between hydrogen (fuel gas), which is a reaction gas, and air (oxidant gas) in the FC 40. The FC output current Ifc is supplied to the PDU 32 through the current sensor 50 and the backflow prevention diode 46, for example, when the electric vehicle 10 is powered, and to the battery unit 18 and the low voltage unit 22 during regeneration. The FC output voltage Vfc [V] as a detection value by the voltage sensor 48 and the FC output current Ifc as a detection value by the current sensor 50 are used for operation control of the FC 40 and the like.

(4)バッテリユニット18
バッテリユニット18は、バッテリ60に加え、均等化回路62と、バッテリ制御部64(以下「バッテリECU64」と称する。)と、電圧センサ66と、ファン68と、コンタクタ70a、70bと、バッテリボックス72(図3、図4)とを有する。
(4) Battery unit 18
In addition to the battery 60, the battery unit 18 includes an equalization circuit 62, a battery control unit 64 (hereinafter referred to as “battery ECU 64”), a voltage sensor 66, a fan 68, contactors 70 a and 70 b, and a battery box 72. (FIGS. 3 and 4).

図2は、バッテリユニット18の一部としてのバッテリ60及び均等化回路62に関する概略構成図である。図3は、バッテリユニット18の一部についての概略的な配置を示す平面図であり、図4は、バッテリユニット18の一部についての概略的な配置を示す正面図である。   FIG. 2 is a schematic configuration diagram regarding the battery 60 and the equalization circuit 62 as a part of the battery unit 18. FIG. 3 is a plan view showing a schematic arrangement of a part of the battery unit 18, and FIG. 4 is a front view showing a schematic arrangement of a part of the battery unit 18.

バッテリ60は、例えば、リチウムイオン2次電池又はキャパシタを利用することができる。第1実施形態ではリチウムイオン2次電池を利用している。図2に示すように、バッテリ60は、複数の単位セル76を組み合わせた組電池74を有する。   As the battery 60, for example, a lithium ion secondary battery or a capacitor can be used. In the first embodiment, a lithium ion secondary battery is used. As shown in FIG. 2, the battery 60 includes an assembled battery 74 in which a plurality of unit cells 76 are combined.

均等化回路62は、単位セル76それぞれに並行に接続された放電抵抗78及びスイッチ80とを有する。スイッチ80は、バッテリECU64及び統合ECU24により制御される。   The equalization circuit 62 includes a discharge resistor 78 and a switch 80 connected in parallel to each unit cell 76. The switch 80 is controlled by the battery ECU 64 and the integrated ECU 24.

バッテリECU64は、バッテリ60の温度(バッテリ温度Tbat)[℃]や蓄電量SOC(state of charge)[%]等を監視し、バッテリ60の温度異常や過充電を検出した場合には、コンタクタ70a、70bを開いたり、スイッチ80を閉じたりすることによりバッテリ60を保護する。   The battery ECU 64 monitors the temperature of the battery 60 (battery temperature Tbat) [° C.], the storage amount SOC (state of charge) [%], and the like, and if a temperature abnormality or overcharge of the battery 60 is detected, the contactor 70a , 70b and the switch 80 are closed to protect the battery 60.

具体的には、例えば、バッテリ温度Tbatが正常範囲から外れたとき、バッテリECU64は、ファン68を作動させてバッテリ60を冷却又は加熱させる。なお、バッテリ60を加熱させる場合とは、例えば、外気がバッテリ60よりも高温の場合である。また、各単位セル76の蓄電量SOCが異なる場合、より大きな蓄電量SOCを有する単位セル76に対応するスイッチ80をオンとし、放電抵抗78を用いて放電させ、各単位セル76の電圧(セル電圧)を均等化することにより各単位セル76の蓄電量SOCを均等化する。なお、バッテリ60の蓄電量SOCは、電圧センサ66で検出したバッテリ60の電圧(バッテリ電圧Vbat)[V]に基づき測定する。また、電圧センサ66は、バッテリ60全体の電圧としてのバッテリ電圧Vbatのみならず、各単位セル76のセル電圧も測定可能である。   Specifically, for example, when the battery temperature Tbat is out of the normal range, the battery ECU 64 operates the fan 68 to cool or heat the battery 60. The case where the battery 60 is heated is, for example, a case where the outside air is hotter than the battery 60. In addition, when the storage amount SOC of each unit cell 76 is different, the switch 80 corresponding to the unit cell 76 having a larger storage amount SOC is turned on and discharged using the discharge resistor 78, and the voltage of each unit cell 76 (cell Voltage) is equalized, so that the storage amount SOC of each unit cell 76 is equalized. The storage amount SOC of the battery 60 is measured based on the voltage of the battery 60 (battery voltage Vbat) [V] detected by the voltage sensor 66. The voltage sensor 66 can measure not only the battery voltage Vbat as the voltage of the entire battery 60 but also the cell voltage of each unit cell 76.

図3及び図4に示すように、バッテリ60は、バッテリボックス72内に収容されている。また、均等化回路62は、バッテリボックス72の側面に、バッテリECU64は、バッテリボックス72の上面に、ファン68は、バッテリボックス72の正面に配置されている。   As shown in FIGS. 3 and 4, the battery 60 is accommodated in a battery box 72. The equalizing circuit 62 is disposed on the side surface of the battery box 72, the battery ECU 64 is disposed on the upper surface of the battery box 72, and the fan 68 is disposed on the front surface of the battery box 72.

(5)電力分配器20
電力分配器20は、モータユニット14、FCユニット16、バッテリユニット18及び低電圧ユニット22の間で電力を分配する。
(5) Power distributor 20
The power distributor 20 distributes power among the motor unit 14, the FC unit 16, the battery unit 18, and the low voltage unit 22.

例えば、電力分配器20は、モータユニット14と、バッテリユニット18及び低電圧ユニット22との間で直列に接続され、且つFCユニット16と並列に接続されたDC/DCコンバータ(図示せず)を有する。当該DC/DCコンバータは、いわゆるチョッパ方式の昇降圧DC/DCコンバータであり、電動車両10の力行時には、DC/DCコンバータの1次側の電圧(1次電圧V1)[V]を昇圧して2次側に供給し、電動車両10の回生時には、DC/DCコンバータの2次側の電圧(2次電圧V2)[V]を降圧して1次側に供給する。すなわち、モータ30が発生した回生電圧(モータ回生電圧Vreg)[V]又はFC40のFC出力電圧Vfcである2次電圧V2がDC/DCコンバータにより低電圧に変換された1次電圧V1によりバッテリ60を充電する。   For example, the power distributor 20 includes a DC / DC converter (not shown) connected in series between the motor unit 14, the battery unit 18 and the low voltage unit 22, and connected in parallel with the FC unit 16. Have. The DC / DC converter is a so-called chopper step-up / step-down DC / DC converter, and when the electric vehicle 10 is powered, the primary side voltage (primary voltage V1) [V] of the DC / DC converter is boosted. The secondary side voltage (secondary voltage V2) [V] of the DC / DC converter is stepped down and supplied to the primary side when the electric vehicle 10 is regenerated. That is, the regenerative voltage (motor regenerative voltage Vreg) [V] generated by the motor 30 or the secondary voltage V2 that is the FC output voltage Vfc of the FC 40 is converted into a low voltage by the DC / DC converter, and the battery 60 is used. To charge.

電力分配器20の構成としては、例えば、特開2006−073506号公報、特開2008−091319号公報に記載のものを用いることができる。   As the configuration of the power distributor 20, for example, those described in JP 2006-073506 A and JP 2008-091319 A can be used.

(6)低電圧ユニット22
図1に示すように、低電圧ユニット22は、ダウンバータ81と、ナビゲーション装置82と、低電圧バッテリ84と、低電圧バッテリ制御部86(以下「低電圧バッテリECU86」と称する。)と、コンタクタ88とを有する。低電圧ユニット22は、ナビゲーション装置82以外の補機、例えば、ライト、パワーウインド、ワイパー用電動機、オーディオ機器を有してもよい。
(6) Low voltage unit 22
As shown in FIG. 1, the low voltage unit 22 includes a downverter 81, a navigation device 82, a low voltage battery 84, a low voltage battery control unit 86 (hereinafter referred to as “low voltage battery ECU 86”), and a contactor. 88. The low voltage unit 22 may include auxiliary devices other than the navigation device 82, for example, a light, a power window, a wiper motor, and an audio device.

ダウンバータ81は、モータユニット14、FCユニット16又はバッテリユニット18の出力電圧を降圧してナビゲーション装置82及び低電圧バッテリ84に印加する。   The downverter 81 steps down the output voltage of the motor unit 14, the FC unit 16, or the battery unit 18 and applies it to the navigation device 82 and the low voltage battery 84.

ナビゲーション装置82は、GPSアンテナ及び地図情報のデータベースを有し、電動車両10の現在位置を検出可能である。また、ナビゲーション装置82は、電動車両10の目的地を入力可能であると共に、外部の情報センターと無線通信が可能であり、当該情報センターから目的地までの渋滞情報等を取得し、目的地に到着するまでにかかる予想時間又は予想到着時刻を判定可能である。   The navigation device 82 has a GPS antenna and a database of map information, and can detect the current position of the electric vehicle 10. In addition, the navigation device 82 can input the destination of the electric vehicle 10 and can wirelessly communicate with an external information center, obtains traffic information from the information center to the destination, and the like. It is possible to determine an expected time or an expected arrival time for arrival.

低電圧バッテリ84は、モータ30駆動用のバッテリ60よりも低圧(例えば、5V)である。低電圧バッテリECU86は、低電圧バッテリ84の電圧等を監視し、低電圧バッテリ84の過充電や異常を検出した場合には、コンタクタ88を開くことにより充放電を制限又は停止して低電圧バッテリ84を保護する。   The low voltage battery 84 has a lower voltage (for example, 5 V) than the battery 60 for driving the motor 30. The low voltage battery ECU 86 monitors the voltage or the like of the low voltage battery 84, and when overcharge or abnormality of the low voltage battery 84 is detected, the charge / discharge is limited or stopped by opening the contactor 88, thereby reducing the low voltage battery. 84 is protected.

(7)統合ECU24
統合ECU24は、モータ30の要求電力(モータ要求電力Pmr_req)[W]やFCユニット16(エアコンプレッサ44等)の要求電力、ナビゲーション装置82等の補機の要求電力等に基づいて、モータユニット14、FCユニット16、バッテリユニット18、電力分配器20及び低電圧ユニット22等の各部を制御する。
(7) Integrated ECU 24
The integrated ECU 24 determines the motor unit 14 based on the required power of the motor 30 (motor required power Pmr_req) [W], the required power of the FC unit 16 (air compressor 44, etc.), the required power of auxiliary equipment such as the navigation device 82, and the like. , Each unit such as the FC unit 16, the battery unit 18, the power distributor 20, and the low voltage unit 22 is controlled.

統合ECU24は、CPU、ROM、RAM、タイマの他、A/D変換器、D/A変換器等の入出力インタフェース、並びに、必要に応じてDSP(Digital Signal Processor)等を有している。バッテリECU64及び低電圧バッテリECU86も同様である。   The integrated ECU 24 has a CPU, ROM, RAM, timer, input / output interfaces such as an A / D converter and a D / A converter, and a DSP (Digital Signal Processor) as necessary. The same applies to the battery ECU 64 and the low voltage battery ECU 86.

統合ECU24と、モータユニット14、FCユニット16、バッテリユニット18、電力分配器20及び低電圧ユニット22等の各部とは、車内LANであるCAN(Controller Area Network)等の通信線90を通じて相互に接続されている。統合ECU24及び各部は、各種スイッチ及び各種センサからの入出力情報を共有し、これら各種スイッチ及び各種センサからの入出力情報を入力として各CPUが各ROMに格納されたプログラムを実行することにより各種機能を実現する。   The integrated ECU 24 and the components such as the motor unit 14, the FC unit 16, the battery unit 18, the power distributor 20, and the low voltage unit 22 are connected to each other through a communication line 90 such as a CAN (Controller Area Network) that is an in-vehicle LAN. Has been. The integrated ECU 24 and each unit share input / output information from various switches and various sensors, and each CPU executes various programs by executing programs stored in each ROM with the input / output information from these various switches and various sensors as inputs. Realize the function.

(8)その他
車両状態を検出する各種スイッチ及び各種センサとしては、上述した電圧センサ48、66、電流センサ50の他、通信線90に接続されるイグニッションスイッチ100(以下「IGSW100」と称する。)、アクセルセンサ102、ブレーキセンサ104及び車速センサ106等がある。
(8) Others As various switches and various sensors for detecting the vehicle state, in addition to the voltage sensors 48 and 66 and the current sensor 50 described above, an ignition switch 100 connected to the communication line 90 (hereinafter referred to as “IGSW100”). , An accelerator sensor 102, a brake sensor 104, a vehicle speed sensor 106, and the like.

2.FC発電電力Pfc及び蓄電量SOCの制御
図5は、第1実施形態においてFC40のFC発電電力Pfc及びバッテリ60の蓄電量SOCを制御するフローチャートである。図5の処理は、例えば、数ミリ秒〜数秒の周期で繰り返される。また、第1実施形態におけるFC発電電力Pfcの制御は、主として統合ECU24が行い、蓄電量SOCの制御は、主としてバッテリECU64及び統合ECU24が行う。
2. FIG. 5 is a flowchart for controlling the FC generated power Pfc of the FC 40 and the stored power SOC of the battery 60 in the first embodiment. The process in FIG. 5 is repeated, for example, at a cycle of several milliseconds to several seconds. Further, the integrated ECU 24 mainly controls the FC generated power Pfc in the first embodiment, and the battery ECU 64 and the integrated ECU 24 mainly control the storage amount SOC.

ステップS1において、統合ECU24は、アクセルセンサ102が検出した図示しないアクセルペダルの開度等に応じて電動車両10全体の負荷が必要としている電力(負荷要求電力Ptotal_req)[W]を算出する。続くステップS2において、統合ECU24は、負荷要求電力Ptotal_reqに対応してFC40が発電すべき電力(FC要求電力Pfc_req)[W]を算出する。   In step S <b> 1, the integrated ECU 24 calculates electric power (load required electric power Ptotal_req) [W] required by the load of the entire electric vehicle 10 according to the opening degree of an accelerator pedal (not shown) detected by the accelerator sensor 102. In subsequent step S2, the integrated ECU 24 calculates the power (FC required power Pfc_req) [W] to be generated by the FC 40 corresponding to the load required power Ptotal_req.

図6には、負荷要求電力Ptotal_reqとFC要求電力Pfc_reqの関係の一例が示されている。図6に示すように、本実施形態において、負荷要求電力Ptotal_reqとFC要求電力Pfc_reqとは比例関係にあり、負荷要求電力Ptotal_reqが増加すると、FC要求電力Pfc_reqも増加する。   FIG. 6 shows an example of the relationship between the load required power Ptotal_req and the FC required power Pfc_req. As shown in FIG. 6, in the present embodiment, the load required power Ptotal_req and the FC required power Pfc_req are in a proportional relationship, and when the load required power Ptotal_req increases, the FC required power Pfc_req also increases.

ステップS3において、電圧センサ66、電流センサ50等を用いて、バッテリ60の蓄電量SOCを検出して統合ECU24に通知する。第1実施形態における蓄電量SOCは、0〜100%の範囲の値を取り得るものであるが、バッテリ60を劣化させないように又はバッテリ60の劣化を促進しないように、通常、0〜70%の範囲に収まるように制御する。   In step S3, the charged amount SOC of the battery 60 is detected and notified to the integrated ECU 24 using the voltage sensor 66, the current sensor 50, and the like. The storage amount SOC in the first embodiment can take a value in the range of 0 to 100%, but is usually 0 to 70% so as not to deteriorate the battery 60 or promote deterioration of the battery 60. Control within the range.

ステップS4において、統合ECU24は、FC要求電力Pfc_reqの補正量(補正量α)[W]を蓄電量SOCに基づいて決定する。補正量αは、蓄電量SOCがその目標値(目標蓄電量SOC_tar)[%]と等しくなるようにFC要求電力Pfc_reqに加算されるものである。   In step S4, the integrated ECU 24 determines the correction amount (correction amount α) [W] of the FC required power Pfc_req based on the storage amount SOC. The correction amount α is added to the FC required power Pfc_req so that the storage amount SOC becomes equal to the target value (target storage amount SOC_tar) [%].

図7には、蓄電量SOCと補正量αの関係の一例が示されている。図7に示すように、蓄電量SOCと補正量αとは比例関係にあり、蓄電量SOCが増加すると補正量αは減少する。また、蓄電量SOCが目標蓄電量SOC_tarより小さいとき、補正量αは正の値であり、蓄電量SOCが目標蓄電量SOC_tarより大きいとき、補正量αは負の値である。補正量αをこのように設定することにより、その時点における蓄電量SOCが、目標蓄電量SOC_tarを下回っている場合、FC要求電力Pfc_reqよりもFC発電電力Pfcを大きくし、その余剰分により蓄電量SOCを増加させて目標蓄電量SOC_tarに近付ける。一方、その時点における蓄電量SOCが、目標蓄電量SOC_tarを上回っている場合、FC要求電力Pfc_reqよりもFC発電電力Pfcを小さくし、その不足分により蓄電量SOCを減少させて目標蓄電量SOC_tarに近付ける。   FIG. 7 shows an example of the relationship between the storage amount SOC and the correction amount α. As shown in FIG. 7, the storage amount SOC and the correction amount α are in a proportional relationship, and the correction amount α decreases as the storage amount SOC increases. When the charged amount SOC is smaller than the target charged amount SOC_tar, the correction amount α is a positive value. When the charged amount SOC is larger than the target charged amount SOC_tar, the corrected amount α is a negative value. By setting the correction amount α in this way, when the storage amount SOC at that time is lower than the target storage amount SOC_tar, the FC generated power Pfc is made larger than the FC required power Pfc_req, and the storage amount is determined by the surplus. The SOC is increased to approach the target storage amount SOC_tar. On the other hand, when the storage amount SOC at that time exceeds the target storage amount SOC_tar, the FC generated power Pfc is made smaller than the FC required power Pfc_req, and the storage amount SOC is reduced due to the shortage to the target storage amount SOC_tar. Get closer.

なお、第1実施形態において、目標蓄電量SOC_tarは可変である。具体的には、通常走行時(すなわち、電動車両10の運転中であり且つ後述する駐車準備処理を行っていない時)の目標蓄電量SOC_tar(通常走行時目標蓄電量SOC_tar_d)と、駐車準備時(すなわち、後述する駐車準備処理を行っている時)において用い、電動車両10が駐車した際の目標蓄電量SOC_tar(駐車時目標蓄電量SOC_tar_p)とを設定し、電動車両10の走行状態に応じて通常走行時目標蓄電量SOC_tar_dと駐車時目標蓄電量SOC_tar_pとを切り替える。第1実施形態において、通常走行時目標蓄電量SOC_tar_d及び駐車時目標蓄電量SOC_tar_pはいずれも固定値であり、通常走行時目標蓄電量SOC_tar_dは、例えば、50%とし、駐車時目標蓄電量SOC_tar_pは、例えば、40%として、前者よりも後者を低く設定する。   In the first embodiment, the target storage amount SOC_tar is variable. Specifically, the target storage amount SOC_tar (the normal storage target storage amount SOC_tar_d) during normal driving (that is, when the electric vehicle 10 is in operation and the parking preparation process described later is not performed), and during parking preparation (That is, when a parking preparation process described later is performed), a target storage amount SOC_tar (parking target storage amount SOC_tar_p) when the electric vehicle 10 is parked is set, and the electric vehicle 10 according to the traveling state of the electric vehicle 10 Thus, the target storage amount SOC_tar_d during normal driving and the target storage amount SOC_tar_p during parking are switched. In the first embodiment, the normal travel target power storage amount SOC_tar_d and the parking target power storage amount SOC_tar_p are both fixed values, and the normal travel target power storage amount SOC_tar_d is, for example, 50%, and the parking target power storage amount SOC_tar_p is For example, 40% is set so that the latter is lower than the former.

図5に戻り、ステップS5において、統合ECU24は、FC要求電力Pfc_reqに補正量αを反映した値(FC目標電力Pfc_tar)[W]を算出する(Pfc_tar=Pfc_req+α)。ステップS6において、統合ECU24は、FC発電電力PfcがFC目標電力Pfc_tarと等しくなるようにFCユニット16及び電力分配器20を制御する。例えば、FC目標電力Pfc_tarに応じたFC40の目標電圧(FC目標電圧Vfc_tar)[V]を設定し、このFC目標電圧Vfc_tarを実現するようにバッテリ電圧Vbatを、電力分配器20の図示しないDC/DCコンバータで昇圧する。   Returning to FIG. 5, in step S5, the integrated ECU 24 calculates a value (FC target power Pfc_tar) [W] reflecting the correction amount α in the FC required power Pfc_req (Pfc_tar = Pfc_req + α). In step S6, the integrated ECU 24 controls the FC unit 16 and the power distributor 20 so that the FC generated power Pfc becomes equal to the FC target power Pfc_tar. For example, the FC 40 target voltage (FC target voltage Vfc_tar) [V] corresponding to the FC target power Pfc_tar is set, and the battery voltage Vbat is set to a DC / DC (not shown) of the power distributor 20 so as to realize the FC target voltage Vfc_tar. Boost with a DC converter.

ステップS7において、統合ECU24は、駐車予測制御を実行する。駐車予測制御とは、電動車両10が目的地に近づいて来たとき、電動車両10が駐車する際の準備としてバッテリ60の蓄電量SOCを低下させ、電動車両10が駐車した時点で駐車時目標SOC_tar_pと等しくさせる制御である。   In step S7, the integrated ECU 24 executes parking prediction control. The parking prediction control means that when the electric vehicle 10 approaches the destination, the storage amount SOC of the battery 60 is reduced as a preparation when the electric vehicle 10 parks, and the target at the time of parking when the electric vehicle 10 is parked. This control is made equal to SOC_tar_p.

図8は、駐車予測制御(図5のS7)の具体的処理を示すフローチャートである。ステップS11において、統合ECU24は、バッテリ60の蓄電量SOCについて、電動車両10が駐車する際の準備(以下「駐車準備」とも称する。)を要するかどうかを判断する駐車準備要否判断を行う。   FIG. 8 is a flowchart showing a specific process of parking prediction control (S7 in FIG. 5). In step S <b> 11, the integrated ECU 24 determines whether or not parking preparation is necessary for determining whether the storage amount SOC of the battery 60 needs to be prepared when the electric vehicle 10 is parked (hereinafter also referred to as “parking preparation”).

図9は、前記駐車準備要否判断の具体的処理を示すフローチャートである。ステップS21において、統合ECU24は、電動車両10のセレクトレバーがパーキングの位置(Pレンジ)にあるかどうか、サイドブレーキがかけられているかどうか及びIGSW100がオフになっているかどうかを判定する。上記いずれかが満たされる場合(すなわち、セレクトレバーによりPレンジが選択されている、サイドブレーキが作動している又はIGSW100がオフである場合)(S21:YES)、ステップS22において、統合ECU24は、バッテリ60の蓄電量SOCについて駐車準備を要すると判定する。   FIG. 9 is a flowchart showing specific processing for determining whether parking preparation is necessary. In step S21, the integrated ECU 24 determines whether the select lever of the electric vehicle 10 is in the parking position (P range), whether the side brake is applied, and whether the IGSW 100 is off. If any of the above is satisfied (that is, the P range is selected by the select lever, the side brake is operating, or the IGSW 100 is off) (S21: YES), in step S22, the integrated ECU 24 It is determined that parking preparation is required for the storage amount SOC of the battery 60.

ステップS21において、上記いずれの条件も満たされない場合(S21:NO)、ステップS23において、統合ECU24は、電動車両10が目的地に接近しているかどうかを判定する。具体的には、統合ECU24は、電動車両10の現在位置から目的地までの距離D[m]が、閾値TH_D[m]以下であるかどうかを判定する。距離Dが閾値TH_D以下である場合(S23:YES)、電動車両10は目的地に接近している(目的地周辺に来ている)と判断できる。この場合、ステップS22において、統合ECU24は、駐車準備を要すると判定する。距離Dが閾値TH_Dより大きい場合(S23:NO)、電動車両10は未だ目的地に接近していない(目的地周辺まで来ていない)と判断できる。そこで、ステップS24において、統合ECU24は、駐車準備を要さないと判定する。   If none of the above conditions is satisfied in step S21 (S21: NO), in step S23, the integrated ECU 24 determines whether or not the electric vehicle 10 is approaching the destination. Specifically, the integrated ECU 24 determines whether or not the distance D [m] from the current position of the electric vehicle 10 to the destination is equal to or less than a threshold value TH_D [m]. When the distance D is equal to or less than the threshold value TH_D (S23: YES), it can be determined that the electric vehicle 10 is approaching the destination (coming to the vicinity of the destination). In this case, in step S22, the integrated ECU 24 determines that parking preparation is required. If the distance D is greater than the threshold TH_D (S23: NO), it can be determined that the electric vehicle 10 has not yet approached the destination (has not yet reached the destination). Therefore, in step S24, the integrated ECU 24 determines that parking preparation is not required.

図8に戻り、ステップS12において、統合ECU24は、駐車準備要否判断(S11)の結果を確認する。駐車準備を要する場合(S12:YES)、ステップS13に進み、駐車準備処理(S13、S14)を行う。駐車準備を要さない場合(S12:NO)、今回の駐車予測制御を終了し、図5に戻る。   Returning to FIG. 8, in step S <b> 12, the integrated ECU 24 confirms the result of the parking preparation necessity determination (S <b> 11). When parking preparation is required (S12: YES), the process proceeds to step S13, and parking preparation processing (S13, S14) is performed. When parking preparation is not required (S12: NO), the current parking prediction control is terminated and the process returns to FIG.

ステップS13において、統合ECU24は、図5のステップS3で検出したバッテリ60の蓄電量SOCが、駐車時目標蓄電量SOC_tar_pより大きいかどうかを判定する。上述の通り、駐車時目標蓄電量SOC_tar_pは、電動車両10が駐車する際における蓄電量SOCの目標値であり、第1実施形態では固定値(例えば、40%)に設定される。   In step S13, the integrated ECU 24 determines whether or not the charged amount SOC of the battery 60 detected in step S3 in FIG. 5 is larger than the parking target charged amount SOC_tar_p. As described above, the parking target storage amount SOC_tar_p is a target value of the storage amount SOC when the electric vehicle 10 is parked, and is set to a fixed value (for example, 40%) in the first embodiment.

蓄電量SOCが駐車時目標蓄電量SOC_tar_pより大きい場合(S13:YES)、ステップS14において、統合ECU24は、均等化回路62を作動させてバッテリ60を放電させる。より具体的には、各スイッチ80をオンにし、各放電抵抗78により各単位セル76を放電させる。これにより、蓄電量SOCを低下させ、駐車時目標蓄電量SOC_tar_pに近付けることができる。蓄電量SOCが駐車時目標蓄電量SCO_tar_p以下である場合(S13:NO)、蓄電量SOCを低下させる必要はないので、均等化回路62による放電(S14)を行わずに今回の図8の処理を終了する。   If the charged amount SOC is larger than the parking target charge amount SOC_tar_p (S13: YES), in step S14, the integrated ECU 24 operates the equalization circuit 62 to discharge the battery 60. More specifically, each switch 80 is turned on, and each unit cell 76 is discharged by each discharge resistor 78. Thereby, the amount of stored electricity SOC can be reduced and brought close to the target amount of electricity stored during parking SOC_tar_p. When the charged amount SOC is equal to or less than the parking target charge amount SCO_tar_p (S13: NO), it is not necessary to reduce the charged amount SOC, so the process of FIG. 8 is performed without performing discharge (S14) by the equalization circuit 62. Exit.

図10には、第1実施形態における蓄電量SOCと、電動車両10の現在位置と目的地の間の距離Dと、均等化回路62の動作との関係の一例を示すタイムチャートが示されている。図10において、時点t1までは、Pレンジの選択、サイドブレーキの作動及びIGSW100のオフのいずれも該当しないと共に、距離Dが閾値TH_Dよりも大きい。このため、駐車予測制御(図5のS7)に伴う均等化回路62の動作は行われない。但し、各単位セル76の電圧を均等化するための均等化処理は、バッテリECU64が均等化回路62を制御することにより適宜行われる。   FIG. 10 is a time chart showing an example of the relationship between the storage amount SOC in the first embodiment, the distance D between the current position of the electric vehicle 10 and the destination, and the operation of the equalization circuit 62. Yes. In FIG. 10, until the time t1, none of the selection of the P range, the operation of the side brake, and the OFF of the IGSW 100 are applicable, and the distance D is larger than the threshold value TH_D. For this reason, the operation | movement of the equalization circuit 62 accompanying parking prediction control (S7 of FIG. 5) is not performed. However, the equalization process for equalizing the voltages of the unit cells 76 is appropriately performed by the battery ECU 64 controlling the equalization circuit 62.

時点t1において距離Dと閾値TH_Dとが等しくなると、統合ECU24は駐車準備を要すると判定する。また、時点t1において、蓄電量SOCは、駐車時目標蓄電量SOC_tar_pよりも高い。このため、統合ECU24は、均等化回路62をオンにし、均等化回路62によるバッテリ60の放電を開始する。ここでの放電は、各スイッチ80を全てオンにし、全ての放電抵抗78を作動させる。或いは、必要に応じてオンとするスイッチ80を選択し、一部の放電抵抗78のみを作動させてもよい。   When the distance D becomes equal to the threshold value TH_D at time t1, the integrated ECU 24 determines that parking preparation is required. Further, at the time point t1, the storage amount SOC is higher than the parking target storage amount SOC_tar_p. Therefore, the integrated ECU 24 turns on the equalization circuit 62 and starts discharging the battery 60 by the equalization circuit 62. In this discharge, all the switches 80 are turned on, and all the discharge resistors 78 are operated. Alternatively, a switch 80 to be turned on may be selected as necessary, and only some of the discharge resistors 78 may be activated.

時点t2において、距離Dがゼロとなり、電動車両10は目的地に到達する。この時点において、バッテリ60の蓄電量SOCは、駐車時目標蓄電量SOC_tar_pよりも高い(SOC>SOC_tar_p)。このため、統合ECU24は、均等化回路62による放電を継続する。   At time t2, the distance D becomes zero, and the electric vehicle 10 reaches the destination. At this time, the charged amount SOC of the battery 60 is higher than the parking target charge amount SOC_tar_p (SOC> SOC_tar_p). For this reason, the integrated ECU 24 continues the discharge by the equalization circuit 62.

時点t3において、蓄電量SOCが駐車時目標蓄電量SOC_tar_pと等しくなると(SOC=SOC_tar_p)、統合ECU24は、均等化回路62による放電を終了する。   When the charged amount SOC becomes equal to the parking target charged amount SOC_tar_p at time t3 (SOC = SOC_tar_p), the integrated ECU 24 ends the discharge by the equalization circuit 62.

3.第1実施形態の効果
以上のように、第1実施形態によれば、予測された駐車時期に応じて、すなわち、駐車準備を要すると判断したとき、バッテリ60の蓄電量SOCを均等化回路62の放電抵抗78により放電させてバッテリ60の蓄電量SOCを低下させる。放電抵抗78による放電は作動音を伴わないため、作動音に伴う違和感を搭乗者に与えることなくバッテリ60の蓄電量SOCを低下させることができる。また、電動車両10が実際に駐車する前に駐車準備を開始することができるため、電動車両10が実際に駐車した後に初めてバッテリ60の蓄電量SOCを低下させる場合と比べて効率的である。
3. Advantages of the First Embodiment As described above, according to the first embodiment, when the parking preparation is required according to the predicted parking time, that is, when it is determined that parking preparation is required, the storage amount SOC of the battery 60 is equalized. The discharge resistance 78 of the battery 60 discharges the battery 60 to reduce the stored amount SOC. Since the discharge due to the discharge resistor 78 does not accompany the operation sound, the charged amount SOC of the battery 60 can be reduced without giving the passenger an uncomfortable feeling associated with the operation sound. In addition, since the preparation for parking can be started before the electric vehicle 10 is actually parked, it is more efficient than the case where the storage amount SOC of the battery 60 is reduced for the first time after the electric vehicle 10 is actually parked.

B.第2実施形態
1.第2実施形態の構成(第1実施形態との構成の相違)
第2実施形態のハードウェアの構成は、第1実施形態と同じであり、両実施形態の相違点はその処理(ソフトウェア)にある。このため、以下では、第1実施形態の構成要素と同一の参照符号を用いて説明する。
B. Second Embodiment 1. FIG. Configuration of the second embodiment (difference in configuration from the first embodiment)
The hardware configuration of the second embodiment is the same as that of the first embodiment, and the difference between the two embodiments is in the processing (software). For this reason, below, it demonstrates using the same referential mark as the component of 1st Embodiment.

2.FC発電電力Pfc及び蓄電量SOCの制御
図11は、第2実施形態においてFC40のFC発電電力Pfc及びバッテリ60の蓄電量SOCを制御するフローチャートである。図11の処理は、例えば、数ミリ秒〜数秒の周期で繰り返される。第2実施形態におけるFC発電電力Pfcの制御は、主として統合ECU24が行い、蓄電量SOCの制御は、主としてバッテリECU64及び統合ECU24が行う。
2. FIG. 11 is a flowchart for controlling the FC power generation power Pfc of the FC 40 and the power storage amount SOC of the battery 60 in the second embodiment. The process of FIG. 11 is repeated with a period of several milliseconds to several seconds, for example. The integrated ECU 24 mainly controls the FC generated power Pfc in the second embodiment, and the battery ECU 64 and the integrated ECU 24 mainly control the storage amount SOC.

ステップS31〜S33は、図5のステップS1〜S3と同様である。   Steps S31 to S33 are the same as steps S1 to S3 in FIG.

ステップS34において、統合ECU24は、蓄電量SOCと、蓄電量SOCの許容上限値(上限値SOC_up)[%]と、蓄電量SOCの許容下限値(下限値SOC_low)とを用いて割合Rを算出する。割合Rは、次の式(1)により得られる。
R=(SOC−SOC_low)/(SOC_up−SOC_low) …(1)
In step S34, the integrated ECU 24 calculates the ratio R using the storage amount SOC, the allowable upper limit value (upper limit SOC_up) [%] of the storage amount SOC, and the allowable lower limit value (lower limit value SOC_low) of the storage amount SOC. To do. The ratio R is obtained by the following formula (1).
R = (SOC-SOC_low) / (SOC_up-SOC_low) (1)

上記式(1)からわかるように、割合Rは、蓄電量SOCが取り得る範囲(下限値SOC_lowから上限値SOC_upまでの範囲)における蓄電量SOCの位置を示す。換言すると、割合Rは、蓄電量SOCが下限値SOC_lowと上限値SOC_upのいずれに近いのかを示す。例えば、割合Rが1に近い場合、蓄電量SOCは上限値SOC_upに近く、割合Rが0に近い場合、蓄電量SOCは下限値SOC_lowに近い。このため、割合Rの目標値を設定し、割合Rをこの目標値と等しくなるように制御すれば、下限値SOC_lowと上限値SOC_upを変化させても、その変化に蓄電量SOCを追従させることができる。   As can be seen from the above formula (1), the ratio R indicates the position of the charged amount SOC in the range that the charged amount SOC can take (range from the lower limit value SOC_low to the upper limit value SOC_up). In other words, the ratio R indicates whether the charged amount SOC is closer to the lower limit value SOC_low or the upper limit value SOC_up. For example, when the ratio R is close to 1, the storage amount SOC is close to the upper limit value SOC_up, and when the ratio R is close to 0, the storage amount SOC is close to the lower limit value SOC_low. For this reason, if the target value of the ratio R is set and the ratio R is controlled to be equal to the target value, even if the lower limit value SOC_low and the upper limit value SOC_up are changed, the charged amount SOC follows the change. Can do.

ステップS35において、統合ECU24は、FC要求電力Pfc_reqの補正量(補正量β)[W]を割合Rに基づいて決定する。補正量βは、第1実施形態の補正量αと同様の目的を有するものであり、割合Rがその目標値(目標割合R_tar)と等しくなるようにFC要求電力Pfc_reqに加算される。   In step S35, the integrated ECU 24 determines the correction amount (correction amount β) [W] of the FC required power Pfc_req based on the ratio R. The correction amount β has the same purpose as the correction amount α of the first embodiment, and is added to the FC required power Pfc_req so that the ratio R becomes equal to the target value (target ratio R_tar).

図12には、割合Rと補正量βの関係の一例が示されている。図12に示すように、割合Rと補正量βとは比例関係にあり、割合Rが増加すると補正量βは減少する。また、割合Rが目標割合R_tarより小さいとき、補正量βは正の値であり、割合Rが目標割合R_tarより大きいとき、補正量βは負の値である。補正量βをこのように設定することにより、その時点における割合Rが、目標割合R_tarを下回っている場合、FC要求電力PfcよりもFC発電電力Pfcを大きくし、その余剰分により蓄電量SOCを増加させることにより割合Rを増加させて目標割合R_tarに近付ける。一方、その時点における割合Rが、目標割合R_tarを上回っている場合、FC要求電力Pfc_reqよりもFC発電電力Pfcを小さくし、その不足分により蓄電量SOCを減少させることにより割合Rを減少させて目標割合R_tarに近付ける。   FIG. 12 shows an example of the relationship between the ratio R and the correction amount β. As shown in FIG. 12, the ratio R and the correction amount β are in a proportional relationship, and when the ratio R increases, the correction amount β decreases. When the ratio R is smaller than the target ratio R_tar, the correction amount β is a positive value. When the ratio R is larger than the target ratio R_tar, the correction amount β is a negative value. By setting the correction amount β in this way, when the ratio R at that time is lower than the target ratio R_tar, the FC generated power Pfc is made larger than the FC required power Pfc, and the storage amount SOC is set by the surplus. By increasing the ratio, the ratio R is increased to approach the target ratio R_tar. On the other hand, when the ratio R at that time exceeds the target ratio R_tar, the ratio R is decreased by reducing the FC generated power Pfc to be smaller than the FC required power Pfc_req and reducing the storage amount SOC due to the shortage. It approaches the target ratio R_tar.

なお、第2実施形態において、目標割合R_tarは、固定値(例えば、0.5)であるが、可変であってもよい。例えば、第1実施形態のように、通常走行時(すなわち、電動車両10の運転中であり且つ駐車準備処理を行っていない時)の目標割合R_tar(通常走行時目標割合R_tar1)と、駐車準備時(すなわち、駐車準備処理を行っている時)の目標割合R_tar(駐車準備時目標割合R_tar2)とを設定し、電動車両10の走行状態に応じて通常走行時目標割合R_tar1と駐車準備時目標割合R_tar2とを切り替えることもできる。   In the second embodiment, the target ratio R_tar is a fixed value (for example, 0.5), but may be variable. For example, as in the first embodiment, the target ratio R_tar (the normal driving target ratio R_tar1) during normal driving (that is, when the electric vehicle 10 is in operation and the parking preparation processing is not performed) and the parking preparation are performed. The target ratio R_tar (the target ratio R_tar2 at the time of parking preparation) is set, and the target ratio R_tar1 at the normal driving time and the target at the time of parking preparation are set according to the driving state of the electric vehicle 10 The ratio R_tar2 can be switched.

図11に戻り、ステップS36において、統合ECU24は、FC要求電力Pfc_reqに補正量βを反映した値(FC目標電力Pfc_tar2)[W]を算出する(Pfc_tar2=Pfc_req+β)。ステップS37において、統合ECU24は、FC発電電力PfcがFC目標電力Pfc_tar2と等しくなるようにFCユニット16及び電力分配器20を制御する。例えば、FC目標電力Pfc_tar2に応じたFC目標電圧Vfc_tarを設定し、このFC目標電圧Vfc_tarを実現するようにバッテリ電圧Vbatを、電力分配器20の図示しないDC/DCコンバータで昇圧する。   Returning to FIG. 11, in step S36, the integrated ECU 24 calculates a value (FC target power Pfc_tar2) [W] reflecting the correction amount β in the FC required power Pfc_req (Pfc_tar2 = Pfc_req + β). In step S37, the integrated ECU 24 controls the FC unit 16 and the power distributor 20 so that the FC generated power Pfc becomes equal to the FC target power Pfc_tar2. For example, the FC target voltage Vfc_tar corresponding to the FC target power Pfc_tar2 is set, and the battery voltage Vbat is boosted by a DC / DC converter (not shown) of the power distributor 20 so as to realize the FC target voltage Vfc_tar.

ステップS37において、統合ECU24は、駐車予測制御を実行する。第2実施形態の駐車予測制御は、第1実施形態の駐車予測制御と同様に、電動車両10が目的地に近づいて来たとき、電動車両10が駐車する際の準備としてバッテリ60の蓄電量SOCを低下させ、電動車両10が駐車した時点で駐車時目標蓄電量SOC_tar_pと等しくさせる制御である。   In step S37, the integrated ECU 24 executes parking prediction control. The parking prediction control of the second embodiment is similar to the parking prediction control of the first embodiment. When the electric vehicle 10 approaches the destination, the storage amount of the battery 60 is prepared as a preparation when the electric vehicle 10 is parked. In this control, the SOC is decreased and equal to the parking target storage amount SOC_tar_p when the electric vehicle 10 is parked.

図13は、第2実施形態における駐車予測制御の具体的処理を示すフローチャートである。ステップS41において、統合ECU24は、バッテリ60の蓄電量SOCについて、電動車両10が駐車するための準備(駐車準備)を要するかどうかを判断する駐車準備要否判断を行う。   FIG. 13 is a flowchart showing specific processing of parking prediction control in the second embodiment. In step S <b> 41, the integrated ECU 24 determines whether or not parking preparation is necessary for determining whether or not preparation (parking preparation) for the electric vehicle 10 to park is required for the storage amount SOC of the battery 60.

図14は、前記駐車準備要否判断の具体的処理を示すフローチャートである。ステップS51において、統合ECU24は、電動車両10のセレクトレバーがパーキングの位置(Pレンジ)にあるかどうか、サイドブレーキがかけられているかどうか及びIGSW100がオフになっているかどうかを判定する。上記いずれかが満たされる場合(すなわち、セレクトレバーによりPレンジが選択されている、サイドブレーキが作動している又はIGSW100がオフである場合)(S51:YES)、ステップS52において、統合ECU24は、バッテリ60の蓄電量SOCについて駐車準備を要すると判定する。   FIG. 14 is a flowchart showing specific processing for determining whether or not the parking preparation is necessary. In step S51, the integrated ECU 24 determines whether the select lever of the electric vehicle 10 is in the parking position (P range), whether the side brake is applied, and whether the IGSW 100 is off. If any of the above is satisfied (that is, the P range is selected by the select lever, the side brake is operating, or the IGSW 100 is OFF) (S51: YES), in step S52, the integrated ECU 24 It is determined that parking preparation is required for the storage amount SOC of the battery 60.

ステップ51において、上記いずれの条件も満たされない場合(S51:NO)、ステップS53において、統合ECU24は、電動車両10が目的地に接近しているかどうかを判定する。具体的には、図9のステップS23と同様に、統合ECU24は、電動車両10の現在位置から目的地までの距離Dが、閾値TH_D以下であるかどうかを判定し、距離Dが閾値TH_D以下である場合(S53:YES)、統合ECU24は、駐車準備を要すると判定する。距離Dが閾値TH_Dより大きい場合(S53:NO)、ステップS54に進む。   If none of the above conditions is satisfied in step 51 (S51: NO), in step S53, the integrated ECU 24 determines whether or not the electric vehicle 10 is approaching the destination. Specifically, as in step S23 of FIG. 9, the integrated ECU 24 determines whether or not the distance D from the current position of the electric vehicle 10 to the destination is less than or equal to the threshold value TH_D, and the distance D is less than or equal to the threshold value TH_D. (S53: YES), the integrated ECU 24 determines that parking preparation is required. When the distance D is greater than the threshold TH_D (S53: NO), the process proceeds to step S54.

図15は、電動車両10の現在位置から目的地までの距離Dと、駐車準備の要否との関係等の一例を示す図である。図15に示すように、距離Dが閾値TH_D以下であるとき、駐車準備を要すると判断し、距離Dが閾値TH_Dを超えるとき、駐車準備を要さないと判断する。   FIG. 15 is a diagram illustrating an example of the relationship between the distance D from the current position of the electric vehicle 10 to the destination and the necessity of parking preparation. As shown in FIG. 15, when the distance D is equal to or less than the threshold value TH_D, it is determined that parking preparation is required, and when the distance D exceeds the threshold value TH_D, it is determined that parking preparation is not required.

また、図15には、通常走行時目標蓄電量SOC_tar_d、駐車時目標蓄電量SOC_tar_p、上限値SOC_up及び下限値SOC_lowとの関係の一例も示されている。上記のように、通常走行時目標蓄電量SOC_tar_dは、電動車両10の通常走行時に用いられる蓄電量SOCの目標値であり、駐車時目標蓄電量SOC_tar_pは、駐車準備時に用いられる蓄電量SOCの目標値である。上限値SOC_up及び下限値SOC_lowは、距離Dがゼロから閾値TH_Dの間では距離Dの増加に応じて増加し、距離Dが閾値TH_Dを超えるとき一定値となる。通常走行時目標蓄電量SOC_tar_d、駐車時目標蓄電量SOC_tar_p、上限値SOC_up及び下限値SOC_lowについては、後述する図13のステップS45と関連しても説明する。   FIG. 15 also shows an example of the relationship between the target power storage amount SOC_tar_d during normal travel, the target power storage amount SOC_tar_p during parking, the upper limit SOC_up, and the lower limit SOC_low. As described above, the normal running target storage amount SOC_tar_d is a target value of the storage amount SOC used during normal driving of the electric vehicle 10, and the parking target storage amount SOC_tar_p is the target of the storage amount SOC used during parking preparation. Value. The upper limit SOC_up and the lower limit SOC_low increase with an increase in the distance D when the distance D is between zero and the threshold TH_D, and are constant when the distance D exceeds the threshold TH_D. The normal travel target power storage amount SOC_tar_d, the parking target power storage amount SOC_tar_p, the upper limit SOC_up, and the lower limit SOC_low will be described in relation to step S45 of FIG.

図14に戻り、ステップS54において、電動車両10が徐行中であるかどうかを判定する。具体的には、電動車両10の車速V[km/h]が閾値TH_V[km/h](例えば、20km/h)以下である状態の継続時間T[秒]が閾値TH_T(例えば、10秒〜数十秒)以上継続しているかどうかを判定する。この際、電動車両10の走行路が渋滞中である場合(特に高速道路での渋滞である場合)は徐行中に含めないことも可能である。なお、渋滞の判定は、例えば、ナビゲーション装置82を介して情報センターから渋滞情報を取得することにより行うことができる。或いは、周辺車両との間の車々間通信や、光ビーコンとの間の路車間通信により取得してもよい。また、高速道路の判定は、ナビゲーション装置82が有する地図情報により行うことができる。さらに、信号待ちの時間を継続時間Tから除外するため、車速Vがゼロ又はその近傍値であるときを除外することもできる。   Returning to FIG. 14, in step S <b> 54, it is determined whether or not the electric vehicle 10 is traveling slowly. Specifically, the duration T [second] in a state where the vehicle speed V [km / h] of the electric vehicle 10 is equal to or less than the threshold value TH_V [km / h] (for example, 20 km / h) is the threshold value TH_T (for example, 10 seconds). Judge whether it has continued for tens of seconds). At this time, if the travel path of the electric vehicle 10 is congested (especially when it is congested on a highway), it may not be included during slow driving. The determination of the traffic jam can be performed by acquiring the traffic jam information from the information center via the navigation device 82, for example. Or you may acquire by the communication between vehicles between surrounding vehicles, and the road-vehicle communication between optical beacons. In addition, the determination of the expressway can be performed based on the map information that the navigation device 82 has. Furthermore, in order to exclude the signal waiting time from the duration T, it is possible to exclude the time when the vehicle speed V is zero or a value close thereto.

電動車両10が徐行中でない場合(S54:NO)、ステップS55において、統合ECU24は、駐車準備を要さないと判定する。電動車両10が徐行中である場合(S54:YES)、ステップS52において、統合ECU24は、駐車準備を要すると判定する。   If the electric vehicle 10 is not traveling slowly (S54: NO), in step S55, the integrated ECU 24 determines that preparation for parking is not required. When the electric vehicle 10 is traveling slowly (S54: YES), in step S52, the integrated ECU 24 determines that parking preparation is required.

図16は、車速Vが閾値TH_V以下である状態の継続時間Tと、駐車準備の要否との関係等の一例を示す図である。図16に示すように、継続時間Tが閾値TH_T以下であるとき、駐車準備を要さないと判断し、継続時間Tが閾値TH_Tを超えるとき、駐車準備を要すると判断する。   FIG. 16 is a diagram illustrating an example of a relationship between a duration T in a state where the vehicle speed V is equal to or lower than a threshold value TH_V and necessity of parking preparation. As shown in FIG. 16, when the duration T is equal to or less than the threshold TH_T, it is determined that parking preparation is not required, and when the duration T exceeds the threshold TH_T, it is determined that parking preparation is required.

また、図16には、通常走行時目標蓄電量SOC_tar_d、駐車時目標蓄電量SOC_tar_p、上限値SOC_up及び下限値SOC_lowとの関係の一例も示されている。通常走行時目標蓄電量SOC_tar_d、駐車時目標蓄電量SOC_tar_p、上限値SOC_up及び下限値SOC_lowは、図15と同様のものであり、後述する図13のステップS45と関連しても説明する。   FIG. 16 also shows an example of the relationship between the target running power storage amount SOC_tar_d, the parking target storage power SOC_tar_p, the upper limit SOC_up, and the lower limit SOC_low. The normal driving target storage amount SOC_tar_d, the parking target storage amount SOC_tar_p, the upper limit SOC_up, and the lower limit SOC_low are the same as those in FIG. 15 and will also be described in relation to step S45 of FIG.

なお、上記のように、ナビゲーション装置82に登録されている目的地に接近していないにもかかわらず(S53:NO)、徐行中であるかどうかを判定することで次のような効果を得ることができる。例えば、ナビゲーション装置82には目的地として自宅しか入力されていないときに最寄りの大型スーパーマーケットに行くとき、当該スーパーマーケットの駐車場内を移動することで徐行運転が継続する場合に早めに蓄電量SOCを低下させることができる。   In addition, as described above, the following effects are obtained by determining whether the vehicle is traveling slowly even though the destination registered in the navigation device 82 is not approached (S53: NO). be able to. For example, when only the home is entered as the destination in the navigation device 82, when going to the nearest large supermarket, moving in the parking lot of the supermarket will reduce the stored energy SOC early when slow driving continues. Can be made.

図13に戻り、ステップS42において、統合ECU24は、駐車準備要否判断(S41)の結果を確認する。駐車準備を要する場合(S42:YES)、ステップS43に進み、駐車準備処理(S43〜S48)を行う。駐車準備を要さない場合(S42:NO)、今回の駐車予測制御を終了し、図11に戻る。   Returning to FIG. 13, in step S <b> 42, the integrated ECU 24 checks the result of the parking preparation necessity determination (S <b> 41). When parking preparation is required (S42: YES), the process proceeds to step S43, and parking preparation processing (S43 to S48) is performed. When parking preparation is not required (S42: NO), this parking prediction control is complete | finished and it returns to FIG.

ステップS43において、統合ECU24は、図11のステップS33で検出したバッテリ60の蓄電量SOCが、駐車時目標蓄電量SOC_tar_pより大きいかどうかを判定する。駐車時目標蓄電量SOC_tar_pは、電動車両10が駐車する際における蓄電量SOCの目標値であり、第2実施形態では固定値(例えば、40%)に設定される。   In step S43, the integrated ECU 24 determines whether or not the storage amount SOC of the battery 60 detected in step S33 of FIG. 11 is greater than the parking target storage amount SOC_tar_p. The parking target storage amount SOC_tar_p is a target value of the storage amount SOC when the electric vehicle 10 is parked, and is set to a fixed value (for example, 40%) in the second embodiment.

蓄電量SOCが駐車時目標蓄電量SOC_tar_pより大きい場合(S43:YES)、ステップS44において、統合ECU24は、均等化回路62を作動させてバッテリ60を放電させる。これにより、蓄電量SOCを低下させ、駐車時目標蓄電量SOC_tar_pに近付けることができる。蓄電量SOCが駐車時目標蓄電量SOC_tar_p以下である場合(S43:NO)、蓄電量SOCを低下させる必要はないので、均等化回路62による放電(S44)を行わずにステップS45に進む。   When the charged amount SOC is larger than the parking target charge amount SOC_tar_p (S43: YES), in step S44, the integrated ECU 24 operates the equalizing circuit 62 to discharge the battery 60. Thereby, the amount of stored electricity SOC can be reduced and brought close to the target amount of electricity stored during parking SOC_tar_p. When the charged amount SOC is equal to or less than the parking target charged amount SOC_tar_p (S43: NO), there is no need to reduce the charged amount SOC, so the process proceeds to step S45 without discharging (S44) by the equalization circuit 62.

ステップS45において、統合ECU24は、SOC上下限値低下処理(以下「上下限値低下処理」ともいう。)を行う。上下限値低下処理は、蓄電量SOCの許容上限値(上限値SOC_up)と許容下限値(下限値SOC_low)を、電動車両10の現在位置から目的地までの距離D、又は車速Vが閾値TH_V以下である状態の継続時間Tに応じて低下させる処理である。   In step S45, the integrated ECU 24 performs an SOC upper / lower limit value reduction process (hereinafter also referred to as an “upper / lower limit value reduction process”). In the upper and lower limit value reduction processing, the allowable upper limit value (upper limit value SOC_up) and the allowable lower limit value (lower limit value SOC_low) of the charged amount SOC are set, the distance D from the current position of the electric vehicle 10 to the destination, or the vehicle speed V is the threshold value TH_V. This is a process of lowering according to the duration T of the state as follows.

具体的には、図14のステップS53において電動車両10が目的地に接近していると判定した場合(S53:YES)、当該判定に用いた距離Dに応じて上限値SOC_upと下限値SOC_lowを低下させる。距離Dと上限値SOC_up及び下限値SOC_lowとの関係は、例えば、図15に記載のものを用いる。また、上限値SOC_up及び下限値SOC_lowを決定したら、図15に記載の関係を用いて、通常走行時目標蓄電量SOC_tar_dを設定する。さらに、駐車時目標蓄電量SOC_tar_pは、通常走行時の上限値SOC_upよりも高く設定される。   Specifically, when it is determined in step S53 of FIG. 14 that the electric vehicle 10 is approaching the destination (S53: YES), the upper limit SOC_up and the lower limit SOC_low are set according to the distance D used for the determination. Reduce. The relationship between the distance D and the upper limit SOC_up and the lower limit SOC_low is, for example, that shown in FIG. When the upper limit value SOC_up and the lower limit value SOC_low are determined, the normal running target storage amount SOC_tar_d is set using the relationship shown in FIG. Furthermore, parking target storage amount SOC_tar_p is set higher than upper limit SOC_up during normal travel.

また、図14のステップS54において電動車両10が徐行中であると判定した場合(S54:YES)、当該判定に用いた継続時間Tに応じて上限値SOC_upと下限値SOC_lowを低下させる。継続時間Tと上限値SOC_up及び下限値SOC_lowとの関係は、例えば、図16に記載のものを用いる。また、上限値SOC_up及び下限値SOC_lowを決定したら、図16に記載の関係を用いて、通常走行時目標蓄電量SOC_tar_dを設定する。さらに、駐車時目標蓄電量SOC_tar_pは、通常走行時の上限値SOC_upよりも高く設定される。   Further, when it is determined in step S54 of FIG. 14 that the electric vehicle 10 is traveling slowly (S54: YES), the upper limit SOC_up and the lower limit SOC_low are decreased according to the duration T used for the determination. The relationship between the duration T, the upper limit SOC_up and the lower limit SOC_low is, for example, that shown in FIG. When the upper limit SOC_up and the lower limit SOC_low are determined, the normal running target storage amount SOC_tar_d is set using the relationship shown in FIG. Furthermore, parking target storage amount SOC_tar_p is set higher than upper limit SOC_up during normal travel.

なお、図15、図16において、駐車時目標蓄電量SOC_tar_pが駐車準備の有無にかかわらず存在しているのは、Pレンジ等の場合(S51:YES)を考慮したものである。   In FIG. 15 and FIG. 16, the target storage amount SOC_tar_p at the time of parking is present regardless of whether parking preparation is present or not, considering the case of the P range or the like (S51: YES).

図13に戻り、ステップS46において、統合ECU24は、今回の演算周期において判定したFC目標電力Pfc_tar2{以下「FC目標電力Pfc_tar2(今回)」と称する。}と、前回の演算周期において判定したFC目標電力Pfc_tar2{以下「FC目標電力Pfc_tar2(前回)」と称する。}との差(差ΔPfc_tar2)[W]の絶対値を算出する。   Returning to FIG. 13, in step S46, the integrated ECU 24 refers to the FC target power Pfc_tar2 determined in the current calculation cycle {hereinafter referred to as “FC target power Pfc_tar2 (current)”. } And FC target power Pfc_tar2 determined in the previous calculation cycle {hereinafter referred to as “FC target power Pfc_tar2 (previous)”. } (Difference ΔPfc_tar2) [W] is calculated.

ステップS47において、統合ECU24は、差ΔPfc_tar2の絶対値が、閾値TH_ΔPfc2より大きいかどうかを判定する。閾値TH_ΔPfc2は、差ΔPfc_tar2の絶対値がそれ以上の値になったときFC40の劣化を招く又は劣化を促進する値に設定される。前記絶対値が、閾値TH_ΔPfc2より大きい場合(S47:YES)、ステップS48において、統合ECU24は、ステップS45で行った上限値SOC_up及び下限値SOC_lowの低下を解除し、上限値SOC_up及び下限値SOC_lowを初期値(SOC上下限値低下処理を行う前の値)に戻す。これにより、FC40の劣化又はその促進を防止することが可能となる。前記絶対値が、閾値TH_ΔPfc2以下である場合(S47:NO)、ステップS48を経ずに今回の図13の処理を終了する。   In step S47, the integrated ECU 24 determines whether or not the absolute value of the difference ΔPfc_tar2 is greater than the threshold value TH_ΔPfc2. The threshold value TH_ΔPfc2 is set to a value that causes or promotes the deterioration of the FC 40 when the absolute value of the difference ΔPfc_tar2 becomes a value larger than that. When the absolute value is larger than the threshold value TH_ΔPfc2 (S47: YES), in step S48, the integrated ECU 24 cancels the lowering of the upper limit value SOC_up and the lower limit value SOC_low performed in step S45, and sets the upper limit value SOC_up and the lower limit value SOC_low. The value is returned to the initial value (value before the SOC upper / lower limit value lowering process is performed). Thereby, it becomes possible to prevent the deterioration of the FC 40 or the promotion thereof. When the absolute value is equal to or smaller than the threshold value TH_ΔPfc2 (S47: NO), the current process of FIG. 13 is terminated without passing through step S48.

図17には、第2実施形態における蓄電量SOCと、電動車両10の現在位置と目的地の間の距離Dと、電動車両10の車速Vと、FC目標電力Pfc_tar2と、均等化回路62の動作との関係の一例を示すタイムチャートが示されている。図17において、時点t11までは、駐車準備を要するとする条件がいずれも満たされない。すなわち、Pレンジの選択、サイドブレーキの作動及びIGSW100のオフのいずれも該当せず(S51:NO)、目的地に接近せず(S53:NO)、徐行中でない(S54:NO)。このため、駐車予測制御に伴う均等化回路62の動作は行われない。但し、各単位セル76の電圧を均等化するための均等化処理は、バッテリECU64が均等化回路62を制御することにより適宜行われる。   In FIG. 17, the storage amount SOC in the second embodiment, the distance D between the current position and the destination of the electric vehicle 10, the vehicle speed V of the electric vehicle 10, the FC target power Pfc_tar2, and the equalization circuit 62 The time chart which shows an example of the relationship with operation | movement is shown. In FIG. 17, until the time t11, none of the conditions that require parking preparation are satisfied. In other words, none of the selection of the P range, the operation of the side brake, and the turning off of the IGSW 100 are applicable (S51: NO), the destination is not approached (S53: NO), and the vehicle is not traveling slowly (S54: NO). For this reason, the operation | movement of the equalization circuit 62 accompanying parking prediction control is not performed. However, the equalization process for equalizing the voltages of the unit cells 76 is appropriately performed by the battery ECU 64 controlling the equalization circuit 62.

時点t11において距離Dと閾値TH_Dとが等しくなると、統合ECU24は駐車準備を要すると判定する。また、時点t11において、蓄電量SOCは、駐車時目標蓄電量SOC_tar_pよりも高い。このため、統合ECU24は、均等化回路62をオンにし、均等化回路62によるバッテリ60の放電を開始する。ここでの放電は、各スイッチ80を全てオンにし、全ての放電抵抗78を作動させる。或いは、必要に応じてオンとするスイッチ80を選択し、一部の放電抵抗78のみを作動させてもよい。   When the distance D becomes equal to the threshold value TH_D at time t11, the integrated ECU 24 determines that parking preparation is required. Further, at the time t11, the charged amount SOC is higher than the parking target charge amount SOC_tar_p. Therefore, the integrated ECU 24 turns on the equalization circuit 62 and starts discharging the battery 60 by the equalization circuit 62. In this discharge, all the switches 80 are turned on, and all the discharge resistors 78 are operated. Alternatively, a switch 80 to be turned on may be selected as necessary, and only some of the discharge resistors 78 may be activated.

時点t12において、車速Vが閾値TH_V以下となるが、既に距離Dが閾値TH_D以下となっているので、均等化回路62の動作には影響がなく、均等化回路62はオンのままである。   At time t12, the vehicle speed V becomes equal to or less than the threshold value TH_V, but since the distance D is already equal to or less than the threshold value TH_D, the operation of the equalization circuit 62 is not affected, and the equalization circuit 62 remains on.

時点t13において、FC目標出力Pfc_tar2が急激な減少を開始し、差ΔPfc_tar2の絶対値が閾値TH_ΔPfc2を上回ると、統合ECU24は、上限値SOC_up及び下限値SOC_lowの低下を中止し、両値をリセットする。その結果、バッテリ60の上限値SOC_upが増大し、バッテリ60は、FC発電電力Pfcをより多く充電することが可能となる。また、蓄電量SOCが変わらない状態で、上限値SOC_up及び下限値SOC_lowがリセットされると、割合Rは低下することとなる。その結果、補正量βは大きくなり、FC目標出力Pfc_tar2の減少が緩やかとなる。   When the FC target output Pfc_tar2 starts to rapidly decrease at time t13 and the absolute value of the difference ΔPfc_tar2 exceeds the threshold value TH_ΔPfc2, the integrated ECU 24 stops decreasing the upper limit SOC_up and the lower limit SOC_low and resets both values. . As a result, the upper limit SOC_up of the battery 60 increases, and the battery 60 can charge more FC generated power Pfc. In addition, when the upper limit SOC_up and the lower limit SOC_low are reset in a state in which the storage amount SOC does not change, the ratio R decreases. As a result, the correction amount β increases and the FC target output Pfc_tar2 decreases gradually.

時点t14において、FC目標出力Pfc_tar2の減少が緩やかとなり、差ΔPfc_tar2の絶対値が閾値TH_ΔPfc2以下となると、統合ECU24は、上限値SOC_up及び下限値SOC_lowの低下を再開し、通常運転時目標蓄電量SOC_tar_dの低下も再開する。   When the FC target output Pfc_tar2 gradually decreases at time t14 and the absolute value of the difference ΔPfc_tar2 becomes equal to or smaller than the threshold value TH_ΔPfc2, the integrated ECU 24 resumes lowering of the upper limit value SOC_up and the lower limit value SOC_low, and the normal operation target storage amount SOC_tar_d The decline will resume.

時点t15において、距離Dがゼロとなり、電動車両10は目的地に到達する。この時点において、バッテリ60の蓄電量SOCは、駐車時目標蓄電量SOC_tar_pよりも高い(SOC>SOC_tar_p)。このため、統合ECU24は、均等化回路62による放電を継続する。   At time t15, the distance D becomes zero, and the electric vehicle 10 reaches the destination. At this time, the charged amount SOC of the battery 60 is higher than the parking target charge amount SOC_tar_p (SOC> SOC_tar_p). For this reason, the integrated ECU 24 continues the discharge by the equalization circuit 62.

時点t16において、蓄電量SOCが駐車時目標蓄電量SOC_tar_pと等しくなると(SOC=SOC_tar_p)、統合ECU24は、均等化回路62による放電を終了する。   When the charged amount SOC becomes equal to the parking target charged amount SOC_tar_p at time t16 (SOC = SOC_tar_p), the integrated ECU 24 ends the discharge by the equalization circuit 62.

図18には、第2実施形態に係る蓄電量SOCの制御を行った場合における電動車両10の走行時及び駐車時の蓄電量SOCの頻度[%]の分布の一例が示されている。図18に示すように、第2実施形態に係る蓄電量SOCの制御を行った場合、走行時の蓄電量SOCは、通常走行時目標蓄電量SOC_tar_dである50%を中心に分布し、駐車時の蓄電量SOCは、駐車時目標蓄電量SOC_tar_pである40%を中心に分布する。従って、電動車両10が駐車した時点において蓄電量SOCを駐車時目標蓄電量SOC_tar_pまで低下させることができている。   FIG. 18 shows an example of the distribution of the frequency [%] of the charged amount SOC when the electric vehicle 10 is traveling and parked when the charged amount SOC is controlled according to the second embodiment. As shown in FIG. 18, when the storage amount SOC according to the second embodiment is controlled, the storage amount SOC during traveling is distributed centering around 50% that is the target storage amount SOC_tar_d during normal travel, and when parked The amount of stored electricity SOC is distributed around the parking target storage amount SOC_tar_p of 40%. Therefore, when the electric vehicle 10 is parked, the storage amount SOC can be reduced to the parking target storage amount SOC_tar_p.

3.第2実施形態の効果
以上のように、第2実施形態では、第1実施形態で得られる効果に加え、下記の効果を得ることができる。
3. Effects of Second Embodiment As described above, in the second embodiment, the following effects can be obtained in addition to the effects obtained in the first embodiment.

第2実施形態において、統合ECU24は、予測された駐車時期に応じて、すなわち、駐車準備を要すると判断したとき、バッテリ60の蓄電量SOCの上限値SOC_upを低下させ、上限値SOC_upの低下に応じて、FC40の出力を制限する。これにより、上限値SOC_upを低下させたとき、FC40の出力を制限する。従って、駐車準備を要すると判断したとき、FC40による余分な発電を防止することが可能となる。   In the second embodiment, the integrated ECU 24 reduces the upper limit value SOC_up of the storage amount SOC of the battery 60 according to the predicted parking time, that is, when it is determined that parking preparation is required, and reduces the upper limit value SOC_up. Accordingly, the output of FC40 is limited. Thereby, when the upper limit SOC_up is lowered, the output of the FC 40 is limited. Therefore, when it is determined that parking preparation is required, it is possible to prevent excessive power generation by the FC 40.

第2実施形態において、統合ECU24は、FC40の劣化を招くFC発電電力Pfcの低下条件として差ΔPfc_tar2に関する閾値TH_ΔPfc2を設定し、上限値SOC_upを低下させているときに差ΔPfc_tar2の絶対値が閾値TH_ΔPfc2を超えた場合、上限値SOC_upの低下を中止する。これにより、FC40の劣化を招くFC発電電力Pfcの低下があったときには、上限値SOC_upの低下に伴うFC40の出力制限を中止し、FC40の出力低下を緩和することでFC40の劣化を防止することが可能となる。   In the second embodiment, the integrated ECU 24 sets a threshold value TH_ΔPfc2 related to the difference ΔPfc_tar2 as a decrease condition of the FC generated power Pfc that causes the deterioration of the FC40, and the absolute value of the difference ΔPfc_tar2 is the threshold value TH_ΔPfc2 when the upper limit SOC_up is decreased. When the value exceeds the upper limit SOC_up, the lowering of the upper limit SOC_up is stopped. As a result, when there is a decrease in FC generated power Pfc that causes the FC40 to deteriorate, the FC40 output restriction accompanying the decrease in the upper limit SOC_up is stopped, and the FC40 output decrease is mitigated to prevent the FC40 deterioration. Is possible.

第2実施形態において、統合ECU24は、駐車準備を要さないときには、バッテリ60の蓄電量SOCの下限値SOC_lowを蓄電量SOCが下回らないように蓄電量SOCを制御し、駐車準備を要するときには、駐車時目標蓄電量SOC_tar_pを設定し、電動車両10の駐車時において駐車時目標蓄電量SOC_tar_pと蓄電量SOCとが等しくなるように蓄電量SOCを制御し、駐車時目標蓄電量SOC_tar_pは、通常走行時の下限値SOC_lowよりも高く設定される。これにより、例えば、FC40が劣化し難い蓄電量SOCの範囲の下限値を通常走行時の下限値SOC_lowとして設定すれば、電動車両10の駐車時における蓄電量SOCを通常走行時の下限値SOC_lowよりも高くすることができる。その結果、バッテリ60が自然放電しても通常走行時の下限値SOC_lowを下回る可能性を低くすることが可能となる。また、これに伴って、バッテリ60に十分な電力を蓄えることが可能となるため、電動車両10の次回の起動を確実に行うことが可能となる。   In the second embodiment, the integrated ECU 24 controls the storage amount SOC so that the storage amount SOC does not fall below the lower limit SOC_low of the storage amount SOC of the battery 60 when parking preparation is not required, and when parking preparation is required. The target storage amount SOC_tar_p at the time of parking is set, and the storage amount SOC is controlled so that the target storage amount SOC_tar_p at the time of parking and the storage amount SOC become equal when the electric vehicle 10 is parked. It is set higher than the lower limit value SOC_low at the time. Thus, for example, if the lower limit value of the range of the stored electricity SOC where the FC 40 is unlikely to deteriorate is set as the lower limit value SOC_low during normal traveling, the stored amount SOC during parking of the electric vehicle 10 is less than the lower limit value SOC_low during normal traveling. Can also be high. As a result, it is possible to reduce the possibility that the battery 60 will naturally fall below the lower limit SOC_low during normal travel even if the battery 60 is naturally discharged. Moreover, since it becomes possible to store sufficient electric power in the battery 60 in connection with this, it becomes possible to perform the next starting of the electric vehicle 10 reliably.

C.変形例
なお、この発明は、上記各実施形態に限らず、この明細書の記載内容に基づき、種々の構成を採り得ることはもちろんである。例えば、以下の構成を採用することができる。
C. Modifications It should be noted that the present invention is not limited to the above-described embodiments, and it is needless to say that various configurations can be adopted based on the contents described in this specification. For example, the following configuration can be adopted.

1.搭載対象及び負荷
上記各実施形態では、FC40とバッテリ60を備える電力システム12を電動車両10に搭載したが、これに限られず、別の対象に搭載してもよい。例えば、バッテリ60と太陽電池を備える車両に搭載してもよい。或いは、電力システム12を船舶や航空機等の移動体に用いることもできる。或いは、電力システム12を家庭用電力システムとして用いてもよい。この場合、風力発電システム、太陽発電システム等、一時的に電力を発生させる発電機と組み合わせることもできる。また、上記各実施形態では、電力システム12の負荷として走行用のモータ30等を挙げたが、電力システム12の用途に応じて別の負荷とすることもできる。
1. Mounting target and load In each of the above embodiments, the electric power system 12 including the FC 40 and the battery 60 is mounted on the electric vehicle 10, but the present invention is not limited thereto, and may be mounted on another target. For example, you may mount in the vehicle provided with the battery 60 and a solar cell. Or the electric power system 12 can also be used for moving bodies, such as a ship and an aircraft. Alternatively, the power system 12 may be used as a home power system. In this case, it can also be combined with a generator that temporarily generates electric power, such as a wind power generation system or a solar power generation system. Moreover, in each said embodiment, although the motor 30 for driving | running | working etc. was mentioned as a load of the electric power system 12, it can also be set as another load according to the use of the electric power system 12. FIG.

2.発電機
上記各実施形態では、バッテリ60と並列にモータ30(負荷)に接続される発電機として、FC40を用いたが、エンジンとオルタネータを組み合わせた発電機等、他の発電機を用いることもできる。
2. Generator In each of the above embodiments, the FC 40 is used as a generator connected to the motor 30 (load) in parallel with the battery 60, but other generators such as a generator combining an engine and an alternator may be used. it can.

3.放電
上記各実施形態では、駐車準備を要するとき、統合ECU24により、均等化回路62によるバッテリ60の放電を制御したが、これに限られず、例えば、バッテリECU64により制御することもできる。
3. Discharge In each of the above embodiments, when the parking preparation is required, the integrated ECU 24 controls the discharge of the battery 60 by the equalization circuit 62. However, the present invention is not limited to this, and can be controlled by the battery ECU 64, for example.

4.蓄電量SOC
上記各実施形態では、蓄電量SOC[%]に基づく制御を行ったが、バッテリ電圧Vbatに基づく制御を行うこともできる。すなわち、蓄電量SOCとバッテリ電圧Vbatとは一対一に対応するため、上述の制御における蓄電量SOCをバッテリ電圧Vbatに置き換えて行うことも可能である。
4). Storage amount SOC
In each of the above embodiments, the control based on the storage amount SOC [%] is performed, but the control based on the battery voltage Vbat can also be performed. That is, since the storage amount SOC and the battery voltage Vbat have a one-to-one correspondence, it is also possible to replace the storage amount SOC in the above-described control with the battery voltage Vbat.

5.駐車時期の予測(目標蓄電量SOC_tar)
上記各実施形態では、駐車準備の要否(2段階の判断)により通常走行時目標蓄電量SOC_tar_dと駐車時目標蓄電量SOC_tar_pを設定し、これらを用いて均等化回路62による放電を制御した。しかし、これに限らず、3つ以上の目標蓄電量SOC_tarを設定してもよい。例えば、電動車両10の現在位置と目的地までの距離Dに応じて3つ以上の目標蓄電量SOC_tarを設定し、これらを用いて均等化回路62による放電を制御することもできる。或いは、距離Dではなく、目的地到着までの予想時間又は予想到着時刻に応じて目標蓄電量SOC_tarを設定することも可能である。
5. Prediction of parking time (target power storage amount SOC_tar)
In each of the embodiments described above, the normal travel target power storage amount SOC_tar_d and the parking target power storage amount SOC_tar_p are set according to the necessity of parking preparation (two-step determination), and the discharge by the equalization circuit 62 is controlled using these. However, the present invention is not limited to this, and three or more target power storage amounts SOC_tar may be set. For example, three or more target power storage amounts SOC_tar can be set according to the current position of the electric vehicle 10 and the distance D to the destination, and the discharge by the equalization circuit 62 can be controlled using these. Alternatively, it is also possible to set the target storage amount SOC_tar according to the expected time until arrival at the destination or the expected arrival time instead of the distance D.

10…電動車両
24…統合ECU(駐車時予測手段、蓄電電力制御手段、発電制御手段)
40…FC(発電機) 60…バッテリ(蓄電装置)
62…均等化回路 74…組電池
76…単位セル 78…放電抵抗
Pfc…FC発電電力 SOC…蓄電量
SOC_low…下限値 SOC_up…上限値
10. Electric vehicle 24 ... Integrated ECU (Parking prediction means, stored power control means, power generation control means)
40 ... FC (generator) 60 ... Battery (power storage device)
62 ... Equalization circuit 74 ... Battery pack 76 ... Unit cell 78 ... Discharge resistance Pfc ... FC generated power SOC ... Storage amount SOC_low ... Lower limit SOC_up ... Upper limit

Claims (4)

複数の単位セルを組み合わせた組電池を有する蓄電装置からの電力により駆動する電動車両であって、
前記複数の単位セルそれぞれに並列に接続された放電抵抗により前記複数の単位セルのうち少なくとも1つの蓄電電力を放電させて前記複数の単位セルの蓄電量を均等化する均等化回路と、
前記電動車両の駐車時期を予測する駐車時期予測手段と、
前記駐車時期予測手段により予測された駐車時期に応じて、前記蓄電装置の蓄電電力を前記均等化回路により放電させて前記蓄電装置の蓄電電力を目標蓄電電力まで低下させる蓄電電力制御手段と
を備え
前記蓄電電力制御手段は、予測された駐車時期よりも前に前記均等化回路による放電を開始させ、前記電動車両が実際に駐車した時に前記蓄電電力が前記目標蓄電電力よりも大きい場合、駐車後にも前記均等化回路による放電を継続する
ことを特徴とする電動車両。
An electric vehicle driven by electric power from a power storage device having an assembled battery in which a plurality of unit cells are combined,
An equalization circuit that discharges at least one stored power among the plurality of unit cells by a discharge resistor connected in parallel to each of the plurality of unit cells, and equalizes the amount of power stored in the plurality of unit cells;
A parking time prediction means for predicting a parking time of the electric vehicle;
A storage power control means for discharging the stored power of the power storage device by the equalization circuit and reducing the stored power of the power storage device to a target stored power according to the parking time predicted by the parking time prediction means. ,
The stored power control means starts discharging by the equalization circuit before the predicted parking time, and when the stored power is larger than the target stored power when the electric vehicle is actually parked, The electric vehicle is characterized in that the discharge by the equalization circuit is continued .
請求項1記載の電動車両において、
さらに、発電機と、前記発電機の出力を制御する発電制御手段とを備え、
前記発電機の発電電力を前記蓄電装置に充電可能であり、
前記蓄電電力制御手段は、前記予測された駐車時期に応じて、前記蓄電装置の蓄電量の許容上限値を低下させ、
前記発電制御手段は、前記許容上限値の低下に応じて、前記発電機の出力を制限する
ことを特徴とする電動車両。
The electric vehicle according to claim 1,
Furthermore, a generator, and a power generation control means for controlling the output of the generator,
The power generated by the generator can be charged to the power storage device,
The storage power control means reduces an allowable upper limit value of the storage amount of the power storage device according to the predicted parking time,
The power generation control means limits the output of the generator according to a decrease in the allowable upper limit value.
複数の単位セルを組み合わせた組電池を有する蓄電装置からの電力により駆動する電動車両であって、
前記複数の単位セルそれぞれに並列に接続された放電抵抗により前記複数の単位セルのうち少なくとも1つの蓄電電力を放電させて前記複数の単位セルの蓄電量を均等化する均等化回路と、
前記電動車両の駐車時期を予測する駐車時期予測手段と、
前記駐車時期予測手段により予測された駐車時期に応じて、前記蓄電装置の蓄電電力を前記均等化回路により放電させて前記蓄電装置の蓄電電力を低下させる蓄電電力制御手段と
発電機と、
前記発電機の出力を制御する発電制御手段と
を備え、
前記発電機の発電電力を前記蓄電装置に充電可能であり、
前記蓄電電力制御手段は、前記予測された駐車時期に応じて、前記蓄電装置の蓄電量の許容上限値を低下させ、
前記発電制御手段は、前記許容上限値の低下に応じて、前記発電機の出力を制限し、
前記発電機は、燃料電池であり、
前記蓄電電力制御手段は、
前記燃料電池の劣化を招く前記燃料電池の発電電力の低下条件を設定し、
前記蓄電装置の蓄電量の許容上限値を低下させているときに前記低下条件が満たされた場合、前記許容上限値の低下を中止する
ことを特徴とする電動車両。
An electric vehicle driven by electric power from a power storage device having an assembled battery in which a plurality of unit cells are combined,
An equalization circuit that discharges at least one stored power among the plurality of unit cells by a discharge resistor connected in parallel to each of the plurality of unit cells, and equalizes the amount of power stored in the plurality of unit cells;
A parking time prediction means for predicting a parking time of the electric vehicle;
A storage power control means for discharging the stored power of the power storage device by the equalization circuit and reducing the stored power of the power storage device according to the parking time predicted by the parking time prediction means;
A generator,
Power generation control means for controlling the output of the generator;
With
The power generated by the generator can be charged to the power storage device,
The storage power control means reduces an allowable upper limit value of the storage amount of the power storage device according to the predicted parking time,
The power generation control means limits the output of the generator according to a decrease in the allowable upper limit value,
The generator is a fuel cell;
The stored power control means includes
Set a condition for reducing the power generated by the fuel cell, which causes deterioration of the fuel cell,
The electric vehicle, wherein when the reduction condition is satisfied while the allowable upper limit value of the storage amount of the power storage device is being reduced, the reduction of the allowable upper limit value is stopped.
請求項1〜3のいずれか1項に記載の電動車両において、
前記蓄電電力制御手段は、
前記予測された駐車時期に応じた放電を行わない通常走行時には、前記通常走行時における前記蓄電装置の蓄電量の許容下限値である通常走行時許容下限値を前記蓄電装置の蓄電量が下回らないように前記蓄電量を制御し、
前記予測された駐車時期に応じた放電を行う駐車準備時には、前記電動車両の駐車時における前記蓄電装置の蓄電量の目標値である駐車時目標蓄電量を設定し、前記駐車時において前記駐車時目標蓄電量と前記蓄電装置の蓄電量とが等しくなるように前記蓄電量を制御し、
前記駐車時目標蓄電量は、前記通常走行時許容下限値よりも高く設定される
ことを特徴とする電動車両。
The electric vehicle according to any one of claims 1 to 3,
The stored power control means includes
During normal travel without discharging according to the predicted parking time, the power storage amount of the power storage device does not fall below the allowable lower limit value during normal travel that is the allowable lower limit value of the power storage amount of the power storage device during the normal travel. Control the amount of electricity stored,
At the time of parking preparation for performing discharge according to the predicted parking time, a parking target power storage amount that is a target value of the power storage amount of the power storage device at the time of parking of the electric vehicle is set. Controlling the power storage amount so that the target power storage amount and the power storage amount of the power storage device are equal,
The parked target power storage amount is set to be higher than the normal traveling allowable lower limit value.
JP2009241566A 2009-10-20 2009-10-20 Electric vehicle Expired - Fee Related JP5329366B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009241566A JP5329366B2 (en) 2009-10-20 2009-10-20 Electric vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009241566A JP5329366B2 (en) 2009-10-20 2009-10-20 Electric vehicle

Publications (2)

Publication Number Publication Date
JP2011091899A JP2011091899A (en) 2011-05-06
JP5329366B2 true JP5329366B2 (en) 2013-10-30

Family

ID=44109625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009241566A Expired - Fee Related JP5329366B2 (en) 2009-10-20 2009-10-20 Electric vehicle

Country Status (1)

Country Link
JP (1) JP5329366B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130175972A1 (en) * 2011-07-14 2013-07-11 Panasonic Corporation Fuel cell system and method for controlling the same
JP5740269B2 (en) * 2011-09-27 2015-06-24 本田技研工業株式会社 Vehicle control device
US8981727B2 (en) * 2012-05-21 2015-03-17 General Electric Company Method and apparatus for charging multiple energy storage devices
KR101477272B1 (en) * 2012-11-09 2015-01-06 주식회사 엘지화학 Apparatus and method for balancing work of secondary battery cell's changing capacity
WO2014139542A1 (en) 2013-03-11 2014-09-18 Volvo Truck Corporation Method and arrangement for operating a hybrid electrical vehicle
JP2014225988A (en) * 2013-05-16 2014-12-04 トヨタ自動車株式会社 Power charger
DE102015000577A1 (en) * 2015-01-16 2016-07-21 Audi Ag Method for operating a motor vehicle with a solar device and motor vehicle
JP6225218B2 (en) * 2016-05-23 2017-11-01 公益財団法人鉄道総合技術研究所 Power control method for fuel cell railway vehicle
JP6760035B2 (en) * 2016-12-16 2020-09-23 トヨタ自動車株式会社 vehicle
JP6798381B2 (en) * 2017-03-22 2020-12-09 株式会社デンソー Power storage device for vehicles
WO2019138805A1 (en) * 2018-01-12 2019-07-18 三菱自動車工業株式会社 Vehicle control device
KR102131804B1 (en) * 2018-07-03 2020-07-08 현대오트론 주식회사 Battery balancing method and battery management apparatus using the same
JP7223043B2 (en) * 2021-01-27 2023-02-15 本田技研工業株式会社 Power supply system and power supply method
US20240034189A1 (en) * 2021-02-05 2024-02-01 Tvs Motor Company Limited Range determination of electric vehicles

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10302844A (en) * 1997-04-24 1998-11-13 Honda Motor Co Ltd Deterioration preventing device of lithium secondary battery
JP3664908B2 (en) * 1999-03-10 2005-06-29 日野自動車株式会社 Power storage device
JP2007099223A (en) * 2005-10-07 2007-04-19 Toyota Motor Corp Hybrid vehicle
JP4589872B2 (en) * 2006-01-04 2010-12-01 本田技研工業株式会社 Control device for electric vehicle
JP4202379B2 (en) * 2006-10-11 2008-12-24 トヨタ自動車株式会社 HYBRID VEHICLE, HYBRID VEHICLE CONTROL METHOD, PROGRAM FOR CAUSING COMPUTER TO EXECUTE THE CONTROL METHOD, AND COMPUTER-READABLE RECORDING MEDIUM CONTAINING THE PROGRAM
JP5067611B2 (en) * 2007-06-19 2012-11-07 マツダ株式会社 Vehicle battery control device
JP5287089B2 (en) * 2008-09-26 2013-09-11 マツダ株式会社 Battery control method and apparatus for automobile

Also Published As

Publication number Publication date
JP2011091899A (en) 2011-05-06

Similar Documents

Publication Publication Date Title
JP5329366B2 (en) Electric vehicle
JP4893804B2 (en) Vehicle power supply
CN105599614B (en) The control method and external power supply system of the external power supply system of the vehicle of fuel cell are installed
CN102985279B (en) Battery-capacity management device
US8600599B2 (en) Fuel cell vehicle
US20170047603A1 (en) Method of controlling fuel cell system, method of controlling fuel cell automobile, and fuel cell automobile
JP4774430B2 (en) Electric vehicle and power storage device control method
JPH07240213A (en) Hybrid electric power source device
WO2008102856A1 (en) Hybrid vehicle
WO2013061122A2 (en) Vehicle including secondary battery and control method for vehicle including secondary battery
JP2018137855A (en) Fuel cell vehicle
JP6565436B2 (en) Fuel cell system
JP2012056462A (en) Apparatus and method for controlling, and system for vehicular electrical power supply
WO2008143368A1 (en) Power conversion controlling method of fuel cell-battery hybrid-electric vehicle and control device
JP2015133858A (en) Vehicle power supply system
CN111216570B (en) Fuel cell vehicle
JP4915273B2 (en) Electrical device and method for controlling electrical device
JP5651531B2 (en) Fuel cell vehicle
JP7096046B2 (en) Vehicle power system
JP2013052830A (en) Vehicle
JP6133623B2 (en) Dual power load drive system and fuel cell vehicle
KR100579298B1 (en) Auxiliary battery charge control method for environment car
JP2018153021A (en) Electric vehicular power supply apparatus
JP2018196274A (en) Battery system
US20200198477A1 (en) Vehicular charging control system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130312

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130709

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130724

R150 Certificate of patent or registration of utility model

Ref document number: 5329366

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees