JP5325507B2 - Grid interconnection inverter - Google Patents

Grid interconnection inverter Download PDF

Info

Publication number
JP5325507B2
JP5325507B2 JP2008231393A JP2008231393A JP5325507B2 JP 5325507 B2 JP5325507 B2 JP 5325507B2 JP 2008231393 A JP2008231393 A JP 2008231393A JP 2008231393 A JP2008231393 A JP 2008231393A JP 5325507 B2 JP5325507 B2 JP 5325507B2
Authority
JP
Japan
Prior art keywords
amount
average
adjustment
output
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008231393A
Other languages
Japanese (ja)
Other versions
JP2010066919A (en
Inventor
浩二 野田
通可 植杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Carrier Corp
Original Assignee
Toshiba Corp
Toshiba Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Carrier Corp filed Critical Toshiba Corp
Priority to JP2008231393A priority Critical patent/JP5325507B2/en
Publication of JP2010066919A publication Critical patent/JP2010066919A/en
Application granted granted Critical
Publication of JP5325507B2 publication Critical patent/JP5325507B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、発電装置の出力を交流に変換して商用電源系統に連系出力する系統連系インバータに関する。   The present invention relates to a grid-connected inverter that converts an output of a power generation device into an alternating current and outputs it to a commercial power system.

太陽電池、バイオマス、燃料電池等の発電装置の出力をコンバータで直流電圧に変換(昇圧)し、変換後の直流電圧をスイッチングにより交流に変換して商用電源系統に連系出力する系統連系インバータが知られている(例えば、特許文献1)。
このような系統連系インバータでは、発電装置の発電電力が最大となる状態にコンバータの出力を調節するMPPT制御(Maximum Power Point Tracker;最大電力点追従制御)を実行することにより、発電装置の能力を最大限に発揮させることができる。
特開平9−308263号公報
A grid-connected inverter that converts (boosts) the output of power generators such as solar cells, biomass, and fuel cells to a DC voltage with a converter, converts the converted DC voltage to AC by switching, and outputs it to the commercial power system. Is known (for example, Patent Document 1).
In such a grid-connected inverter, the capacity of the power generator can be improved by executing MPPT control (Maximum Power Point Tracker) that adjusts the output of the converter so that the power generated by the power generator is maximized. Can be maximized.
JP-A-9-308263

ただし、MPPT制御の実行中、太陽電池の発電電力が最大発電電力の付近で増減を頻繁に繰り返し、最大発電電力になかなか収束しないことがある。   However, during the execution of MPPT control, the generated power of the solar cell frequently increases and decreases in the vicinity of the maximum generated power, and may not easily converge to the maximum generated power.

この発明は、上記事情を考慮したもので、発電装置の発電電力を最大発電電力に速やかに収束させることができる系統連系インバータを提供することを目的とする。   The present invention has been made in consideration of the above circumstances, and an object thereof is to provide a grid-connected inverter capable of quickly converging the generated power of the power generator to the maximum generated power.

請求項1に係る発明の系統連系インバータは、発電装置の発電電力を直流電圧に変換するコンバータと、このコンバータの出力を交流に変換するインバータと、前記発電装置の発電電力が最大となるよう前記コンバータの出力を調節するMPPT制御手段とを備え、前記インバータの出力を商用電源系統に連系出力するものであって、前記MPPT制御手段が、前記発電装置の単位時間当たりの平均発電電力量を検出する検出手段と、この検出手段で検出される今回の平均発電電力量が、同検出手段で検出された前回の平均発電電力量に対し、増加であるか減少であるかを判定する判定手段と、この判定手段の判定結果が増加のとき前記調節の方向をそのまま維持し、同判定結果が減少でその減少量が所定量以上のとき前記調節の方向を反転する調節方向制御手段と、前記検出手段で検出される平均発電電力量が設定時間にわたり所定範囲内にあるとき、前記コンバータの出力に対する調節量を減少方向に調整する調整手段と、を含んでいる。 A grid-connected inverter according to a first aspect of the present invention is a converter that converts power generated by a power generator into a DC voltage, an inverter that converts the output of the converter into AC, and the power generated by the power generator is maximized. MPPT control means for adjusting the output of the converter, and outputs the output of the inverter to the commercial power supply system, wherein the MPPT control means is an average generated power per unit time of the power generator And a determination for determining whether the current average power generation amount detected by the detection unit is an increase or a decrease relative to the previous average power generation amount detected by the detection unit. means and the determination result of the determining means is operable to maintain the direction of the adjustment time increase, the determination result is the decrease amount decreasing reverse the direction of the adjustment when the predetermined amount or more Adjustment direction control means, and adjustment means for adjusting the adjustment amount for the output of the converter in a decreasing direction when the average generated power detected by the detection means is within a predetermined range over a set time. .

この発明の系統連系インバータによれば、発電装置の発電電力を最大発電電力に速やかに収束させることができる。   According to the grid-connected inverter of the present invention, the generated power of the power generator can be quickly converged to the maximum generated power.

[1]以下、この発明の第1実施形態について図面を参照して説明する。
図1において、1は発電装置たとえば太陽電池(PV)で、家屋の屋根等に設置され、太陽からの日射を受けて直流電圧を出力する。この出力が開閉器2を介してコンデンサ3,4に印加され、そのコンデンサ3,4の電圧がコンバータたとえば昇圧チョッパ5に供給される。昇圧チョッパ5は、直流リアクトル6、トランジスタたとえばIGBT17、逆流防止用ダイオード8、およびコンデンサ9を有するいわゆるDC−DCコンバータであり、制御部60から供給されるPWM信号に応じてIGBT7がオン,オフすることにより、太陽電池10の発電電力(直流電圧)を予め定められている基準レベルの直流電圧に昇圧する。
[1] A first embodiment of the present invention will be described below with reference to the drawings.
In FIG. 1, reference numeral 1 denotes a power generation device such as a solar cell (PV), which is installed on a roof of a house, etc., and receives a direct solar radiation to output a DC voltage. This output is applied to the capacitors 3 and 4 via the switch 2, and the voltage of the capacitors 3 and 4 is supplied to a converter, for example, a boost chopper 5. The step-up chopper 5 is a so-called DC-DC converter having a DC reactor 6, a transistor such as an IGBT 17, a backflow prevention diode 8, and a capacitor 9, and the IGBT 7 is turned on / off in accordance with a PWM signal supplied from the control unit 60. Thus, the generated power (DC voltage) of the solar cell 10 is boosted to a predetermined reference level DC voltage.

この昇圧チョッパ5の出力が単相インバータ20に供給される。単相インバータ20は、4つのトランジスタたとえばIGBT21,22,23,24からなるフルブリッジ回路、IGBT21,22,23,24にそれぞれ逆並列接続された還流ダイオードD、および制御部60から供給されるPWM信号に応じて上記IGBT21,22,23,24のオン,オフ(スイッチング)駆動するゲート駆動回路31,32,33,34を有し、昇圧チョッパ5からの入力電圧(直流電圧)を系統電圧および系統周波数に合わせた交流電圧に変換する。   The output of the step-up chopper 5 is supplied to the single-phase inverter 20. The single-phase inverter 20 includes four transistors, for example, a full bridge circuit composed of IGBTs 21, 22, 23, and 24, a free wheel diode D connected in reverse parallel to the IGBTs 21, 22, 23, and 24, and a PWM supplied from the control unit 60. Gate driving circuits 31, 32, 33, and 34 that drive the on / off (switching) of the IGBTs 21, 22, 23, and 24 in response to signals, and the input voltage (DC voltage) from the boost chopper 5 is the system voltage and Convert to AC voltage that matches system frequency.

この単相インバータ20の出力端にノイズフィルタとなる交流リアクトル41を介してコンデンサ42が接続され、そのコンデンサ42にリレー接点43,44および出力用コンデンサ45,46を介して商用電源系統(単相三線式交流200V)47が接続される。   A capacitor 42 is connected to the output terminal of the single-phase inverter 20 via an AC reactor 41 serving as a noise filter. A commercial power system (single-phase) is connected to the capacitor 42 via relay contacts 43 and 44 and output capacitors 45 and 46. A three-wire AC 200V) 47 is connected.

また、上記コンデンサ42に、リレー接点48および出力用コンデンサ49を介して自立運転用の商用電源系統(単相単線式交流100V)50が接続される。   A commercial power supply system (single-phase single-wire AC 100 V) 50 for independent operation is connected to the capacitor 42 via a relay contact 48 and an output capacitor 49.

なお、太陽電池10の発電電圧(PV電圧)、コンデンサ3,4の相互間の電流(太陽電池10の地絡検出用電流)、太陽電池10の発電電流(PV電流)、昇圧チョッパ5の昇圧電圧、単相インバータ20の出力電流、単相インバータ20の出力電圧、およびリレー接点43,44の相互間における系統電圧が、それぞれ制御部60により検出される。   Note that the generated voltage (PV voltage) of the solar cell 10, the current between the capacitors 3 and 4 (current for detecting a ground fault of the solar cell 10), the generated current (PV current) of the solar cell 10, and the boosted chopper 5 The control unit 60 detects the voltage, the output current of the single-phase inverter 20, the output voltage of the single-phase inverter 20, and the system voltage between the relay contacts 43 and 44.

制御部60は、制御の中枢としてMCU61を有する。このMCU61に、EEPROM62、A/Dコンバータ63、PWM生成器64、およびA/Dコンバータ65が接続される。EEPROM62は、各種データの記憶用である。A/Dコンバータ63は、上記発電電圧(PV電圧)、地絡検出用電流、発電電流(PV電流)、昇圧電圧をそれぞれディジタル信号に変換して取込む。PWM生成器64は、MCU61からのMPPT指令値に応じた周期およびオン,オフデューティの昇圧チョッパ用のPWM信号を生成するとともに、MCU61からの指令に応じた周期およびオン,オフデューティのインバータ用のPWM信号を生成する。昇圧用のPWM信号は昇圧チョッパ5に供給され、インバータ用のPWM信号は単相インバータ20に供給される。A/Dコンバータ65は、単相インバータ20の出力電流、単相インバータ20の出力電圧、および系統電圧をそれぞれディジタル信号に変換して取込む。   The control unit 60 includes an MCU 61 as a control center. An EEPROM 62, an A / D converter 63, a PWM generator 64, and an A / D converter 65 are connected to the MCU 61. The EEPROM 62 is for storing various data. The A / D converter 63 converts the power generation voltage (PV voltage), the ground fault detection current, the power generation current (PV current), and the boost voltage into digital signals and takes them in. The PWM generator 64 generates a PWM signal for a boost chopper having a period and on / off duty according to the MPPT command value from the MCU 61, and is used for an inverter having a period and on / off duty according to the command from the MCU 61. A PWM signal is generated. The boosting PWM signal is supplied to the boosting chopper 5, and the inverter PWM signal is supplied to the single-phase inverter 20. A / D converter 65 converts the output current of single-phase inverter 20, the output voltage of single-phase inverter 20, and the system voltage into digital signals and captures them.

そして、MCU61は、主要な機能として、MPPT制御手段を有する。このMPPT制御手段は、太陽電池10の出力が最大電力となるよう昇圧チョッパ5の出力を調節(MPPT指令値を調節)するMPPT制御(Maximum Power Point Tracker;最大電力点追従制御)を行うもので、次の(1)〜(4)の手段を含む。   The MCU 61 has MPPT control means as a main function. This MPPT control means performs MPPT control (Maximum Power Point Tracker) for adjusting the output of the boost chopper 5 (adjusting the MPPT command value) so that the output of the solar cell 10 becomes the maximum power. The following means (1) to (4) are included.

(1)太陽電池10の単位時間100msec当たりの平均発電電力量Ppv_avgを検出(算出)する検出手段。   (1) Detection means for detecting (calculating) the average generated power amount Ppv_avg per unit time 100 msec of the solar cell 10.

(2)上記検出手段で検出される今回の平均発電電力量Ppv_avgが、同検出手段で検出された前回の平均発電電力量(これまでの最大平均発電電力量) Ppv_avgに対し、増加であるか減少であるかを判定する判定手段。   (2) Whether the current average power generation amount Ppv_avg detected by the detection means is higher than the previous average power generation amount (maximum average power generation power so far) Ppv_avg detected by the detection means Determining means for determining whether it is a decrease

(3)上記判定手段の判定結果が増加のとき上記昇圧チョッパ5の出力に対する調節の方向をそのまま維持し、同判定結果が減少のとき上記昇圧チョッパ5の出力に対する調節の方向を反転する調節方向制御手段。具体的には、判定結果が増加の場合に上記昇圧チョッパ5の出力に対する調節の方向をそのまま維持し、同判定結果が減少でその減少量が所定量(前回の平均発電電力量Ppv_avgの例えば2%〜3%程度)以上の場合に上記昇圧チョッパ5の出力に対する調節の方向を反転する。   (3) An adjustment direction in which the adjustment direction with respect to the output of the boost chopper 5 is maintained as it is when the determination result of the determination means is increased, and the adjustment direction with respect to the output of the boost chopper 5 is reversed when the determination result is decreased. Control means. Specifically, when the determination result is increased, the adjustment direction with respect to the output of the boost chopper 5 is maintained as it is. The determination result is decreased and the decrease amount is a predetermined amount (for example, 2 of the previous average generated power amount Ppv_avg). In the case of the above, the adjustment direction with respect to the output of the step-up chopper 5 is reversed.

(4)上記検出手段で検出される平均発電電力量Ppv_avgが設定時間Ts1にわたり所定範囲内にあるとき、平均発電電力量Ppv_avgが最大発電電力量Ppv_max付近で安定状態にあるとの判断の下に、上記調節方向制御手段の所定量および上記昇圧チョッパ5の出力に対する調節量Widthを減少方向に調整する調整手段。   (4) When the average generated power amount Ppv_avg detected by the detecting means is within the predetermined range over the set time Ts1, the average generated power amount Ppv_avg is determined to be in the stable state near the maximum generated power amount Ppv_max. Adjustment means for adjusting the adjustment amount Width with respect to the predetermined amount of the adjustment direction control means and the output of the boost chopper 5 in the decreasing direction.

つぎに、図2、図3、図4、図5を参照しながら作用について説明する。図2は、MCU61の制御。図3は、発電電力量の変化、MPPT指令値の変化、および調節の方向・量の関係。図4は太陽電池10の発電電力がMPPT制御の最適動作点(最大発電電力)に向かって増加する様子。図5は太陽電池10の発電電力がMPPT制御の最適動作点付近で増減を小刻みに繰り返す様子を示している。   Next, the operation will be described with reference to FIG. 2, FIG. 3, FIG. 4, and FIG. FIG. 2 shows the control of the MCU 61. FIG. 3 shows the relationship between the change in the amount of generated power, the change in the MPPT command value, and the direction and amount of adjustment. FIG. 4 shows how the generated power of the solar cell 10 increases toward the optimum operating point (maximum generated power) for MPPT control. FIG. 5 shows how the generated power of the solar cell 10 repeats increasing and decreasing in the vicinity of the optimum operating point of MPPT control.

まず、太陽電池10の発電電圧Vpv_adおよび発電電流Ipv_adが、それぞれA/D変換されて読込まれる。さらに、タイマーカウントが実行され、そのタイマーカウントが単位時間例えば100msecに達したかどうか、判定される。タイマーカウントが単位時間100msecに達すると、タイマーカウントがクリアされるとともに、その単位時間100msecにおける平均発電電圧(平均入力電圧ともいう)Vpv_avgおよび平均発電電流(平均入力電流ともいう)Ipv_avgが算出され、これら平均発電電圧Vpv_avgと平均発電電流Ipv_avgとの積により、単位時間100msecにおける平均発電電力量Ppv_avgが算出される。   First, the generated voltage Vpv_ad and the generated current Ipv_ad of the solar cell 10 are A / D converted and read. Further, a timer count is executed, and it is determined whether or not the timer count has reached a unit time, for example, 100 msec. When the timer count reaches a unit time of 100 msec, the timer count is cleared, and an average generated voltage (also referred to as average input voltage) Vpv_avg and average generated current (also referred to as average input current) Ipv_avg in the unit time of 100 msec are calculated. The average generated power amount Ppv_avg in a unit time of 100 msec is calculated by the product of the average generated voltage Vpv_avg and the average generated current Ipv_avg.

そして、算出された平均発電電力量Ppv_avgを増加させるべく、昇圧チョッパ5の出力に対する規定の調節量Widthが設定される。   Then, in order to increase the calculated average generated power amount Ppv_avg, a prescribed adjustment amount Width for the output of the boost chopper 5 is set.

続いて、算出された平均発電電力量Ppv_avgが、予め設定された安定許容上限値Ppv_Hiと安定許容下限値Ppv_Liとの所定範囲内にあるかどうか判定される。所定範囲内にあれば、タイマーカウント(発電量安定化検出カウンタ計数)stable_cntが開始され、そのタイマーカウントstable_cntが設定時間Ts1に達しているかどうか判定される。   Subsequently, it is determined whether or not the calculated average generated power amount Ppv_avg is within a predetermined range between a preset allowable stability upper limit value Ppv_Hi and a stable allowable lower limit value Ppv_Li. If it is within the predetermined range, timer count (power generation amount stabilization detection counter count) stable_cnt is started, and it is determined whether or not the timer count stable_cnt has reached the set time Ts1.

タイマーカウントstable_cntが設定時間Ts1に達しないうちは、今回算出された平均発電電力量Ppv_avgが、前回算出された平均発電電力量Ppv_avg(=これまでの最大平均発電電力量Ppv_max)に対し、増加であるか減少であるかが判定される。   Before the timer count stable_cnt reaches the set time Ts1, the average power generation amount Ppv_avg calculated this time is an increase from the previously calculated average power generation amount Ppv_avg (= the maximum average power generation amount Ppv_max so far). It is determined whether it is present or decreased.

増加であれば、そのときの昇圧チョッパ5の出力に対する調節の方向が維持されたまま、今回算出された平均発電電力量Ppv_avgが、前回算出された平均発電電力量Ppv_avg(=これまでの最大平均発電電力量Ppv_max)として更新登録される。   If it is increased, the average power generation amount Ppv_avg calculated this time is the previous average power generation amount Ppv_avg (= the maximum average so far, while maintaining the direction of adjustment with respect to the output of the boost chopper 5 at that time. It is updated and registered as the amount of generated power (Ppv_max).

減少であれば、その減少量が所定量(前回の平均発電電力量Ppv_avgの所定割合である例えば2%〜5%程度)以上かどうか、判定される。すなわち、前回算出された平均発電電力量Ppv_avgに係数DirThras(例えば98%〜95%)が積算され、その積算値(更新方向判定閾値)よりも、今回算出された平均発電電力量Ppv_avgが小さいかどうか、判定される。   If it is a decrease, it is determined whether or not the decrease amount is equal to or greater than a predetermined amount (for example, about 2% to 5%, which is a predetermined ratio of the previous average generated power amount Ppv_avg). That is, the coefficient DirThras (for example, 98% to 95%) is added to the previously calculated average generated power amount Ppv_avg, and is the calculated average generated power amount Ppv_avg smaller than the integrated value (update direction determination threshold value)? Please judge.

減少量が所定量以上の場合、前回算出された平均発電電力量Ppv_avg(=これまでの最大平均発電電力量Ppv_max)がクリアされて、昇圧チョッパ5の出力に対する調節の方向が反転される。減少量が所定量未満の場合は、昇圧チョッパ5の出力に対する上記調節量Widthが予め定められている最小調節量Width_minに低減される。   When the decrease amount is equal to or larger than the predetermined amount, the previously calculated average generated power amount Ppv_avg (= the maximum average generated power amount Ppv_max so far) is cleared, and the adjustment direction with respect to the output of the boost chopper 5 is reversed. When the reduction amount is less than the predetermined amount, the adjustment amount Width with respect to the output of the boost chopper 5 is reduced to a predetermined minimum adjustment amount Width_min.

今回算出の平均発電電力量Ppv_avgが安定許容上限値Ppv_Hiと安定許容下限値Ppv_Liとの所定範囲内にあって、そのまま上記タイマーカウントstable_cntが設定時間Ts1に達した場合は、今回算出の平均発電電力量Ppv_avgが最大発電電力量Ppv_max付近で安定状態にあるとの判断の下に、昇圧チョッパ5の出力に対する上記調節量Widthが減少方向に設定量だけ調整されるとともに、上記係数DirThrasが増大されて、減少量判定の基準となる上記所定量(2%〜5%)が減少方向に設定量だけ調整される。   If the average power generation amount Ppv_avg calculated this time is within the predetermined range between the stable allowable upper limit value Ppv_Hi and the stable allowable lower limit value Ppv_Li, and the timer count stable_cnt reaches the set time Ts1 as it is, the average generated power calculated this time Based on the determination that the amount Ppv_avg is in a stable state near the maximum generated power amount Ppv_max, the adjustment amount Width with respect to the output of the boost chopper 5 is adjusted by a set amount in the decreasing direction, and the coefficient DirThras is increased. The predetermined amount (2% to 5%), which serves as a criterion for determining the decrease amount, is adjusted by a set amount in the decreasing direction.

今回算出の平均発電電力量Ppv_avgが安定許容上限値Ppv_Hiと安定許容下限値Ppv_Liとの所定範囲から外れている場合は、その安定許容上限値Ppv_Hiおよび安定許容下限値Ppv_Liが今回算出の平均発電電力量Ppv_avgに基づく下式の演算により更新設定され、かつタイマーカウント(発電量安定化検出カウンタ計数)stable_cntがクリアされる。
Ppv_Hi=Ppv_avg×1.1
Ppv_Li=Ppv_avg×0.9
以上のMPPT制御により、太陽電池10の平均発電電力量Ppv_avgは、初めは最大平均発電電力量Ppv_maxに向かって加速度的に増大し、やがて最大平均発電電力量Ppv_max付近に達するとその最大平均発電電力量Ppv_maxを中心に小刻みに増減を繰り返し、かつその増減量を徐々に減らしながら、最大平均発電電力量Ppv_maxへと速やかに収束する。
If the average power generation amount Ppv_avg calculated this time is outside the predetermined range between the stable allowable upper limit value Ppv_Hi and the stable allowable lower limit value Ppv_Li, the stable allowable upper limit value Ppv_Hi and the stable allowable lower limit value Ppv_Li are the average generated power calculated this time. It is updated and set by the following equation based on the amount Ppv_avg, and the timer count (power generation amount stabilization detection counter count) stable_cnt is cleared.
Ppv_Hi = Ppv_avg × 1.1
Ppv_Li = Ppv_avg × 0.9
By the MPPT control described above, the average generated power amount Ppv_avg of the solar cell 10 increases at an accelerated rate toward the maximum average generated power amount Ppv_max at first, and eventually reaches the maximum average generated power amount Ppv_max. The increase / decrease is repeated in small increments around the amount Ppv_max, and the amount of increase / decrease is gradually reduced while quickly converging to the maximum average generated power amount Ppv_max.

図2のフローチャートにおいて、ブロックSaが上記(4)調整手段の処理に対応し、ブロックSbが上記(2)判定手段および上記(3)調節方向制御手段の処理に対応する。   In the flowchart of FIG. 2, the block Sa corresponds to the processing of (4) adjustment means, and the block Sb corresponds to the processing of (2) determination means and (3) adjustment direction control means.

[2]第2の実施形態について説明する。
MCU61のMPPT制御において、第1の実施形態の(4)の調整手段に代えて、次の(4a)の第1調整手段、(4b)の第2調整手段が採用される。
(4a)上記検出手段で検出される平均発電電力量Ppv_avgが第1設定時間Ts1にわたり所定範囲内にあるとき、平均発電電力量Ppv_avgが最大平均発電電力量Ppv_max付近で安定状態にあるとの判断の下に、調節方向制御手段の所定量(2%〜5%)および昇圧チョッパ5の出力に対する調節量Widthを減少方向に設定量だけ調整する第1調整手段。
[2] A second embodiment will be described.
In the MPPT control of the MCU 61, the following first adjustment means (4a) and second adjustment means (4b) are employed instead of the adjustment means (4) of the first embodiment.
(4a) When the average generated power amount Ppv_avg detected by the detection means is within the predetermined range over the first set time Ts1, it is determined that the average generated power amount Ppv_avg is in a stable state near the maximum average generated power amount Ppv_max. Below, a first adjustment means for adjusting a predetermined amount (2% to 5%) of the adjustment direction control means and an adjustment amount Width with respect to the output of the step-up chopper 5 by a set amount in a decreasing direction.

(4b)上記検出手段で検出される平均発電電力量Ppv_avgが第1設定時間Ts2(>Ts1)にわたり所定範囲内にあるとき、平均発電電力量Ppv_avgの安定状態が増したとの判断の下に、調節方向制御手段の所定量(2%〜5%)および上記昇圧チョッパ5の出力に対する調節量Widthを減少方向にさらに設定量だけ調整する第2調整手段。   (4b) Under the judgment that the stable state of the average power generation amount Ppv_avg has increased when the average power generation amount Ppv_avg detected by the detection means is within the predetermined range over the first set time Ts2 (> Ts1), Second adjustment means for further adjusting a predetermined amount (2% to 5%) of the adjustment direction control means and the adjustment amount Width with respect to the output of the step-up chopper 5 in a decreasing direction by a set amount.

図6のフローチャートにおいて、ブロックSa´が(4a)第1調整手段の処理および(4b)第2調整手段の処理に対応する。   In the flowchart of FIG. 6, the block Sa ′ corresponds to (4a) processing of the first adjusting means and (4b) processing of the second adjusting means.

すなわち、今回算出の平均発電電力量Ppv_avgが安定許容上限値Ppv_Hiと安定許容下限値Ppv_Liとの所定範囲内にあって、そのままタイマーカウントstable_cntが第1設定時間Ts1に達した場合は、今回算出の平均発電電力量Ppv_avgが最大平均発電電力量Ppv_max付近で安定状態にあるとの判断の下に、昇圧チョッパ5の出力に対する調節量Widthが減少方向に設定量だけ調整されるとともに、係数DirThrasが増大されて、減少量判定の基準となる所定量が減少方向に設定量だけ調整される。   That is, when the average power generation amount Ppv_avg calculated this time is within the predetermined range between the allowable upper limit value Ppv_Hi and the allowable lower limit value Ppv_Li, and the timer count stable_cnt reaches the first set time Ts1 as it is, Based on the determination that the average power generation amount Ppv_avg is in the stable state near the maximum average power generation amount Ppv_max, the adjustment amount Width for the output of the boost chopper 5 is adjusted by the set amount in the decreasing direction, and the coefficient DirThras increases. Thus, the predetermined amount serving as a reference for the decrease amount determination is adjusted by a set amount in the decrease direction.

しかも、今回算出の平均発電電力量Ppv_avgが安定許容上限値Ppv_Hiと安定許容下限値Ppv_Liとの所定範囲内に収まったまま、タイマーカウントstable_cntが第1設定時間Ts1を超えて第2設定時間Ts2に達すると、平均発電電力量Ppv_avgの安定状態が増したとの判断の下に、昇圧チョッパ5の出力に対する調節量Widthが減少方向にさらに設定量だけ調整されるとともに、係数DirThrasがさらに増大されて、減少量判定の基準となる所定量(2%〜5%)が減少方向にさらに設定量だけ調整される。   Moreover, the timer count stable_cnt exceeds the first set time Ts1 and reaches the second set time Ts2 while the average power generation amount Ppv_avg calculated this time remains within the predetermined range between the allowable upper limit value Ppv_Hi and the allowable lower limit value Ppv_Li. When it reaches, under the judgment that the stable state of the average generated power amount Ppv_avg has increased, the adjustment amount Width for the output of the boost chopper 5 is further adjusted by the set amount in the decreasing direction, and the coefficient DirThras is further increased, A predetermined amount (2% to 5%) serving as a reference for determining the amount of decrease is further adjusted by a set amount in the decreasing direction.

このように、平均発電電力量Ppv_avgの安定状態を判断する時間要素として、長さの異なる複数の設定時間を用いることにより、安定状態が長いほど、平均発電電力量Ppv_avgが最大平均発電電力量Ppv_maxを中心により小刻みに増減を繰り返しながら最大平均発電電力量Ppv_maxへと速やかに収束する。
他の構成、作用、効果は、第1の実施形態と同じである。よって、その説明は省略する。
In this way, by using a plurality of set times having different lengths as time elements for determining the stable state of the average generated power amount Ppv_avg, the longer the stable state, the higher the average generated power amount Ppv_avg becomes the maximum average generated power amount Ppv_max. It converges quickly to the maximum average generated electric energy Ppv_max while repeating the increase and decrease in small increments.
Other configurations, operations, and effects are the same as those in the first embodiment. Therefore, the description is omitted.

[3]第3の実施形態について説明する。
MCU61のMPPT制御において、第2の実施形態の(4a)の第1調整手段、(4b)の第2調整手段の採用に加え、さらに次の(5)の保護手段、(6)の平均発電電圧検出手段、(7)の第1補正手段、(8)の第2補正手段が採用される。
(5)太陽電池10の発電電圧Vpv_adが許容下限値である例えば100V未満に低下したとき、安全のため、出力用の全てのリレー接点43,44,48を開くとともに昇圧チョッパ5および単相インバータ20の動作を停止し、待機モードを設定する保護手段。
[3] A third embodiment will be described.
In the MPPT control of the MCU 61, in addition to the adoption of the first adjustment means (4a) and the second adjustment means (4b) of the second embodiment, the following protection means (5) and average power generation (6) The voltage detection means, the first correction means (7), and the second correction means (8) are employed.
(5) When the power generation voltage Vpv_ad of the solar cell 10 falls below the allowable lower limit value, for example, less than 100 V, for safety, all the relay contact points 43, 44, 48 for output are opened and the boost chopper 5 and the single-phase inverter Protection means for stopping the operation of 20 and setting a standby mode.

(6)太陽電池10の平均発電電圧Vpv_avgを平均発電電力量Ppv_avgの検出より短い時間間隔たとえば1msec間隔で検出する平均発電電圧検出手段。   (6) Average generated voltage detection means for detecting the average generated voltage Vpv_avg of the solar cell 10 at a time interval shorter than the detection of the average generated power amount Ppv_avg, for example, at an interval of 1 msec.

(7)太陽電池10の発電電圧Vpv_adが上記平均発電電圧検出手段で検出される平均発電電圧Vpv_avgよりも一定値ΔV以上低下したとき、昇圧チョッパ5の出力に対する調節量Widthを低減する第1補正手段。   (7) First correction for reducing the adjustment amount Width with respect to the output of the boost chopper 5 when the generated voltage Vpv_ad of the solar cell 10 is lower than the average generated voltage Vpv_avg detected by the average generated voltage detecting means by a certain value ΔV or more. means.

(8)昇圧チョッパ5の出力に対する調節が増加のとき、かつ太陽電池10の発電電圧Vpv_adが上記平均発電電圧検出手段で検出される平均発電電圧Vpv_avgより大きいとき、昇圧チョッパ5の出力に対する調節量Widthを増大する第2補正手段。   (8) When the adjustment to the output of the boost chopper 5 is increased, and the generated voltage Vpv_ad of the solar cell 10 is larger than the average generated voltage Vpv_avg detected by the average generated voltage detection means, the adjustment amount for the output of the boost chopper 5 Second correction means for increasing Width.

図7のフローチャートにおいて、ブロックScが(5)の保護手段の処理に対応し、ブロックSdが(7)の第1補正手段および(8)の第2補正手段の処理に対応する。   In the flowchart of FIG. 7, the block Sc corresponds to the processing of the protection means (5), and the block Sd corresponds to the processing of the first correction means (7) and the second correction means (8).

すなわち、太陽電池10の発電電圧Vpv_adが許容下限値である100V未満に低下すると、安全のため、出力用の全てのリレー接点43,44,48を開くとともに昇圧チョッパ5および単相インバータ20の動作を停止する待機モードが設定される。   That is, when the power generation voltage Vpv_ad of the solar cell 10 falls below the allowable lower limit value of 100 V, for safety, all the relay contact points 43, 44, 48 for output are opened and the boost chopper 5 and the single-phase inverter 20 are operated. The standby mode to stop the operation is set.

また、太陽電池10の平均発電電圧Vpv_avgが平均発電電力量Ppv_avgの検出より短い時間間隔1msecで検出される。この平均発電電圧Vpv_avgに対し、太陽電池10の発電電圧Vpv_adが一定値ΔV以上低下した場合は、太陽電池10の発電量以上に電力を取出そうとしているとの判断の下に、あるいは太陽電池10への日射量が急激に低下したとの判断の下に、昇圧チョッパ5の出力に対する調節量Widthが、その調節方向にかかわらず設定量だけ低減される。この低減により、発電電圧Vpv_adのそれ以上の低下が抑制される。   Further, the average power generation voltage Vpv_avg of the solar cell 10 is detected at a time interval of 1 msec shorter than the detection of the average power generation amount Ppv_avg. When the power generation voltage Vpv_ad of the solar cell 10 decreases by a certain value ΔV or more with respect to the average power generation voltage Vpv_avg, it is determined that the power is taken out more than the power generation amount of the solar cell 10 or the solar cell 10 On the basis of the determination that the amount of solar radiation has decreased rapidly, the adjustment amount Width with respect to the output of the boost chopper 5 is reduced by the set amount regardless of the adjustment direction. Due to this reduction, a further decrease in the generated voltage Vpv_ad is suppressed.

この結果、日射量の急激な変動が生じた場合でも、平均発電電力量Ppv_avgを最大平均発電電力量Ppv_maxへと速やかに収束させることができる。
さらに、昇圧チョッパ5の出力に対する調節が増加であるにもかかわらず、太陽電池10の発電電圧Vpv_adが平均発電電圧Vpv_avgより大きい場合は、太陽電池10の発電量の増加に制御が追従できていないとの判断の下に、昇圧チョッパ5の出力に対する調節量Widthが設定量だけ増大される。
As a result, even when abrupt fluctuations in the amount of solar radiation occur, the average generated power amount Ppv_avg can be quickly converged to the maximum average generated power amount Ppv_max.
Further, in spite of the increase in the adjustment to the output of the boost chopper 5, when the power generation voltage Vpv_ad of the solar cell 10 is larger than the average power generation voltage Vpv_avg, the control cannot follow the increase in the power generation amount of the solar cell 10. As a result, the adjustment amount Width with respect to the output of the boost chopper 5 is increased by a set amount.

この結果、日射量が急激に増加した場合でも、平均発電電力量Ppv_avgを最大平均発電電力量Ppv_maxへと速やかに収束させることができる。
他の構成、作用、効果は、第2の実施形態と同じである。よって、その説明は省略する。
As a result, even when the amount of solar radiation increases rapidly, the average generated power amount Ppv_avg can be quickly converged to the maximum average generated power amount Ppv_max.
Other configurations, operations, and effects are the same as those of the second embodiment. Therefore, the description is omitted.

[4]変形例
上記各実施形態では、太陽電池10の発電電圧Vpv_adおよび平均発電電力量Ppv_avgを考慮した制御について説明したが、それに、太陽電池10の発電電流Ipv_adを考慮した制御を加えてもよい。
[4] Modification
In the above embodiments, the control in consideration of the power generation voltage Vpv_ad and the average power generation amount Ppv_avg of the solar cell 10 has been described. However, control in consideration of the power generation current Ipv_ad of the solar cell 10 may be added thereto.

例えば、発電電圧Vpv_adが高くて平均発電電力量Ppv_avgもまずまず大きく、反面、発電電流Ipv_adが小さい場合、昇圧チョッパ5の出力に対する調節量Widthが抑制されるとともに、係数DirThrasが増大されて、昇圧チョッパ5の出力に対する調節方向反転の判定基準となる所定量(2%〜5%)が減少方向に調整される。逆に、発電電圧Vpv_adが低くて発電電流Ipv_adが大きい場合は、昇圧チョッパ5の出力に対する調節量Widthが増加されるとともに、係数DirThrasが低減されて、昇圧チョッパ5の出力に対する調節方向反転の判定基準となる所定量(2%〜5%)が増大方向に調整される。   For example, when the generated voltage Vpv_ad is high and the average generated power amount Ppv_avg is reasonably large. On the other hand, when the generated current Ipv_ad is small, the adjustment amount Width with respect to the output of the boost chopper 5 is suppressed and the coefficient DirThras is increased. A predetermined amount (2% to 5%) serving as a criterion for judging the adjustment direction inversion for the output of 5 is adjusted in the decreasing direction. Conversely, when the generated voltage Vpv_ad is low and the generated current Ipv_ad is large, the adjustment amount Width for the output of the boost chopper 5 is increased, the coefficient DirThras is decreased, and the determination of reversal of the adjustment direction for the output of the boost chopper 5 is made. A predetermined amount (2% to 5%) serving as a reference is adjusted in the increasing direction.

また、上記各実施形態では、発電装置として太陽電池10を用いる場合を例に説明したが、太陽電池に限らず、バイオマスや燃料電池などを用いる場合についても、同様に実施可能である。   Moreover, although each said embodiment demonstrated the case where the solar cell 10 was used as an electric power generating apparatus to the example, it can implement similarly not only when using a solar cell but when using a biomass, a fuel cell, etc.

その他、この発明は、上記各実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記各実施形態に開示されている複数の構成要素の適宜な組み合わせにより種々の発明を形成できる。   In addition, the present invention is not limited to the above-described embodiments as they are, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. In addition, various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the above embodiments.

各実施形態の構成を示す図。The figure which shows the structure of each embodiment. 第1実施形態におけるMCUの制御を示すフローチャート。The flowchart which shows control of MCU in 1st Embodiment. 各実施形態における発電電力量の変化、MPPT指令値の変化、および調節の方向・量の関係を示す図。The figure which shows the relationship between the change of the electric power generation amount in each embodiment, the change of MPPT command value, and the direction and quantity of adjustment. 各実施形態における太陽電池の発電電力がMPPT制御の最適動作点(最大発電電力)に向かって増加する様子を示す図。The figure which shows a mode that the electric power generated of the solar cell in each embodiment increases toward the optimal operating point (maximum electric power generation) of MPPT control. 各実施形態における太陽電池の発電電力がMPPT制御の最適動作点付近で増減を小刻みに繰り返す様子を示す図。The figure which shows a mode that the electric power generation of the solar cell in each embodiment repeats an increase / decrease little by little near the optimal operating point of MPPT control. 第2実施形態の作用を説明するためのフローチャート。The flowchart for demonstrating the effect | action of 2nd Embodiment. 第2実施形態の作用を説明するためのフローチャート。The flowchart for demonstrating the effect | action of 2nd Embodiment.

符号の説明Explanation of symbols

1…太陽電池(発電装置)、5…昇圧チョッパ(コンバータ)、20…単相インバータ、47…商用電源系統(単相三線式交流200V)、50…自立運転用の商用電源系統(単相単線式交流100V)、60…制御部、61…MCU   DESCRIPTION OF SYMBOLS 1 ... Solar cell (power generation device), 5 ... Boost chopper (converter), 20 ... Single phase inverter, 47 ... Commercial power supply system (single-phase three-wire AC200V), 50 ... Commercial power supply system for independent operation (single-phase single wire) AC 100V), 60 ... control unit, 61 ... MCU

Claims (5)

発電装置の発電電力を直流電圧に変換するコンバータと、このコンバータの出力を交流に変換するインバータと、前記発電装置の発電電力が最大となるよう前記コンバータの出力を調節するMPPT制御手段とを備え、前記インバータの出力を商用電源系統に連系出力する系統連系インバータにおいて、
前記MPPT制御手段は、
前記発電装置の単位時間当たりの平均発電電力量を検出する検出手段と、
この検出手段で検出される今回の平均発電電力量が、同検出手段で検出された前回の平均発電電力量に対し、増加であるか減少であるかを判定する判定手段と、
この判定手段の判定結果が増加のとき前記調節の方向をそのまま維持し、同判定結果が減少でその減少量が所定量以上のとき前記調節の方向を反転する調節方向制御手段と、
前記検出手段で検出される平均発電電力量が設定時間にわたり所定範囲内にあるとき、前記コンバータの出力に対する調節量を減少方向に調整する調整手段と、
を含む、
ことを特徴とする系統連系インバータ。
A converter that converts the generated power of the power generator into a DC voltage; an inverter that converts the output of the converter into an AC; and an MPPT control means that adjusts the output of the converter so that the generated power of the power generator is maximized. In the grid-connected inverter that outputs the output of the inverter to the commercial power system,
The MPPT control means includes
Detecting means for detecting an average amount of generated power per unit time of the power generation device;
A determination unit for determining whether the current average generated power amount detected by the detection unit is an increase or a decrease with respect to the previous average generated power amount detected by the detection unit;
An adjustment direction control means for maintaining the adjustment direction as it is when the determination result of the determination means is increased, and reversing the adjustment direction when the determination result is decreased and the decrease amount is a predetermined amount or more ;
An adjustment means for adjusting the adjustment amount for the output of the converter in a decreasing direction when the average generated power amount detected by the detection means is within a predetermined range over a set time;
including,
A grid-connected inverter characterized by that.
前記調整手段は、前記検出手段で検出される平均発電電力量が設定時間にわたり所定範囲内にあるとき、前記調節方向制御手段の前記所定量および前記コンバータの出力に対する調節量を減少方向に調整することを特徴とする請求項1記載の系統連系インバータ。 The adjustment means adjusts the predetermined amount of the adjustment direction control means and the adjustment amount with respect to the output of the converter in a decreasing direction when the average generated power amount detected by the detection means is within a predetermined range over a set time. The grid interconnection inverter according to claim 1 . 前記調整手段は、
前記検出手段で検出される平均発電電力量の変化が第1設定時間にわたり所定範囲内にあるとき、前記調節方向制御手段の前記所定量および前記コンバータの出力に対する調節量を減少方向に設定量だけ調整する第1調整手段と、
前記検出手段で検出される平均発電電力量の変化が第2設定時間(>第1設定時間)にわたり所定範囲内にあるとき、前記調節方向制御手段の前記所定量および前記コンバータの出力に対する調節量を減少方向にさらに設定量だけ調整する第2調整手段と、
を含むことを特徴とする請求項1記載の系統連系インバータ。
The adjusting means includes
When the change in the average amount of generated power detected by the detection means is within a predetermined range over a first set time, the predetermined amount of the adjustment direction control means and the adjustment amount for the output of the converter are reduced by a set amount in the decreasing direction. First adjusting means for adjusting;
When the change in the average power generation amount detected by the detection means is within a predetermined range over a second set time (> first set time), the adjustment amount for the predetermined amount of the adjustment direction control means and the output of the converter A second adjusting means for further adjusting the amount by a set amount in a decreasing direction;
The grid interconnection inverter according to claim 1 , comprising:
前記MPPT制御手段は、
前記発電装置の平均発電電圧を前記平均発電電力量の検出より短い時間間隔で検出する平均発電電圧検出手段と、
前記発電装置の発電電圧が前記平均発電電圧検出手段で検出される平均発電電圧よりも一定値以上低下したとき、前記コンバータの出力に対する調節量を低減する補正手段と、
をさらに含むことを特徴とする請求項1乃至請求項3のいずれかに記載の系統連系インバータ。
The MPPT control means includes
Average power generation voltage detection means for detecting an average power generation voltage of the power generation device at a shorter time interval than detection of the average power generation amount;
Correction means for reducing an adjustment amount with respect to the output of the converter when the power generation voltage of the power generation device is lowered by a certain value or more than the average power generation voltage detected by the average power generation voltage detection means;
The grid interconnection inverter according to any one of claims 1 to 3 , further comprising:
前記MPPT制御手段は、
前記コンバータの出力に対する調節が増加のとき、かつ前記発電装置の発電電圧が前記平均電圧検出手段で検出される平均発電電圧より大きいとき、前記コンバータの出力に対する調節量を増大する補正手段、
をさらに含むことを特徴とする請求項4記載の系統連系インバータ。
The MPPT control means includes
Correction means for increasing the amount of adjustment to the output of the converter when adjustment to the output of the converter is increased and when the generated voltage of the power generator is greater than the average generated voltage detected by the average voltage detecting means;
The grid interconnection inverter according to claim 4 , further comprising:
JP2008231393A 2008-09-09 2008-09-09 Grid interconnection inverter Expired - Fee Related JP5325507B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008231393A JP5325507B2 (en) 2008-09-09 2008-09-09 Grid interconnection inverter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008231393A JP5325507B2 (en) 2008-09-09 2008-09-09 Grid interconnection inverter

Publications (2)

Publication Number Publication Date
JP2010066919A JP2010066919A (en) 2010-03-25
JP5325507B2 true JP5325507B2 (en) 2013-10-23

Family

ID=42192467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008231393A Expired - Fee Related JP5325507B2 (en) 2008-09-09 2008-09-09 Grid interconnection inverter

Country Status (1)

Country Link
JP (1) JP5325507B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7055757B2 (en) 2019-01-15 2022-04-18 株式会社クボタ Weeding equipment and weeding rotor

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6102364B2 (en) * 2013-03-13 2017-03-29 三浦工業株式会社 Grid connection system for fuel cells
JP5618022B1 (en) 2013-06-11 2014-11-05 住友電気工業株式会社 Inverter device
JP5618023B1 (en) * 2013-06-11 2014-11-05 住友電気工業株式会社 Inverter device
JP6252149B2 (en) * 2013-12-09 2017-12-27 オムロン株式会社 Solar cell evaluation apparatus, evaluation method, and solar power generation system
JP6327106B2 (en) 2014-01-10 2018-05-23 住友電気工業株式会社 Conversion device
JP6303970B2 (en) 2014-10-17 2018-04-04 住友電気工業株式会社 Conversion device
JP2016140232A (en) * 2015-01-23 2016-08-04 パナソニックIpマネジメント株式会社 Power conversion device and display device used for power conversion device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07109569B2 (en) * 1993-08-19 1995-11-22 三洋電機株式会社 Maximum power control method for solar cells
JP3732942B2 (en) * 1998-03-30 2006-01-11 三洋電機株式会社 Solar power plant

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7055757B2 (en) 2019-01-15 2022-04-18 株式会社クボタ Weeding equipment and weeding rotor

Also Published As

Publication number Publication date
JP2010066919A (en) 2010-03-25

Similar Documents

Publication Publication Date Title
JP5325507B2 (en) Grid interconnection inverter
US8319378B2 (en) Method and apparatus for improved burst mode during power conversion
US8018748B2 (en) Method and system to convert direct current (DC) to alternating current (AC) using a photovoltaic inverter
US8922185B2 (en) Device and method for global maximum power point tracking
JP5882845B2 (en) Power storage type solar power generation system
JP6063031B2 (en) Power conditioner and control method thereof
JP2006278858A (en) Solar power generator
JPWO2013118376A1 (en) Power supply system and charge / discharge power conditioner used therefor
JP5349688B2 (en) Grid-connected inverter
JP5284447B2 (en) Distributed power system
US10193347B2 (en) Method and apparatus for improved burst mode during power conversion
JP2010124557A (en) Uninterruptible power supply device
JPWO2012169013A1 (en) Operation control device for photovoltaic power generation system
WO2008029711A1 (en) Sequence-linked inverter device
JP5659290B2 (en) Solar power system
JP5331399B2 (en) Power supply
JP6106568B2 (en) Power converter
JP4354780B2 (en) Wind power generator
JP6036254B2 (en) Grid-connected inverter device
JP6296878B2 (en) Grid-connected inverter and generated power estimation method
KR101349479B1 (en) Photovoltaic power generation system and control method thereof
JP6438072B2 (en) Power control apparatus, power control system, and power control method
JP2015154517A (en) PV power conditioner
JP2020137275A (en) Power supply system, power conversion device, and control method for power conversion device
JP5837454B2 (en) Control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110427

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130625

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130722

R150 Certificate of patent or registration of utility model

Ref document number: 5325507

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees