JP5318180B2 - Engine exhaust purification system - Google Patents

Engine exhaust purification system Download PDF

Info

Publication number
JP5318180B2
JP5318180B2 JP2011251288A JP2011251288A JP5318180B2 JP 5318180 B2 JP5318180 B2 JP 5318180B2 JP 2011251288 A JP2011251288 A JP 2011251288A JP 2011251288 A JP2011251288 A JP 2011251288A JP 5318180 B2 JP5318180 B2 JP 5318180B2
Authority
JP
Japan
Prior art keywords
filter
engine
regeneration
branch passage
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011251288A
Other languages
Japanese (ja)
Other versions
JP2012052553A (en
Inventor
公信 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UD Trucks Corp
Original Assignee
UD Trucks Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UD Trucks Corp filed Critical UD Trucks Corp
Priority to JP2011251288A priority Critical patent/JP5318180B2/en
Publication of JP2012052553A publication Critical patent/JP2012052553A/en
Application granted granted Critical
Publication of JP5318180B2 publication Critical patent/JP5318180B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Processes For Solid Components From Exhaust (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an engine exhaust purification device that can remove PMs from a DPF, and can recirculate exhaust gas during the regeneration of the DPF. <P>SOLUTION: The exhaust gas purification device includes: the DPF 60 which is arranged in a branched passage 50 out of branched passages 50, 52 which are formed by branching the middle of an exhaust passage 40 of an engine 10; a first valve 50a and a second valve 52a which open and close the branched passages 50, 52 at the upstream side of the DPF 60, respectively; an EGR pipe 54 which makes the branched passage 50 at the downstream side of the first valve 50a and an air-intake passage 20 of the engine 10 communicate with each other at the upstream side of the DPF 60; and an ECU 80 which controls the first valve 50a and the second valve 52a so as to close the branched passage 50 and to open the branched passage 52 at the regeneration of the DPF 60. <P>COPYRIGHT: (C)2012,JPO&amp;INPIT

Description

本発明は、排気から粒子状物質(PM)を除去するエンジンの排気浄化装置に関する。   The present invention relates to an exhaust emission control device for an engine that removes particulate matter (PM) from exhaust gas.

ディーゼルエンジンから排出された排気を浄化する排気浄化装置として、排気に含まれたPMを捕集除去するディーゼルパティキュレートフィルタ(DPF)を排気管に配設したものがある。かかるDPFは、捕集したPMの増加により目詰まりを発生するので、捕集したPMを焼却、酸化除去するなどの定期的な再生処理が不可欠である。しかし、PMを着火焼却する強制再生式は、例えば、PMが一気に燃焼するとDPFが過熱し、溶損や破損などの熱害を発生させるおそれがある。また、PMを酸化除去する連続再生式は、触媒温度によっては十分な酸化反応が得られず不十分な再生処理となる場合があり得る。このため、特開2004−108194号公報(特許文献1)に記載されるように、排気下流に向かう流れとは逆方向の高圧気体によりDPFを逆洗することで、熱害の発生を防止しつつ、触媒温度に左右されないDPFの再生技術が提案されている。   As an exhaust gas purification device for purifying exhaust gas discharged from a diesel engine, there is one in which a diesel particulate filter (DPF) that collects and removes PM contained in exhaust gas is provided in an exhaust pipe. Since such a DPF is clogged due to an increase in collected PM, periodic regeneration processing such as incineration and oxidation removal of the collected PM is indispensable. However, in the forced regeneration type in which PM is ignited and incinerated, for example, when PM burns all at once, the DPF may overheat, which may cause heat damage such as melting or breakage. In addition, the continuous regeneration method in which PM is removed by oxidation may result in an insufficient regeneration process because a sufficient oxidation reaction cannot be obtained depending on the catalyst temperature. For this reason, as described in Japanese Patent Application Laid-Open No. 2004-108194 (Patent Document 1), the DPF is back-washed with high-pressure gas in the direction opposite to the flow downstream of the exhaust gas, thereby preventing the occurrence of heat damage. On the other hand, a DPF regeneration technique that is independent of the catalyst temperature has been proposed.

特開2004−108194号公報JP 2004-108194 A

しかしながら、従来の提案技術では、熱害の発生を防止しつつ、酸化反応の生じにくい低温であってもPMを除去できるものの、逆洗したPMをDPFの上流側に設けた容器に収集する構成であるため、エンジンの停止後でなければ、DPFの再生処理を実行できなかった。また、収集したPMの除去処理は、容器の取り外しを伴い、作業が煩雑であった。   However, in the conventional proposed technique, PM can be removed even at a low temperature at which oxidation reaction does not easily occur while preventing the occurrence of thermal damage, but the backwashed PM is collected in a container provided on the upstream side of the DPF. Therefore, the DPF regeneration process could not be executed unless the engine was stopped. In addition, the process for removing the collected PM involves the removal of the container, and the work is complicated.

そこで、本発明は、以上のような従来の問題点に鑑み、DPFを排気で逆洗することで、DPFからPMを離脱させて再生すると共に、この離脱PMを含む排気をEGRさせ得るエンジンの排気浄化装置を提供することを目的とする。   Therefore, in view of the conventional problems as described above, the present invention provides an engine that can regenerate the PM by removing the PM from the DPF by backwashing the DPF with the exhaust, and can make the exhaust including the separated PM EGR. An object is to provide an exhaust emission control device.

このため、請求項1記載のエンジンの排気浄化装置は、エンジンの排気通路の途中を複数に分岐した分岐通路のうち、少なくとも1つの分岐通路を除いた分岐通路に配設され、排気中のPMを捕集するフィルタと、前記フィルタが配設されている分岐通路では、フィルタより上流側の分岐通路を開閉し、前記フィルタが配設されてない分岐通路では、該分岐通路を開閉する分岐通路開閉手段と、前記フィルタより上流側で前記分岐通路開閉手段より下流側の分岐通路と前記エンジンの吸気通路とを連通するEGR管と、フィルタの再生時に、前記フィルタが配設されている分岐通路を閉じる一方、前記フィルタが配設されてない分岐通路を開くように前記分岐通路開閉手段を制御する制御手段と、フィルタの再生時に、各分岐通路が合流する合流部より下流側の排気通路の開度を、エンジン運転状態に応じて全開〜全閉に亘って多段階又は連続的に調整する開度調整手段と、を含んで構成されたことを特徴とする。 Therefore, an exhaust emission control device for an engine according to claim 1 is disposed in a branch passage excluding at least one branch passage among a plurality of branch passages branched in the middle of the exhaust passage of the engine, and the PM in the exhaust gas And a branch passage that opens and closes a branch passage upstream of the filter in a branch passage in which the filter is disposed, and a branch passage that opens and closes the branch passage in a branch passage in which the filter is not disposed An opening / closing means, an EGR pipe communicating with the branch passage upstream of the filter and downstream of the branch passage opening / closing means and the intake passage of the engine, and a branch passage in which the filter is disposed when the filter is regenerated And the control means for controlling the branch passage opening / closing means so as to open the branch passage where the filter is not disposed, and the branch passages join when the filter is regenerated. And characterized in that the opening of the downstream side of the exhaust passage than the flow section, which is configured to include a degree of opening adjustment means for adjusting a multi-stage or continuously over the fully opened - fully closed according to the engine operating conditions, the To do.

また、請求項2記載のエンジンの排気浄化装置は、前記EGR管が、前記エンジンに設けられた過給器のコンプレッサより上流側の吸気通路に連通していることを特徴とする。
請求項3記載の発明では、前記制御手段は、前記エンジンの運転時間を積算し、該積算時間が所定時間以上になると、フィルタの再生開始時であると判定することを特徴とする。
The engine exhaust gas purification apparatus according to claim 2 is characterized in that the EGR pipe communicates with an intake passage upstream of a compressor of a supercharger provided in the engine.
According to a third aspect of the present invention, the control means integrates the operating time of the engine, and determines that it is the time to start the regeneration of the filter when the accumulated time exceeds a predetermined time.

請求項4記載の発明では、前記制御手段は、エンジン運転状態に応じたPMの排出流量を推定し、該排出流量の積算値が第1所定値以上になると、フィルタの再生開始時であると判定することを特徴とする。   According to a fourth aspect of the present invention, the control means estimates the PM discharge flow rate according to the engine operating state, and when the integrated value of the discharge flow rate is equal to or higher than a first predetermined value, it is at the start of filter regeneration. It is characterized by determining.

請求項5記載の発明では、フィルタの上流側と下流側との差圧を検出する差圧検出手段をさらに含んで構成され、前記制御手段は、検出した差圧が所定圧力以上であれば、フィルタの再生開始時であると判定することを特徴とする。   The invention according to claim 5 further includes differential pressure detection means for detecting the differential pressure between the upstream side and the downstream side of the filter, and the control means is configured so that if the detected differential pressure is equal to or higher than a predetermined pressure, It is characterized in that it is determined that the filter reproduction is started.

請求項6記載の発明では、前記制御手段は、フィルタの再生開始時から、エンジン運転状態又は高圧気体の供給流量に対応してフィルタから離脱するPMの離脱流量を推定し、該離脱流量の積算値が第2所定値以上になると、フィルタの再生完了時と判定することを特徴とする。   According to a sixth aspect of the present invention, the control means estimates the separation flow rate of PM that separates from the filter in response to the engine operating state or the high-pressure gas supply flow rate from the start of the regeneration of the filter, and integrates the separation flow rate. When the value is equal to or greater than a second predetermined value, it is determined that the filter regeneration is completed.

請求項1記載の発明によれば、フィルタの再生時に、フィルタが配設されている分岐通路のフィルタより上流側を閉じる一方、フィルタが配設されてない分岐通路を開くようにする。これにより、排気は、フィルタが配設されてない分岐通路へ流れ、分岐通路が合流する合流部において、その一部が分流して、フィルタが配設されている分岐通路へと逆流する。そして、この逆流排気が、フィルタを逆洗して捕集PMを離脱させ、EGR管を介して、エンジンの吸気通路へ還流される。このため、熱害を生じさせず且つ排気温度に左右されずに、エンジン運転状態のままでフィルタを再生することができると共に、捕集PMをEGRさせて除去することができる。また、フィルタの再生時に、分岐通路の合流部から下流側の排気通路の開度を、エンジン運転状態に応じて全開〜全閉に亘って多段階又は連続的に調整することにより、再生対象のフィルタが配設されている分岐通路へと逆流する排気流量を調整できるので、EGR率を調整することができる。 According to the first aspect of the present invention, when the filter is regenerated, the upstream side of the branch passage where the filter is disposed is closed from the filter, while the branch passage where the filter is not disposed is opened. As a result, the exhaust gas flows to the branch passage where the filter is not arranged, and a part of the exhaust gas is diverted at the junction where the branch passage joins, and flows back to the branch passage where the filter is arranged. Then, this backflow exhaust gas backwashes the filter to release the collected PM, and is returned to the intake passage of the engine via the EGR pipe. For this reason, it is possible to regenerate the filter while the engine is operating without causing heat damage and without being influenced by the exhaust temperature, and it is possible to remove the collected PM by EGR. In addition, when the filter is regenerated, the opening degree of the exhaust passage downstream from the junction of the branch passages is adjusted in multiple stages or continuously from fully open to fully closed according to the engine operating state, thereby Since the exhaust gas flow rate flowing back to the branch passage in which the filter is disposed can be adjusted, the EGR rate can be adjusted.

請求項2記載の発明によれば、EGR管が過給器のコンプレッサよりも上流側の吸気通路に連通される。ここでの吸気圧はコンプレッサよりも下流側の吸気通路に比べて低圧であるので、広範なエンジン運転状態において、離脱PMを含む排気を容易に還流させることができる。   According to the invention described in claim 2, the EGR pipe communicates with the intake passage upstream of the compressor of the supercharger. Since the intake pressure here is lower than that of the intake passage downstream of the compressor, the exhaust gas including the separated PM can be easily recirculated in a wide range of engine operating conditions.

請求項3〜5記載の発明によれば、積算したエンジン運転時間が所定時間以上になったとき、エンジン運転状態に応じて推定したPM排出流量の積算値が第1所定値以上になったとき、検出した差圧が所定圧力以上であるとき、をフィルタの再生開始時と判定し、フィルタの再生を開始することができる。   According to the third to fifth aspects of the present invention, when the accumulated engine operation time becomes a predetermined time or more, and the integrated value of the PM discharge flow rate estimated according to the engine operation state becomes the first predetermined value or more. When the detected differential pressure is equal to or higher than the predetermined pressure, it can be determined that the regeneration of the filter is started, and the regeneration of the filter can be started.

請求項6記載の発明によれば、エンジン運転状態に応じて推定したPM離脱流量の積算値が第2所定値以上になったときを、フィルタの再生完了時と判定する。このため、フィルタを逆洗する流体の流量に応じて再生完了時を変動させるフィルタ再生が可能となる。   According to the sixth aspect of the present invention, it is determined that the regeneration of the filter is completed when the integrated value of the PM separation flow rate estimated according to the engine operating state is equal to or greater than the second predetermined value. For this reason, it is possible to perform filter regeneration that fluctuates the completion of regeneration in accordance with the flow rate of the fluid that backwashes the filter.

第1の実施形態に係るエンジンの排気浄化装置の全体図1 is an overall view of an exhaust emission control device for an engine according to a first embodiment. フィルタ再生処理を説明するフローチャートFlowchart explaining filter regeneration processing 第2の実施形態に係るエンジンの排気浄化装置の全体図Overall view of an exhaust emission control device for an engine according to a second embodiment 第3の実施形態に係るエンジンの排気浄化装置の全体図Overall view of an exhaust emission control device for an engine according to a third embodiment (a)はPM排出マップ、(b)はPM離脱マップの説明図(A) PM emission map, (b) PM removal map explanatory diagram

以下、添付された図面を参照して本発明を詳述する。
図1に、エンジンの排気浄化装置の第1の実施形態を示す。ディーゼルエンジン10は、吸気通路20に介装されたコンプレッサ30a及び排気通路40に介装されたタービン30bを含んで構成されるターボ過給器30を備えている。
Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 shows a first embodiment of an engine exhaust purification device. The diesel engine 10 includes a turbocharger 30 including a compressor 30 a interposed in the intake passage 20 and a turbine 30 b interposed in the exhaust passage 40.

排気通路40は、その途中が複数、例えば、第1分岐通路50と第2分岐通路52との2つに分岐した分岐構造となっている。2つの分岐通路のうち少なくとも1つの分岐通路を除いた分岐通路、例えば、第1分岐通路50には、排気流通方向に沿って、その通路を開閉する遠隔操作可能な第1バルブ50aと、排気中のPMを捕集するDPF60と、がこの順番で配設される。また、第1バルブ50aとDPF60との間に位置する第1分岐通路50には、ディーゼルエンジン10の吸気通路20に排気を還流させる方向にのみ開弁するチェックバルブ54aが配設されたEGR管54が接続される。一方、第2分岐通路52には、その通路を開閉する遠隔操作可能な第2バルブ52aが配設される。なお、分岐通路開閉手段として、2つの分岐通路50、52に2つのバルブ50a、52aをそれぞれ配設したが、2つの分岐通路50、52へと分岐する分岐部40aに3方向切替弁のような多方向切替弁を配設するようにしてもよい。   The exhaust passage 40 has a branch structure in which the middle is branched into a plurality of, for example, two branches, a first branch passage 50 and a second branch passage 52. A branch passage excluding at least one of the two branch passages, for example, the first branch passage 50, includes a first valve 50a that can be remotely operated to open and close the passage along the exhaust flow direction, and an exhaust. The DPF 60 that collects the PM therein is arranged in this order. In addition, an EGR pipe in which a check valve 54a that opens only in a direction in which exhaust gas is recirculated to the intake passage 20 of the diesel engine 10 is disposed in the first branch passage 50 positioned between the first valve 50a and the DPF 60. 54 is connected. On the other hand, the second branch passage 52 is provided with a remotely operable second valve 52a for opening and closing the passage. As the branch passage opening / closing means, two valves 50a and 52a are provided in the two branch passages 50 and 52, respectively, but the branch portion 40a branching to the two branch passages 50 and 52 is like a three-way switching valve. A multidirectional switching valve may be provided.

また、2つの分岐通路が合流する合流部40bの排気下流に位置する排気通路40には、その排気流路面積を全開〜全閉に亘って多段階又は連続的に制御するバタフライバルブ42が配設される。   In addition, a butterfly valve 42 that controls the exhaust passage area in multiple stages or continuously from fully open to fully closed is arranged in the exhaust passage 40 located downstream of the joining portion 40b where the two branch passages join. Established.

DPF60の上流側と下流側との差圧を検出する差圧検出手段として、分岐部40aの排気上流に位置する排気通路40内の排気圧を検出する圧力センサ70aと、合流部40bの排気下流に位置する排気通路40内の排気圧を検出する圧力センサ70bと、が取り付けられる。なお、差圧検出手段としては、1つのセンサでDPF60の上流側と下流側との差圧を検出するものであってもよい。また、ディーゼルエンジン10には、エンジンの回転速度Neを検出するエンジン回転速度センサ72と、燃料噴射量、吸気流量、吸気負圧、要求トルク、過給圧などのエンジン負荷Qを検出するエンジン負荷センサ74と、が取り付けられる。   As a differential pressure detection means for detecting the differential pressure between the upstream side and the downstream side of the DPF 60, a pressure sensor 70a for detecting the exhaust pressure in the exhaust passage 40 located upstream of the exhaust of the branching portion 40a, and the exhaust downstream of the junction 40b And a pressure sensor 70b for detecting an exhaust pressure in the exhaust passage 40 located at the position. Note that the differential pressure detection means may be one that detects the differential pressure between the upstream side and the downstream side of the DPF 60 with a single sensor. The diesel engine 10 includes an engine speed sensor 72 that detects the engine speed Ne, and an engine load Q that detects an engine load Q such as a fuel injection amount, an intake air flow rate, an intake negative pressure, a required torque, and a boost pressure. A sensor 74 is attached.

そして、各センサ70a、70b、72、74から出力される圧力信号Pa、Pb、回転速度Ne、エンジン負荷Qが、コンピュータ内蔵の電子制御ユニット(ECU)80へ入力される。ECU80は、そのROM(Read Only Memory)などに記憶された制御プログラムを実行することで、例えば、圧力信号Pa、Pbから得られる差圧Pや、回転速度Ne及びエンジン負荷Qなどのエンジン運転状態に応じて、第1バルブ50a、第2バルブ52a及びバタフライバルブ42などを適宜駆動制御する。   The pressure signals Pa and Pb, the rotational speed Ne, and the engine load Q output from the sensors 70a, 70b, 72, and 74 are input to an electronic control unit (ECU) 80 built in the computer. The ECU 80 executes a control program stored in a ROM (Read Only Memory) or the like, for example, an engine operating state such as a differential pressure P obtained from the pressure signals Pa and Pb, a rotational speed Ne, and an engine load Q. Accordingly, the first valve 50a, the second valve 52a, the butterfly valve 42 and the like are appropriately driven and controlled.

ディーゼルエンジン10始動時におけるバルブの初期状態は、例えば、第1バルブ50aが開状態であり、第2バルブ52aは閉状態である。この状態で、ディーゼルエンジン10から排気が排出されると、かかる排気は、エキゾーストマニホールドからタービン30bを回転させて排気通路40へ流れ、分岐部40aから第1分岐通路50へと導かれてEGR管54及びDPF60へと流れる。EGR管54に導かれた排気は、チェックバルブ54aを経て、過給器30より下流側の吸気通路20へ還流される。DPF60へ導かれた排気は、PMが捕集された後、合流部40bから排気通路40へ流れる。このとき、バタフライバルブ42の開度が調整されて、EGR率が制御される。   The initial state of the valve at the time of starting the diesel engine 10 is, for example, that the first valve 50a is in an open state and the second valve 52a is in a closed state. When exhaust gas is discharged from the diesel engine 10 in this state, the exhaust gas rotates from the exhaust manifold to the turbine 30b and flows to the exhaust passage 40, and is led from the branch portion 40a to the first branch passage 50 to be the EGR pipe. 54 and DPF 60. The exhaust gas guided to the EGR pipe 54 is returned to the intake passage 20 on the downstream side of the supercharger 30 through the check valve 54a. The exhaust guided to the DPF 60 flows from the junction 40b to the exhaust passage 40 after PM is collected. At this time, the opening degree of the butterfly valve 42 is adjusted, and the EGR rate is controlled.

図2は、図1のECU80において、エンジン始動を契機として繰り返し実行される制御プログラムの内容を示す。
ステップ1(図では「S1」と略記する。以下同様)では、DPF60の再生開始時であるか否かを判定する。ここでは、検出した圧力信号Pa、Pbの差圧Pがエンジン出力に影響を与えない第1の所定圧力以上であれば、DPF60の再生開始時と判定してステップ2へ進む(Yes)。一方、それ以外であれば、DPF60の再生開始時ではないと判定してステップ6へ進む(No)。ステップ6では、エンジン運転状態に応じて、EGR率を演算し、これに基づきバタフライバルブ42の開度を調整して、EGR率を調整する。
FIG. 2 shows the contents of a control program that is repeatedly executed in the ECU 80 of FIG.
In step 1 (abbreviated as “S1” in the figure, the same applies hereinafter), it is determined whether or not the regeneration of the DPF 60 is started. Here, if the differential pressure P between the detected pressure signals Pa and Pb is equal to or higher than a first predetermined pressure that does not affect the engine output, it is determined that the regeneration of the DPF 60 is started, and the process proceeds to Step 2 (Yes). On the other hand, otherwise, it is determined that it is not at the start of regeneration of the DPF 60, and the process proceeds to Step 6 (No). In step 6, the EGR rate is calculated according to the engine operating state, and the opening degree of the butterfly valve 42 is adjusted based on the EGR rate, thereby adjusting the EGR rate.

ステップ2では、第1バルブ50aを閉じ、第2バルブ52aを開き、フィルタ再生開始時のバルブ切換制御を実行する。このバルブ切換制御により、フィルタ再生中に排気通路40を流れる排気は、分岐部40aから第2分岐通路52へと流れ、合流部40bにおいて、その一部が分流して、第1分岐通路50へと逆流する。そして、この逆流排気が、DPF60を逆洗することにより、捕集PMを離脱させて再生し、さらに、離脱PMを含む排気が、EGR管54へと流れて還流される。これにより、熱害を生じさせず且つ排気温度に左右されずに、ディーゼルエンジン10の運転状態のままで、DPF60を十分に再生することができると共に、離脱PMを除去することができる。   In step 2, the first valve 50a is closed, the second valve 52a is opened, and valve switching control at the start of filter regeneration is executed. By this valve switching control, the exhaust gas flowing through the exhaust passage 40 during the regeneration of the filter flows from the branching portion 40a to the second branching passage 52, and a part thereof is diverted at the joining portion 40b to the first branching passage 50. And backflow. Then, this backflow exhausts the DPF 60 by backwashing to regenerate the trapped PM, and the exhaust containing the detached PM flows to the EGR pipe 54 and is recirculated. As a result, the DPF 60 can be sufficiently regenerated and the separated PM can be removed while the diesel engine 10 is in an operating state without causing heat damage and without being influenced by the exhaust temperature.

ステップ3では、エンジン運転状態に応じてEGR率を演算し、これに基づいてバタフライバルブ42の開度を調整して、EGR率を調整する。例えば、ディーゼルエンジン10が完全燃焼の運転状態にある場合には、PMの発生が少ないことから、NOx排出量低減のため、EGR率を大きくする。この場合には、排気通路40の開度を小さくするようにバタフライバルブ42の開度を絞り制御して、EGR率を増加させる。なお、EGR率は、例えば、EGR管54が連通するインテークマニホールドにNOxセンサを設けてNOx濃度を測定したり、エンジン運転状態に応じた排出NOxマップから排気中のNOx濃度を演算し、この結果に基づき演算するようにしてもよい。この場合、EGR率の演算に用いられる吸気流量のパラメータは、例えば、エアフローセンサを設けて吸気流量を測定したり、エンジン運転状態に応じた吸気流量マップから吸気流量を演算するなどして求めることができる。   In step 3, the EGR rate is calculated according to the engine operating state, and the opening degree of the butterfly valve 42 is adjusted based on the EGR rate to adjust the EGR rate. For example, when the diesel engine 10 is in an operation state of complete combustion, since the generation of PM is small, the EGR rate is increased to reduce the NOx emission amount. In this case, the opening degree of the butterfly valve 42 is controlled so as to reduce the opening degree of the exhaust passage 40, and the EGR rate is increased. The EGR rate is obtained by, for example, measuring the NOx concentration by providing a NOx sensor in the intake manifold to which the EGR pipe 54 communicates, or calculating the NOx concentration in the exhaust gas from the exhaust NOx map according to the engine operating state. You may make it calculate based on. In this case, the parameter of the intake flow rate used for the calculation of the EGR rate is obtained, for example, by providing an air flow sensor to measure the intake flow rate or calculating the intake flow rate from the intake flow rate map according to the engine operating state. Can do.

ステップ4では、DPF60の再生完了時であるか否かを判定する。ここでは、差圧Pが第1の所定圧力よりも小さい第2の所定圧力未満になれば、DPF60の再生完了時と判定してステップ5へ進む(Yes)。一方、それ以外であれば、DPF60の再生完了時でないと判定してステップ3へ戻り(No)、バタフライバルブ42の開度調整を繰り返す。   In step 4, it is determined whether or not the regeneration of the DPF 60 is completed. Here, if the differential pressure P becomes less than the second predetermined pressure which is smaller than the first predetermined pressure, it is determined that the regeneration of the DPF 60 is completed, and the process proceeds to Step 5 (Yes). On the other hand, otherwise, it is determined that the regeneration of the DPF 60 has not been completed, and the process returns to Step 3 (No), and the opening degree adjustment of the butterfly valve 42 is repeated.

ステップ5では、第1バルブ50aを開き、第2バルブ52aを閉じて、バルブを初期状態に復帰するフィルタ再生完了時のバルブ切換制御を実行する。
以上の排気浄化装置は、排気通路40の途中を2本に分岐した分岐構造としたが、2本以上に分岐した分岐構造であってもよい。また、DPF60は、CSF(Catalyzed Soot Filter)でもよく、DPF60より上流側にディーゼル用酸化触媒(DOC)を配置したり、DPF60より上流側にCSF及び下流側に触媒化DPFを配置するようにしてもよい。さらに、複数の分岐通路にフィルタを配設する場合には、例えば、分岐通路の1段目にCSFを配設し、2段目にCSF、DPF及び触媒化DPFの順番で配設するなどの組み合わせを適宜適用することができる。これは、後述する各実施形態でも同様である。
In step 5, the first valve 50a is opened, the second valve 52a is closed, and the valve switching control at the completion of filter regeneration is executed to return the valve to the initial state.
The exhaust purification device described above has a branched structure in which the middle of the exhaust passage 40 is branched into two, but may be a branched structure in which the exhaust passage 40 is branched into two or more. The DPF 60 may be a CSF (Catalyzed Soot Filter), and a diesel oxidation catalyst (DOC) is arranged upstream of the DPF 60, or a CSF and a catalyzed DPF are arranged upstream of the DPF 60. Also good. Further, when a filter is disposed in a plurality of branch passages, for example, the CSF is disposed in the first stage of the branch passage, and the CSF, the DPF, and the catalyzed DPF are disposed in the order of the second stage. Combinations can be applied as appropriate. This is the same in each embodiment described later.

図3に、エンジンの排気浄化装置の第2の実施形態を示す。ここでは、第1の実施形態の構成を基本にして、2つの分岐通路にそれぞれDPFを配設し、このうち一方でPMを捕集しながら、他方を適宜再生する。以下、第1の実施形態と共通の構成は、その説明を適宜省略する。   FIG. 3 shows a second embodiment of the engine exhaust gas purification apparatus. Here, based on the configuration of the first embodiment, a DPF is provided in each of two branch passages, and one of them is properly regenerated while collecting the other PM. Hereinafter, the description of the configuration common to the first embodiment will be omitted as appropriate.

第1分岐通路50には、排気流通方向に沿って、その通路を開閉する遠隔操作可能な第1バルブ50aと、排気中のPMを捕集する第1DPF62と、がこの順番で配設される。同様に、第2分岐通路52には、排気流通方向に沿って、その通路を開閉する遠隔操作可能な第2バルブ52aと、排気中のPMを捕集する第2DPF64と、がこの順番で配設される。   In the first branch passage 50, a remotely operable first valve 50a for opening and closing the passage and a first DPF 62 for collecting PM in the exhaust are arranged in this order along the exhaust flow direction. . Similarly, in the second branch passage 52, a second valve 52a that can be remotely operated to open and close the passage and a second DPF 64 that collects PM in the exhaust are arranged in this order along the exhaust flow direction. Established.

第1バルブ50aと第1DPF62との間に位置する第1分岐通路50には、少なくとも分岐通路側が独立した第1独立形状部56及び第2独立形状部58を有するEGR管54の第1独立形状部56が接続され、第2バルブ52aと第2DPF64との間に位置する第2分岐通路52には、第2独立形状部58が接続される。第1独立形状部56には、その流路を開閉する遠隔操作可能な第1EGRバルブ56aが配設され、第2独立形状部58にも、その流路を開閉する遠隔操作可能な第2EGRバルブ58aが配設される。なお、EGR管開閉手段として、2つの独立形状部56、58に2つのEGRバルブ56a、58aを配設したが、2つの独立形状部56、58が合流する合流部に3方向切替弁のような多方向切替弁を配設するようにしてもよい。   The first independent shape of the EGR pipe 54 having a first independent shape portion 56 and a second independent shape portion 58 which are independent at least on the branch passage side in the first branch passage 50 located between the first valve 50a and the first DPF 62. The second independent shape portion 58 is connected to the second branch passage 52 that is connected to the portion 56 and is located between the second valve 52 a and the second DPF 64. The first independent shape portion 56 is provided with a first EGR valve 56a that can be remotely operated to open and close the flow path, and the second independent shape portion 58 can also be a remotely operated second EGR valve that opens and closes the flow path. 58a is disposed. As the EGR pipe opening / closing means, two EGR valves 56a and 58a are arranged in the two independent shape portions 56 and 58. However, it is like a three-way switching valve at the junction where the two independent shape portions 56 and 58 merge. A multidirectional switching valve may be provided.

ディーゼルエンジン10始動時におけるバルブの初期状態は、例えば、第1バルブ50a及び第1EGRバルブ56aが開状態であり、第2バルブ52a及び第2EGRバルブ58aは閉状態である。排気は、第1の実施形態と同様の流路を辿る。   The initial state of the valve when starting the diesel engine 10 is, for example, that the first valve 50a and the first EGR valve 56a are open, and the second valve 52a and the second EGR valve 58a are closed. Exhaust gas follows the same flow path as in the first embodiment.

第1DPF62、第2DPF64の再生処理は、第1の実施形態におけるDPF60の再生処理と基本的に同一であるが、2つのDPFを交互に再生するので、図2におけるステップ2の再生開始時のバルブ切換制御、及び、ステップ5の再生完了時のバルブ切換制御が異なる。   The regeneration process of the first DPF 62 and the second DPF 64 is basically the same as the regeneration process of the DPF 60 in the first embodiment. However, since the two DPFs are alternately regenerated, the valve at the start of regeneration in step 2 in FIG. The switching control and the valve switching control at the time of completion of regeneration in step 5 are different.

第1DPF62の再生開始時のバルブ切換制御では、第1バルブ50aを閉じ、第2バルブ52aを開く。このバルブ切替制御により、排気は、第1の実施形態と同様の経路を辿ることに加えて、第2DPF64でPMが捕集され、第1DPF62から離脱PMを含む排気となり、第1独立形状部56へと流れて還流される。これにより、熱害を生じさせず且つ排気温度に左右されずに、ディーゼルエンジン10の運転状態のままで、第1DPF62を再生及び離脱PMを除去しながら、第2DPF64でPMを捕集することができる。   In the valve switching control at the start of regeneration of the first DPF 62, the first valve 50a is closed and the second valve 52a is opened. By this valve switching control, exhaust gas follows the same path as in the first embodiment, and PM is collected by the second DPF 64 and becomes exhaust gas including separated PM from the first DPF 62, and the first independent shape portion 56. To be refluxed. Thus, PM can be collected by the second DPF 64 while regenerating the first DPF 62 and removing the detached PM while maintaining the operation state of the diesel engine 10 without causing thermal damage and being influenced by the exhaust temperature. it can.

再生完了時のバルブ切換制御では、第1EGRバルブ56aを閉じ、第2EGRバルブ58aを開く。これにより、第2DPF64をメインとしたPM捕集に切り替わる。
第2DPF64の再生開始時及び再生完了時のバルブ切換制御では、フィルタ再生中に分流した逆流排気が第2DPF64を逆洗すると共にこれを還流させ、フィルタ再生完了後に第1DPF62がPM捕集するように、第1DPF62のフィルタ再生処理と同じようなバルブ切換制御を実行する。
In the valve switching control upon completion of regeneration, the first EGR valve 56a is closed and the second EGR valve 58a is opened. Thereby, it switches to PM collection which made 2nd DPF64 the main.
In the valve switching control at the start of regeneration of the second DPF 64 and at the completion of regeneration, the backflow exhausted during the filter regeneration backwashes the second DPF 64 and recirculates it, and the first DPF 62 collects PM after the filter regeneration is completed. The valve switching control similar to the filter regeneration process of the first DPF 62 is executed.

図4に、エンジンの排気浄化装置の第3の実施形態を示す。ここでは、第2の実施形態の構成を基本にして、高圧気体を用いて交互にフィルタを再生する。以下、第2の実施形態と同様の構成は、その説明を適宜省略する。   FIG. 4 shows a third embodiment of the engine exhaust gas purification apparatus. Here, based on the configuration of the second embodiment, the filter is regenerated alternately using high-pressure gas. Hereinafter, the description of the same configuration as that of the second embodiment will be omitted as appropriate.

第1分岐通路50には、第1DPF62より下流側に、その通路を閉塞する遠隔操作可能な第3バルブ50bが配設され、第2分岐通路52にも、第2DPF64より下流側に、その通路を閉塞する遠隔操作可能な第4バルブ52bが配設される。   The first branch passage 50 is provided with a third valve 50b that can be remotely operated on the downstream side of the first DPF 62, and the second branch passage 52 also has a passage downstream of the second DPF 64. A fourth valve 52b that can be remotely operated is disposed.

第1DPF62と第3バルブ50bとの間に位置する第1分岐通路50には、高圧気体を供給する高圧気体供給手段としてのエアリザーバ90へ接続する第1供給通路92が連結される。同様に、第2DPF64と第4バルブ52bとの間に位置する第2分岐通路52には、エアリザーバ90へ接続する第2供給通路94が連結される。供給通路92、94は、エアリザーバ90側で合流するマニホールド形状になっている。また、第1供給通路92には、エアリザーバ90からの高圧気体を第1分岐通路50へ導入する遠隔操作可能な第1切替バルブ92aが配設され、第2供給通路94にも、エアリザーバ90からの高圧気体を第2分岐通路52へ導入する遠隔操作可能な第2切替バルブ94aが配設される。なお、分岐通路閉塞手段として2つの分岐通路50、52に2つのバルブ50b、52bを配設し、及び、供給通路切替手段として2つの供給通路92,94に2つの切替バルブ92a、94aを配設したが、合流部40b、及び、2つの供給通路92、94の合流部に、3方向切替弁のような多方向切替弁をそれぞれ配設するようにしてもよい。   The first branch passage 50 located between the first DPF 62 and the third valve 50b is connected to a first supply passage 92 connected to an air reservoir 90 as high pressure gas supply means for supplying high pressure gas. Similarly, a second supply passage 94 connected to the air reservoir 90 is connected to the second branch passage 52 located between the second DPF 64 and the fourth valve 52b. The supply passages 92 and 94 have a manifold shape that merges on the air reservoir 90 side. Further, the first supply passage 92 is provided with a first switch valve 92a that can be remotely operated to introduce the high-pressure gas from the air reservoir 90 into the first branch passage 50. The second supply passage 94 is also connected to the first supply passage 92 from the air reservoir 90. The second switching valve 94a that can be remotely operated to introduce the high pressure gas into the second branch passage 52 is provided. The two branch passages 50 and 52 are provided as two branch passages 50 and 52 as branch passage blocking means, and the two switching valves 92a and 94a are provided as two supply passages 92 and 94 as supply passage switching means. However, a multi-directional switching valve such as a three-way switching valve may be disposed in the merging portion 40b and the merging portions of the two supply passages 92 and 94, respectively.

ディーゼルエンジン10始動時におけるバルブの初期状態は、例えば、第3バルブ50b及び第4バルブ52bが開状態であり、第1切替バルブ92a及び第2切替バルブ94aが閉状態である。   The initial state of the valve at the time of starting the diesel engine 10 is, for example, that the third valve 50b and the fourth valve 52b are open, and the first switching valve 92a and the second switching valve 94a are closed.

第1DPF62、第2DPF64の再生処理は、第2の実施形態におけるフィルタ再生処理と基本的に同一であるが、高圧気体を用いて2つのDPFを交互に再生するので、再生開始時のバルブ切換制御、及び、再生完了時のバルブ切換制御が異なる。   The regeneration processing of the first DPF 62 and the second DPF 64 is basically the same as the filter regeneration processing in the second embodiment, but the two DPFs are alternately regenerated using high-pressure gas, so that valve switching control at the start of regeneration is performed. The valve switching control upon completion of regeneration is different.

第1DPF62の再生処理では、第2の実施形態の再生開始時のバルブ切換制御に加えて、第3バルブ50bを閉じ、第1切替バルブ92aを開き、エアリザーバ90による高圧気体の供給を開始する。これにより、第2の実施形態の逆流排気の代わりに、高圧気体が第1DPF60を逆洗して再生し、第2の実施形態と同様の効果を得ることができる。その後、第2の実施形態の再生完了時のバルブ切換制御に加えて、第3バルブ50bを開き、第1切替バルブ92aを閉じ、高圧気体の供給を停止する。   In the regeneration process of the first DPF 62, in addition to the valve switching control at the start of regeneration in the second embodiment, the third valve 50b is closed, the first switching valve 92a is opened, and the supply of high-pressure gas by the air reservoir 90 is started. Thereby, instead of the backflow exhaust of 2nd Embodiment, high pressure gas backwashes and reproduces | regenerates 1st DPF60, and can acquire the effect similar to 2nd Embodiment. Thereafter, in addition to the valve switching control at the completion of regeneration in the second embodiment, the third valve 50b is opened, the first switching valve 92a is closed, and the supply of high-pressure gas is stopped.

第2DPF64の再生処理における再生開始時及び再生完了時のバルブ切換制御でも、第1DPF62の再生処理と同じようなバルブ切換制御を実行する。
なお、各実施形態の構成において、EGR管54を過給器30のコンプレッサ30aよりも上流側の吸気通路20に接続するようにしてもよい。これによれば、離脱PMを含む排気は、コンプレッサ30aで圧縮される前の吸気に還流されるので、容易にEGRされる。同様に、離脱PMを含む高圧気体も、容易に流入させることができる。
The valve switching control similar to the regeneration process of the first DPF 62 is also performed in the valve switching control at the start of regeneration and at the completion of regeneration in the regeneration process of the second DPF 64.
In the configuration of each embodiment, the EGR pipe 54 may be connected to the intake passage 20 upstream of the compressor 30a of the supercharger 30. According to this, since the exhaust gas including the separated PM is returned to the intake air before being compressed by the compressor 30a, it is easily EGRed. Similarly, a high-pressure gas containing separated PM can be easily introduced.

以上の各実施形態では、DPFの再生開始時の判定に、差圧Pが第1の所定圧力以上になった条件を用いたが、他の条件を適用することもできる。例えば、(1)走行距離が所定距離に達したとき、(2)エンジン運転時間を積算し、この積算時間が平均的なエンジン運転状態においてフィルタに目詰まりが生じると考えられる所定時間以上になったとき、(3)PM排出流量を、図5(a)に示すような回転速度Ne及びエンジン負荷Qに応じた単位時間当たりのPM排出流量が設定されたPM排出マップを参照して推定し、その積算値がフィルタに目詰まりが生じると考えられるPM排出流量(第1所定値)以上になったとき、などを適用することができる。   In each of the above-described embodiments, the condition at which the differential pressure P is equal to or higher than the first predetermined pressure is used for the determination at the start of regeneration of the DPF, but other conditions can also be applied. For example, (1) when the travel distance reaches a predetermined distance, (2) the engine operating time is integrated, and this integrated time is equal to or longer than a predetermined time at which the filter is considered to be clogged in an average engine operating state. (3) The PM discharge flow rate is estimated with reference to a PM discharge map in which the PM discharge flow rate per unit time according to the rotational speed Ne and the engine load Q as shown in FIG. When the integrated value becomes equal to or higher than the PM discharge flow rate (first predetermined value) at which the filter is considered to be clogged, etc. can be applied.

また、DPFの再生完了時の判定に、差圧Pが第2の所定圧力未満になった条件を用いたが、他の条件を適用することもできる。例えば、(1)PM離脱流量を、図5(b)に示すような回転速度Ne及びエンジン負荷Qや高圧気体の供給流量に応じてDPFから離脱する単位時間当たりのPM離脱流量が設定されたPM離脱マップから推定し、その積算値がフィルタの再生が完了したと考えられるPM離脱流量(第2所定値)以上になったとき、(2)DPFの再生開始時からエンジンの運転時間を積算し、この積算時間がフィルタの再生が完了したと考えられる所定時間以上になったとき、などを適用することができる。   In addition, for the determination at the completion of the regeneration of the DPF, the condition that the differential pressure P is less than the second predetermined pressure is used, but other conditions can be applied. For example, (1) PM separation flow rate per unit time for separation from the DPF is set according to the rotational speed Ne, the engine load Q, and the high-pressure gas supply flow rate as shown in FIG. 5B. Estimated from the PM departure map, and when the accumulated value is equal to or greater than the PM separation flow rate (second predetermined value) considered to be complete filter regeneration, (2) Accumulate engine operating time from the start of DPF regeneration In addition, when the accumulated time is equal to or longer than a predetermined time considered that the regeneration of the filter is completed, it is possible to apply.

さらに、DPFの再生開始時の判定では、以上の各条件を任意に2つ以上組み合わせ、何れかの条件が成立したときを再生開始時と判定するとよく、また、DPFの再生完了時では、以上の各条件を組み合わせ、全ての条件が成立したときを再生完了時と判定するとよい。これにより、DPF再生処理の信頼性を向上することができる。
さらにまた、以上の各実施形態を適宜組み合わせてもよい。
Further, in the determination at the start of DPF regeneration, two or more of the above conditions may be arbitrarily combined, and when any of the conditions is satisfied, it may be determined as the start of regeneration. These conditions may be combined, and when all the conditions are satisfied, it may be determined that the reproduction has been completed. Thereby, the reliability of the DPF regeneration process can be improved.
Furthermore, the above embodiments may be appropriately combined.

10 ディーゼルエンジン
20 吸気通路
30 過給器
30a コンプレッサ
30b タービン
40 排気通路
42 バタフライバルブ
50、52 分岐通路
50a、52a バルブ
54 EGR管
60 DPF
70a、70b 圧力センサ
72 回転速度センサ
74 エンジン負荷センサ
80 ECU
10 diesel engine 20 intake passage 30 supercharger 30a compressor 30b turbine 40 exhaust passage
42 Butterfly valve 50, 52 Branch passage 50a, 52a Valve 54 EGR pipe 60 DPF
70a, 70b Pressure sensor 72 Rotational speed sensor 74 Engine load sensor 80 ECU

Claims (6)

エンジンの排気通路の途中を複数に分岐した分岐通路のうち、少なくとも1つの分岐通路を除いた分岐通路に配設され、排気中の粒子状物質を捕集するフィルタと、
前記フィルタが配設されている分岐通路では、フィルタより上流側の分岐通路を開閉し、前記フィルタが配設されてない分岐通路では、該分岐通路を開閉する分岐通路開閉手段と、
前記フィルタより上流側で前記分岐通路開閉手段より下流側の分岐通路と前記エンジンの吸気通路とを連通するEGR管と、
フィルタの再生時に、前記フィルタが配設されている分岐通路を閉じる一方、前記フィルタが配設されてない分岐通路を開くように前記分岐通路開閉手段を制御する制御手段と、
フィルタの再生時に、各分岐通路が合流する合流部より下流側の排気通路の開度を、エンジン運転状態に応じて全開〜全閉に亘って多段階又は連続的に調整する開度調整手段と、
を含んで構成されたことを特徴とするエンジンの排気浄化装置。
A filter that is disposed in a branch passage excluding at least one branch passage among a plurality of branch passages branched in the middle of the exhaust passage of the engine, and collects particulate matter in the exhaust;
A branch passage opening and closing means for opening and closing a branch passage upstream of the filter in the branch passage where the filter is disposed; and a branch passage opening and closing means for opening and closing the branch passage in the branch passage where the filter is not disposed;
An EGR pipe communicating with the branch passage upstream of the filter and downstream of the branch passage opening and closing means and the intake passage of the engine;
Control means for controlling the branch passage opening and closing means so as to close a branch passage where the filter is disposed while opening a branch passage where the filter is not disposed during regeneration of the filter;
Opening degree adjusting means for adjusting the opening degree of the exhaust passage downstream from the merging portion where the branch passages merge at the time of regeneration of the filter in a multistage or continuous manner from fully open to fully closed according to the engine operating state ; ,
An exhaust emission control device for an engine characterized by comprising:
前記EGR管は、前記エンジンに設けられた過給器のコンプレッサより上流側の吸気通路に連通していることを特徴とする請求項1記載のエンジンの排気浄化装置。   2. The engine exhaust gas purification apparatus according to claim 1, wherein the EGR pipe communicates with an intake passage upstream of a compressor of a supercharger provided in the engine. 前記制御手段は、前記エンジンの運転時間を積算し、該積算時間が所定時間以上になると、フィルタの再生開始時であると判定することを特徴とする請求項1又は請求項2に記載のエンジンの排気浄化装置。   3. The engine according to claim 1, wherein the control unit integrates the operation time of the engine, and determines that it is a filter regeneration start time when the integration time exceeds a predetermined time. Exhaust purification equipment. 前記制御手段は、エンジン運転状態に応じた粒子状物質の排出流量を推定し、該排出流量の積算値が第1所定値以上になると、フィルタの再生開始時であると判定することを特徴とする請求項1〜請求項3のいずれか1項に記載のエンジンの排気浄化装置。   The control means estimates the discharge flow rate of the particulate matter according to the engine operating state, and determines that it is at the start of filter regeneration when the integrated value of the discharge flow rate is equal to or higher than a first predetermined value. The engine exhaust gas purification device according to any one of claims 1 to 3. フィルタの上流側と下流側との差圧を検出する差圧検出手段をさらに含んで構成され、
前記制御手段は、検出した差圧が所定圧力以上であれば、フィルタの再生開始時であると判定することを特徴とする請求項1〜請求項4のいずれか1項に記載のエンジンの排気浄化装置。
Further comprising a differential pressure detecting means for detecting a differential pressure between the upstream side and the downstream side of the filter,
The engine exhaust according to any one of claims 1 to 4, wherein if the detected differential pressure is equal to or greater than a predetermined pressure, the control means determines that the filter is at the start of regeneration. Purification equipment.
前記制御手段は、フィルタの再生開始時から、エンジン運転状態に対応してフィルタから離脱する粒子状物質の離脱流量を推定し、該離脱流量の積算値が第2所定値以上になると、フィルタの再生完了時と判定することを特徴とする請求項1〜請求項5のいずれか1項に記載のエンジンの排気浄化装置。   The control means estimates the detachment flow rate of particulate matter that detaches from the filter in response to the engine operating state from the start of the regeneration of the filter, and when the integrated value of the detachment flow rate exceeds a second predetermined value, The engine exhaust gas purification apparatus according to any one of claims 1 to 5, wherein it is determined that the regeneration is completed.
JP2011251288A 2011-11-17 2011-11-17 Engine exhaust purification system Expired - Fee Related JP5318180B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011251288A JP5318180B2 (en) 2011-11-17 2011-11-17 Engine exhaust purification system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011251288A JP5318180B2 (en) 2011-11-17 2011-11-17 Engine exhaust purification system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2007258146A Division JP4954010B2 (en) 2007-10-01 2007-10-01 Engine exhaust purification system

Publications (2)

Publication Number Publication Date
JP2012052553A JP2012052553A (en) 2012-03-15
JP5318180B2 true JP5318180B2 (en) 2013-10-16

Family

ID=45906114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011251288A Expired - Fee Related JP5318180B2 (en) 2011-11-17 2011-11-17 Engine exhaust purification system

Country Status (1)

Country Link
JP (1) JP5318180B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7209594B2 (en) * 2019-07-03 2023-01-20 株式会社Subaru Control device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE79158T1 (en) * 1985-03-05 1992-08-15 Brehk Ventures METHOD AND APPARATUS FOR FILTERING SOLID PARTICLES FROM A DIESEL ENGINE EXHAUST.
JPH0431613A (en) * 1990-05-25 1992-02-03 Nissan Motor Co Ltd Exhaust treatment system for internal combustion engine
JPH0452522U (en) * 1990-09-06 1992-05-06
JP3632587B2 (en) * 2000-10-31 2005-03-23 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
JP4715568B2 (en) * 2006-03-09 2011-07-06 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine

Also Published As

Publication number Publication date
JP2012052553A (en) 2012-03-15

Similar Documents

Publication Publication Date Title
JP4665633B2 (en) Exhaust gas purification device for internal combustion engine
JP4232823B2 (en) Exhaust gas purification device for internal combustion engine
JP2010150936A (en) Method for diagnosing regeneration failure of exhaust emission control device
JP4995117B2 (en) DPF accumulation amount estimation device
JP5724223B2 (en) DPF system
JP5585226B2 (en) Exhaust gas purification system
WO2011125257A1 (en) Exhaust purification device for engine
JP6358191B2 (en) Control device for internal combustion engine
JP4311071B2 (en) Defect determination method of exhaust purification system
JP4954010B2 (en) Engine exhaust purification system
JP2012219777A (en) Exhaust gas recirculation device for internal combustion engine
JP5923930B2 (en) Exhaust gas purification device for internal combustion engine
JP5318180B2 (en) Engine exhaust purification system
JP4702557B2 (en) Exhaust purification device
JP4052268B2 (en) Exhaust gas purification device for internal combustion engine
JP5761517B2 (en) Engine exhaust heat recovery device
WO2017130408A1 (en) Exhaust purification device
JP5540684B2 (en) Diesel particulate filter differential pressure detection method and diesel particulate filter differential pressure detection device
JP2010144557A (en) Exhaust emission control system and exhaust emission control method
JP5660875B2 (en) Exhaust purification device
JP2008157135A (en) Egr control device for engine
JP2003222013A (en) Diesel particulates filter device
JP2008261301A (en) Exhaust emission control method and exhaust emission control system
JP2007231759A (en) Exhaust emission control device for diesel engine
JP5625476B2 (en) DPF system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130709

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130709

R150 Certificate of patent or registration of utility model

Ref document number: 5318180

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees