JP5310961B2 - High carbon steel wire rod with excellent drawability and fatigue properties after drawing - Google Patents

High carbon steel wire rod with excellent drawability and fatigue properties after drawing Download PDF

Info

Publication number
JP5310961B2
JP5310961B2 JP2013502376A JP2013502376A JP5310961B2 JP 5310961 B2 JP5310961 B2 JP 5310961B2 JP 2013502376 A JP2013502376 A JP 2013502376A JP 2013502376 A JP2013502376 A JP 2013502376A JP 5310961 B2 JP5310961 B2 JP 5310961B2
Authority
JP
Japan
Prior art keywords
inclusions
wire
steel
wire drawing
high carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013502376A
Other languages
Japanese (ja)
Other versions
JPWO2012118093A1 (en
Inventor
一 長谷川
亘 山田
明人 清瀬
紘一 工藤
真吾 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2013502376A priority Critical patent/JP5310961B2/en
Application granted granted Critical
Publication of JP5310961B2 publication Critical patent/JP5310961B2/en
Publication of JPWO2012118093A1 publication Critical patent/JPWO2012118093A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C1/00Manufacture of metal sheets, metal wire, metal rods, metal tubes by drawing
    • B21C1/003Drawing materials of special alloys so far as the composition of the alloy requires or permits special drawing methods or sequences
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/06Deoxidising, e.g. killing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/30Ferrous alloys, e.g. steel alloys containing chromium with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

High performance high carbon wire with refined inclusions after wire rolling, extremely low wire breakage rates at the time of drawing even in tough applications, and excellent in fatigue characteristics after wire drawing, characterized by having a predetermined composition of ingredients and in that the number ratio of inclusions satisfying (% SiO2)=40 to 95%, (% CaO)=0.5 to 30%, (% Al2O3)=0.5 to 30%, (% MgO)=0.5 to 20%, and (% MnO)=0.5 to 10% and further satisfying (% Na)=0.2 to 7% and (% F)=0.17 to 8% (below, referred to as "inclusions covered due to composition") in the oxide-based nonmetallic inclusions of a short axis of 0.5 mum or more, a long axis of 1.0 mum or more, and a circle equivalent diameter (area converted to diameter) of 1 mum or more which are seen in the L direction cross-section of the wire (below, referred to as "inclusions covered due to size"), that is, the number of inclusions covered due to composition/number of inclusions covered due to size×100, is 80% or more.

Description

本発明は、伸線を行う線材において、伸線性及び伸線後の耐疲労性に優れた高炭素鋼線材や弁ばね用線材に関する。   TECHNICAL FIELD The present invention relates to a high carbon steel wire and a valve spring wire excellent in wire drawing and fatigue resistance after wire drawing.

本発明の線材は、伸線後、たとえば、自動車タイヤ用スチールコード、太陽電池や半導体用シリコン切断用ソーワイヤ、自動車エンジン弁ばね、長尺ゴムベルト、航空機用各種ワイヤ、橋梁用ロープ等に使用される。   The wire rod of the present invention is used, for example, for steel cords for automobile tires, saw wires for cutting silicon solar cells or semiconductors, automobile engine valve springs, long rubber belts, various wires for aircraft, ropes for bridges, etc. after wire drawing. .

一般に、伸線用に供される高炭素鋼線材は、高速伸線が可能であり、かつ、伸線後の耐疲労性に優れている必要がある。これらの特性に悪影響を及ぼす因子のひとつとして、硬質の酸化物系非金属介在物が挙げられる。   Generally, a high carbon steel wire used for wire drawing needs to be capable of high-speed wire drawing and excellent in fatigue resistance after wire drawing. One factor that adversely affects these properties is a hard oxide-based nonmetallic inclusion.

酸化物系介在物の中でも、Al、SiO、CaO、TiO、MgO等の単組成の介在物、又は二元系のMgO・Alや2MgO・SiOは、硬度が高く、非粘性である。したがって、伸線性に優れた高炭素鋼線材を製造するためには、溶鋼の清浄度を高めるとともに、酸化物系介在物を軟質化する必要がある。Among oxide inclusions, single composition inclusions such as Al 2 O 3 , SiO 2 , CaO, TiO 2 and MgO, or binary MgO · Al 2 O 3 and 2MgO · SiO 2 have hardness. High and non-viscous. Therefore, in order to produce a high carbon steel wire excellent in drawability, it is necessary to increase the cleanliness of the molten steel and soften the oxide inclusions.

このように、鋼の清浄度を上げ、非金属介在物の軟質化を図る方法として、特許文献1には伸線性の良好な高炭素鋼用鋼の製造方法が示されている。特許文献2には、極細線の製造方法が開示されている。これらの技術の基本思想は、Al−SiO−MnOの三元系の酸化物系非金属介在物に限定されている。Thus, as a method for increasing the cleanliness of steel and softening non-metallic inclusions, Patent Document 1 discloses a method for producing steel for high carbon steel with good drawability. Patent Document 2 discloses a method for manufacturing an extra fine wire. The basic idea of these techniques is limited to ternary oxide-based non-metallic inclusions of Al 2 O 3 —SiO 2 —MnO.

特許文献3では、非金属介在物をAl、SiO、MnOの三元系状態図におけるスペサタイト領域にすることによって、製品の伸線性を改善することが提案されている。特許文献4では、溶鋼中に添加するAl量を規制することによって、有害な介在物を減少させ、伸線性を改善する方法が開示されている。Patent Document 3 proposes to improve the drawability of the product by making the non-metallic inclusions a spesatite region in a ternary phase diagram of Al 2 O 3 , SiO 2 , and MnO. Patent Document 4 discloses a method of reducing the harmful inclusions and improving the drawability by regulating the amount of Al added to the molten steel.

特許文献5では、非粘性介在物指数20以下のスチールコード製造に関し、Al完全規制の下で、取鍋溶鋼内に、キャリヤーガス(不活性ガス)とともに、CaO含有フラックスを吹込んで予備脱酸した後、Ca、Mg、REMの1種、又は2種以上を含む合金を吹込み、介在物を軟質化することが提案されている。   In Patent Document 5, regarding the production of a steel cord having an inviscid inclusion index of 20 or less, pre-deoxidation was performed by blowing a CaO-containing flux together with a carrier gas (inert gas) into a ladle molten steel under Al complete regulation. Later, it has been proposed to soften inclusions by blowing an alloy containing one or more of Ca, Mg, and REM.

上記の方法のうち、三元系非金属介在物を改質する方法は、安定した組成制御が困難である。一方、多元系非金属介在物を制御する方法は、介在物の大きさと個数の低減、及び延性の確保が達成されにくい。したがって、伸線性、及び伸線後の耐疲労性の向上は困難である。   Among the above methods, the method of modifying the ternary nonmetallic inclusion is difficult to control the composition stably. On the other hand, in the method of controlling multi-element non-metallic inclusions, it is difficult to reduce the size and number of inclusions and to ensure ductility. Therefore, it is difficult to improve the drawability and the fatigue resistance after drawing.

そこで、特許文献6では、全酸素含有量の範囲を一定範囲に規定して、非粘性介在物の量及び組成を制御し、非粘性介在物の大きさと個数を低減し、かつ延性を確保することによって、非粘性介在物の量、及び大きさの分布を好ましい状態とし、また、介在物組成をSiO、MnOに加え、Al、MgO、CaO、TiOを選択的に含有する多元系の酸化物系介在物に改質して介在物を軟質化し、伸線性及び伸線後の耐疲労性に著しく優れた高炭素鋼線材を実現している。Therefore, in Patent Document 6, the range of the total oxygen content is defined within a certain range, the amount and composition of non-viscous inclusions are controlled, the size and number of non-viscous inclusions are reduced, and ductility is ensured. Thus, the distribution of the amount and size of the non-viscous inclusions is made preferable, and the inclusion composition is added to SiO 2 and MnO, and selectively contains Al 2 O 3 , MgO, CaO, and TiO 2. The high-carbon steel wire rod is remarkably excellent in wire drawing and fatigue resistance after wire drawing by modifying the inclusion into multi-component oxide inclusions.

さらに、特許文献7には、硬質の高SiO介在物のサイズを規定し、高価な脱酸用合金の使用量を低減する方法が開示されている。Further, Patent Document 7 discloses a method of defining the size of hard high SiO 2 inclusions and reducing the amount of expensive deoxidizing alloy used.

また、非金属介在物をより低融点で延伸しやすいものに制御するため、アルカリ金属化合物を活用する方法がいくつか提案されている。特許文献8では、Si系脱酸剤とアルカリ金属化合物の混合物を使用することによって非金属介在物中のアルカリ金属化合物量を4〜24%に制御し、延伸性を向上する方法が提案されている。   In addition, in order to control nonmetallic inclusions to have a lower melting point and can be easily stretched, several methods using an alkali metal compound have been proposed. Patent Document 8 proposes a method of controlling the amount of alkali metal compound in non-metallic inclusions to 4 to 24% and improving stretchability by using a mixture of a Si-based deoxidizer and an alkali metal compound. Yes.

さらに、特許文献9では、Al−CaO−SiO−MgO−MnO系低融点介在物にアルカリ金属の酸化物を0.5〜10%含有することを特徴とする疲労強度に優れたSi脱酸鋼が提案されている。Furthermore, in Patent Document 9, the Al 2 O 3 —CaO—SiO 2 —MgO—MnO-based low melting point inclusion contains 0.5 to 10% of an alkali metal oxide and has excellent fatigue strength. Si deoxidized steel has been proposed.

さらに、特許文献10、11では、低融点介在物にLiO、NaO、KOの1種以上を、これらLiO、NaO、KOの合計量で0.5〜20%含有することを特徴とする疲労特性に優れた高清浄ばね用鋼線が開示されている。このなかで、LiO、NaO、KOは等価ではなく、特に脱酸力の強いLiを酸化物系介在物生成起源として積極添加することにより、酸化物系介在物中に適量のLiOを含有させると効果が高められることが記載されている。Furthermore, Patent Document 10, 11, LiO 2 to the low-melting inclusions, Na 2 O, at least one of K 2 O, in a total amount of LiO 2, Na 2 O, K 2 O 0.5~20 A steel wire for highly clean springs having excellent fatigue characteristics, characterized by containing the element%, is disclosed. Among these, LiO 2 , Na 2 O, and K 2 O are not equivalent, and an appropriate amount of LiO 2 , Na 2 O, and K 2 O is added to the oxide inclusions by positively adding Li, which has a particularly strong deoxidizing power, as the origin of oxide inclusions. It is described that the effect is enhanced when LiO 2 is contained.

特公昭57−22969号公報Japanese Patent Publication No.57-22969 特開昭55−24961号公報Japanese Patent Laid-Open No. 55-24961 特公昭54−7252号公報Japanese Patent Publication No.54-7252 特開昭50−81907号公報JP 50-81907 A 特公昭57−35243号公報Japanese Patent Publication No.57-35243 特公平4−8499号公報Japanese Patent Publication No. 4-8499 特許第3294245号公報Japanese Patent No. 3294245 特許第2654099号公報Japanese Patent No. 2654099 特許第3719131号公報Japanese Patent No. 3719131 特開2005−29888号公報Japanese Patent Laying-Open No. 2005-29888 特許第4315825号公報Japanese Patent No. 4315825

日本鉄鋼協会編「第3版鉄鋼便覧II製銑・製鋼」第690頁690th edition of the Iron and Steel Institute of Japan, “Steel Handbook II Steelmaking and Steelmaking”, page 690

前述のように、溶鋼の清浄度確保、非金属介在物の軟質化、Al混入防止等により、高い伸線性能を有する高炭素鋼線材が供給されてきた。   As described above, high carbon steel wires having high wire drawing performance have been supplied by ensuring the cleanliness of molten steel, softening nonmetallic inclusions, preventing Al contamination, and the like.

ところが、近年では、線材の伸線工程において1次伸線後のパテンティング省略による生産性向上が指向されたこと、及び、自動車タイヤ用のスチールコードより細線のソーワイヤの市場が拡大されたことにより、断線原因となる線材中の介在物サイズが従来(20μm以上)よりも一段と小さくなり、従来の介在物軟質化技術のみでは介在物が十分に延伸せず、対応が困難となっている。   However, in recent years, in the wire drawing process, the improvement of productivity by omitting patenting after the primary drawing has been directed, and the market for saw wires that are finer than steel cords for automobile tires has been expanded. The inclusion size in the wire that causes disconnection is much smaller than the conventional (20 μm or more), and the inclusions are not sufficiently stretched only by the conventional inclusion softening technique, making it difficult to cope with them.

本発明は、上記の事情に鑑みなされたものであって、酸化物系非金属介在物の多元系制御技術をベースに、酸化物以外の化合物をも活用することにより、非金属介在物の融点及び粘性の特段の低下をもたらし、線材圧延後の介在物を微細化することで、厳格用途にも対応可能な、伸線時の断線率が極めて低く、伸線後の疲労特性にも優れる、高機能の高炭素線材の供給を課題とする。   The present invention has been made in view of the above circumstances, and based on the multi-component control technology for oxide-based non-metallic inclusions, by utilizing a compound other than oxides, the melting point of the non-metallic inclusions In addition, by reducing the inclusions after rolling the wire rods, it is possible to respond to strict applications, the disconnection rate during wire drawing is extremely low, and the fatigue properties after wire drawing are excellent. The issue is to supply high-performance, high-carbon wires.

本発明者らは、非金属介在物の組成と融点や粘性の関係について詳細な調査を行った。その結果、多元系介在物にNa等のアルカリ金属と微量のフッ素を共存させることで、さらに介在物の融点及び粘性を低下することができ、また、結晶相の生成を抑制することができ、その結果、線材圧延後の介在物を微細化できることを見出した。   The present inventors conducted a detailed investigation on the relationship between the composition of nonmetallic inclusions and the melting point and viscosity. As a result, by allowing a multi-component inclusion to coexist with an alkali metal such as Na and a small amount of fluorine, the melting point and viscosity of the inclusion can be further reduced, and the formation of a crystal phase can be suppressed, As a result, it has been found that inclusions after wire rod rolling can be refined.

さらに、本発明者らは、NaF分子には非金属介在物の結晶相の生成を遅らせる効果もあることを見出した。   Furthermore, the present inventors have found that NaF molecules also have the effect of delaying the formation of the crystalline phase of nonmetallic inclusions.

本発明は上記の知見に基づきなされたものであって、その要旨は以下のとおりである。   The present invention has been made based on the above findings, and the gist thereof is as follows.

(1)質量%で、C:0.5〜1.2%、Si:0.15〜2.5%、Mn:0.20〜0.9%、P≦0.025%、S:0.004〜0.025%、Al:0.000005〜0.002%、Ca:0.00001〜0.002%、Mg:0.00001〜0.001%、Na:0.000005〜0.001%、F:0.000003〜0.001%を含有し、全酸素量が16〜30ppmであり、残部がFe及び不可避的不純物からなる高炭素鋼線材であって、線材L方向断面に見られる短径0.5μm以上、長径1.0μm以上、円相当径(面換算径)が1μm以上の酸化物系非金属介在物(以下「サイズ対象介在物」という)のうち、(%SiO)=40〜95%、(%CaO)=0.5〜30%、(%Al)=0.5〜30%、(%MgO)=0.5〜20%、(%MnO)=0.5〜10%を満たし、さらに(%Na)=0.2〜7%、(%F)=0.17〜8%を満たす介在物(以下「組成対象介在物」という)の個数比率、組成対象介在物個数/サイズ対象介在物個数×100が80%以上であることを特徴とする伸線性及び伸線後の疲労特性に優れた高炭素鋼線材。(1) By mass%, C: 0.5 to 1.2%, Si: 0.15 to 2.5%, Mn: 0.20 to 0.9%, P ≦ 0.025%, S: 0 0.004 to 0.025%, Al: 0.000005 to 0.002%, Ca: 0.00001 to 0.002%, Mg: 0.00001 to 0.001%, Na: 0.000005 to 0.001 %, F: 0.000003 to 0.001%, the total oxygen content is 16 to 30 ppm, and the balance is a high carbon steel wire made of Fe and inevitable impurities, and is seen in the cross section in the wire L direction. Among oxide-based non-metallic inclusions (hereinafter referred to as “size inclusions”) having a minor axis of 0.5 μm or more, a major axis of 1.0 μm or more, and an equivalent circle diameter (surface equivalent diameter) of 1 μm or more, (% SiO 2 ) = 40~95%, (% CaO) = 0.5~30%, (% Al 2 O 3) = 0. -30%, (% MgO) = 0.5-20%, (% MnO) = 0.5-10%, (% Na) = 0.2-7%, (% F) = 0. The ratio of the number of inclusions satisfying 17 to 8% (hereinafter referred to as “composition subject inclusions”), the number of inclusions subject to composition / the number of inclusions subject to size × 100 is 80% or more, High carbon steel wire rod with excellent fatigue characteristics after wire.

ここで、(%SiO)、(%CaO)、(%Al)、(%MgO)、(%MnO)、(%Na)、(%F)は、それぞれ、介在物中のSiO、CaO、Al、MgO、MnO、Na、Fの含有量(質量%)である。(以降において同じ)Here, (% SiO 2 ), (% CaO), (% Al 2 O 3 ), (% MgO), (% MnO), (% Na), and (% F) are the SiO in the inclusions, respectively. 2 , CaO, Al 2 O 3 , MgO, MnO, Na, F content (% by mass). (Same in the following)

(2)さらにREM:0.000005〜0.001%を含有し、前記組成対象介在物が、平均濃度で、さらに、(%T.REM)=0.3〜1.0%、(%S)=0.05〜0.2%を満たすことを特徴とする前記(1)の伸線性及び伸線後の疲労特性に優れた高炭素鋼線材。   (2) Further, REM: 0.000005 to 0.001% is contained, and the inclusions to be composed are in an average concentration, and (% T. REM) = 0.3 to 1.0%, (% S ) = 0.05 to 0.2%, The high carbon steel wire rod having excellent wire drawing property and fatigue property after wire drawing according to the above (1).

ここで、(%T.REM)、(%S)は、それぞれ、介在物中の希土類元素の合計、Sの含有量(質量%)である。(以降において同じ)   Here, (% T. REM) and (% S) are the total of rare earth elements in the inclusion and the S content (mass%), respectively. (Same in the following)

(3)さらにB:0.0005〜0.002%を含むことを特徴とする前記(1)又は(2)の伸線性及び伸線後の疲労特性に優れた高炭素鋼線材。   (3) The high carbon steel wire excellent in wire drawing property and fatigue property after wire drawing according to (1) or (2), further comprising B: 0.0005 to 0.002%.

(4)さらにCr:0.05〜1.0%、Ni:0.05〜1.0%、Cu:0.05〜1.0%、Ti:0.001〜0.25%、Nb:0.001〜0.25%、V:0.001〜0.25%、Mo:0.05〜1.0%、Co:0.1〜2%の1種又は2種以上を含むことを特徴とする前記(1)〜(3)のいずれかの伸線性及び伸線後の疲労特性に優れた高炭素鋼線材。   (4) Further, Cr: 0.05-1.0%, Ni: 0.05-1.0%, Cu: 0.05-1.0%, Ti: 0.001-0.25%, Nb: It contains 0.001 to 0.25%, V: 0.001 to 0.25%, Mo: 0.05 to 1.0%, Co: 0.1 to 2%, or one or more. A high carbon steel wire excellent in the drawability and fatigue characteristics after drawing as defined in any one of (1) to (3).

本発明によれば、線材圧延後の介在物を微細化することができ、ソーワイヤ等の厳格用途にも対応可能な、伸線時の断線率が極めて低く、伸線後の疲労特性にも優れる高機能の高炭素線材を得ることができる。   According to the present invention, inclusions after wire rod rolling can be miniaturized, can be used for strict applications such as saw wire, the disconnection rate at the time of wire drawing is extremely low, and the fatigue properties after wire drawing are also excellent. A highly functional high carbon wire can be obtained.

以下、本発明を詳細に説明する。はじめに、本発明の機構の詳細を説明する。なお、特に断らない限り、以降、「%」は、「質量%」を意味するものとする。   Hereinafter, the present invention will be described in detail. First, the details of the mechanism of the present invention will be described. Unless otherwise specified, hereinafter, “%” means “mass%”.

従来の非金属介在物の多元系制御技術は、シリケイト介在物の融点及び粘性を低下させる技術である。このシリケイト介在物中では、NaとFは極めて親和力が強い。ミクロ的な視点でみると、NaイオンとFイオンは隣接して位置しており、NaF分子としてシリケイト介在物の融点や粘性に影響を与える。   Conventional multi-component control technology for non-metallic inclusions is a technique for reducing the melting point and viscosity of silicate inclusions. In this silicate inclusion, Na and F have extremely strong affinity. From a microscopic viewpoint, Na ions and F ions are located adjacent to each other and affect the melting point and viscosity of silicate inclusions as NaF molecules.

NaF含有酸化物が1200℃以下の温度で溶融開始するのに対し、NaO単独添加酸化物やF(たとえばCaF)単独添加酸化物は1200℃を超える高温でないと溶融開始しない。すなわち、NaとFを共存させることにより、極めて低い融点を実現できる。The NaF-containing oxide starts to melt at a temperature of 1200 ° C. or lower, whereas the Na 2 O single-added oxide or F (for example, CaF 2 ) single-added oxide does not start to melt unless the temperature is higher than 1200 ° C. That is, by making Na and F coexist, an extremely low melting point can be realized.

この1200℃以下という融点は、連続鋳造された鋳片のブレークダウン工程の分塊圧延(1150〜1300℃)だけでなく、線材圧延温度(1000〜1200℃)にも近い温度である。従来、介在物の圧延時の延伸は、おもに分塊圧延工程で起きると考えられてきた。しかし、介在物中にNaとFが共存する場合には分塊圧延工程だけでなく、線材圧延工程においても介在物は延伸する。したがって、NaとFを共存させることにより、介在物を格段に微細化することが可能である。   The melting point of 1200 ° C. or lower is close to the wire rolling temperature (1000 to 1200 ° C.) as well as the block rolling (1150 to 1300 ° C.) in the breakdown process of the continuously cast slab. Conventionally, it has been considered that stretching during the rolling of inclusions mainly occurs in the block rolling process. However, when Na and F coexist in the inclusions, the inclusions are stretched not only in the split rolling process but also in the wire rod rolling process. Therefore, inclusions can be remarkably refined by coexisting Na and F.

非金属介在物内では、その組成に応じて様々な結晶相が生成するポテンシャルがあるが、実際に結晶相が生成し、それが大きく成長した場合には断線等の起点になる。これに対し、NaF分子を添加すると、融点低下、粘性低下の効果に加え、結晶相の生成を顕著に遅らせる効果がある。その結果、断線等の起点が減少するので、伸線時の断線率が極めて低くなる。   In non-metallic inclusions, there is a potential to generate various crystal phases depending on the composition, but when a crystal phase is actually generated and grows greatly, it becomes a starting point for disconnection or the like. On the other hand, the addition of NaF molecules has the effect of remarkably delaying the formation of the crystal phase in addition to the effects of lowering the melting point and lowering the viscosity. As a result, since the starting point of disconnection or the like decreases, the disconnection rate at the time of wire drawing becomes extremely low.

なお、Na及びFの介在物延伸性に対する効果は、介在物中の計算NaF量に依存し、計算NaF量が増大すると延伸性は向上する。ここで、計算NaF量とは、NaとFがモル比で1:1で結合しているとしたときの、介在物中のNaFの質量%のことをいう。   In addition, the effect with respect to inclusion stretchability of Na and F depends on the calculated amount of NaF in the inclusion, and the stretchability improves as the calculated amount of NaF increases. Here, the calculated amount of NaF refers to the mass% of NaF in the inclusions when Na and F are combined at a molar ratio of 1: 1.

NaとFのバランスが悪く、過剰のNaやFが存在する場合、介在物延伸性に対する効果はほとんどない。このため、(%Na)と(%F)が、モル比で1:1、すなわち質量比で1:0.83になるように添加することが好ましい。   When the balance between Na and F is poor and excess Na or F is present, there is little effect on inclusion stretchability. For this reason, it is preferable to add (% Na) and (% F) so that the molar ratio is 1: 1, that is, the mass ratio is 1: 0.83.

特許文献8〜11には、Naに代表されるアルカリ金属酸化物を活用する方法が開示されている。しかしながら、いずれの文献においても、シリケイト系の多元系介在物をベースとした上で、Na及びFを共存させることの必要性には言及していない。すなわち、これらの文献の発明と本発明とは、技術思想が異なる。   Patent Documents 8 to 11 disclose a method of utilizing an alkali metal oxide typified by Na. However, none of the documents mentions the necessity of coexistence of Na and F on the basis of silicate-based multi-component inclusions. That is, the technical ideas of the inventions of these documents are different from those of the present invention.

次に、本発明において、酸化物系介在物を構成する各酸化物の含有率を定めた理由等を説明する。   Next, the reason for determining the content of each oxide constituting the oxide inclusion in the present invention will be described.

まず、鋼中の全酸素量の限定理由について述べる。全酸素量が30ppmを超える線材では非金属介在物の量が多くなり、厳格用途に用いられる加工材では断線回避が十分ではないことから上限を30ppmとした。一方、AlやMg等の強力な脱酸材を多量に使用すれば、16ppm未満の全酸素量とすることは容易であるが、本発明の線材における非金属介在物の組成制御を行うためには、16ppm以上の全酸素が必要である。全酸素量が16ppm未満、又は30ppm超となると、ダイス寿命が極端に悪くなる。全酸素量のより好ましい範囲は17〜25ppmである。   First, the reasons for limiting the total amount of oxygen in steel will be described. Since the amount of non-metallic inclusions is increased in a wire material having a total oxygen amount exceeding 30 ppm, and the work material used for strict applications is not sufficient to avoid disconnection, the upper limit is set to 30 ppm. On the other hand, if a strong deoxidizing material such as Al or Mg is used in a large amount, it is easy to achieve a total oxygen amount of less than 16 ppm, but in order to control the composition of nonmetallic inclusions in the wire of the present invention. Requires 16 ppm or more total oxygen. When the total oxygen amount is less than 16 ppm or more than 30 ppm, the die life is extremely deteriorated. A more preferable range of the total oxygen amount is 17 to 25 ppm.

次に、本発明における非金属介在物の組成と形態の制御について説明する。   Next, control of the composition and form of nonmetallic inclusions in the present invention will be described.

本発明の鋼線材は、線材L方向(長さ方向)断面に見られる短径0.5μm以上、長径1.0μm以上、円相当径(面換算径)が1μm以上の酸化物系非金属介在物(サイズ対象介在物)のうち、(%SiO)=40〜95%、(%CaO)=0.5〜30%、(%Al)=0.5〜30%、(%MgO)=0.5〜20%、(%MnO)=0.5〜10%を満たし、さらに(%Na)=0.2〜7%、(%F)=0.17〜8%を満たす介在物(組成対象介在物)が、個数比率(組成対象介在物個数/サイズ対象介在物個数×100)で80%以上であることを特徴とする。The steel wire rod of the present invention is an oxide-based non-metallic intervening having a minor axis of 0.5 μm or more, a major axis of 1.0 μm or more, and an equivalent circle diameter (surface equivalent diameter) of 1 μm or more as seen in a cross section in the wire L direction (length direction). (% SiO 2 ) = 40 to 95%, (% CaO) = 0.5 to 30%, (% Al 2 O 3 ) = 0.5 to 30%, (% MgO) = 0.5-20%, (% MnO) = 0.5-10%, (% Na) = 0.2-7%, (% F) = 0.17-8% Inclusions (inclusions for composition) are 80% or more in number ratio (number of inclusions for composition / number of inclusions for size × 100).

線材L断面において、短径が0.5μm未満の介在物は、もともとのサイズが小さいか、又は圧延中に変形しやすい介在物である。長径が1.0μm未満、円相当径が1.0μm未満の介在物は、もともとのサイズが小さい介在物である。これらの介在物は、伸線性や疲労特性の悪化原因になりにくい。   In the cross section of the wire L, inclusions having a minor axis of less than 0.5 μm are inclusions that are originally small in size or easily deformed during rolling. Inclusions having a major axis of less than 1.0 μm and an equivalent circle diameter of less than 1.0 μm are inclusions having a small original size. These inclusions are unlikely to cause deterioration of wire drawability and fatigue characteristics.

そこで本発明においては、線材L方向断面に見られる短径0.5μm以上、長径1.0μm以上、円相当径が1μm以上の酸化物系非金属介在物を評価対象の介在物とし、「サイズ対象介在物」と称することとした。   Therefore, in the present invention, an oxide-based nonmetallic inclusion having a minor axis of 0.5 μm or more, a major axis of 1.0 μm or more, and an equivalent circle diameter of 1 μm or more, as seen in the cross section in the wire L direction, is an inclusion to be evaluated. It was called “target inclusion”.

次に、組成対象介在物についてその組成範囲の限定理由について述べる。   Next, the reason for limiting the composition range of inclusions to be composed will be described.

本発明の目的とする非金属介在物の軟質化と微細化のためには、まずは多元系での酸化物組成の組み合わせが必要となる。酸化物組成の基本は、SiO−CaO−Al−MgO−MnOの5元系であり、それにNaとFを同時に含有することではじめて、非金属介在物の軟質化と微細化の効果が発揮される。In order to soften and refine the non-metallic inclusions which is the object of the present invention, first, a combination of oxide compositions in a multi-component system is required. The basis of the oxide composition is a ternary system of SiO 2 —CaO—Al 2 O 3 —MgO—MnO, and only by containing Na and F at the same time can softening and refinement of nonmetallic inclusions. The effect is demonstrated.

SiOは、シリケイト介在物の基幹をなす重要な酸化物である。(%SiO)が40%未満ではベースの多元系介在物そのものがシリケイト介在物にはならず、本発明の効果を発揮できない。(%SiO)が95%を超えると、もはや多元系介在物ではなくなり、大型SiOによる品質の劣化が生じる。SiO 2 is an important oxide that forms the basis of silicate inclusions. If (% SiO 2 ) is less than 40%, the base multi-component inclusion itself does not become a silicate inclusion, and the effect of the present invention cannot be exhibited. When (% SiO 2 ) exceeds 95%, it is no longer a multi-component inclusion, and quality deterioration due to large-sized SiO 2 occurs.

(%CaO)は、多元系介在物化による融点及び粘性の低下の効果を得るためには、0.5%以上とする必要がある。(%CaO)が30%を超えると、CaOリッチな硬質介在物が生成し、品質の劣化が生じる。   (% CaO) needs to be 0.5% or more in order to obtain the effect of lowering the melting point and viscosity due to the inclusion of multi-component inclusions. When (% CaO) exceeds 30%, CaO-rich hard inclusions are produced, resulting in deterioration of quality.

Alは、適量であれば介在物軟質化に寄与するが、(%Al)で30%を超えると硬質のAl介在物が生成し、品質が大幅に悪化する。(%Al)が0.5%未満では、多元系介在物の効果が得られない。Al 2 O 3 contributes to softening of inclusions if it is in an appropriate amount, but if it exceeds 30% in (% Al 2 O 3 ), hard Al 2 O 3 inclusions are generated and the quality is greatly deteriorated. . If (% Al 2 O 3 ) is less than 0.5%, the effect of multi-component inclusions cannot be obtained.

(%MgO)は、多元系介在物による融点及び粘性の低下の効果を得るためには、0.5%以上とする必要がある。(%MgO)が20%を超えると、オリビン又はフォルステナイト(2MgO・SiO)等の有害な介在物が生成する。(% MgO) needs to be 0.5% or more in order to obtain the effect of lowering the melting point and viscosity due to multi-component inclusions. When (% MgO) exceeds 20%, harmful inclusions such as olivine or forstenite (2MgO.SiO 2 ) are generated.

(%MnO)は、多元系介在物による融点及び粘性の低下の効果を得るためには、0.5%以上とする必要がある。(%MnO)が10%を超えると、シリケイト介在物ではなく、スペサタイト(SiO−MnO−Al)介在物となり、Na及びF添加の効果が発揮されなくなる。(% MnO) needs to be 0.5% or more in order to obtain the effect of lowering the melting point and viscosity due to the multi-component inclusions. When (% MnO) exceeds 10%, it becomes not silicate inclusion but spessite (SiO 2 —MnO—Al 2 O 3 ) inclusion, and the effect of addition of Na and F cannot be exhibited.

Na及びFは本発明において極めて重要な成分である。(%Na)が0.2%未満であると介在物延伸性の向上効果はない。一方、(%Na)が7%を超えるとその効果が飽和するとともに、Na添加時の発塵量が急増する等の問題が発生する。好ましくは4%未満がよい。   Na and F are extremely important components in the present invention. If (% Na) is less than 0.2%, there is no effect of improving inclusion stretchability. On the other hand, when (% Na) exceeds 7%, the effect is saturated, and problems such as a sudden increase in the amount of dust generated when Na is added occur. Preferably it is less than 4%.

また、(%F)が0.17%未満の場合には介在物延伸性の向上効果はない。(%F)が8%を超えると、その効果が飽和するとともに、耐火物溶損量が急増する等の弊害が大きくなる。なお、上述のとおり、Na及びFは、介在物中でNaF分子となってその効果を発揮するので、非金属介在物中のNaとFのモル比が1:1、すなわち質量比で、(%Na):(%F)が1:0.83に近くなるように添加することが好ましい。   Moreover, when (% F) is less than 0.17%, there is no improvement effect of inclusion stretchability. When (% F) exceeds 8%, the effect is saturated and the harmful effect such as a rapid increase in the amount of refractory melt is increased. As described above, Na and F become NaF molecules in the inclusions and exert their effects. Therefore, the molar ratio of Na and F in the nonmetallic inclusions is 1: 1, that is, by mass ratio ( % Na): (% F) is preferably added so as to be close to 1: 0.83.

なお、線材断面に見られる、短径0.5μm以上、長径1.0μm以上、円相当径が1μm以上の酸化物系非金属介在物(サイズ対象介在物)をカウントしたときに、サイズ対象介在物のうち上記の組成を満足する介在物(組成対象介在物)の個数比率(組成対象介在物個数/サイズ対象介在物個数×100)が80%以上であることが必要である。   In addition, when counting oxide-based non-metallic inclusions (inclusions for size) having a minor axis of 0.5 μm or more, a major axis of 1.0 μm or more, and an equivalent circle diameter of 1 μm or more, as seen in the wire cross section, the inclusion of the size target It is necessary that the number ratio of inclusions (composition subject inclusions) satisfying the above composition (number of inclusions intended for composition / number of inclusions targeted for size × 100) is 80% or more.

個数比率が80%を下回ることは、Na+Fによる介在物延伸化の効果を享受していないことを意味する。また、80%を下回ることは、たとえば、MgO系やAl系の硬質介在物などの多元系介在物に属さない組成の介在が一定量存在することを意味するものであり、その結果、伸線性、及び伸線後の疲労特性が損なわれる。When the number ratio is less than 80%, it means that the effect of extending the inclusions by Na + F is not enjoyed. Further, below 80% means, for example, that there is a certain amount of interposition of a composition that does not belong to multi-component inclusions such as MgO-based and Al 2 O 3- based hard inclusions. , Wireability, and fatigue properties after wire drawing are impaired.

介在物のサイズを規定した理由は、伸線性や疲労特性を悪化させるサイズの介在物のみをカウントするためである。   The reason for defining the size of the inclusion is to count only inclusions of a size that deteriorates the drawability and fatigue characteristics.

本発明においては、鋼中にNa及びFをともに添加し、シリケイト系の多元系酸化物系介在物にNa及びFをともに含有させ、介在物の組成を制御することによって、優れた伸線性、及び伸線後の疲労特性を確保することができる。最近では、鋼線材をより細径に伸線する用途が増加しており、このような用途において、本発明の高炭素鋼線材は、特に優れた性能を発揮する。   In the present invention, both Na and F are added to the steel, both Na and F are contained in the silicate-based multi-component oxide inclusions, and the composition of the inclusions is controlled. In addition, fatigue characteristics after wire drawing can be ensured. Recently, the use for drawing a steel wire to a smaller diameter is increasing, and in such a use, the high carbon steel wire of the present invention exhibits particularly excellent performance.

Na及びFの添加方法は、NaF化合物として添加してもよいし、Na、Fを別々に(たとえば、NaCOとCaF等)添加することも可能である。Na and F may be added as a NaF compound, or Na and F may be added separately (for example, Na 2 CO 3 and CaF 2 ).

なお、Fを添加する際、金属Siと同時に添加すると、SiFが生成してガス化し、Fの歩留りが悪化するので避けるべきである。When F is added at the same time as metal Si, SiF 4 is generated and gasified, and the yield of F deteriorates.

非金属介在物中の(%T.REM)(La、Ce、Nd等の希土類元素の合計の含有量)、及び(%S)を制御することで、伸線性をさらに向上できる。この理由は、以下のとおりである。   By controlling (% T. REM) (total content of rare earth elements such as La, Ce, and Nd) and (% S) in the non-metallic inclusions, the drawability can be further improved. The reason for this is as follows.

REM(La、Ce、Nd等)はSとの親和力が強く、REMオキシサルファイド(REMS)の形でSを固定しつつ、多元系介在物中に取り込まれる。これにより、鋼中の固溶S量を低減でき、MnSの析出を抑制する。鋼中に析出したMnSは、伸線加工中の断線の起点になる場合があり、この析出を抑制することで、伸線性、及び伸線後の疲労特性が向上する。REM (La, Ce, Nd, etc.) has a strong affinity for S and is incorporated into multi-component inclusions while fixing S in the form of REM oxysulfide (REM 2 O 2 S). Thereby, the amount of solid solution S in steel can be reduced and precipitation of MnS is suppressed. MnS precipitated in steel may be a starting point for wire breakage during wire drawing, and by suppressing this precipitation, wire drawability and fatigue properties after wire drawing are improved.

組成対象介在物の(%T.REM)は0.3〜1.0%、(%S)は0.05〜0.2%の範囲で制御するのがよい。(%T.REM)が0.3%未満ではS固定能力が不十分であり、1.0%を超えると非金属介在物中のREM酸化物濃度が増加して、延伸性が十分に改善しない場合がある。また、(%S)が0.05%未満ではS固定量が少なすぎてその効果がなく、0.2%を超えると非金属介在物中にCaS等が生成し、延伸性が十分に改善しない場合がある。   It is preferable to control the inclusion (% T. REM) in the range of 0.3 to 1.0% and (% S) in the range of 0.05 to 0.2%. If (% T.REM) is less than 0.3%, the S-fixing ability is insufficient, and if it exceeds 1.0%, the REM oxide concentration in the non-metallic inclusions increases and the stretchability is sufficiently improved. May not. Also, if (% S) is less than 0.05%, the amount of S fixation is too small to be effective, and if it exceeds 0.2%, CaS or the like is generated in non-metallic inclusions, and the stretchability is sufficiently improved. May not.

なお、MnSを起点とする断線は、酸化物系非金属介在物を起点とする断線に比べれば、その頻度は少ない。したがって、まずは鋼中酸化物系非金属介在物組成を適正に制御することが必要である。   In addition, the frequency of disconnection starting from MnS is less than that of disconnection starting from oxide-based nonmetallic inclusions. Therefore, it is first necessary to properly control the composition of oxide-based nonmetallic inclusions in steel.

次に、本発明の鋼の成分組成の規定について述べる。高炭素鋼線材として使用されているJISG3502のピアノ線材、JISG3506の硬鋼線材、JISG3561の弁ばね用オイルテンパー線には、いわゆるキルド鋼が使用されておる。このJIS規格、製造の容易さ、及び実用面を考慮して、本発明では次のとおり成分範囲を規定する。   Next, the definition of the component composition of the steel of the present invention will be described. So-called killed steel is used for the JISG3502 piano wire, the JISG3506 hard steel wire, and the JISG3561 oil temper wire for valve springs used as high carbon steel wires. In view of this JIS standard, ease of manufacture, and practical use, the present invention defines the component ranges as follows.

すなわち、質量%で、C:0.5〜1.2%、Si:0.15〜2.5%、Mn:0.20〜0.9%、P≦0.025%、S:0.004〜0.025%、Al:0.000005〜0.002%、Ca:0.00001〜0.002%、Mg:0.00001〜0.001%、Na:0.000005〜0.001%、F:0.000003〜0.001%を含み、必要に応じて、Cr:0.05〜1.0%、Ni:0.05〜1.0%、Cu:0.05〜1.0%、Ti:0.001〜0.25%、V:0.001〜0.25%、Nb:0.001〜0.25%、Mo:0.05〜1.0%、Co:0.1〜2%の1種又は2種以上を含む鋼である。   That is, in mass%, C: 0.5 to 1.2%, Si: 0.15 to 2.5%, Mn: 0.20 to 0.9%, P ≦ 0.025%, S: 0.00. 004 to 0.025%, Al: 0.000005 to 0.002%, Ca: 0.00001 to 0.002%, Mg: 0.00001 to 0.001%, Na: 0.000005 to 0.001% F: 0.000003 to 0.001%, Cr: 0.05 to 1.0%, Ni: 0.05 to 1.0%, Cu: 0.05 to 1.0, as necessary %, Ti: 0.001 to 0.25%, V: 0.001 to 0.25%, Nb: 0.001 to 0.25%, Mo: 0.05 to 1.0%, Co: 0.0. It is steel containing 1-2% of 1 type or 2 types or more.

また、REM:0.000005〜0.001%を含有すると、本発明の効果は大きくなる。さらに、B:0.0005〜0.002%添加すると一段と、伸線性、及び伸線後の疲労特性に優れた鋼が得られる。   Moreover, the effect of this invention will become large when REM: 0.000005-0.001% is contained. Furthermore, when B: 0.0005 to 0.002% is added, steel excellent in wire drawing properties and fatigue properties after wire drawing can be obtained.

Cは、鋼を強化するのに経済的、かつ有効な元素である。硬鋼線として必要な強度を得るためには、0.5%以上が必要である。しかし、1.2%を超えると鋼の延性が低下し脆化し、二次加工が困難となるため1.2%以下とする。より好ましいCの濃度は、0.51〜1.1%である。   C is an element that is economical and effective in strengthening steel. In order to obtain the strength required as a hard steel wire, 0.5% or more is required. However, if it exceeds 1.2%, the ductility of the steel decreases and becomes brittle, and secondary processing becomes difficult. A more preferable concentration of C is 0.51 to 1.1%.

SiとMnは、脱酸と介在物組成制御のために必要であり、Si:0.15%未満、Mn:0.20%未満では効果がない。また、鋼の強化元素としても有効であるが、Siが2.5%、Mnが0.9%を超えると鋼が脆化する。Si、Mnのより好ましい範囲は、それぞれ、0.16〜2.3%、0.25〜0.85%である。   Si and Mn are necessary for deoxidation and inclusion composition control. When Si is less than 0.15% and Mn is less than 0.20%, there is no effect. It is also effective as a steel strengthening element. However, when Si exceeds 2.5% and Mn exceeds 0.9%, the steel becomes brittle. More preferable ranges of Si and Mn are 0.16 to 2.3% and 0.25 to 0.85%, respectively.

Pは、高炭素鋼において、伸線加工性を劣化させ、さらに伸線加工後の延性を劣化させる。よって、Pの含有量は0.025%以下とする必要があり、0.020%以下がより好ましい。   P deteriorates wire drawing workability in high carbon steel, and further deteriorates ductility after wire drawing. Therefore, the P content needs to be 0.025% or less, and more preferably 0.020% or less.

Sも、伸線加工性を劣化させ、さらに伸線加工後の延性を劣化させる。一方、鋼材のデスケーリング性を確保するためには、S濃度をある程度以上確保する必要がある。よってSの濃度は、0.004〜0.025%、好ましくは0.005〜0.020%とする。   S also deteriorates the wire drawing workability and further deteriorates the ductility after the wire drawing. On the other hand, in order to secure the descaling property of the steel material, it is necessary to secure the S concentration to some extent. Therefore, the concentration of S is 0.004 to 0.025%, preferably 0.005 to 0.020%.

Alは、本発明の介在物組成に影響を与える元素であり、多すぎても少なすぎても所定の介在物組成は得られない。よって、Alの濃度は、0.000005〜0.002%、好ましくは0.0002〜0.001%とする。   Al is an element that affects the inclusion composition of the present invention, and a predetermined inclusion composition cannot be obtained if it is too much or too little. Therefore, the Al concentration is set to 0.000005 to 0.002%, preferably 0.0002 to 0.001%.

Caも本発明の介在物組成に影響を与える元素であり、多すぎても少なすぎても所定の介在物組成を得られない。よって、Caの濃度は、0.00001〜0.002%、好ましくは0.000013〜0.0015%とする。   Ca is also an element that affects the inclusion composition of the present invention, and a predetermined inclusion composition cannot be obtained if it is too much or too little. Therefore, the Ca concentration is set to 0.00001 to 0.002%, preferably 0.000013 to 0.0015%.

Mgも本発明の介在物組成に影響を与える元素であり、多すぎても少なすぎても所定の介在物組成を得られない。よって、Mgの濃度は、0.00001〜0.001%、好ましくは0.000011〜00008%とする。   Mg is an element that affects the inclusion composition of the present invention, and a predetermined inclusion composition cannot be obtained if it is too much or too little. Therefore, the Mg concentration is 0.00001 to 0.001%, preferably 0.000011 to 00008%.

また、Na及びFは本発明の介在物組成において極めて重要な成分であり、鋼中のNa及びF濃度は介在物組成に影響を与える。   Na and F are extremely important components in the inclusion composition of the present invention, and the Na and F concentrations in the steel affect the inclusion composition.

Naは、本発明の介在物組成に影響を与える元素であり、多すぎても少なすぎても所定の介在物組成を得られない。よって、Naの濃度は、0.000005〜0.001%、好ましくは0.000007〜0.0005%とする。   Na is an element that affects the inclusion composition of the present invention, and a predetermined inclusion composition cannot be obtained if it is too much or too little. Therefore, the concentration of Na is set to 0.000005 to 0.001%, preferably 0.000007 to 0.0005%.

Fも本発明の介在物組成に影響を与える元素であり、多すぎても少なすぎても所定の介在物組成を得られない。よって、Fの濃度は、0.000003〜0.001%、好ましくは0.000005〜0.0005%とする。   F is also an element that affects the inclusion composition of the present invention, and a predetermined inclusion composition cannot be obtained if it is too much or too little. Therefore, the concentration of F is set to 0.000003 to 0.001%, preferably 0.000005 to 0.0005%.

本発明の鋼は、さらに以下の成分を含有すると好ましい。   The steel of the present invention preferably contains the following components.

Crは、パーライトラメラを微細にし、鋼の強度を上げる効果がある。この効果を得るために必要な量は0.05%であり、それ以上の添加が好ましい。しかし、1.0%を超えて添加した場合、延性を阻害するので、上限は1.0%とする。   Cr has the effect of making the pearlite lamella fine and increasing the strength of the steel. The amount necessary to obtain this effect is 0.05%, and addition beyond that is preferable. However, if added over 1.0%, the ductility is inhibited, so the upper limit is made 1.0%.

NiもCrと同様の効果によって鋼を強化する。その効果を得るためには、0.05%以上の添加が好ましい。1.0%を超えて添加した場合、延性が低下するので、上限は1.0%以下とする。   Ni strengthens steel by the same effect as Cr. In order to obtain the effect, addition of 0.05% or more is preferable. If the addition exceeds 1.0%, the ductility decreases, so the upper limit is made 1.0% or less.

Cuは、ワイヤのスケール特性、及び腐蝕疲労特性を向上させる効果がある。その効果を得るためには0.05%以上の添加が好ましい。1.0%を超えて添加した場合、延性が低下するので、上限は1.0%以下とする。   Cu has the effect of improving the scale characteristics and corrosion fatigue characteristics of the wire. In order to obtain the effect, addition of 0.05% or more is preferable. If the addition exceeds 1.0%, the ductility decreases, so the upper limit is made 1.0% or less.

Ti、Nb、Vは、析出強化により線材の強度を高める効果がある。いずれも0.001%未満では効果がなく、0.25%を超えると析出脆化を引き起こす。よって、その含有量は、0.001〜0.25%とする。また、これらの元素は、パテンティングの際のγ粒サイズを小さくするためにも添加することが有効である。   Ti, Nb, and V have the effect of increasing the strength of the wire by precipitation strengthening. In any case, if it is less than 0.001%, there is no effect, and if it exceeds 0.25%, precipitation embrittlement is caused. Therefore, the content is made 0.001 to 0.25%. It is also effective to add these elements to reduce the γ grain size during patenting.

Moは、鋼の焼入れ性を向上させる元素である。本発明の場合、その添加により鋼の強度を高めることができるが、過度の量の添加は鋼を過剰に硬化させ、加工を困難とする。よって、Mo添加範囲は0.05〜1.0%とする。   Mo is an element that improves the hardenability of steel. In the case of the present invention, the addition of the steel can increase the strength of the steel, but the addition of an excessive amount makes the steel excessively hardened and makes it difficult to work. Therefore, the Mo addition range is 0.05 to 1.0%.

Coは、0.1〜2%含有することにより、過共析鋼の初析セメンタイトの生成を抑制する効果により、延性が向上する。   When Co is contained in an amount of 0.1 to 2%, ductility is improved due to the effect of suppressing the formation of proeutectoid cementite of the hypereutectoid steel.

Bは、鋼の焼入れ性を向上させるとともに、固溶状態でオーステナイト中に存在する場合、粒界に濃化してフェライト、擬似パーライト、ベイナイト等の非パーライト析出の生成を抑制し、伸線性を向上させる。添加量が少なすぎるとこの効果が得られないので、下限を0.0005%とする。一方、添加しすぎるとオーステナイト中において粗大なFe(CB)炭化物の析出を促進し、伸線性に悪影響を及ぼす。したがって上限を0.002%とする。B improves the hardenability of the steel and, when present in the austenite in a solid solution state, concentrates at the grain boundary to suppress the formation of non-pearlite precipitates such as ferrite, pseudo pearlite, and bainite, and improves the drawability. Let If the addition amount is too small, this effect cannot be obtained, so the lower limit is made 0.0005%. On the other hand, if added too much, precipitation of coarse Fe 3 (CB) 6 carbide in austenite is promoted, and the wire drawing property is adversely affected. Therefore, the upper limit is made 0.002%.

REMは、本発明の介在物組成に影響を与える元素である。REMが多すぎても少なすぎても、伸線性をさらに向上させるための所定の介在物組成を得られないため、0.000005〜0.001%とする。   REM is an element that affects the inclusion composition of the present invention. If the amount of REM is too much or too little, a predetermined inclusion composition for further improving the drawability cannot be obtained, so the content is made 0.000005 to 0.001%.

次に、本発明の高炭素鋼線材の製造方法について説明する。   Next, the manufacturing method of the high carbon steel wire of this invention is demonstrated.

本発明の鋼は、転炉又は電炉での精錬を完了した溶鋼を取鍋に出鋼した後、簡易取鍋精錬によって溶製することができる。簡易取鍋精錬としては、非特許文献1に記載されているCAB(キャップド・アルゴン・バブリング)、SAB(シールド・アルゴン・バブリング)、CAS(SABによる成分調整)を用いることができる。   The steel of the present invention can be smelted by simple ladle refining after the molten steel that has undergone refining in a converter or electric furnace is taken out into a ladle. As simple ladle refining, CAB (capped argon bubbling), SAB (shielded argon bubbling), and CAS (component adjustment by SAB) described in Non-Patent Document 1 can be used.

鋼中の全酸素量を30ppm以下とするためには、出鋼時に転炉から取鍋に流出する転炉スラグの混入を極力抑制した上で、簡易取鍋精錬の鎮静時間(取鍋精錬後、連続鋳造開始までの時間)を20〜40分程度確保し、酸化物の浮上分離を促進することが有効である。また、取鍋とタンディッシュの間、タンディッシュと連続鋳造鋳型の間における溶鋼の空気酸化を防止することも有効である。   In order to reduce the total amount of oxygen in the steel to 30 ppm or less, the mixing time of the converter slag flowing out from the converter to the ladle at the time of steel output is suppressed as much as possible, and the sedation time of the simple ladle refining (after It is effective to secure the time until continuous casting is started for about 20 to 40 minutes and promote the floating separation of the oxide. It is also effective to prevent air oxidation of the molten steel between the ladle and the tundish, and between the tundish and the continuous casting mold.

一方、鋼中の全酸素量を16ppm以上とするためには、強脱酸元素であるAlやMgを極力鋼中に添加せず、Tiについても必要最小限の添加に留めるとともに、簡易取鍋精錬の処理を長時間行わないことによって実現することができる。   On the other hand, in order to make the total oxygen amount in the steel 16 ppm or more, the strong deoxidizing element Al or Mg is not added to the steel as much as possible, and Ti is kept to the minimum addition and a simple ladle. This can be realized by not performing the refining process for a long time.

具体的には、合成スラグの溶解と溶鋼との撹拌、2次脱酸と成分微調整及び溶鋼温度調整、鍋内アルゴン・バブリングで、25〜40分程度とする。そして、鍋内アルゴン・バブリングにより、成分、冷却材の均一混合、及び介在物の浮上分離を図る。   Specifically, it is set to about 25 to 40 minutes by melting synthetic slag and stirring with molten steel, secondary deoxidation, fine component adjustment, molten steel temperature adjustment, and argon bubbling in the pan. And by argon bubbling in the pan, uniform mixing of components and coolant and floating separation of inclusions are attempted.

真空脱ガスなどの本格的な取鍋精錬を行うと、鋼中の全酸素量が16ppm未満となる可能性が高くなるので好ましくない。   Performing full-scale ladle refining such as vacuum degassing is not preferable because there is a high possibility that the total amount of oxygen in the steel will be less than 16 ppm.

鋼中のサイズ対象介在物のうち、(%Al)が30%以下のものを個数比率で80%以上とするためには、鋼へのAl混入防止を図る必要がある。脱酸剤としてAlを用いないことはもちろん、出鋼時に添加する合金鉄としてのFe−Si、Si−MnについてもAl含有量が低い合金鉄を用いると好ましい。In order to make inclusions whose size ratio in steel is (% Al 2 O 3 ) 30% or less 80% or more in terms of the number ratio, it is necessary to prevent Al from being mixed into the steel. Of course, it is preferable not to use Al as a deoxidizing agent, but to use Fe-Si and Si-Mn as alloy irons added at the time of steelmaking, which also have low Al content.

たとえば、通常のFe−Siは、1.5%程度のAlを含有しているが、Al含有量が0.01〜0.10%程度である低Al−Fe−Siを好適に用いることができる。また、取鍋耐火物としてアルミナ含有量の少ない耐火物を用いることも、(%Al)が30%以下の介在物を個数比率で80%以上とする上で有効である。For example, normal Fe-Si contains about 1.5% Al, but low Al-Fe-Si with an Al content of about 0.01 to 0.10% is preferably used. it can. In addition, using a refractory having a low alumina content as the ladle refractory is also effective in increasing the number ratio of inclusions having (% Al 2 O 3 ) of 30% or less to 80% or more.

なお、鋼に添加する合金鉄中のAlあるいは取鍋やタンディッシュ耐火物中のアルミナを源として若干のAl混入は必ずあるので、(%Al)が0.5%以上の介在物を、個数比率で80%以上とすることができる。In addition, since there is always some Al contamination from Al in the alloy iron added to the steel or alumina in the ladle or tundish refractory, inclusions in which (% Al 2 O 3 ) is 0.5% or more Can be 80% or more in terms of the number ratio.

介在物中の(%CaO)、(%SiO)は、簡易取鍋精錬における鍋上のスラグ成分のCaO、SiO含有量を調整するとともに、上述の鋼中の全酸素量を30ppm以下とするための製造条件を採用することにより、本発明の範囲内とすることができる。In the inclusions (% CaO), (% SiO 2) may, CaO slag components on the pot in the simple ladle refining, as well as adjust the SiO 2 content, 30 ppm or less total oxygen content in the above-described steels and By adopting the manufacturing conditions for doing so, it can be within the scope of the present invention.

具体的には、取鍋に添加するSiO−CaO系の合成スラグの成分と量を調整することにより、鍋上スラグの塩基度(CaO/SiO質量比)を調整する。鍋上スラグの塩基度が、0.9〜1.3であると好ましい。また、鋼中の全酸素量が30ppm以下となる製造条件を採用することにより、鋼中のSi成分が酸化することに起因する介在物の(%SiO)が増加するのを防止することができる。Specifically, the basicity (CaO / SiO 2 mass ratio) of the slag on the pan is adjusted by adjusting the components and amount of the SiO 2 —CaO-based synthetic slag added to the ladle. The basicity of the pan slag is preferably 0.9 to 1.3. Further, by adopting the production conditions in which the total amount of oxygen in the steel is 30 ppm or less, it is possible to prevent an increase in inclusion (% SiO 2 ) due to oxidation of the Si component in the steel. it can.

なお、介在物の(%MgO)を0.5〜20%、(%MnO)を0.5〜10%とする点については、耐火物中のMgO源からの混入、鋼中のMnの酸化などに基づき、通常の鋼の溶製によって、本発明の範囲内とすることができる。   In addition, about the point which makes (% MgO) of inclusions 0.5-20% and (% MnO) 0.5-10%, it mixes from the MgO source in a refractory, oxidation of Mn in steel Based on the above, it can be made within the scope of the present invention by ordinary steel melting.

介在物の(%Na)=0.2〜7%、(%F)=0.17〜8%とする点については、上述のとおり、鋼中にNa及びFをともに添加することによって、介在物にNa及びFをともに本発明の範囲内で含有させることができる。   About the point made into (% Na) = 0.2-7% of inclusions, and (% F) = 0.17-8%, as above-mentioned, by adding together Na and F in steel, it intervenes. Both Na and F can be included in the product within the scope of the present invention.

このとき、Na及びFの添加方法は、NaF化合物として添加してもよいし、Na、Fを別々に(たとえば、NaCOとCaF等)添加することも可能である。なお、Fを添加する際、金属Siと同時に添加すると、SiFが生成してガス化し、Fの歩留りが悪化するので避けるべきである。At this time, Na and F may be added as a NaF compound, or Na and F may be added separately (for example, Na 2 CO 3 and CaF 2 etc.). When F is added at the same time as metal Si, SiF 4 is generated and gasified, and the yield of F deteriorates.

介在物中の(%T.REM)を0.3〜1.0%、(%S)を0.05〜0.2%とするためには、鋼中にREMを数ppm相当分だけ添加するとよい。鋼中に添加したREMは、鋼中のSと反応してREMオキシサルファイドを形成し、シリケイト系介在物と合体する。その結果、組成対象介在物中に、平均濃度で(%T.REM)=0.3〜1.0%、(%S)=0.05〜0.2%を含有させることができる。   In order to make (% T.REM) in the inclusions 0.3 to 1.0% and (% S) 0.05 to 0.2%, REM is added to the steel by an amount corresponding to several ppm. Good. The REM added to the steel reacts with S in the steel to form REM oxysulfide and coalesces with the silicate inclusions. As a result, it is possible to contain (% T.REM) = 0.3 to 1.0% and (% S) = 0.05 to 0.2% in average concentration in the inclusions to be composed.

本実施例の溶製はLD転炉により行った。LD転炉より取鍋に出鋼するに際し、いわゆるダーツ型の転炉スラグ閉止冶具を使用し微量(50mm厚み以下)のLDスラグ流出にとどめた。   The melting in this example was performed by an LD converter. When steel was taken out from the LD converter into the ladle, a so-called dart-type converter slag closing jig was used to keep the slag out of a small amount (less than 50 mm thickness).

また、出鋼時に、C、Si、Mnの成分調整のための加炭材、Fe−Si、Fe−Mn、Si−Mn等の脱酸合金鉄を添加した。脱酸合金鉄には、AlやMg等の強力な脱酸元素をなるべく含まないものを使用した。また、出鋼中又は出鋼後に、取鍋底よりアルゴン吹込みを行った。   In addition, a carburizing material for adjusting the components of C, Si, and Mn, and deoxidized alloy iron such as Fe—Si, Fe—Mn, and Si—Mn were added during steel output. As the deoxidized alloy iron, one containing as little a strong deoxidizing element as Al and Mg as possible was used. In addition, argon was blown from the bottom of the ladle during or after steel output.

受鋼後の取鍋内溶鋼は、Si、Mn等により脱酸された、いわゆるキルド鋼である。この取鍋を溶鋼精錬実施位置に移動した後、SiO−CaO系の合成スラグを鍋内に添加後に、取鍋底よりアルゴン吹込みを行って鍋内溶鋼を撹拌し、CAB簡易取鍋精錬を行った。The molten steel in the ladle after receiving steel is so-called killed steel deoxidized by Si, Mn, or the like. After moving the ladle molten steel refining implementation position, after the addition of synthetic slag of SiO 2 -CaO based in pan, preparative performed included argon blowing stirring molten steel in the pan than the bottom of the pan, the CAB simplified ladle refining went.

次いで、第2次脱酸材を合金鉄として溶鋼中に添加した。第2次脱酸材は、金属Ca、Al、Mg、Si等を含むものである。必要に応じて、Na、F、REMを鍋内溶鋼中に添加した。NaとFをともに添加する場合はNaFを、Naを単独で添加する場合はNaCOを、Fを単独で添加する場合はCaFを添加した。Fを添加する際には、Siを含む合金や、第2次脱酸材の添加とは別のタイミングで添加した。Next, the secondary deoxidizer was added to the molten steel as alloy iron. The secondary deoxidizing material contains metals Ca, Al, Mg, Si, and the like. As needed, Na, F, and REM were added in the molten steel in a pan. NaF was added when both Na and F were added, Na 2 CO 3 was added when Na was added alone, and CaF 2 was added when F was added alone. When F was added, it was added at a timing different from the addition of the alloy containing Si and the secondary deoxidizer.

第2次脱酸材を添加後、さらに成分微調整を行い、取鍋溶鋼精錬を終了した。取鍋溶鋼精錬を終了後、鋼中の全酸素量が16〜30ppmとなるように好適な鎮静時間(20〜40分程度)を確保したのち、連続鋳造を行った。溶鋼は、取鍋よりタンディッシュを経由して連続鋳造されるが、その際、取鍋〜タンディッシュ間、及びタンディッシュ内での空気酸化を極力抑制するため、不活性ガスによるシールを実施した。得られた鋳片に、鋳片加熱炉経由分塊、鋼片圧延、鋼片精整を施した後、加熱炉を経由して線材圧延により5.5mmφ線材を製造した。   After adding the second deoxidizing material, the components were further finely adjusted to complete the ladle molten steel refining. After finishing the ladle molten steel refining, continuous casting was performed after securing a suitable sedation time (about 20 to 40 minutes) so that the total oxygen content in the steel was 16 to 30 ppm. Molten steel is continuously cast from the ladle via the tundish. At that time, in order to suppress air oxidation between the ladle and the tundish and in the tundish as much as possible, sealing with an inert gas was performed. . The obtained slab was subjected to slab heating furnace bundling, slab rolling, and slab refining, and then a 5.5 mmφ wire was manufactured by wire rolling through the heating furnace.

非金属介在物の個数及び組成の調査は、5.5mmφの線材の1コイルから0.5mの長さのサンプルを切り出し、L方向(長さ方向)の任意の10ヵ所から長さ11mmの小サンプルを切り出し、それぞれ、長さ方向の中心線を通る縦断面を全面調査することによって行った。非金属介在物の個数及び組成は短径0.5μm以上、長径1.0μm以上、円相当径が1μm以上の酸化物系非金属介在物をサイズ対象介在物とし、個々の介在物の組成をX線分光法によって分析した。   In order to investigate the number and composition of non-metallic inclusions, a sample with a length of 0.5 m was cut out from one coil of a 5.5 mmφ wire rod, and a small sample with a length of 11 mm from any 10 locations in the L direction (length direction). Samples were cut out and each was examined by examining the entire longitudinal section passing through the center line in the length direction. The number and composition of non-metallic inclusions is an oxide-based non-metallic inclusion having a minor axis of 0.5 μm or more, a major axis of 1.0 μm or more, and a circle equivalent diameter of 1 μm or more, and the composition of each inclusion. Analyzed by X-ray spectroscopy.

サイズ対象介在物のうち、本発明の組成範囲に入るものを組成対象介在物とし、個数比率(組成対象介在物個数/サイズ対象介在物個数×100)を評価した。また、サイズ対象介在物すべての平均組成も算出した。ただしREMとSについては、組成対象介在物の平均組成を算出した。   Among the inclusions targeted for size, those included in the composition range of the present invention were defined as inclusions intended for composition, and the number ratio (number of inclusions intended for composition / number of inclusions targeted for size × 100) was evaluated. In addition, the average composition of all inclusions to be sized was also calculated. However, for REM and S, the average composition of inclusions intended for composition was calculated.

その後、5.5mmφ線材を0.175mmφ以下に伸線し、伸線特性、及びダイス寿命の調査を行った。伸線特性は、一定伸線量に対する断線頻度を断線指数とし、断線指数5以下を良好とした。ダイス寿命は、現行工程材の許容できる最低寿命を100とし、寿命が長くなるほど大きくなる指数として評価した。ダイス寿命指数100以上が良好である。   Thereafter, the 5.5 mmφ wire was drawn to 0.175 mmφ or less, and the wire drawing characteristics and the die life were investigated. For the wire drawing characteristics, the disconnection frequency with respect to a constant drawing dose was defined as a disconnection index, and a disconnection index of 5 or less was considered good. The die life was evaluated as an index that becomes 100 as the minimum allowable life of the current process material and becomes larger as the life becomes longer. A die life index of 100 or more is good.

さらに、疲労特性を評価するため、0.175mmφに伸線した線材について、回転疲労試験を行った。回転疲労試験では、応力を様々に変化させ、破断するまでの繰り返し回数を調査した。繰り返し回数100000回で切断する応力を機械試験の張力の係数で補正し、応力指数として評価し、応力指数15以上を良好とした。   Furthermore, in order to evaluate the fatigue characteristics, a rotational fatigue test was performed on the wire drawn to 0.175 mmφ. In the rotation fatigue test, the stress was changed in various ways and the number of repetitions until fracture occurred was investigated. The stress that was cut at the number of repetitions of 100,000 was corrected with the coefficient of tension in the mechanical test, and was evaluated as a stress index.

表1〜4に、本発明例と比較例の結果を示す。本発明範囲から外れる数値にアンダーラインを付している。   Tables 1 to 4 show the results of the invention examples and comparative examples. Numerical values that fall outside the scope of the present invention are underlined.

Figure 0005310961
Figure 0005310961

Figure 0005310961
Figure 0005310961

Figure 0005310961
Figure 0005310961

Figure 0005310961
Figure 0005310961

本発明例No.1〜24においては、いずれも良好な結果を得ることができた.No.8〜18は、Na、Fのほかに、REMを添加した水準であるが、この場合はダイス寿命、疲労特性が向上している。さらに、No.19〜24は、鋼にBを添加した水準であり、さらなるダイス寿命、疲労特性の向上を確認した。   Invention Example No. For 1 to 24, good results were obtained. No. 8 to 18 are levels in which REM is added in addition to Na and F. In this case, the die life and fatigue characteristics are improved. Furthermore, no. Nos. 19 to 24 are levels obtained by adding B to steel, and further improvement in die life and fatigue characteristics was confirmed.

次に、比較例の結果について説明する。No.25はNa及びFを添加しなかった場合、No.26はNaのみを単独添加した場合、No.27はFのみを単独添加した場合である。いずれも、介在物の個数比率(組成対象介在物個数/サイズ対象介在物個数×100、以下「介在物個数比率」という)はゼロであり、断線指数、ダイス寿命、疲労特性ともに本発明例に比べて悪化している。   Next, the result of the comparative example will be described. No. No. 25, when Na and F were not added, No. 26 shows no. 27 is a case where only F is added alone. In both cases, the inclusion number ratio (the number of inclusions to be composition / the number of inclusions to be sized × 100, hereinafter referred to as “inclusion number ratio”) is zero. It is worse than that.

No.28は、タンディッシュ内でのシールが不十分であったため、全酸素量が本発明の範囲より高くなった場合であり、介在物個数が多くダイス寿命、疲労特性が悪化した。   No. No. 28 is the case where the total oxygen amount was higher than the range of the present invention because the sealing in the tundish was insufficient. The number of inclusions was large, and the die life and fatigue characteristics deteriorated.

No.29〜32は、介在物個数比率が80%を下回った水準である。No.29は、AlやMgO含有量の高い耐火物を使用したので、介在物の中に耐火物起因と思われるAl系、MgO系の介在物が多数存在している。その結果、介在物個数比率が下回り、断線指数、ダイス寿命、疲労特性ともに悪化した。No. 29 to 32 are levels at which the inclusion number ratio is less than 80%. No. No. 29 used a refractory having a high content of Al 2 O 3 or MgO, and therefore there are many inclusions of Al 2 O 3 and MgO that are considered to be caused by the refractory in the inclusions. As a result, the inclusion number ratio was lower, and the disconnection index, die life, and fatigue characteristics deteriorated.

No.30は、SiO−CaO系の合成スラグの組成を変化したことにより非金属介在物中の(%SiO)が低下したために、介在物個数比率が下回り、介在物中に一部硬質なものが出現し、断線指数、ダイス寿命、疲労特性ともにやや悪化した。No. No. 30 is because the composition ratio of the SiO 2 —CaO-based synthetic slag has changed (% SiO 2 ) in the non-metallic inclusions, so that the number ratio of inclusions is lower and the inclusions are partly hard Appeared, and the disconnection index, die life, and fatigue characteristics deteriorated slightly.

No.31は、LDスラグ流出量がやや多く、脱酸過程で粗大なSiO単独の介在物が出現し、非金属介在物中の(%SiO)が増大した。その結果、介在物個数比率が下回り、断線指数、疲労特性が悪化した。No. No. 31 had a slightly larger LD slag outflow, coarse inclusions of SiO 2 alone appeared in the deoxidation process, and (% SiO 2 ) in non-metallic inclusions increased. As a result, the inclusion number ratio was lower, and the disconnection index and fatigue characteristics deteriorated.

No.32は、脱酸合金として、低Al合金鉄ではなくAl濃度の高い通常の合金鉄を用いており、非金属介在物中の(%Al)が増大した。その結果、介在物個数比率が下回り、硬質のAl系介在物が多数生成し、断線指数、ダイス寿命、疲労特性ともに非常に悪かった。No. No. 32 used normal alloy iron with a high Al concentration instead of low Al alloy iron as a deoxidizing alloy, and (% Al 2 O 3 ) in nonmetallic inclusions increased. As a result, the inclusion number ratio was lower and a large number of hard Al 2 O 3 inclusions were produced, and the disconnection index, die life, and fatigue characteristics were very poor.

No.33は、鋼中S濃度が高く、非金属介在物中の(%S)が本発明の範囲より高い値となり、断線指数、ダイス寿命、疲労特性が悪化した。   No. No. 33 had a high S concentration in the steel, and (% S) in the nonmetallic inclusions was higher than the range of the present invention, and the disconnection index, die life, and fatigue characteristics deteriorated.

No.34はREMを添加しすぎたため、非金属介在物中の(%T.REM)が本発明の範囲より高い値となり、断線指数、ダイス寿命、疲労特性が悪化した。   No. Since REM added too much REM, (% T.REM) in a nonmetallic inclusion became a value higher than the range of this invention, and the disconnection index | exponent, die | dye life, and fatigue characteristics deteriorated.

Claims (5)

質量%で、
C :0.5〜1.2%、
Si:0.15〜2.5%、
Mn:0.20〜0.9%、
P ≦0.025%、
S :0.004〜0.025%、
Al:0.000005〜0.002%、
Ca:0.00001〜0.002%、
Mg:0.00001〜0.001%、
Na:0.000005〜0.001%、
F:0.000003〜0.001%
を含有し、全酸素量が16〜30ppmであり、残部がFe及び不可避的不純物からなる高炭素鋼線材であって、
線材L方向断面に見られる短径0.5μm以上、長径1.0μm以上、円相当径(面換算径)が1μm以上の酸化物系非金属介在物(以下「サイズ対象介在物」という)のうち、(%SiO)=40〜95%、(%CaO)=0.5〜30%、(%Al)=0.5〜30%、(%MgO)=0.5〜20%、(%MnO)=0.5〜10%を満たし、さらに(%Na)=0.2〜7%、(%F)=0.17〜8%を満たす介在物(以下「組成対象介在物」という)の個数比率、組成対象介在物個数/サイズ対象介在物個数×100が80%以上であることを特徴とする伸線性及び伸線後の疲労特性に優れた高炭素鋼線材。
ここで、(%SiO)、(%CaO)、(%Al)、(%MgO)、(%MnO)、(%Na)、(%F)は、それぞれ、介在物中のSiO、CaO、Al、MgO、MnO、Na、Fの含有量(質量%)である。
% By mass
C: 0.5 to 1.2%
Si: 0.15-2.5%,
Mn: 0.20 to 0.9%,
P ≦ 0.025%,
S: 0.004 to 0.025%,
Al: 0.000005 to 0.002%,
Ca: 0.00001 to 0.002%,
Mg: 0.00001 to 0.001%,
Na: 0.000005 to 0.001%,
F: 0.000003 to 0.001%
Is a high carbon steel wire consisting of 16 to 30 ppm in total oxygen, the balance being Fe and inevitable impurities,
Oxide-based non-metallic inclusions (hereinafter referred to as “size inclusions”) having a minor axis of 0.5 μm or more, a major axis of 1.0 μm or more, and an equivalent circle diameter (surface equivalent diameter) of 1 μm or more as seen in the cross section in the wire L direction. Of these, (% SiO 2 ) = 40 to 95%, (% CaO) = 0.5 to 30 %, (% Al 2 O 3 ) = 0.5 to 30%, (% MgO) = 0.5 to 20 %, (% MnO) = 0.5 to 10%, and (% Na) = 0.2 to 7% and (% F) = 0.17 to 8% The ratio of the number of inclusions), the number of inclusions for composition / the number of inclusions for size × 100 is 80% or more, and a high carbon steel wire rod excellent in wire drawing and fatigue properties after wire drawing.
Here, (% SiO 2 ), (% CaO), (% Al 2 O 3 ), (% MgO), (% MnO), (% Na), and (% F) are the SiO in the inclusions, respectively. 2 , CaO, Al 2 O 3 , MgO, MnO, Na, F content (% by mass).
さらに
REM:0.000005〜0.001%
を含有し、前記組成対象介在物が、平均濃度で、さらに、(%T.REM)=0.3〜1.0%、(%S)=0.05〜0.2%を満たすことを特徴とする請求項1に記載の伸線性及び伸線後の疲労特性に優れた高炭素鋼線材。
ここで、(%T.REM)、(%S)は、それぞれ、介在物中の希土類元素の合計、Sの含有量(質量%)である。
Furthermore, REM: 0.000005 to 0.001%
That the inclusions to be composed satisfy the (% T. REM) = 0.3 to 1.0% and (% S) = 0.05 to 0.2% at an average concentration. The high carbon steel wire excellent in wire drawing property and fatigue property after wire drawing according to claim 1.
Here, (% T. REM) and (% S) are the total of rare earth elements in the inclusion and the S content (mass%), respectively.
さらに
B:0.0005〜0.002%
を含むことを特徴とする請求項1又は2に記載の伸線性及び伸線後の疲労特性に優れた高炭素鋼線材。
Furthermore, B: 0.0005 to 0.002%
The high carbon steel wire excellent in wire drawing property and fatigue property after wire drawing according to claim 1 or 2.
さらに
Cr:0.05〜1.0%、
Ni:0.05〜1.0%、
Cu:0.05〜1.0%、
Ti:0.001〜0.25%、
Nb:0.001〜0.25%、
V :0.001〜0.25%、
Mo:0.05〜1.0%、
Co:0.1〜2%
の1種又は2種以上を含むことを特徴とする請求項1又は2に記載の伸線性及び伸線後の疲労特性に優れた高炭素鋼線材。
Furthermore, Cr: 0.05 to 1.0%,
Ni: 0.05 to 1.0%,
Cu: 0.05 to 1.0%,
Ti: 0.001 to 0.25%,
Nb: 0.001 to 0.25%,
V: 0.001 to 0.25%,
Mo: 0.05-1.0%,
Co: 0.1 to 2%
1 or 2 types or more of these are included, The high carbon steel wire rod excellent in the wire drawing property and the fatigue characteristic after wire drawing of Claim 1 or 2 characterized by the above-mentioned.
さらに
Cr:0.05〜1.0%、
Ni:0.05〜1.0%、
Cu:0.05〜1.0%、
Ti:0.001〜0.25%、
Nb:0.001〜0.25%、
V :0.001〜0.25%、
Mo:0.05〜1.0%、
Co:0.1〜2%
の1種又は2種以上を含むことを特徴とする請求項3に記載の伸線性及び伸線後の疲労特性に優れた高炭素鋼線材。
Furthermore, Cr: 0.05 to 1.0%,
Ni: 0.05 to 1.0%,
Cu: 0.05 to 1.0%,
Ti: 0.001 to 0.25%,
Nb: 0.001 to 0.25%,
V: 0.001 to 0.25%,
Mo: 0.05-1.0%,
Co: 0.1 to 2%
The high carbon steel wire rod excellent in the wire drawing property and the fatigue property after wire drawing according to claim 3, comprising one or more of the following.
JP2013502376A 2011-03-01 2012-02-28 High carbon steel wire rod with excellent drawability and fatigue properties after drawing Active JP5310961B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013502376A JP5310961B2 (en) 2011-03-01 2012-02-28 High carbon steel wire rod with excellent drawability and fatigue properties after drawing

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011043811 2011-03-01
JP2011043811 2011-03-01
JP2013502376A JP5310961B2 (en) 2011-03-01 2012-02-28 High carbon steel wire rod with excellent drawability and fatigue properties after drawing
PCT/JP2012/054971 WO2012118093A1 (en) 2011-03-01 2012-02-28 High-carbon steel wire having excellent drawability and fatigue properties after drawing

Publications (2)

Publication Number Publication Date
JP5310961B2 true JP5310961B2 (en) 2013-10-09
JPWO2012118093A1 JPWO2012118093A1 (en) 2014-07-07

Family

ID=46758024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013502376A Active JP5310961B2 (en) 2011-03-01 2012-02-28 High carbon steel wire rod with excellent drawability and fatigue properties after drawing

Country Status (6)

Country Link
US (1) US20130302204A1 (en)
EP (1) EP2682489B1 (en)
JP (1) JP5310961B2 (en)
KR (1) KR101357846B1 (en)
CN (1) CN103415637B (en)
WO (1) WO2012118093A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5971484B2 (en) * 2013-07-26 2016-08-17 Jfeスチール株式会社 Melting method of high carbon steel
CN105438962B (en) * 2015-12-31 2017-10-03 建峰索具有限公司 A kind of high strength wire rope casting rigging
JP2017214652A (en) * 2016-05-30 2017-12-07 株式会社フジクラ Gadolinium wire, method for producing the same, metal-coated gadolinium wire prepared therewith, heat exchanger and magnetic refrigeration device
JP6733808B2 (en) * 2017-03-24 2020-08-05 日本製鉄株式会社 Wire rod and flat steel wire
CN110760748B (en) * 2018-07-27 2021-05-14 宝山钢铁股份有限公司 Spring steel with excellent fatigue life and manufacturing method thereof
CN109680121B (en) * 2019-01-15 2020-10-23 北京科技大学 Reducing CaO-SiO content in deep-drawn cutting wires2-Al2O3Process for making steel from inclusions
CN114075639A (en) * 2020-08-20 2022-02-22 宝山钢铁股份有限公司 High-strength and high-fatigue-life steel for cable, wire rod and preparation method of steel
CN114657471B (en) * 2022-03-27 2022-12-23 中天钢铁集团有限公司 Production method of low-carbon energy-saving wire rod for bridge cable rope with pressure of not less than 2060MPa

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6233094A (en) * 1985-07-31 1987-02-13 Daido Steel Co Ltd Flux cored wire for welding
JP2007197812A (en) * 2005-12-28 2007-08-09 Honda Motor Co Ltd Soft-nitrided non-heat-treated steel member
JP2007289965A (en) * 2006-04-20 2007-11-08 Kobe Steel Ltd Flux-cored wire for gas shielded arc welding and welding method

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS547252B2 (en) 1973-10-29 1979-04-05
JPS5722969B2 (en) 1973-11-26 1982-05-15
JPS5524961A (en) 1978-08-11 1980-02-22 Kawasaki Steel Corp Producing of very fine wire material
JPS565915A (en) 1979-06-29 1981-01-22 Nippon Steel Corp Production of steel for steel cord
JPS62130258A (en) 1985-11-29 1987-06-12 Nippon Steel Corp High carbon steel wire rod superior in wire drawability and fatigue resistance after wire drawing
JP2654099B2 (en) * 1988-06-21 1997-09-17 株式会社神戸製鋼所 Manufacturing method of clean steel
CN1104508C (en) * 1999-06-16 2003-04-02 新日本制铁株式会社 High carbon steel wire rod excellent in drawability and fatigue resistance after wire drawing
JP3719131B2 (en) 2000-11-27 2005-11-24 住友金属工業株式会社 Si deoxidized steel excellent in fatigue strength and method for producing the same
US7462250B2 (en) * 2003-01-27 2008-12-09 Nippon Steel Corporation High strength, high toughness, high carbon steel wire rod and method of production of same
JP4423050B2 (en) 2003-06-18 2010-03-03 株式会社神戸製鋼所 High cleanliness steel with excellent fatigue strength and cold workability
JP4315825B2 (en) 2003-06-18 2009-08-19 株式会社神戸製鋼所 Steel wire for highly clean springs with excellent fatigue characteristics
KR101018054B1 (en) * 2006-06-01 2011-03-02 신닛뽄세이테쯔 카부시키카이샤 High-ductility high-carbon steel wire
BR122016000461B1 (en) * 2006-12-28 2017-05-30 Kobe Steel Ltd self-contained steel wire rod with excellent fatigue and spring properties obtained from it
US9290822B2 (en) * 2006-12-28 2016-03-22 Kobe Steel, Ltd. Si-killed steel wire rod and spring
US8900381B2 (en) * 2007-11-19 2014-12-02 Kobe Steel, Ltd. Spring steel and spring superior in fatigue properties
JP2009174033A (en) * 2008-01-28 2009-08-06 Kobe Steel Ltd Steel for machine structure having excellent machinability

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6233094A (en) * 1985-07-31 1987-02-13 Daido Steel Co Ltd Flux cored wire for welding
JP2007197812A (en) * 2005-12-28 2007-08-09 Honda Motor Co Ltd Soft-nitrided non-heat-treated steel member
JP2007289965A (en) * 2006-04-20 2007-11-08 Kobe Steel Ltd Flux-cored wire for gas shielded arc welding and welding method

Also Published As

Publication number Publication date
JPWO2012118093A1 (en) 2014-07-07
KR20130087618A (en) 2013-08-06
EP2682489A1 (en) 2014-01-08
CN103415637A (en) 2013-11-27
KR101357846B1 (en) 2014-02-05
US20130302204A1 (en) 2013-11-14
CN103415637B (en) 2014-08-06
EP2682489A4 (en) 2014-08-20
EP2682489B1 (en) 2021-01-13
WO2012118093A1 (en) 2012-09-07

Similar Documents

Publication Publication Date Title
JP5310961B2 (en) High carbon steel wire rod with excellent drawability and fatigue properties after drawing
JP6036997B2 (en) Spring steel with excellent fatigue resistance and method for producing the same
US7615099B2 (en) Method for producing high cleanness steel excellent in fatigue strength or cold workability
JP3294245B2 (en) High carbon steel wire with excellent drawability and fatigue resistance after drawing
JPH083682A (en) High carbon type long life bearing steel
JPH08144014A (en) Long life induction hardened bearing steel
JP2009030145A (en) Bearing steel member, and method for producing the same
JP4900127B2 (en) Induction hardening steel and manufacturing method thereof
JPH01168848A (en) Universal free cutting steel for automobile parts and its production
JP6999475B2 (en) Highly Si-containing austenitic stainless steel with excellent manufacturability
JP4423050B2 (en) High cleanliness steel with excellent fatigue strength and cold workability
JP4315825B2 (en) Steel wire for highly clean springs with excellent fatigue characteristics
JP3533196B2 (en) High fatigue strength spring steel wire and its manufacturing method.
JP4593313B2 (en) Fe-Ni-based magnetic alloy plate excellent in hot workability and manufacturing method thereof
JP6068172B2 (en) Soft high carbon steel sheet
JPH06306542A (en) Spring steel excellent in fatigue strength and steel wire for spring
JP4082064B2 (en) Method for melting titanium-containing steel
JP4134224B2 (en) Si-killed steel wire rod and spring with excellent fatigue characteristics
JP3912186B2 (en) Spring steel with excellent fatigue resistance
JP4134223B2 (en) Si-killed steel wire rod and spring with excellent fatigue characteristics
JP2004346402A (en) Method of refining steel material for spring
JP4134225B2 (en) Si-killed steel wire rod and spring with excellent fatigue characteristics
JPH11199982A (en) Highly clean rolled steel
JP2001234275A (en) Case hardening steel excellent in rolling fatigue life in quasi-high temperature environment
CN116516104A (en) Control method for smelting inclusion morphology of non-quenched and tempered steel

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130617

R151 Written notification of patent or utility model registration

Ref document number: 5310961

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350