JP5299959B2 - Light beam amplification method and light beam amplification apparatus - Google Patents

Light beam amplification method and light beam amplification apparatus Download PDF

Info

Publication number
JP5299959B2
JP5299959B2 JP2008307852A JP2008307852A JP5299959B2 JP 5299959 B2 JP5299959 B2 JP 5299959B2 JP 2008307852 A JP2008307852 A JP 2008307852A JP 2008307852 A JP2008307852 A JP 2008307852A JP 5299959 B2 JP5299959 B2 JP 5299959B2
Authority
JP
Japan
Prior art keywords
optical fiber
light
axially symmetric
polarized beam
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008307852A
Other languages
Japanese (ja)
Other versions
JP2010135423A (en
Inventor
俊一 佐藤
祐市 小澤
達也 中鉢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Original Assignee
Tohoku University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC filed Critical Tohoku University NUC
Priority to JP2008307852A priority Critical patent/JP5299959B2/en
Publication of JP2010135423A publication Critical patent/JP2010135423A/en
Application granted granted Critical
Publication of JP5299959B2 publication Critical patent/JP5299959B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、発光体を含んだ光ファイバーを用いて、軸対称偏光ビームの出力を増大させる、光ビーム増幅方法および光ビーム増幅装置に関するものである。   The present invention relates to a light beam amplification method and a light beam amplification device that increase the output of an axially symmetric polarized beam using an optical fiber including a light emitter.

ビーム断面での偏光分布が光軸に対して対称に分布している光ビームは、軸対称偏光ビームと呼ばれている。その代表例として、放射状の偏光分布を持つ径偏光ビームや、方位方向に平行な偏光成分だけから成る方位偏光ビームが知られている。   A light beam in which the polarization distribution in the beam cross section is distributed symmetrically with respect to the optical axis is called an axially symmetric polarized beam. As typical examples, a radially polarized beam having a radial polarization distribution and an azimuth polarized beam composed only of a polarized component parallel to the azimuth direction are known.

特に、径偏光ビームを物体面に垂直に集光すると、全ての光線がp偏光となるため、直線偏光や無偏光ビームに比べるとビーム全体としての反射率が低くなる。これは、物体に吸収される光のエネルギーが多くなることを意味しており、高効率なレーザー加工に適している(例えば、非特許文献1参照)。   In particular, when a radially polarized beam is condensed perpendicularly to the object plane, all light rays become p-polarized light, so that the reflectivity of the entire beam is lower than that of linearly polarized light or non-polarized light. This means that the energy of light absorbed by the object increases, and is suitable for highly efficient laser processing (see, for example, Non-Patent Document 1).

これに対して、深い穿孔をする場合には、穴の深部までレーザー光が届くようにするために、穴の壁での光の反射が大きいほうが都合が良く、この場合は全ての光線がs偏光となる方位偏光ビームが適している(例えば、非特許文献2参照)。   On the other hand, when deep drilling is performed, it is convenient that the reflection of light at the hole wall is large so that the laser beam can reach the deep part of the hole. An azimuthally polarized beam that becomes polarized light is suitable (for example, see Non-Patent Document 2).

レーザー加工に用いられるレーザーの出力は、材料の種類や大きさ、加工範囲、速度などに依存するが、概ね数Wから数10kW程度である。現在のところ、発生が報告されている軸対称偏光ビームの最大出力は、炭酸ガスレーザーによる3kWである(例えば、非特許文献3参照)。   The output of the laser used for laser processing depends on the type and size of the material, the processing range, the speed, etc., but is about several W to several tens of kW. At present, the maximum output of the axially symmetric polarized beam that has been reported to be generated is 3 kW by a carbon dioxide laser (for example, see Non-Patent Document 3).

しかし、焦点距離が同じレンズを使用した場合、光ビームを集光した時のスポットの径は光の波長に比例するため、より精密な加工を行うためには、波長が10ミクロン程度の炭酸ガスレーザーよりも、波長が1.06ミクロン程度のNd:YAG、Yb:YAGなどのレーザーが適しているが、単一横モードでの出力は200Wに留まっている(例えば、非特許文献4参照)。   However, when lenses with the same focal length are used, the spot diameter when the light beam is focused is proportional to the wavelength of the light, so carbon dioxide with a wavelength of about 10 microns is required for more precise processing. A laser such as Nd: YAG or Yb: YAG having a wavelength of about 1.06 microns is more suitable than a laser, but the output in a single transverse mode remains at 200 W (for example, see Non-Patent Document 4). .

一方、コア部分に発光体を含んだ光ファイバーをレーザー媒質として使用すると、ロッドタイプのレーザー媒質に比べ、熱の効果が低減されるため、高いビーム品質で高出力を得ることができる。   On the other hand, when an optical fiber including a light emitter in the core portion is used as a laser medium, the effect of heat is reduced compared to a rod-type laser medium, so that high output can be obtained with high beam quality.

しかしながら、現在、ファイバーレーザーとして報告されている光ファイバーのほとんどは、横モードとして最低次のガウスビームを伝播させることを目的として作製されており、軸対称偏光ビームを高出力で得ることは困難であった。なお、最低次のガウスビームは、TEM00モードあるいはLP01モードとも呼ばれている。また、軸対称偏光ビームの最低次の横モードは、TM01モード、TE01モード、HE21モードとも呼ばれている。あるいは、これらを総称して、光ファイバー内を伝播するモードとしてLP11モードとも呼ばれる。TM01、TE01、HE21モードはそれぞれ、径偏光ビーム、方位偏光ビーム、ハイブリッドモードビームに対応している。 However, most of the optical fibers currently reported as fiber lasers are manufactured for the purpose of propagating the lowest-order Gaussian beam as a transverse mode, and it is difficult to obtain an axially symmetric polarized beam with high output. It was. The lowest order Gaussian beam is also called a TEM 00 mode or an LP 01 mode. The lowest transverse mode of the axially symmetric polarized beam is also called TM 01 mode, TE 01 mode, and HE 21 mode. Alternatively, these are collectively referred to as an LP 11 mode as a mode propagating in the optical fiber. The TM 01 , TE 01 , and HE 21 modes correspond to a radially polarized beam, an azimuth polarized beam, and a hybrid mode beam, respectively.

V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cuttingefficiency”, J. Phys. D: Appl.Phys. 1999, 32, p.1455V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cuttingefficiency”, J. Phys. D: Appl. Phys. 1999, 32, p. 1455 M.Meier, V. Romano, and T. Feurer, “Materials processing with pulsed radially and azimuthally polarized laser radiation”, Appl. Phys., 2007, A 86, p.329M.Meier, V. Romano, and T. Feurer, “Materials processing with pulsed radially and azimuthally polarized laser radiation”, Appl. Phys., 2007, A 86, p.329 M. Abdou Ahmed, J.Schulz, A. Voss, O. Parriaux, J.-C. Pommier, and T. Graf, “Radially polarized3kW beam from a CO2 laser with an intracavity resonant gratingmirror”, Opt. Lett., 2007, 32, p.1824M. Abdou Ahmed, J. Schulz, A. Voss, O. Parriaux, J.-C. Pommier, and T. Graf, “Radially polarized 3kW beam from a CO2 laser with an intracavity resonant gratingmirror”, Opt. Lett., 2007 , 32, p. 1824 I. Moshe, S.Jackel, A. Meir, Y. Lumer, and E. Leibush, “2kW, M2<10 radically polarizedbeams from aberration-compensated rod-based Nd:YAG lasers”, Opt. Lett., 2007, 32, p.47I. Moshe, S. Jackel, A. Meir, Y. Lumer, and E. Leibush, “2kW, M2 <10 radically polarized beams from aberration-compensated rod-based Nd: YAG lasers”, Opt. Lett., 2007, 32 , p.47

そこで、本発明は、強度分布と偏光分布とを保ちながら軸対称偏光ビームの出力を増大することで、高出力を得ることができる光ビーム増幅方法および光ビーム増幅装置の提供を目的とする。   Therefore, an object of the present invention is to provide a light beam amplification method and a light beam amplification apparatus that can obtain a high output by increasing the output of an axially symmetric polarized beam while maintaining the intensity distribution and the polarization distribution.

コア内を伝播できる横モードは、光ファイバーのコアおよびクラッドの屈折率、コア径および光の波長で決定される。本発明は、ガウスビームであるLP01モードだけでなく、軸対称偏光ビームであるLP11などのモードも伝播できる、発光体を含んだ光ファイバーのコアに出力の小さな軸対称偏光ビームを導入し、発光体を外部から光で励起することによって、光ファイバーの出口から出力が増大した軸対称偏光ビームを得ることのできる光ビーム増幅方法および光ビーム増幅装置に関する。 The transverse mode capable of propagating in the core is determined by the refractive index of the core and cladding of the optical fiber, the core diameter, and the wavelength of light. The present invention is not only LP 01 mode is a Gaussian beam, also possible propagation modes, such as LP 11 is axially symmetric polarized beam, by introducing a small axially symmetric polarization beam output to an optical fiber core which includes a light emitter, The present invention relates to a light beam amplification method and a light beam amplification apparatus capable of obtaining an axially symmetric polarized beam having an increased output from the exit of an optical fiber by exciting a light emitter with light from the outside.

本発明によれば、発光体を含み、シングルモードファイバーよりコア径が大きく、軸対称偏光ビームを伝播可能な光ファイバーのコアに、光源からの軸対称偏光ビームを導入するとともに、外部から前記光ファイバーの内側クラッドおよび前記コアに光を集光させて前記発光体を励起させることにより、前記光ファイバーを伝播する前記軸対称偏光ビームの出力を、励起された前記発光体の誘導放出によって増大させ、前記光ファイバーの出口から出力が増大した前記軸対称偏光ビームを得ることを特徴とする光ビーム増幅方法が得られる。また、発光体を含み、シングルモードファイバーよりコア径が大きく、軸対称偏光ビームを伝播可能な光ファイバーと、軸対称偏光ビームを発生させて、前記光ファイバーのコアに導入する軸対称偏光ビーム光源と、前記発光体を励起するよう、外部から前記光ファイバーの内側クラッドおよび前記コアに光を集光させる励起レーザーとを有し、前記光ファイバーを伝播する前記軸対称偏光ビームの出力が、励起された前記発光体の誘導放出によって増大し、前記光ファイバーの出口から出力が増大した前記軸対称偏光ビームが得られるよう構成されていることを特徴とする光ビーム増幅装置が得られる。本発明によれば、偏光、位相、強度分布を変えることなく、出力の小さな軸対称偏光ビームの出力を増大させることを特徴とする光ビーム増幅方法および装置が得られる。
According to the present invention, viewed contains a light emitter, a core diameter of greater than a single mode fiber, the core of the possible optical fiber propagate axially symmetric polarized beam, is introduced axially symmetric polarized beam from the light source, the optical fiber from the outside By concentrating light on the inner cladding and the core of the light to excite the light emitter, thereby increasing the output of the axisymmetric polarized beam propagating through the optical fiber by stimulated emission of the excited light emitter , A light beam amplification method is obtained, characterized in that the axisymmetric polarized beam having an increased output is obtained from the exit of the optical fiber . Also, look containing a light emitter, a core diameter of greater than a single mode fiber, an optical fiber capable of propagating axially symmetric polarized beam, by generating an axisymmetric polarized beam, and axially symmetric polarization beam source to be introduced into the core of the optical fiber An excitation laser for condensing light from the outside to the inner cladding and the core of the optical fiber so as to excite the light emitter, and the output of the axisymmetric polarized beam propagating through the optical fiber is excited. A light beam amplifying apparatus is obtained, which is configured to obtain the axially symmetric polarized beam which is increased by stimulated emission of the illuminant and whose output is increased from the exit of the optical fiber . According to the present invention, it is possible to obtain a light beam amplification method and apparatus characterized by increasing the output of an axisymmetric polarized beam having a small output without changing the polarization, phase, and intensity distribution.

また、本発明によれば、前記軸対称偏光ビームが,連続波またはパルス波であることを特徴とする光ビーム増幅方法および光ビーム増幅装置が得られる。   In addition, according to the present invention, there can be obtained a light beam amplification method and a light beam amplification device characterized in that the axially symmetric polarized beam is a continuous wave or a pulse wave.

また、本発明によれば、前記軸対称偏光ビームが、単一または複数のモードであることを特徴とする光ビーム増幅方法および光ビーム増幅装置が得られる。   In addition, according to the present invention, there can be obtained a light beam amplification method and a light beam amplification device characterized in that the axially symmetric polarized beam is in a single mode or a plurality of modes.

また、本発明によれば、前記光ファイバーが単一または複数であること特徴とする光ビーム増幅方法および光ビーム増幅装置が得られる。   Further, according to the present invention, there can be obtained a light beam amplification method and a light beam amplification apparatus characterized in that the optical fiber is single or plural.

また、本発明によれば、前記光ファイバーの前記発光体が、前記軸対称偏光ビームが伝播するコアまたはクラッド、あるいは両方に含まれていることを特徴とする、光ビーム増幅方法および光ビーム増幅装置が得られる。   Further, according to the present invention, the light emitter of the optical fiber is included in a core or a clad in which the axially symmetric polarized beam propagates, or both, and a light beam amplification method and a light beam amplification device Is obtained.

また、本発明によれば、前記光ファイバーの前記発光体が、前記軸対称偏光ビームが伝播するコアの全部または一部に含まれていることを特徴とする、光ビーム増幅方法および光ビーム増幅装置が得られる。また、本発明によれば、前記光ファイバーの前記発光体の濃度が、前記コアの前記軸対称偏光ビームの強度が強い部分で高いことを特徴とする光ビーム増幅方法および光ビーム増幅装置が得られる。また、本発明によれば、前記光ファイバーの前記発光体が、エルビウムイオンおよびイッテルビウムイオンであることを特徴とする光ビーム増幅方法および光ビーム増幅装置が得られる。   According to the present invention, the light emitter of the optical fiber is included in all or part of the core through which the axially symmetric polarized beam propagates. Is obtained. In addition, according to the present invention, there is obtained a light beam amplification method and a light beam amplification device characterized in that the concentration of the illuminant of the optical fiber is high at a portion where the intensity of the axially symmetric polarized beam of the core is strong. . In addition, according to the present invention, there is obtained a light beam amplification method and a light beam amplification device, wherein the light emitters of the optical fiber are erbium ions and ytterbium ions.

本発明により、強度分布と偏光分布とを保ちながら軸対称偏光ビームの出力を増大することで、高出力を得ることができる光ビーム増幅方法および光ビーム増幅装置を提供することができる。また、レーザー加工に有効な高出力の軸対称偏光ビームを得ることができる。また、光ファイバーを用いるため、放熱が容易であり、コンパクトな装置とすることができる。さらに、目的に適した偏光を選択して増幅することにより、高効率なレーザー加工が可能となる。   According to the present invention, it is possible to provide a light beam amplification method and a light beam amplification apparatus capable of obtaining a high output by increasing the output of an axially symmetric polarized beam while maintaining the intensity distribution and the polarization distribution. In addition, a high-power axisymmetric polarized beam effective for laser processing can be obtained. Further, since an optical fiber is used, heat dissipation is easy and a compact device can be obtained. Furthermore, high-efficiency laser processing becomes possible by selecting and amplifying polarized light suitable for the purpose.

図1に、軸対称偏光ビームとして代表的な(a)径偏光(TM01モード)、(b)方位偏光(TEM01モード)、(c)ハイブリッドモード(HE21モード)ビームの、ビーム断面での偏光分布を示す。 Fig. 1 shows beam cross sections of (a) radial polarization (TM 01 mode), (b) azimuth polarization (TEM 01 mode), and (c) hybrid mode (HE 21 mode) beams as typical axisymmetric polarization beams. The polarization distribution of is shown.

図2は、軸対称偏光ビームの出力を増大する本発明の実施の形態の光ビーム増幅装置の一例である。光ファイバー5は、コア部分に発光体としてYbがドープされている。クラッド部分は二重構造になっており、内側のクラッド部分とコア部分とを励起光が透過する。励起レーザー1からの光は、波長選択ミラー2を通ってレンズ3によって、光ファイバー5の内側クラッドおよびコアに集光される。軸対称偏光ビームを発生させる軸対称偏光ビーム光源4からの光ビームは、波長選択ミラー2で反射され、レンズ3によって、光ファイバー5のコアに集光される。光ファイバー5を伝播する軸対称偏光ビームは、励起されたYbイオンの誘導放出によって出力が増大する。光ファイバー5として、LP01モードだけでなく、LP11モードも伝播できるものを選択している。一般には、シングルモードファイバーと呼ばれるLP01モードだけを伝播できる光ファイバーより、やや大きめのコア径を持つ光ファイバーを使用する。 FIG. 2 is an example of a light beam amplification apparatus according to an embodiment of the present invention that increases the output of an axially symmetric polarized beam. The optical fiber 5 has a core portion doped with Yb as a light emitter. The clad portion has a double structure, and the excitation light passes through the inner clad portion and the core portion. The light from the excitation laser 1 passes through the wavelength selection mirror 2 and is collected on the inner cladding and core of the optical fiber 5 by the lens 3. The light beam from the axially symmetric polarized beam light source 4 that generates the axially symmetric polarized beam is reflected by the wavelength selection mirror 2 and focused on the core of the optical fiber 5 by the lens 3. The output of the axially symmetric polarized beam propagating through the optical fiber 5 is increased by stimulated emission of excited Yb ions. As the optical fiber 5, one that can propagate not only the LP 01 mode but also the LP 11 mode is selected. In general, an optical fiber having a slightly larger core diameter is used than an optical fiber that can propagate only the LP 01 mode, which is called a single mode fiber.

図3は、光ファイバー5から出射された軸対称偏光ビームの強度分布の例である。この例では、光ファイバー5への入射光ビームは、図1(a)に示した、径偏光ビームである。図3(a)は全強度を表しており、中心が暗いドーナツ状の分布であることが分かる。図3(b)から(d)は、直線偏光板を通した後の強度分布であり、直線偏光板の向きを図3(b)〜(d)中の矢印で示してある。この時、入射光の出力は114mW、出射光の出力は172mWである。これより、光ファイバー5から出射されたビームが偏光および強度分布を保ったまま、出力が増大していることが分かる。   FIG. 3 is an example of the intensity distribution of the axially symmetric polarized beam emitted from the optical fiber 5. In this example, the incident light beam to the optical fiber 5 is a radially polarized beam shown in FIG. FIG. 3A shows the total intensity, and it can be seen that the distribution has a dark donut shape at the center. FIGS. 3B to 3D are intensity distributions after passing through the linearly polarizing plate, and the direction of the linearly polarizing plate is indicated by arrows in FIGS. 3B to 3D. At this time, the output of incident light is 114 mW, and the output of outgoing light is 172 mW. From this, it can be seen that the output of the beam emitted from the optical fiber 5 is increased while maintaining the polarization and the intensity distribution.

図3の例では増幅率が低いが、励起光の波長を発光体の吸収に一致させたり、励起光強度を強くしたりすることによって、増幅率は増大する。   Although the amplification factor is low in the example of FIG. 3, the amplification factor is increased by making the wavelength of the excitation light coincide with the absorption of the light emitter or increasing the excitation light intensity.

入射する軸対称偏光ビームは、連続波またはパルス波のいずれであっても、同様に出力は増大する。   Whether the incident axially symmetric polarized beam is a continuous wave or a pulse wave, the output is similarly increased.

入射する軸対称偏光ビームが、径偏光ビームや方位偏光ビームなどの内のひとつであっても、あるいはそれらの内の複数であっても、同様に出力は増大する。   Even if the incident axially symmetric polarized beam is one of a radially polarized beam, an azimuthally polarized beam, or a plurality of them, the output increases similarly.

図3で示したように、使用する光ファイバー5が一本の場合でも出力は増大するが、さらに複数の光ファイバーを用いて、連続的に増幅を行えば、出力はさらに増大する。   As shown in FIG. 3, the output increases even when only one optical fiber 5 is used. However, if the amplification is continuously performed using a plurality of optical fibers, the output further increases.

光ファイバー5に含まれる発光体は、クラッドに含まれていても、出力光は増大する。あるいは軸対称偏光ビームが伝播するコアおよびクラッドの両者に含まれていても良い。   Even if the light emitter included in the optical fiber 5 is included in the clad, the output light increases. Alternatively, it may be included in both the core and the clad in which the axially symmetric polarized beam propagates.

光ファイバー5に含まれる発光体は、軸対称偏光ビームが伝播するコアの一部に含まれていても出力光は増大する。例えば、図4に示すように、コア内の軸対称偏光ビームの強度が強い部分で発光体の濃度を高くなるようにすると、励起光を効率良く増幅に用いることができ、出力はさらに増大する。また、他の横モードの発振も抑制され、安定な軸対称偏光ビームの増幅が行なわれる。   Even if the light emitter included in the optical fiber 5 is included in a part of the core through which the axially symmetric polarized beam propagates, the output light increases. For example, as shown in FIG. 4, if the concentration of the illuminant is increased at a portion where the intensity of the axially symmetric polarized beam in the core is strong, the excitation light can be used efficiently for amplification and the output further increases. . In addition, oscillation of other transverse modes is suppressed, and a stable axisymmetric polarized beam is amplified.

光ファイバー5に含まれる発光体は、イッテルビウムイオンやエルビウムイオンでも良い。   The light emitter contained in the optical fiber 5 may be ytterbium ions or erbium ions.

本発明の実施の形態の光ビーム増幅装置の、軸対称偏光ビームとして代表的な(a)径偏光ビーム、(b)方位偏光ビーム、(c)ハイブリッドモードビームのビーム断面での偏光分布を示す分布図である。The polarization distribution in the beam cross section of (a) diameter polarization beam, (b) azimuth polarization beam, and (c) hybrid mode beam which are typical as an axially symmetric polarization beam of the light beam amplification apparatus of the embodiment of the present invention is shown. It is a distribution map. 本発明の実施の形態の光ビーム増幅装置を示す構成図である。It is a block diagram which shows the light beam amplifier of embodiment of this invention. 図2に示す光ビーム増幅装置の、径偏光ビームを光ファイバーに入射した時に出力されたビームの、ビーム断面での(a)全強度、(b)第1の向きの直線偏光板を通した後の強度分布、(c)第2の向きの直線偏光板を通した後の強度分布、(d)第3の向きの直線偏光板を通した後の強度分布を示す分布図である。The light beam amplification apparatus shown in FIG. 2 passes through a linearly polarizing plate of (a) full intensity and (b) first direction of a beam output when a radially polarized beam is incident on an optical fiber. (C) intensity distribution after passing through a linearly polarizing plate in a second direction, and (d) distribution diagram showing intensity distribution after passing through a linearly polarizing plate in a third direction. 図2に示す光ビーム増幅装置の、軸対称偏光ビームが伝播するコアの一部に発光体が含まれている場合の、(a)光ファイバーのコア断面図、(b)コア部分の濃度分布を示すグラフである。In the light beam amplifying apparatus shown in FIG. 2, (a) a cross-sectional view of the core of the optical fiber and (b) a concentration distribution of the core part when the luminous body is included in a part of the core through which the axially symmetric polarized beam propagates. It is a graph to show.

符号の説明Explanation of symbols

1 励起レーザー
2 波長選択ミラー
3 レンズ
4 軸対称偏光ビーム光源
5 光ファイバー
DESCRIPTION OF SYMBOLS 1 Excitation laser 2 Wavelength selection mirror 3 Lens 4 Axisymmetric polarization beam light source 5 Optical fiber

Claims (16)

発光体を含み、シングルモードファイバーよりコア径が大きく、軸対称偏光ビームを伝播可能な光ファイバーのコアに、光源からの軸対称偏光ビームを導入するとともに、外部から前記光ファイバーの内側クラッドおよび前記コアに光を集光させて前記発光体を励起させることにより、前記光ファイバーを伝播する前記軸対称偏光ビームの出力を、励起された前記発光体の誘導放出によって増大させ、前記光ファイバーの出口から出力が増大した前記軸対称偏光ビームを得ることを特徴とする光ビーム増幅方法。
Look containing a light emitter, a core diameter of greater than a single mode fiber, the core of the possible optical fiber propagate axially symmetric polarized beam, it is introduced axially symmetric polarized beam from the light source, the inner cladding and the core of the optical fiber from the outside The output of the axially symmetric polarized beam propagating through the optical fiber is increased by stimulated emission of the excited light emitter, and the output from the exit of the optical fiber is increased. A method of amplifying a light beam, characterized in that an increased axially symmetric polarized beam is obtained .
前記軸対称偏光ビームが、連続波またはパルス波であることを特徴とする請求項1記載の光ビーム増幅方法。   2. The light beam amplification method according to claim 1, wherein the axially symmetric polarized beam is a continuous wave or a pulse wave. 前記軸対称偏光ビームが、単一または複数のモードであることを特徴とする請求項1または2記載の光ビーム増幅方法。   3. The light beam amplification method according to claim 1, wherein the axially symmetric polarized beam is a single mode or a plurality of modes. 前記光ファイバーが単一または複数であることを特徴とする請求項1、2または3記載の光ビーム増幅方法。   4. The light beam amplification method according to claim 1, 2, or 3, wherein the optical fiber is single or plural. 前記光ファイバーの前記発光体が、前記軸対称偏光ビームが伝播するコアまたはクラッド、あるいは両方に含まれていることを特徴とする請求項1、2、3または4記載の光ビーム増幅方法。   5. The light beam amplification method according to claim 1, wherein the light emitter of the optical fiber is included in a core or a clad in which the axisymmetric polarized beam propagates, or both. 前記光ファイバーの前記発光体が、前記軸対称偏光ビームが伝播するコアの全部または一部に含まれていることを特徴とする請求項1、2、3、4または5記載の光ビーム増幅方法。   6. The light beam amplification method according to claim 1, wherein the light emitter of the optical fiber is included in all or part of a core through which the axially symmetric polarized beam propagates. 前記光ファイバーの前記発光体の濃度が、前記コアの前記軸対称偏光ビームの強度が強い部分で高いことを特徴とする請求項6記載の光ビーム増幅方法。   The light beam amplification method according to claim 6, wherein the concentration of the light emitter of the optical fiber is high in a portion where the intensity of the axially symmetric polarized beam of the core is high. 前記光ファイバーの前記発光体が、エルビウムイオンおよびイッテルビウムイオンであることを特徴とする請求項1、2、3、4、5、6または7記載の光ビーム増幅方法。   8. The light beam amplification method according to claim 1, wherein the light emitters of the optical fiber are erbium ions and ytterbium ions. 発光体を含み、シングルモードファイバーよりコア径が大きく、軸対称偏光ビームを伝播可能な光ファイバーと、
軸対称偏光ビームを発生させて、前記光ファイバーのコアに導入する軸対称偏光ビーム光源と、
前記発光体を励起するよう、外部から前記光ファイバーの内側クラッドおよび前記コアに光を集光させる励起レーザーとを有し、
前記光ファイバーを伝播する前記軸対称偏光ビームの出力が、励起された前記発光体の誘導放出によって増大し、前記光ファイバーの出口から出力が増大した前記軸対称偏光ビームが得られるよう構成されていることを
特徴とする光ビーム増幅装置。
Look containing a light emitter, a core diameter of greater than a single mode fiber, an optical fiber capable of propagating axially symmetric polarized beam,
An axially symmetric polarized beam light source that generates an axially symmetric polarized beam and introduces it into the core of the optical fiber;
An excitation laser for condensing light from the outside to the inner cladding and the core of the optical fiber so as to excite the illuminant,
The output of the axially symmetric polarized beam propagating through the optical fiber is increased by stimulated emission of the excited light emitter, and the axially symmetric polarized beam having an increased output is obtained from the exit of the optical fiber . An optical beam amplification device characterized by
前記軸対称偏光ビームが、連続波またはパルス波であることを特徴とする請求項9記載の光ビーム増幅装置。   The light beam amplification apparatus according to claim 9, wherein the axially symmetric polarized beam is a continuous wave or a pulse wave. 前記軸対称偏光ビームが、単一または複数のモードであることを特徴とする請求項9または10記載の光ビーム増幅装置。   11. The light beam amplifying apparatus according to claim 9, wherein the axially symmetric polarized beam has a single mode or a plurality of modes. 前記光ファイバーが単一または複数であることを特徴とする請求項9、10または11記載の光ビーム増幅装置。   12. The light beam amplifying apparatus according to claim 9, 10 or 11, wherein the optical fiber is single or plural. 前記光ファイバーの前記発光体が、前記軸対称偏光ビームが伝播するコアまたはクラッド、あるいは両方に含まれていることを特徴とする請求項9、10、11または12記載の光ビーム増幅装置。   13. The light beam amplifying apparatus according to claim 9, 10, 11 or 12, wherein the light emitter of the optical fiber is included in a core or a clad in which the axially symmetric polarized beam propagates, or both. 前記光ファイバーの前記発光体が、前記軸対称偏光ビームが伝播するコアの全部または一部に含まれていることを特徴とする請求項9、10、11、12または13記載の光ビーム増幅装置。   The light beam amplifying apparatus according to claim 9, 10, 11, 12, or 13, wherein the light emitter of the optical fiber is included in all or part of a core through which the axially symmetric polarized beam propagates. 前記光ファイバーの前記発光体の濃度が、前記コアの前記軸対称偏光ビームの強度が強い部分で高いことを特徴とする請求項14記載の光ビーム増幅装置。   15. The light beam amplifying apparatus according to claim 14, wherein the concentration of the light emitter of the optical fiber is high in a portion where the intensity of the axially symmetric polarized beam of the core is high. 前記光ファイバーの前記発光体が、エルビウムイオンおよびイッテルビウムイオンであることを特徴とする請求項9、10、11、12、13、14または15記載の光ビーム増幅装置。
16. The light beam amplifying apparatus according to claim 9, wherein the light emitters of the optical fiber are erbium ions and ytterbium ions.
JP2008307852A 2008-12-02 2008-12-02 Light beam amplification method and light beam amplification apparatus Expired - Fee Related JP5299959B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008307852A JP5299959B2 (en) 2008-12-02 2008-12-02 Light beam amplification method and light beam amplification apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008307852A JP5299959B2 (en) 2008-12-02 2008-12-02 Light beam amplification method and light beam amplification apparatus

Publications (2)

Publication Number Publication Date
JP2010135423A JP2010135423A (en) 2010-06-17
JP5299959B2 true JP5299959B2 (en) 2013-09-25

Family

ID=42346444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008307852A Expired - Fee Related JP5299959B2 (en) 2008-12-02 2008-12-02 Light beam amplification method and light beam amplification apparatus

Country Status (1)

Country Link
JP (1) JP5299959B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014106432A (en) * 2012-11-29 2014-06-09 Tohoku Univ Imaging method, and microscope

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1586144B1 (en) * 2003-01-24 2016-05-11 Trumpf, Inc. Fiber laser
US7177510B2 (en) * 2004-08-09 2007-02-13 Fitel Usa Corp. Polarization insensitive microbend fiber gratings and devices using the same
JP2007258261A (en) * 2006-03-20 2007-10-04 Kyoto Univ Two-dimensional photonic crystal surface-emitting laser
JP2007258260A (en) * 2006-03-20 2007-10-04 Kyoto Univ Two-dimensional photonic crystal surface-emitting laser
CN101688984B (en) * 2007-02-05 2013-07-17 Ofs菲特尔有限责任公司 Pumping in a higher-order mode that is different from a signal mode

Also Published As

Publication number Publication date
JP2010135423A (en) 2010-06-17

Similar Documents

Publication Publication Date Title
JP4784406B2 (en) Fiber laser apparatus and laser processing method
Albach et al. Influence of ASE on the gain distribution in large size, high gain Yb 3+: YAG slabs
JP2007250951A (en) Double-clad fiber and fiber laser provided therewith
Dietrich et al. Investigations on ring-shaped pumping distributions for the generation of beams with radial polarization in an Yb: YAG thin-disk laser
US9166358B2 (en) Systems and methods for lasing from a molecular gas
JP5299959B2 (en) Light beam amplification method and light beam amplification apparatus
JP2004296671A (en) Solid-state laser device
JP2005039093A (en) Laser device
JPWO2006098313A1 (en) Optical amplifier and laser device
JP6811898B1 (en) Plane waveguide type amplifier and laser radar device
JP4978016B2 (en) Optical fiber laser
Jefferson-Brain et al. Amplification of a radially polarized beam in a thermally guiding ytterbium-doped fiber rod
JP2009212184A (en) Fiber laser device
JPH0936462A (en) Solid state laser and pumping method therefor
JP2007123594A (en) Optical-fiber optical amplifier and optical-fiber laser apparatus using same
JP2006203117A (en) Solid-state laser device
JP4869738B2 (en) Fiber laser output stabilization method and fiber laser
KR102489611B1 (en) High power laser oscillator with eye-safe wavelength and weapon comprising the same
JP6690869B2 (en) Planar waveguide and laser amplifier
JP6919287B2 (en) Solid-state laser device
JP6267837B2 (en) Laser equipment
JPH08307000A (en) Rare-earth ion-added short-wavelength laser device, rare-earth ion-added optical amplifier, and rare-earth ion-added wavelength converter
JPH11233863A (en) Light amplifier
JPH08306997A (en) Solid-state laser device
Chubachi et al. TM01 mode operation of an Yb-doped double-clad fiber amplifier

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111007

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20111011

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130123

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130612

R150 Certificate of patent or registration of utility model

Ref document number: 5299959

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees