JP5294384B2 - Magnesium alloy pipe bending method - Google Patents

Magnesium alloy pipe bending method Download PDF

Info

Publication number
JP5294384B2
JP5294384B2 JP2008028907A JP2008028907A JP5294384B2 JP 5294384 B2 JP5294384 B2 JP 5294384B2 JP 2008028907 A JP2008028907 A JP 2008028907A JP 2008028907 A JP2008028907 A JP 2008028907A JP 5294384 B2 JP5294384 B2 JP 5294384B2
Authority
JP
Japan
Prior art keywords
bending
magnesium alloy
angle
tube
radius
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008028907A
Other languages
Japanese (ja)
Other versions
JP2009183999A (en
Inventor
元次郎 本保
国男 船見
Original Assignee
学校法人千葉工業大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人千葉工業大学 filed Critical 学校法人千葉工業大学
Priority to JP2008028907A priority Critical patent/JP5294384B2/en
Publication of JP2009183999A publication Critical patent/JP2009183999A/en
Application granted granted Critical
Publication of JP5294384B2 publication Critical patent/JP5294384B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of bending a magnesium alloy tubular material having a round, triangular, square, pentagonal, hexagonal, polygonal, semi-circular or elliptic cross section without heating, at a large angle and a small radius. <P>SOLUTION: In a winding and bending of the magnesium alloy pipe P, the bending is intermittently progressed by alternately combining a small-angle bending step in which the bending angle is &le;10&deg; and an idle step of 3-120 s after that. For elastoplastical uneven strain which is generated and increased in the bending part when the bending is progressed, stress relaxation of the uneven strain is performed by progressing plastic deformation caused by creep during idle time by providing the idle time while bending stress is applied without progressing the bending after the small-angle bending. <P>COPYRIGHT: (C)2009,JPO&amp;INPIT

Description

この発明は、三角、四角、五角、六角、多角、丸、半円、楕円及びそれらの組み合わせによる各種断面形状を有するマグネシウム合金製の管材を巻き付け曲げ加工により曲げ加工する方法に関する。   The present invention relates to a method of bending a magnesium alloy pipe material having various cross-sectional shapes of triangle, square, pentagon, hexagon, polygon, circle, semicircle, ellipse and combinations thereof by winding and bending.
従来、各種断面形状を有する一般的な金属や合金製の管材の曲げ加工に関しては、ベンダーを用い、当該管材の外形に対応する窪み外周を有する曲げ内型に、管を押し付けながら毎秒5°〜90°の速さで連続的に巻き付ける回転引き曲げ加工法によっている。
一方、マグネシウム合金からなる板材を、200℃以上の加工温度に加熱した状態において、順次小さな曲げ半径に設定した曲げ加工をプレスにより少なくとも2回繰り返して、所定の曲げ半径に曲げ加工する工法が特許文献1に記載されている。
特開2001−71037
Conventionally, regarding bending of general metal or alloy pipe materials having various cross-sectional shapes, using a bender, a bending inner mold having a hollow outer periphery corresponding to the outer shape of the pipe material is pressed at 5 ° per second while pressing the pipe. It is based on a rotational draw bending method in which the wire is continuously wound at a speed of 90 °.
On the other hand, in a state in which a plate made of a magnesium alloy is heated to a processing temperature of 200 ° C. or higher, a method of bending to a predetermined bending radius is performed by repeatedly bending at a minimum bending radius at least twice with a press. It is described in Document 1.
JP 2001-71037 A
しかし、マグネシウム合金は、最密六方構造からなり常温では底面すべりを主な塑性変形機構とし、難加工性を持つ。すなわち、マグネシウム合金製の管材を上記従来の曲げ加工法で加工すると、曲げ部分に曲げ変形量の増大に追随した十分な塑性変形が起こりにくく、弾塑性的な不均一歪みが生じるため、座屈や破断が発生しやすい。それを防止するためには、曲げ半径を大きくしたり曲げ角度を低くしたりしなければならないという大きな問題があった。   However, a magnesium alloy has a close-packed hexagonal structure, and has a bottom surface slip as the main plastic deformation mechanism at room temperature, and has difficult workability. That is, when a magnesium alloy pipe is processed by the conventional bending method described above, sufficient plastic deformation that follows the increase in the amount of bending deformation does not easily occur in the bent portion, and elasto-plastic non-uniform strain occurs. And breakage easily occurs. In order to prevent this, there is a big problem that the bending radius must be increased or the bending angle must be decreased.
このように、延性の乏しいマグネシウム合金製管材において、曲げ角度を高く、あるいは曲げ半径を小さくするために、管材の全体又は部分を加熱し垂面すべりや柱面すべりを活性化させることにより軟化させる方法を用いた場合、マグネシウム合金が、大気中で酸化しやすく、また合金組成によっては加熱軟化が発生するし、加工硬化による管材の強化も望めないという問題がある。   In this way, in a magnesium alloy pipe material with poor ductility, in order to increase the bending angle or reduce the bending radius, the whole or a part of the pipe material is heated to activate the vertical slide or the column surface slide, thereby softening. When the method is used, there is a problem that the magnesium alloy is easily oxidized in the atmosphere, and heat softening occurs depending on the alloy composition, and the reinforcement of the tube material by work hardening cannot be expected.
実用金属中で最軽量であるマグネシウム合金製の管材は、軽量性やその機械的性質から自動車用のパイプフレームやパイプ椅子等の多くの分野で利用が期待されているため、曲げ角度を高く、曲げ半径を小さく加工する方法の開発が強く求められている。   The lightest magnesium alloy pipe material in practical metals is expected to be used in many fields such as automobile pipe frames and pipe chairs because of its light weight and mechanical properties. There is a strong demand for the development of a method for reducing the bending radius.
したがって、この本発明は、マグネシウム合金製の管材を、加熱することなく、高角度、小半径で曲げ加工する新しい方法を提供することを目的とする。   Accordingly, an object of the present invention is to provide a new method for bending a magnesium alloy pipe material at a high angle and a small radius without heating.
この発明においては、上記課題を解決するため、マグネシウム合金管の巻き付け曲げ加工において、曲げ角度10°以下の小角度曲げ加工工程と、その後の3〜120秒の休止工程とを交互に組み合わせ、間歇的に曲げ加工を進行させる方法を採用した。   In the present invention, in order to solve the above-mentioned problem, in the winding bending process of the magnesium alloy tube, a small angle bending process with a bending angle of 10 ° or less and a rest process for 3 to 120 seconds are combined alternately, The method of progressive bending was adopted.
この発明によれば、マグネシウム合金製管材を、加熱等による酸化、脆弱化を生じさせることなく、従来より20%以上の高角度で小半径に曲げ加工することができる。   According to the present invention, a magnesium alloy pipe material can be bent to a small radius at a high angle of 20% or more than before without causing oxidation or embrittlement due to heating or the like.
本発明の間歇的曲げ加工法は、断面形状が丸、三角、四角、五角、六角、多角、半円、楕円形のマグネシウムを主成分とする合金製の管材に適用できる。   The intermittent bending method of the present invention can be applied to a tube made of an alloy having magnesium as a main component and having a cross-sectional shape of a circle, triangle, square, pentagon, hexagon, polygon, semicircle, or ellipse.
以下の実施形態において加工するマグネシウム合金管は、一般的に用いられている押出装置による押出し加工により製造されるものである。以下、工業的利用の多い押出加工丸管と四角管を例に説明するが、他の形状や他の製法による異形断面形状の管材の加工にも本発明を適用できる。   The magnesium alloy pipe processed in the following embodiments is manufactured by an extrusion process using a generally used extrusion apparatus. Hereinafter, an extruded round tube and a square tube, which are often used industrially, will be described as examples. However, the present invention can also be applied to processing a pipe having an irregular cross-sectional shape by another shape or another manufacturing method.
図1は、マグネシウム合金製の丸管材を、一般にベンダー(曲げ機)と称される装置を用いて、回転引き曲げ加工する工程を模式的に示した図である。ベンダーの曲げ内型1に管材Pをセット後、掴み型(クランプ)2と押え型(プレッシャー)3を押し付ける(図1(A))。次に、管材Pを固定したまま、掴み型2が内型1の回転と供に回転し、管材Pの曲げ加工を行う(図1(B))。内型1は、丸型管材Pの外面形状に沿った凹みを持つ形状となっている。これで曲げ加工時に管材Pの断面形状が変形するのを防止している。   FIG. 1 is a view schematically showing a process of rotating and bending a round tube material made of a magnesium alloy using an apparatus generally called a bender (bending machine). After the pipe P is set on the bending inner mold 1 of the bender, a gripping mold (clamp) 2 and a presser mold (pressure) 3 are pressed (FIG. 1A). Next, the gripping mold 2 rotates together with the rotation of the inner mold 1 while the tube material P is fixed, and the tube material P is bent (FIG. 1B). The inner mold 1 has a shape having a recess along the outer surface shape of the round tube P. This prevents the cross-sectional shape of the pipe material P from being deformed during bending.
本発明の間歇的曲げ加工法では、上記の曲げ加工装置によってマグネシウム合金製の丸管材の加工限界(合金組成により異なる)の5%〜50%の曲げ加工(曲げ角度10°以下)を付加し、その時点で曲げ加工装置を停止させる。その後、その状態を保持しつつ3秒から120秒(合金組成により異なる)の休止時間を置く。この間に不均一歪みが緩和される。休止時間経過後、さらに丸管材の加工限界の5%から50%の曲げ加工を付加し、また同様の休止時間を置く。この操作を所望の曲げ角度まで繰り返し、加工が完了する。これにより、高角度及び小半径の曲げ加工が可能となる。   In the intermittent bending method of the present invention, a bending process (bending angle of 10 ° or less) of 5% to 50% of the processing limit (depending on the alloy composition) of the magnesium alloy round tube material is added by the above bending apparatus. At that time, the bending apparatus is stopped. Thereafter, a rest period of 3 to 120 seconds (depending on the alloy composition) is set while maintaining the state. During this time, the non-uniform distortion is alleviated. After the downtime, 5% to 50% of the bending limit of the round tube material is added, and the same downtime is set. This operation is repeated up to a desired bending angle to complete the processing. Thereby, the bending process of a high angle and a small radius is attained.
すなわち、曲げ加工進行時に曲げ加工部に発生し増大する弾塑性的な不均一歪みについて、小角度曲げ加工後に曲げ加工を進行させずに曲げ応力を加えたまま休止時間を設けることにより、休止時間中にクリープ現象による塑性変形を進行させ、不均一歪みの応力緩和を行い、さらに応力緩和後に、次段階の小角度曲げ加工と所定時間の休止を順次行う。   In other words, with regard to elasto-plastic non-uniform distortion that occurs and increases in the bent portion during bending processing, the down time is provided by applying the bending stress without applying the bending processing after the small-angle bending processing. The plastic deformation due to the creep phenomenon is advanced to relieve the stress of the nonuniform strain, and after the stress relieving, the subsequent small-angle bending process and the pause for a predetermined time are sequentially performed.
次に、実施例と比較例について説明する。
(実施例1)
Next, examples and comparative examples will be described.
Example 1
押出し加工により製造されたAZ31マグネシウム合金製の直径25mm、厚さ2mm、長さ1mの丸管をベンダーにセット後、室温25℃において曲率半径60mmの曲げ内型1で、1回当りの曲げ角度5°、休止時間10秒の工程を繰り返して曲げ加工を行ったところ、曲げ角度50°においても曲げ内側面に座屈は発生しなかった。さらに加工を続けた結果、曲げ角度60°において小さい座屈の発生が見られた。
(比較例1)
A round tube with a diameter of 25 mm, thickness of 2 mm, and length of 1 m made of extruded AZ31 magnesium alloy is set in a bender, and then bent at a room temperature of 25 ° C with a bending inner die 1 of 60 mm in radius of bending per round. When bending was performed by repeating the process of 5 ° and rest time of 10 seconds, no buckling occurred on the inner surface of the bending even at a bending angle of 50 °. As a result of further processing, small buckling was observed at a bending angle of 60 °.
(Comparative Example 1)
これに対し、比較例として、同様の丸管を曲げ速度毎秒20度で連続的に曲げ加工を行ったところ、曲げ角度44°で曲げ内側面に座屈を生じた。さらに連続して曲げ加工を続けたところ、曲げ角度60度において管が完全に破断した。   On the other hand, as a comparative example, when a similar round tube was continuously bent at a bending speed of 20 degrees per second, a bending inner surface was buckled at a bending angle of 44 degrees. When the bending process was continued further, the tube was completely broken at a bending angle of 60 degrees.
(実施例2) (Example 2)
押出し加工により製造されたAZ61マグネシウム合金製の直径25mm、厚さ2mm、長さ1mの丸管をベンダーにセット後、室温25℃において曲率半径60mmの曲げ内型1で、1回当りの曲げ角度5°、休止時間20秒の工程を繰り返して曲げ加工を行ったところ、曲げ角度90°においても曲げ内側面に座屈は発生しなかった。さらに加工を続けた結果、曲げ角度120°においても座屈の発生が見られなかった。
(比較例2)
A round tube of 25 mm in diameter, 2 mm in thickness and 1 m in length made of extruded AZ61 magnesium alloy is set in a bender and then bent at a room temperature of 25 ° C. When the bending process was repeated by repeating the process of 5 ° and the rest time of 20 seconds, no buckling occurred on the inner surface of the bending even at a bending angle of 90 °. As a result of further processing, no buckling was observed even at a bending angle of 120 °.
(Comparative Example 2)
これに対し、比較例として、同様の丸管を曲げ速度毎秒20度で連続的に曲げ加工を行ったところ、曲げ角度63°で曲げ内側面に座屈を生じた。さらに連続して曲げ加工を続けたところ、曲げ角度90度において管が完全に破断した。   On the other hand, as a comparative example, when a similar round tube was continuously bent at a bending speed of 20 degrees per second, a bending inner surface was buckled at a bending angle of 63 degrees. When the bending process was continued further, the tube was completely broken at a bending angle of 90 degrees.
(実施例3) (Example 3)
押出し加工により製造されたZK60マグネシウム合金製の直径25mm、厚さ2mm、長さ1mの丸管をベンダーにセット後、室温25℃において曲率半径60mmの曲げ内型1で、1回当りの曲げ角度3°、休止時間60秒の工程を繰り返して曲げ加工を行ったところ、曲げ角度30°においても曲げ外側面に亀裂は発生しなかった。
(比較例3)
A round tube with a diameter of 25mm, thickness of 2mm, and length of 1m made of ZK60 magnesium alloy manufactured by extrusion is set in a bender, and then bent at a room temperature of 25 ° C with a bending radius of 60mm and bending angle per time When the bending process was repeated by repeating the process of 3 ° and the rest time of 60 seconds, no crack was generated on the outer surface of the bending even at a bending angle of 30 °.
(Comparative Example 3)
これに対し、比較例として、同様の丸管を曲げ速度毎秒20度で連続的に曲げ加工を行ったところ、曲げ角度17°で曲げ外側面に亀裂を生じた。さらに連続して曲げ加工を続けたところ、曲げ角度30°において管が完全に破断した。   On the other hand, as a comparative example, when a similar round tube was continuously bent at a bending speed of 20 degrees per second, a crack was generated on the outer surface of the bending at a bending angle of 17 degrees. When the bending process was continued further, the tube was completely broken at a bending angle of 30 °.
(実施例4) Example 4
押出し加工により製造されたM1マグネシウム合金製の直径25mm、厚さ2mm、長さ1mの丸管をベンダーにセット後、室温25℃において曲率半径60mmの曲げ内型1で、1回当りの曲げ角度3°、休止時間120秒の工程を繰り返して曲げ加工を行ったところ、曲げ角度30°においても曲げ外側面に亀裂は発生しなかった。
(比較例4)
A round tube of 25 mm in diameter, 2 mm in thickness and 1 m in length made of extruded M1 magnesium alloy is set in a bender and then bent at a room temperature of 25 ° C. When the bending process was repeated by repeating the process of 3 ° and rest time of 120 seconds, no crack was generated on the outer surface of the bending even at a bending angle of 30 °.
(Comparative Example 4)
これに対し、比較例として、同様の丸管を曲げ速度毎秒20度で連続的に曲げ加工を行ったところ、曲げ角度18°で曲げ外側面に亀裂を生じた。さらに連続して曲げ加工を続けたところ、曲げ角度30°において管が完全に破断した。   On the other hand, as a comparative example, when a similar round tube was continuously bent at a bending speed of 20 degrees per second, a crack was generated on the outer surface of the bending at a bending angle of 18 degrees. When the bending process was continued further, the tube was completely broken at a bending angle of 30 °.
(実施例5) (Example 5)
押出し加工により製造されたAMCa60マグネシウム合金製の一辺25mm、厚さ2mm、長さ1mの四角管について、加熱温度100℃において、管の曲げ内面が接する曲げ内型1(曲率半径60mm)の面に1.5mmの連続的な凸部を設けたベンダーにセット後、1回当りの曲げ角度3°、休止時間120秒の工程を繰り返して曲げ加工を行ったところ、曲げ角度90°においても曲げ外側面に亀裂は発生しなかった。さらに加工を続けた結果、曲げ角度180°においても亀裂の発生が見られなかった。
(比較例5)
For a square tube of 25mm side, 2mm thickness, and 1m length made of AMCa60 magnesium alloy manufactured by extrusion, the surface of the bending inner mold 1 (curvature radius 60mm) is in contact with the bending inner surface of the tube at a heating temperature of 100 ° C. After setting on a bender with 1.5 mm continuous protrusions, bending was performed by repeating the process with a bending angle of 3 ° per one time and a rest time of 120 seconds. There were no cracks on the sides. As a result of further processing, no cracks were observed even at a bending angle of 180 °.
(Comparative Example 5)
これに対し、比較例として、同様の四角管を曲げ速度毎秒20度で連続的に曲げ加工を行ったところ、曲げ角度55°で曲げ外側面に亀裂を生じた。   On the other hand, as a comparative example, when a similar square tube was continuously bent at a bending speed of 20 degrees per second, a crack was generated on the outer surface of the bend at a bending angle of 55 degrees.
マグネシウム合金製の丸管材を回転引き曲げ加工する工程を模式的に示した図である。It is the figure which showed typically the process of carrying out the rotation drawing bending process of the round pipe material made from a magnesium alloy.
符号の説明Explanation of symbols
1 内型
2 掴み型(クランプ)
3 押え型(プレッシャー)
P 管材
1 Inner mold 2 Grasp type (clamp)
3 Presser type (pressure)
P pipe material

Claims (2)

  1. 直径25mm、厚さ2mmのマグネシウム合金製の丸管材を常温にて曲率半径60mmの曲げ内型で巻き付け曲げ加工する方法であって、曲げ角度10°以下の小角度曲げ加工工程と、その後の曲げ応力負荷をかけたままの3〜120秒の休止工程とを交互に組み合わせ、間歇的に曲げ加工を進行させることを特徴とするマグネシウム合金管の曲げ加工方法。   This is a method of winding and bending a round tube made of a magnesium alloy with a diameter of 25 mm and a thickness of 2 mm with a bending inner mold having a radius of curvature of 60 mm at room temperature, a small angle bending process with a bending angle of 10 ° or less, and subsequent bending A bending method for a magnesium alloy tube, wherein a bending process is intermittently advanced by alternately combining a resting process of 3 to 120 seconds while applying a stress load.
  2. 一辺25mm、厚さ2mmのマグネシウム合金製の四角管材を加熱温度100℃にて曲率半径60mmの曲げ内型で巻き付け曲げ加工する方法であって、曲げ角度10°以下の小角度曲げ加工工程と、その後の曲げ応力負荷をかけたままの3〜120秒の休止工程とを交互に組み合わせ、間歇的に曲げ加工を進行させることを特徴とするマグネシウム合金管の曲げ加工方法。   A method of winding and bending a rectangular tube made of magnesium alloy having a side of 25 mm and a thickness of 2 mm with a bending inner mold having a radius of curvature of 60 mm at a heating temperature of 100 ° C. A method of bending a magnesium alloy tube, wherein the bending process is intermittently performed by alternately combining a resting process of 3 to 120 seconds with a subsequent bending stress applied.
JP2008028907A 2008-02-08 2008-02-08 Magnesium alloy pipe bending method Active JP5294384B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008028907A JP5294384B2 (en) 2008-02-08 2008-02-08 Magnesium alloy pipe bending method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008028907A JP5294384B2 (en) 2008-02-08 2008-02-08 Magnesium alloy pipe bending method

Publications (2)

Publication Number Publication Date
JP2009183999A JP2009183999A (en) 2009-08-20
JP5294384B2 true JP5294384B2 (en) 2013-09-18

Family

ID=41067807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008028907A Active JP5294384B2 (en) 2008-02-08 2008-02-08 Magnesium alloy pipe bending method

Country Status (1)

Country Link
JP (1) JP5294384B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109396231A (en) * 2018-11-15 2019-03-01 太原科技大学 A kind of deep camber centreless magnesium alloy pipe bending forming technique

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102211120B (en) * 2010-04-09 2013-04-17 中国科学院金属研究所 Tensile bending forming process of complex section bar
JP2013081988A (en) * 2011-10-11 2013-05-09 Fuji Seiko Kk Method for bending magnesium-based pipe
CN102886391B (en) * 2012-11-06 2014-11-05 中国矿业大学 Method for preparing small-aperture magnesium alloy pipe fitting
CN104741422B (en) * 2015-03-24 2017-08-04 古交市银河镁业有限公司 A kind of wide cut flat magnesium alloy pipe it is narrow to bending apparatus and method
CN106825151A (en) * 2017-03-30 2017-06-13 广东工业大学 A kind of member bending device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109396231A (en) * 2018-11-15 2019-03-01 太原科技大学 A kind of deep camber centreless magnesium alloy pipe bending forming technique

Also Published As

Publication number Publication date
JP2009183999A (en) 2009-08-20

Similar Documents

Publication Publication Date Title
CN104191166B (en) A kind of roll-forming method of aluminium alloy height cylinder thin-walled ring
JP4858624B2 (en) Torsion beam manufacturing method and torsion beam
CN101737565B (en) Method for manufacturing copper-aluminum composite tube
KR101593930B1 (en) Method for bending pipes rods profiled sections and similar blanks and corresponding device
TW200304951A (en) Magnesium alloy pipe and method for producing the same
CN103894436A (en) Reciprocating extruding device and machining method of reinforced magnesium alloy tube
US8474292B2 (en) Straightening a tube on an expander
US10449995B2 (en) Hollow rack bar and method of manufacturing the hollow rack bar
CN102189143B (en) ECAE (equal channel angular extrusion) based preparation method of ultrafine crystal NiTi shape memory alloy tube
JP4696980B2 (en) Hollow material manufacturing apparatus and hollow material manufacturing method
JP2007090406A (en) Producing facility for round steel tube
US20040139776A1 (en) Bending processor of pipe
CA2939657C (en) Systems and methods for extruding tubes
JP2010179368A (en) Method of manufacturing final product formed into predetermined outer peripheral shape from sheet metal
AU2009254199A8 (en) Method for producing a large steel tube
CN104339124A (en) Multi-curvature forming method for stainless steel cylinder
ES2721599T3 (en) Production method of an internally fluted steel tube and internally fluted steel tube
JP2012236225A (en) Method and device for manufacturing inner helically grooved pipe
EP1884296B1 (en) Method of manufacturing ultrathin wall metallic tube by cold working method
JP2009172657A (en) High-performance magnesium alloy member and method of manufacturing it
CN104191167A (en) Forging forming method for titanium alloy thin-wall special-shaped ring
JP2018530430A (en) Combined processing machine and processing method for processing processed wire
JP5249147B2 (en) Curling method
JP2001071037A (en) Press working method for magnesium alloy and press working device
JP2015508334A (en) Torsional high strain processing method for conical metal pipes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130522

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130607

R150 Certificate of patent or registration of utility model

Ref document number: 5294384

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250