JP5293989B2 - Small liquid spray equipment - Google Patents

Small liquid spray equipment Download PDF

Info

Publication number
JP5293989B2
JP5293989B2 JP2007214144A JP2007214144A JP5293989B2 JP 5293989 B2 JP5293989 B2 JP 5293989B2 JP 2007214144 A JP2007214144 A JP 2007214144A JP 2007214144 A JP2007214144 A JP 2007214144A JP 5293989 B2 JP5293989 B2 JP 5293989B2
Authority
JP
Japan
Prior art keywords
nozzle
needle
liquid
nozzle hole
tip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007214144A
Other languages
Japanese (ja)
Other versions
JP2009028701A (en
Inventor
隆治 島田
Original Assignee
ノードソン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ノードソン株式会社 filed Critical ノードソン株式会社
Priority to JP2007214144A priority Critical patent/JP5293989B2/en
Priority to DE102008033732A priority patent/DE102008033732A1/en
Priority to US12/177,429 priority patent/US7681808B2/en
Priority to KR1020080071578A priority patent/KR20090010923A/en
Priority to TW097128180A priority patent/TWI494168B/en
Priority to CN2008101343215A priority patent/CN101352705B/en
Publication of JP2009028701A publication Critical patent/JP2009028701A/en
Application granted granted Critical
Publication of JP5293989B2 publication Critical patent/JP5293989B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/06Spray pistols; Apparatus for discharge with at least one outlet orifice surrounding another approximately in the same plane
    • B05B7/062Spray pistols; Apparatus for discharge with at least one outlet orifice surrounding another approximately in the same plane with only one liquid outlet and at least one gas outlet
    • B05B7/066Spray pistols; Apparatus for discharge with at least one outlet orifice surrounding another approximately in the same plane with only one liquid outlet and at least one gas outlet with an inner liquid outlet surrounded by at least one annular gas outlet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/08Spray pistols; Apparatus for discharge with separate outlet orifices, e.g. to form parallel jets, i.e. the axis of the jets being parallel, to form intersecting jets, i.e. the axis of the jets converging but not necessarily intersecting at a point
    • B05B7/0807Spray pistols; Apparatus for discharge with separate outlet orifices, e.g. to form parallel jets, i.e. the axis of the jets being parallel, to form intersecting jets, i.e. the axis of the jets converging but not necessarily intersecting at a point to form intersecting jets
    • B05B7/0861Spray pistols; Apparatus for discharge with separate outlet orifices, e.g. to form parallel jets, i.e. the axis of the jets being parallel, to form intersecting jets, i.e. the axis of the jets converging but not necessarily intersecting at a point to form intersecting jets with one single jet constituted by a liquid or a mixture containing a liquid and several gas jets

Abstract

A spray device includes an opening gap between a needle-shaped needle tip and a first nozzle hole. The gap is adjusted by a very tiny amount by a needle movement amount adjustment device, and liquid oozes from the first nozzle hole along the needle tip part. The liquid is formed into tiny particles by a first atomization compressed gas flowing through the first atomization compressed gas passage and is exhausted from a second nozzle hole. The exhaust flow passes through a third nozzle hole and is exhausted. The third nozzle's second atomization/eddy flow formation compressed gas collides with this exhaust flow, so the exhaust flow is made into even smaller particles, and swirls and disperses, and is applied to the coated object.

Description

本発明は、半導体シリコーンウェハー、ガラス基板、各種樹脂、及び金属部材等の被塗物に、液状フォトレジスト剤、表面保護膜、及び機能性塗布剤等の液体を極微細に霧化させて塗布し、薄い成膜を形成するための少量液体の噴霧装置(スプレイガン)に関する。  The present invention is applied to a coating such as a semiconductor silicone wafer, a glass substrate, various resins, and a metal member by atomizing a liquid such as a liquid photoresist agent, a surface protective film, and a functional coating agent in an extremely fine manner. The present invention also relates to a spray device (spray gun) for a small amount of liquid for forming a thin film.

従来から、半導体シリコーンウェハーやガラス基板に乾燥膜厚10μ以下のレジスト剤や機能膜を成膜する場合、スピンコーターや、バーコーター等の塗布技術が盛んに使用されている。  Conventionally, when a resist agent or a functional film having a dry film thickness of 10 μm or less is formed on a semiconductor silicone wafer or a glass substrate, a coating technique such as a spin coater or a bar coater has been actively used.

しかし、半導体シリコーンウェハーやガラス基板が平板状のものやレジスト剤を塗布する表面が平面状であればそれで良いが、平板状でなく凹凸があってスピンコーターで塗布する際、必要な被塗物回転時に被塗物が飛んでしまったり、形状が回転ができない球状のものや円筒状被塗物は、スピンコーターやバーコーター等では成膜が困難である。また塗布面が凹凸あったり(アスペクト比が大きい)、窪みや穴が空いていたりする場合は、凹凸部や、窪みの側面、底面、穴の側面等の塗布ができないことになってしまう。  However, if the surface of the semiconductor silicone wafer or glass substrate is flat or the surface on which the resist agent is applied is flat, it may be fine. It is difficult to form a film with a spin coater or a bar coater or the like when the object to be coated flies at the time of rotation or a spherical object or a cylindrical object whose shape cannot be rotated. In addition, when the coated surface is uneven (the aspect ratio is large), or the dent or hole is vacant, the uneven surface, the side surface of the dent, the bottom surface, the side surface of the hole, etc. cannot be applied.

そのため、塗布材料をスプレイガンにて成膜する方法が検討されるが、10μ以下の乾燥膜厚を得るには、液体を霧化した粒径が通常で10μ〜20μ前後であるため、塗膜のうねり、膜厚バラツキ、発泡等が付きまとい、なかなか塗布条件の設定を決めるのに時間を要し、また精度の良い膜厚を得ることが困難になってしまうことにもなる。一般的なエアスプレイガンにてスプレイした場合、塗布材料の粒径は、粘度を20CPS以下に下げてもせいぜい10μ〜15μ程度であった。  Therefore, a method of forming a coating material with a spray gun is considered. However, in order to obtain a dry film thickness of 10 μm or less, the particle diameter obtained by atomizing the liquid is usually about 10 μm to 20 μm. As a result, it takes time to determine the setting of the coating conditions, and it becomes difficult to obtain a highly accurate film thickness. When sprayed with a general air spray gun, the particle size of the coating material was at most about 10 to 15 μm even when the viscosity was lowered to 20 CPS or less.

その場合20μ段差の凹凸部に塗料粒子が付着堆積するとき、粒子径が大きいため、凹部の角部は塗布材が垂れて薄くなってしまう。粒子径を10μ以下に細かくしようとすると、霧化エア圧力を0.4MPa以上にして吐出量を下げないと形成できない。その場合は、霧化圧力が強すぎて10μ以下の粒子が被塗物に付着しずらくなり、塗着効率が30%以下に落ちてしまい塗布装置として成り立たない状況になる。スプレイでの膜厚精度としては一般的に平面塗布で通常乾燥膜厚10μとした場合、±10%以上である。  In that case, when the coating particles adhere to and deposit on the uneven portion having a step of 20 μm, since the particle diameter is large, the corner of the concave portion droops and becomes thin. In order to make the particle diameter finer to 10 μm or less, it cannot be formed unless the atomizing air pressure is set to 0.4 MPa or more and the discharge amount is lowered. In that case, the atomization pressure is too strong, and particles of 10 μm or less are difficult to adhere to the object to be coated, and the coating efficiency falls to 30% or less, which makes it impossible to apply as a coating apparatus. The film thickness accuracy in spraying is generally ± 10% or more when the dry film thickness is usually 10 μm by flat coating.

10μ以下の薄膜形成する場合、スプレイ方式においてエア霧化スプレイは最も一般的で廉価である。他に微細霧化が可能な超音波霧化方式によるスプレイガンもあるが、逆にスプレイ速度が遅すぎて、被塗物に付着しずらく実用上、加湿器等に利用されることが一般的である。またエアレススプレイ方式や遠心霧化方式では、液体の粘度を20CPS以下に落とし、10μ以下の粒子を形成することはスプレイ噴出出口から300mm以上離れた箇所でやつと吐出全体の20%前後にしか形成できず、さらに毎分30cc以下という被塗物に見合った低吐出量が出せない欠点がある。そのため10μ以下の薄膜形成はエア霧化による2流体スプレイ方式が通常考えられる。しかし上述したように塗着効率が20〜30%程度と極めて低いということが、最大の欠点であり、10μ以下の薄膜領域の塗布膜厚精度もスピンコーターのような±5%以下には到達できなかった。  When forming a thin film of 10 μm or less, the air atomization spray is the most common and inexpensive in the spray method. There are other spray guns that use an ultrasonic atomization method that allows fine atomization, but on the contrary, the spray speed is too slow and it is difficult to adhere to the object to be coated. Is. In the airless spray method and centrifugal atomization method, the viscosity of the liquid is reduced to 20 CPS or less, and particles of 10 μm or less are formed only about 20% of the entire discharge at a location 300 mm or more away from the spray ejection outlet. In addition, there is a drawback that a low discharge amount corresponding to the object to be coated of 30 cc or less per minute cannot be produced. Therefore, a two-fluid spray method by air atomization is usually considered for forming a thin film of 10 μm or less. However, as described above, the coating efficiency is as low as about 20 to 30%, and the biggest drawback is that the coating film thickness accuracy of a thin film region of 10 μm or less reaches ± 5% or less like a spin coater. could not.

そこで、エアスプレイでも特殊なスプレイ方式であるエアブラシと呼ばれるスプレイ方式を応用することが考えられる。このエアブラシはよくプラスチック模型部品や、小型商品を塗装する時に使用する小型スプレイ手持ちガンとして利用されている方式であり、ノズル口径は0.5mmφ以下で、塗料噴出し制御に使用されるニードルは針形状を有しており、針形状ニードルに沿って塗料が付着流れ出す時にまわりの圧縮空気がエゼクター効果により塗料が霧化する。吐出量としては毎分5cc以下に絞ることができ、スプレイノズルを10mm前後に近づけても、10μ以下の微細粒子を形成可能で、塗着効率はスプレイノズルが近いため80%以上の高効率で被塗物に塗装することが可能である。  Therefore, it is conceivable to apply a spray method called an air brush which is a special spray method even in air spray. This airbrush is often used as a small spray handheld gun for painting plastic model parts and small products. The nozzle diameter is 0.5mmφ or less, and the needle used for paint spray control is a needle. It has a shape, and when the paint adheres and flows along the needle-shaped needle, the surrounding compressed air atomizes the paint by the ejector effect. The discharge amount can be reduced to 5 cc or less per minute, and even if the spray nozzle is close to around 10 mm, fine particles of 10 μm or less can be formed, and the coating efficiency is as high as 80% or more because the spray nozzle is close. It is possible to paint on the object.

一方、エアスプレイ方式による微粒化塗布を行うものとして、例えば特許文献1に示されるよう液体の二段霧化方式が知られている。この霧化方法は、一段目で圧縮空気で液体を霧化させ、二段目で該液体噴出流に旋回空気を作用させてさらに霧化を促進すると共に旋回噴出流として塗布するものである。On the other hand, for example, a two-stage liquid atomization method as shown in Patent Document 1 is known as a method for atomizing coating by an air spray method. In this atomization method, liquid is atomized with compressed air in the first stage, and swirling air is applied to the liquid jet stream in the second stage to further promote atomization and apply as a swirl jet stream.

前記エアブラシによるスプレイ方式は、少量又は微少量吐出の制御が困難である。即ち、吐出量の調整はニードルの引き加減を手作業で行う方式であり、定量的な制御調整にはかなりの熟練を要し、またそのため自動化塗布が困難であるという問題がある。さらにこのスプレイ方式は塗布した霧化パターン幅は5mm前後と狭いという問題がある。  In the spray method using the airbrush, it is difficult to control a small amount or a small amount of discharge. That is, the adjustment of the discharge amount is a method in which the needle is manually adjusted, and there is a problem that the quantitative control adjustment requires considerable skill, and therefore automatic coating is difficult. Furthermore, this spray method has a problem that the applied atomization pattern width is as narrow as about 5 mm.

また、特許文献1に示される微粒化塗布装置は、エアブラシ方式に比し霧化パターンを広げられるという利点を有するが、液体の微量供給調整が困難であると問題がある。  Further, the atomization coating apparatus disclosed in Patent Document 1 has an advantage that the atomization pattern can be widened as compared with the airbrush system, but there is a problem that it is difficult to adjust the supply of a small amount of liquid.

本発明は、前記の従来の液体の噴霧装置が有していた問題を解決しようとするものであり、超音波霧化やエアブラシスプレイ方式で超微粒子形成するレベルと同等以上の液体や溶融体の微粒子を形成させ、所望される量の少量又は微量の液体の供給調整を容易かつ確実に行なうことができ、また、被塗物に効率的に塗布付着させることができ、半導体シリコーンウェハーやガラス基板及び各種透明部材等の被塗物に、液状フォトレジスト剤や表面保護膜及び機能性塗布剤等の液体又は溶融体をスプレイ塗布で均一に薄く成膜する液体の少量液体の噴霧装置を得ることを目的とするものである。  The present invention is intended to solve the problems of the above-described conventional liquid spraying device, and is equivalent to or higher than the level at which ultrafine particles are formed by ultrasonic atomization or airbrush spraying. It is possible to easily and reliably adjust the supply of a desired amount of a small amount or a small amount of liquid by forming fine particles, and to apply and adhere efficiently to an object to be coated. A semiconductor silicone wafer or a glass substrate And a spraying device for a small amount of a liquid that forms a thin film by spray coating a liquid or a melt such as a liquid photoresist agent, a surface protective film and a functional coating agent on an object to be coated such as various transparent members It is intended.

本発明は、上記目的を達成するために次のような少量液体の噴霧装置とした。
即ち、小量の液体を微粒化して被塗物に塗布する噴霧装置であって、
液体供給通路と、
先端部が針状で先端まで一様な勾配で長細く尖った極細のニードルと、
該ニードルの該先端部との間で弁機構を構成し、該ニードル先端部に対応した形状の極細の第1ノズル孔を有し、該ニードル先端部が該第1ノズル孔に対して挿抜自在に嵌合可能である第1ノズルと、
該第1ノズルの周囲を取り囲んで第1ノズルとの間で環状の第1霧化用圧縮気体通路を形成し、下端に小口径の第2ノズル孔を形成した第2ノズルと、
該第2ノズル下端部に、該第2ノズルの第2ノズル孔を取り囲むようにして、かつ、下端部が該第2ノズルの下面よりも所定距離突出して形成された第3ノズルの第3ノズル孔が形成され、該第3ノズル孔の周囲に、外側壁である逆円錐状の傾斜面に沿って第2霧化用兼渦巻流形成用の圧縮気体が流れるように、該第2霧化用兼渦巻流形成用の複数の圧縮気体供給通路を形成した第3ノズルと、
該ニードルの後端部と当接可能に設けられ、該針状ニードル先端部と該第1ノズルの第1ノズル孔との開き間隙を極微小量調整可能なニードル移動量調整装置と、
を備え、
該ニードルの先端部は弁機構が開いた状態で第3ノズルの第3ノズル孔の内部まで突き出して位置するようにして、液体が、第1ノズル孔とニードル先端部との間の先端に行くほど環状隙間が小さくなる極小間隙を通りつつ極細ニードル先端部に沿ってにじみ出る構成にし、
液体吐出時に第1ノズルの第1ノズル孔から該ニードル先端部に沿って液体を滲み出させながら該第1霧化用圧縮気体通路を流れる第1霧化用圧縮気体によって微粒化させつつ第2ノズルの第2ノズル孔から噴出させ、つぎに該噴出流を第3ノズルの第3ノズル孔を通して噴出させつつ第2霧化用兼渦巻流形成用圧縮気体を該噴出流に衝突させることにより、該噴出流をさらに微粒化させると共に旋回かつ拡散せしめ、被塗物に塗布することを特徴とする少量液体の噴霧装置とした。
In order to achieve the above object, the present invention employs a spraying apparatus for a small amount of liquid as follows.
That is, a spraying device for atomizing a small amount of liquid and applying it to an object to be coated,
A liquid supply passage;
The tip is needle-shaped and the needle is very thin with a uniform gradient to the tip .
A valve mechanism is formed between the tip of the needle and has a very fine first nozzle hole having a shape corresponding to the needle tip, and the needle tip can be inserted into and removed from the first nozzle hole. A first nozzle that can be fitted to
A second nozzle that surrounds the first nozzle and forms an annular first atomizing compressed gas passage between the first nozzle and a second nozzle hole having a small diameter at the lower end;
The third nozzle of the third nozzle is formed at the lower end of the second nozzle so as to surround the second nozzle hole of the second nozzle and the lower end protrudes from the lower surface of the second nozzle by a predetermined distance. hole is formed, around the third nozzle holes, to flow compressed gas for the second atomization and swirling flow formed along the opposite conical inclined surface is an outer wall, said second atomization A third nozzle formed with a plurality of compressed gas supply passages for forming a swirl flow for use;
A needle movement amount adjusting device which is provided so as to be in contact with a rear end portion of the needle, and which can adjust a very small amount of an opening gap between the tip portion of the needle needle and the first nozzle hole of the first nozzle;
With
The tip of the needle protrudes to the inside of the third nozzle hole of the third nozzle with the valve mechanism opened, and the liquid goes to the tip between the first nozzle hole and the needle tip. A structure that oozes along the tip of the ultrafine needle while passing through a very small gap as the annular gap becomes smaller,
While the liquid is discharged, the second nozzle is atomized by the first atomizing compressed gas flowing through the first atomizing compressed gas passage while the liquid oozes from the first nozzle hole of the first nozzle along the tip of the needle. Jetting from the second nozzle hole of the nozzle, and then causing the jet stream to jet through the third nozzle hole of the third nozzle and causing the compressed gas for forming the second atomization and swirl flow to collide with the jet stream, The sprayed flow is further atomized, swirled and diffused, and applied to an object to be coated.

これによって、液体吐出時にニードル移動量調整装置により針状ニードル先端部と第1ノズル孔との開き間隙を極微小量、調整可能であり、第1ノズル孔からニードル先端部に沿って液体を滲み出させながら第1霧化用圧縮気体通路を流れる第1霧化用圧縮気体によって該液体を微粒化させつつ第2ノズル孔から噴出させ、該噴出流を第3ノズル孔を通して噴出させつつ第3ノズルの第2霧化用兼渦巻流形成用圧縮気体を該噴出流に衝突させることにより、該噴出流をさらに微粒化させると共に旋回かつ拡散せしめ被塗物に塗布することができる。  Thus, when the liquid is discharged, the opening gap between the needle needle tip and the first nozzle hole can be adjusted by a very small amount by the needle movement amount adjusting device, and the liquid oozes from the first nozzle hole along the needle tip. The liquid is atomized by the first atomizing compressed gas flowing through the first atomizing compressed gas passage while being ejected and ejected from the second nozzle hole, and the ejected flow is ejected through the third nozzle hole to perform the third. By causing the compressed gas for forming the second atomization and swirl flow of the nozzle to collide with the jet flow, the jet flow can be further atomized, swirled and diffused, and applied to the object to be coated.

この液体吐出量の調整において、針状ニードル先端部と第1ノズル孔との開き間隙量は、ニードル移動量調整装置により調節することが可能であるため、液体を吐出させる際、ニードル引き代としての開度を8〜15μ単位、好ましくは例えば10μ単位で調整可能として第1霧化用圧縮気体によって霧化を行なえることとした。このように例えば10μ単位と言った値でニードルの引き代が調整可能なニードル移動量調整装置を取付ける事によりバルブ開閉毎の吐出量の再現性が確保され、安定吐出が得られる。  In adjusting the liquid discharge amount, the opening gap amount between the needle needle tip and the first nozzle hole can be adjusted by a needle movement amount adjusting device. The degree of opening can be adjusted in units of 8 to 15 μm, preferably in units of 10 μm, and atomization can be performed with the first atomizing compressed gas. Thus, for example, by attaching a needle movement amount adjusting device capable of adjusting the pulling amount of the needle by a value such as a unit of 10 μm, reproducibility of the discharge amount every time the valve is opened and closed is ensured, and stable discharge can be obtained.

この場合、ニードル移動量調整装置としてはマイクロアジャストを用いることができる。従って、液体吐出量の制御調整には、従来のように熟練を要した手作業でニードルの引き加減を行なうことを要せず、定量的な吐出量の制御を再現性良く行なえると共に自動化塗布が行なえる。  In this case, a micro adjustment can be used as the needle movement amount adjusting device. Therefore, the control and adjustment of the liquid discharge amount does not require manual adjustment of the needle as in the prior art, and quantitative discharge amount control can be performed with good reproducibility and automated coating. Can be done.

また、の少量液体の噴霧装置は、該ニードルの先端部は先端まで一様な勾配で長細く尖っており、該ニードルの先端部は弁機構が開いた状態で第3ノズルの第3ノズル孔の内部まで突き出して位置するようにして、液体が、第1ノズル孔とニードル先端部との間の先端に行くほど環状隙間が小さくなる極小間隙を通りつつ極細ニードル先端部に沿ってにじみ出る構成にされている。これにより、少量の液体が安定して下流方向の被塗物に案内されて吐出される。The spray device of small volume liquid This tip portion of the needle is sharp long thin at a uniform slope to the tip, the third nozzle of the third nozzle while the tip portion of said needle valve mechanism is opened so as to be positioned protruding to the inside of the hole, the liquid, oozing along the microfine needle tip while through the minimum gap annular gap becomes smaller toward the distal end between the first nozzle hole and the needle tip configuration Has been. As a result, a small amount of liquid is stably guided to the downstream object and discharged.

そして、その液体の安定流はその周囲の例えば圧力0.1〜0.3MPaの第1霧化用圧縮気体流により負圧効果により液体が霧化されて微粒化され、例えば開口径0.8〜1.5mmの第2ノズル孔から噴出される。該噴出流はさらに開口径1.0〜2.0mmの第3ノズル孔を通り、第3ノズルの複数の圧縮気体供給通路から噴出される例えば圧力0.1〜0.3MPaの第2霧化用兼渦巻流形成用圧縮気体流により衝突拡散によってさらなる液体の微粒化促進と霧化パターン領域の拡散が行なわれる。
このとき、該第2ノズル下端部に、該第2ノズルの第2ノズル孔を取り囲むようにして、かつ、下端部が該第2ノズルの下面よりも所定距離突出して形成された第3ノズルの第3ノズル孔が形成されているので、該第2ノズル孔から噴出された噴出流は、該第3ノズル孔の該突出した内部空間では第2霧化用兼渦巻形成用圧縮空気の流れに影響されることがないので、下方の被塗物方向に安定して噴出すると共に、第1ノズルと第2ノズルとで間で行なわれる第一段の液体霧化作用が安定して行なわれる。
さらに、該第3ノズルには、第3ノズル孔の周囲に、外側壁である逆円錐状の傾斜面に沿って第2霧化用兼渦巻流形成用の圧縮気体が流れるように、該第2霧化用兼渦巻流形成用の複数の圧縮気体供給通路が形成されているので、該圧縮空気供給通路から噴出された第2霧化用兼渦巻流形成用圧縮空気流は該傾斜面に沿って流れ、全周で整流された安定した渦巻流を形成し、この渦巻流が第3ノズル孔を噴出する噴出流に衝突し、安定した乱れがない旋回噴出流を形成する。これにより噴出流は安定して幅広く微細霧化されたものとなる。
Then, the stable flow of the liquid is atomized by the negative pressure effect by the compressed gas flow for the first atomization of, for example, a pressure of 0.1 to 0.3 MPa around the liquid, for example, an opening diameter of 0.8 It is ejected from the second nozzle hole of ˜1.5 mm. The jet flow further passes through a third nozzle hole having an opening diameter of 1.0 to 2.0 mm, and is jetted from a plurality of compressed gas supply passages of the third nozzle, for example, a second atomization having a pressure of 0.1 to 0.3 MPa. Further compression of the liquid atomization and diffusion of the atomization pattern area are performed by collision diffusion by the compressed gas flow for forming the swirl flow.
At this time, a third nozzle formed at the lower end portion of the second nozzle so as to surround the second nozzle hole of the second nozzle and the lower end portion protrudes a predetermined distance from the lower surface of the second nozzle. Since the third nozzle hole is formed, the jet flow ejected from the second nozzle hole is converted into a flow of compressed air for second atomization and swirl formation in the protruding internal space of the third nozzle hole. Since there is no influence, the first stage liquid atomizing action performed between the first nozzle and the second nozzle is stably performed while being stably ejected in the direction of the object to be coated below.
Further, the third nozzle is configured such that the compressed gas for forming the second atomizing and swirling flow flows around the third nozzle hole along the reverse conical inclined surface which is the outer wall. Since the plurality of compressed gas supply passages for forming the two atomizing and swirling flow are formed, the compressed air flow for forming the second atomizing and swirling flow ejected from the compressed air supplying passage is formed on the inclined surface. A stable swirl flow that flows along the entire circumference is formed, and this swirl flow collides with a jet flow ejected from the third nozzle hole, thereby forming a swirl jet flow without a stable turbulence. As a result, the jet flow is stably and finely atomized.

また、前記の少量液体の噴霧装置は、該液体供給通路へ供給される液体の粘度は10〜100CPSの低粘度であり、該第1ノズルの第1ノズル孔の出口開口径は0.2〜0.6mmであり、該針状のニードル先端部の角度は3〜10度であり、該第2ノズルの第2ノズル孔の開口内径は0.8〜1.5mmであり、該第3ノズルの第3ノズル孔の開口径は1.0〜2.0mmであり、該ニードル移動量調整装置による該針状ニードル先端部と該第1ノズルの第1ノズル孔との開き間隙を極微小量調整するためのニードルの移動距離を、8〜15μ(ミクロン)毎(単位で)に調整可能とし、液体吐出量を0.1〜10cm/minとすることにより少量の液体を微粒化し塗布することを特徴とする少量液体の噴霧装置とした。Further, in the small amount liquid spraying device, the viscosity of the liquid supplied to the liquid supply passage is a low viscosity of 10 to 100 CPS, and the outlet opening diameter of the first nozzle hole of the first nozzle is 0.2 to 0.6 mm, the angle of the needle-shaped needle tip is 3 to 10 degrees, the inner diameter of the second nozzle hole of the second nozzle is 0.8 to 1.5 mm, and the third nozzle The opening diameter of the third nozzle hole is 1.0 to 2.0 mm, and the opening gap between the needle needle tip and the first nozzle hole of the first nozzle by the needle movement amount adjusting device is extremely small. The moving distance of the needle for adjustment can be adjusted every 8 to 15 μm (in units), and a small amount of liquid is atomized and applied by setting the liquid discharge amount to 0.1 to 10 cm 3 / min. This is a small amount liquid spraying device.

このことにより、少量の液体を効率良く正確に塗布することができる。即ち、10〜100CPSの低粘度で吐出量0.1〜10cm/minの液体を、ニードル先端部に沿わせて安定して下流の被塗物に案内しつつ、第1〜第3ノズルを通過させて二段の微粒化を達成させることができる。該針状のニードル先端部の角度は3〜10度であり、より好ましくは4〜6度である。ニードルの移動距離単位が8μよりも小さいと、前記ニードル先端部の角度との関係で、前記第1ノズル孔とニードル先端部との間の環状間隙が小さくなり過ぎ、液体を安定して該間隙を通過させることができず、15μ単位よりも大きいと該環状隙間が大きくなり過ぎ、安定した微粒化が困難となる。Thereby, a small amount of liquid can be applied efficiently and accurately. That is, while the liquid having a low viscosity of 10 to 100 CPS and a discharge amount of 0.1 to 10 cm 3 / min is stably guided along the tip of the needle to the downstream object, the first to third nozzles are Two-stage atomization can be achieved by passing. The angle of the needle-shaped needle tip is 3 to 10 degrees, more preferably 4 to 6 degrees. When the unit of movement distance of the needle is smaller than 8 μm, the annular gap between the first nozzle hole and the needle tip portion becomes too small due to the angle of the needle tip portion, and the liquid is stably stabilized. If it is larger than 15 μm, the annular gap becomes too large, and stable atomization becomes difficult.

第1ノズル孔の出口開口径は小さい程、吐出流量を絞ることができるが、0.2mmよりも小さいと、ノズル孔の詰りの発生が生じ易くなる。また、0.6mmよりも大きいと、特に吐出量が0.2〜5.0cm/minといった微量の液体の微粒化を目標とする値にすることが困難である。第1ノズル孔の出口開口径は、上記のような点を考慮し、より好ましくは0.3〜0.5mmである。第2ノズル開口径は0.8mmより小さいと前記第1ノズル出口口径との関係で第1霧化用圧縮気体流による液体の微粒化が困難であり、また開口径が1.5mmよりも大きいと安定噴出流の確保が困難となる。第3ノズル口径は、1.0mmよりも小さいと第2ノズル孔からの噴出流が安定して排出されず、また2.0mmよりも大きいとその周囲から排出される第2霧化用兼渦巻流形成用圧縮気体流による該噴出流への衝突拡散が困難となる。As the outlet opening diameter of the first nozzle hole is smaller, the discharge flow rate can be reduced. However, if it is smaller than 0.2 mm, the nozzle hole is likely to be clogged. On the other hand, if it is larger than 0.6 mm, it is difficult to achieve a target value for atomizing a very small amount of liquid such as a discharge amount of 0.2 to 5.0 cm 3 / min. In consideration of the above points, the outlet opening diameter of the first nozzle hole is more preferably 0.3 to 0.5 mm. If the second nozzle opening diameter is smaller than 0.8 mm, it is difficult to atomize the liquid by the first atomizing compressed gas flow due to the relationship with the first nozzle outlet diameter, and the opening diameter is larger than 1.5 mm. It is difficult to secure a stable jet flow. When the third nozzle diameter is smaller than 1.0 mm, the jet flow from the second nozzle hole is not stably discharged, and when larger than 2.0 mm, the second atomizing swirl is discharged from its surroundings. It becomes difficult to impinge on the jet flow by the compressed gas flow for flow formation.

前記したように、本発明の少量液体の噴霧装置は、低粘度で少量の液体の吐出量の制御調整を容易に且つ確実に行なうことができ、従来のように熟練を要した手作業でニードルの引き加減を行なうことを要せず、定量的な吐出量の制御を再現性良く行なうことができる。またこのため自動化塗布を行なうことができる。そして、液状フォトレジスト剤及び表面保護膜や機能性塗布剤等の液体を、塗着効率を下げずに幅広く微細霧化させることができ、半導体シリコーンウェハー、ガラス基板、各種樹脂、及び金属部材等の被塗物に薄い成膜を形成することができる。  As described above, the spray device for a small amount of liquid according to the present invention can control and adjust the discharge amount of a small amount of liquid with a low viscosity easily and surely. Therefore, quantitative discharge amount control can be performed with good reproducibility. For this reason, automatic coating can be performed. And, liquid such as liquid photoresist agent, surface protective film and functional coating agent can be atomized widely without reducing coating efficiency, semiconductor silicone wafer, glass substrate, various resins, metal members, etc. A thin film can be formed on the object to be coated.

以下、本発明の実施の形態を図面に基づいて説明する。
図1は、本発明の少量液体の噴霧装置としての低吐出量用液体自動噴射ヘッドの使用系統図、図2は、本発明の少量液体の噴霧装置としての低吐出量用液体自動噴射ヘッドの縦断面図、図3は、図2のA部拡大図であり第1〜第3ノズルの拡大詳細図、図4は、図3の底面図であり第3ノズルの底面図である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a system diagram of use of a low discharge amount automatic liquid jet head as a small amount liquid spraying apparatus according to the present invention. FIG. 2 is a low discharge amount liquid automatic discharge head as a small amount liquid spraying apparatus according to the present invention. FIG. 3 is an enlarged view of a portion A in FIG. 2 and an enlarged detailed view of the first to third nozzles. FIG. 4 is a bottom view of FIG. 3 and a bottom view of the third nozzle.

1は、低吐出量用液体噴射ヘッドであり、低吐出量用液体噴射ヘッド1は、液体タンク4に貯蔵された液体を液体供給用定量供給ポンプ6bにより定量供給させるための液体供給配管6を有する。また該液体供給配管6には、該液体供給用定量供給ポンプ6bの下流に液体供給切替バルブ6aが介装され、さらに該切替バルブ6aには低吐出量用液体噴射ヘッド1が液体吐出動作をしないときに液体を液体タンク4に戻すための液体戻り配管6cが設けられている。液体の流れ方向の切替えは、ヘッド駆動用電磁弁3aが動作を止めると、即ち、ばね2Fの弾発力でニードル先端部8Aが第1ノズル7の第1ノズル孔7aに押し戻されて弁機構が閉じられると、液体供給切替バルブ6aが作動し、液体供給配管6から液体戻り配管6cに液体は切替られる。  Reference numeral 1 denotes a low ejection amount liquid ejecting head. The low ejection amount liquid ejecting head 1 includes a liquid supply pipe 6 for quantitatively supplying the liquid stored in the liquid tank 4 by a liquid supply constant supply pump 6b. Have. The liquid supply pipe 6 is provided with a liquid supply switching valve 6a downstream of the liquid supply quantitative supply pump 6b, and the low discharge amount liquid ejecting head 1 performs a liquid discharging operation on the switching valve 6a. A liquid return pipe 6c is provided for returning the liquid to the liquid tank 4 when not. The flow direction of the liquid is switched when the operation of the head driving solenoid valve 3a stops, that is, the needle tip 8A is pushed back into the first nozzle hole 7a of the first nozzle 7 by the elastic force of the spring 2F. Is closed, the liquid supply switching valve 6a is operated, and the liquid is switched from the liquid supply pipe 6 to the liquid return pipe 6c.

さらに、低吐出量用液体噴射ヘッド1には、第1霧化用圧縮気体としての第一段霧化用圧縮空気の供給配管5、及び第2霧化用兼渦巻流形成用圧縮気体としての第二段霧化用圧縮空気の供給配管11が接続されており、それぞれの霧化用エアレギュレーター5b及び11bにより圧縮空気圧が調整可能とされている。また第一段霧化用圧縮空気は、第一段霧化用電磁弁5aの動作により、第二段霧化用圧縮空気は、第二段霧化用電磁弁11aの動作により低吐出量用液体噴射ヘッド1に流れる。それぞれの電磁弁の動作順序としては、通常、第一段霧化用電磁弁5aが動作し、約50ms後にヘッド駆動用電磁弁3aと第二段霧化用電磁弁11aがほぼ同時作動する順序が、液体の最適霧化に適している。  Further, the low discharge amount liquid jet head 1 includes a first-stage atomized compressed air supply pipe 5 as a first atomized compressed gas, and a second atomizing and swirl flow forming compressed gas as a compressed gas. The second-stage atomized compressed air supply pipe 11 is connected, and the compressed air pressure can be adjusted by the respective atomizing air regulators 5b and 11b. The compressed air for the first stage atomization is operated by the electromagnetic valve 5a for the first stage atomization, and the compressed air for the second stage atomization is used for the low discharge amount by the operation of the electromagnetic valve 11a for the second stage atomization. It flows to the liquid jet head 1. As the operation order of the respective solenoid valves, the first stage atomizing solenoid valve 5a is normally operated, and the head driving solenoid valve 3a and the second stage atomizing solenoid valve 11a are operated substantially simultaneously after about 50 ms. Is suitable for optimal atomization of liquids.

低吐出量用液体噴射ヘッド1は、中央に長くて極細のニードル本体8が上下動可能に位置されて設けられており、該ニードル本体8の上端部分にはエアピストン2Bが固設されており、該エアピストン2Bとエアピストンカバー2Aとの間には、ニードル本体8を常に下方に押圧し、先端部が針状で長細く尖ったニードル先端部8Aと第1ノズル7の第1ノズル孔7aとの間で構成される弁機構を閉じるためのばね2Fが介装されている。該ニードル本体8とその周囲のヘッド本体1aとの間には液体供給通路6Aが形成されており、また該ヘッド本体1aの下端部には第1ノズル7が固着されて設けられている。第1ノズル7には該ニードル先端部8Aが挿抜自在に嵌合可能である第1ノズル孔7aが該ニードル先端部の形状に対応したテーパ形状で形成されている。  The liquid ejection head 1 for low discharge amount is provided with a long and fine needle body 8 positioned at the center so as to be movable up and down, and an air piston 2B is fixed to the upper end portion of the needle body 8. Between the air piston 2B and the air piston cover 2A, the needle body 8 is always pressed downward, the needle tip 8A is a needle-like, long and sharp needle, and the first nozzle hole of the first nozzle 7 The spring 2F for closing the valve mechanism comprised between 7a is interposed. A liquid supply passage 6A is formed between the needle body 8 and the surrounding head body 1a, and a first nozzle 7 is fixedly provided at the lower end of the head body 1a. The first nozzle 7 is formed with a first nozzle hole 7a into which the needle tip 8A can be removably fitted with a taper shape corresponding to the shape of the needle tip.

該第1ノズル7の外側には、第1ノズル7の周囲を取り囲んで第1ノズル7との間で下側に行くに従い断面積が小さくなる環状の第1霧化用圧縮気体通路5Aを形成し下端に第1ノズル孔7aの出口開口の周囲に絞られた小口径の第2ノズル孔9aを形成した第2ノズル9がヘッド本体1aに固設されて取付けられている。即ち、第2ノズル9の内壁面は逆円錐形状に形成され下端は絞られて小口径D2の第2ノズル孔9aを形成している。そして該第2ノズル9の下端部には、第3ノズル10が固着されて取付けられており、該第3ノズル10はその出口開口で第2ノズル9の第2ノズル孔9aを取り囲むようにして形成されている。  An annular first atomizing compressed gas passage 5 </ b> A is formed outside the first nozzle 7 so as to surround the first nozzle 7 and decrease in cross-sectional area with the first nozzle 7. A second nozzle 9 having a small-diameter second nozzle hole 9a narrowed around the outlet opening of the first nozzle hole 7a is fixedly attached to the head main body 1a. That is, the inner wall surface of the second nozzle 9 is formed in an inverted conical shape, and the lower end is narrowed to form a second nozzle hole 9a having a small diameter D2. A third nozzle 10 is fixedly attached to the lower end portion of the second nozzle 9, and the third nozzle 10 surrounds the second nozzle hole 9a of the second nozzle 9 at its outlet opening. Is formed.

そして、第3ノズル10には、図4にも示すように、平面視で第1ノズル孔7A及び第2ノズル孔9aの中心部、即ち針状ニードル先端部8Aの軸心を中心とした同一円周上に等間隔で、正面視で傾斜されて穿設された複数の第2霧化用兼渦巻流形成用圧縮空気の供給通路10bが形成されている。そして第3ノズル10の下端部は第2ノズル9の下面よりも所定距離突出して前記の第3ノズル孔10aが形成されると共に該第3ノズル孔10aの外側壁は逆円錐状の傾斜面10cが形成される。これにより該圧縮空気供給通路10bから噴出された第2霧化用兼渦巻流形成用圧縮空気流は該傾斜面10cに沿って流れ、全周で整流された安定した渦巻流を形成し、この渦巻流が第3ノズル孔10aを噴出する噴出流に衝突し、安定した乱れがない旋回噴出流を形成する。これにより噴出流は安定して幅広く微細霧化されたものとなる。  Further, as shown in FIG. 4, the third nozzle 10 has the same center around the center of the first nozzle hole 7A and the second nozzle hole 9a, that is, the axial center of the needle needle tip 8A, as seen in a plan view. A plurality of second atomization and swirl flow forming compressed air supply passages 10b are formed at equal intervals on the circumference and inclined and drilled in a front view. The lower end of the third nozzle 10 protrudes a predetermined distance from the lower surface of the second nozzle 9 to form the third nozzle hole 10a, and the outer wall of the third nozzle hole 10a has an inverted conical inclined surface 10c. Is formed. Thereby, the compressed air flow for forming the second atomization and swirl flow ejected from the compressed air supply passage 10b flows along the inclined surface 10c, and forms a stable swirl flow rectified on the entire circumference. The swirl flow collides with the jet flow ejected from the third nozzle hole 10a to form a swirl jet flow without a stable turbulence. As a result, the jet flow is stably and finely atomized.

なお、第2ノズル孔9aから噴出した噴出流は、該第3ノズル孔10aの該突出した内部空間では第2霧化用兼渦巻形成用圧縮空気の流れに影響されることがないので、下方の被塗物方向に安定して噴出すると共に、第1ノズル7と第2ノズル9とで間で行なわれる第一段の液体霧化作用が安定して行なわれる。  Note that the jet flow ejected from the second nozzle hole 9a is not affected by the flow of compressed air for second atomization and swirl formation in the protruding internal space of the third nozzle hole 10a. The first-stage liquid atomization action performed between the first nozzle 7 and the second nozzle 9 is stably performed.

第3ノズルはヘッド本体1aに対して押え用ナット11Bで取付けられており、該押えナット11Bは内部を箱状に形成されて該第2ノズル9と該第3ノズル10の外側との間で第二段霧化用圧縮空気通路11Aを構成している。  The third nozzle is attached to the head main body 1a with a presser nut 11B, and the presser nut 11B is formed in a box shape inside, between the second nozzle 9 and the outer side of the third nozzle 10. A compressed air passage 11A for second stage atomization is configured.

低吐出量用液体噴射ヘッド1の上端部には、針状ニードル先端部8Aと第1ノズル7の第1ノズル孔7aとの開き間隙を極微小量調整可能なニードル移動量調整装置としてのマイクロアジャスト2Cが取付けられており、該マイクロアジャスト2Cの下端にはマイクロアジャストエンド2Dが形成されている。そして該マイクロアジャスドエンド2Dはニードル本体8の後端部(上端部)と当接可能に設けられている。  At the upper end of the liquid ejection head 1 for low discharge amount, a micro as a needle movement amount adjusting device capable of adjusting a very small opening gap between the needle needle tip 8A and the first nozzle hole 7a of the first nozzle 7 is provided. An adjustment 2C is attached, and a micro adjustment end 2D is formed at the lower end of the micro adjustment 2C. The micro-adjusted end 2D is provided so as to be in contact with the rear end portion (upper end portion) of the needle body 8.

そして、10〜100CPSの低粘度で吐出量0.1〜5.0cm/minの液体を微粒化し塗布するときにおいて、第1ノズル7の第1ノズル孔7aの出口開口径D1は、0.2〜0.6mmであり、該針状のニードル先端部8Aの角度は3〜10度であり、該第2ノズル9の第2ノズル孔9aの開口内径D2は、0.8〜1.5mmであり、該第3ノズル10の第3ノズル孔10aの開口径D3は、1.0〜2.0mmであり、該マイクロアジャスト2Cによる針状ニードル先端部8Aと第1ノズル孔7aとの開き間隙を極微小量調整するためのニードルの移動距離は、8〜15μ毎に(単位で)調整可能とされている。When the liquid having a low viscosity of 10 to 100 CPS and a discharge amount of 0.1 to 5.0 cm 3 / min is atomized and applied, the outlet opening diameter D1 of the first nozzle hole 7a of the first nozzle 7 is set to 0.00. 2 to 0.6 mm, the angle of the needle-shaped needle tip 8A is 3 to 10 degrees, and the inner diameter D2 of the second nozzle hole 9a of the second nozzle 9 is 0.8 to 1.5 mm. The opening diameter D3 of the third nozzle hole 10a of the third nozzle 10 is 1.0 to 2.0 mm, and the opening of the needle-shaped needle tip 8A and the first nozzle hole 7a by the micro-adjustment 2C The moving distance of the needle for adjusting the minute amount of the gap can be adjusted every 8 to 15 μm (in units).

このように構成された低吐出量用液体噴射ヘッド1は、ヘッド駆動用電磁弁3aが動作することにより、ヘッド駆動用圧縮空気配管3からバルブエアピストン部2の中に圧縮空気が流れ、エアピストン2Bをばね2Fの弾発力に抗してマイクロアジャスト2C側に動作し、エアピストン2Bと連結されているニードル本体8の後端部がマイクロアジャストエンド2Dに突き当てられてニードル本体8のストロークが定位置で停止され、第1ノズル孔7aとニードル先端部8Aとの直径方向の間隙が所定の間隔に保たれる。  In the liquid ejection head 1 for low discharge amount thus configured, the compressed air flows from the head driving compressed air pipe 3 into the valve air piston portion 2 by the operation of the head driving solenoid valve 3a. The piston 2B moves toward the micro adjust 2C against the elastic force of the spring 2F, and the rear end portion of the needle body 8 connected to the air piston 2B is abutted against the micro adjust end 2D. The stroke is stopped at a fixed position, and the gap in the diameter direction between the first nozzle hole 7a and the needle tip 8A is kept at a predetermined interval.

そしてニードル本体(8)のニードル先端部(8A)が、第1ノズル孔7aから離れて第1ノズル孔7aとの間に微小の間隙が形成され、ヘッド内液体供給通路6Aにある液体が液体供給用定量供給ポンプ6bの圧送圧力により、第1ノズル孔7a内部からニードル先端部8A表面に押出されると同時に、ヘッド内第一段霧化用圧縮空気供給通路5Aから流れ出る第一段霧化用圧縮空気のエゼクター効果により、ニードル先端部8A表面の液体は、第1ノズル孔7aの出口(下端)開口から吸引されて引き出され、該第1ノズル孔7aの出口開口部を引き出された液体は、同時に第一段霧化用圧縮空気によって霧化、即ち微粒化され、第2ノズル9の第2ノズル孔9aを出て第3ノズル10の第3ノズル孔10a内へ噴出流として送られ、ここで第一段霧化パターン12が形成される。  A fine gap is formed between the needle tip (8A) of the needle body (8) and the first nozzle hole 7a away from the first nozzle hole 7a, and the liquid in the in-head liquid supply passage 6A is liquid. The first-stage atomization that flows out from the first-stage atomization compressed air supply passage 5A in the head at the same time as being extruded from the inside of the first nozzle hole 7a to the surface of the needle tip 8A by the pumping pressure of the supply quantitative supply pump 6b. Due to the ejector effect of the compressed air for use, the liquid on the surface of the needle tip 8A is sucked and drawn out from the outlet (lower end) opening of the first nozzle hole 7a, and the liquid drawn from the outlet opening of the first nozzle hole 7a. Are atomized, that is, atomized by the compressed air for the first stage atomization, are sent out as a jet flow from the second nozzle hole 9a of the second nozzle 9 and into the third nozzle hole 10a of the third nozzle 10. This First stage atomization pattern 12 is formed in.

そして、該霧化されて形成された液体微粒子の噴出流である第一段霧化パターン12は、第二段霧化用圧縮空気供給通路11Aを介して第3ノズル10の第2霧化用兼渦巻流形成用圧縮空気供給通路10bから流れ出る第二段霧化用圧縮空気によってエゼクター効果によりさらに微粒化されると共に旋回されて旋回流が形成され、渦巻状パターンの第二段霧化パターン13が形成され、被塗物14に付着、塗布される。  And the 1st stage atomization pattern 12 which is the jet flow of the liquid fine particle formed by atomization is for 2nd atomization of the 3rd nozzle 10 via the compressed air supply passage 11A for 2nd stage atomization. The atomized compressed air flowing out from the compressed air supply passage 10b for forming the swirl flow is further atomized by the ejector effect and swirled to form a swirl flow, and the swirl pattern second step atomization pattern 13 Is formed and attached to the object 14 to be coated.

本発明では、塗布剤としての液体は、液状フォトレジスト剤や表面保護膜、及び機能性塗布剤が用いられ、被塗物としては、半導体シリコーンウェハー、ガラス基板、各種樹脂、及び金属部材等が適用される。  In the present invention, a liquid photoresist agent, a surface protective film, and a functional coating agent are used as the liquid as the coating agent, and examples of the coating object include a semiconductor silicone wafer, a glass substrate, various resins, and a metal member. Applied.

以上のように、本実施形態では、出口開口径0.2〜0.6mmφの第1ノズル孔7aを有する第1ノズル7に対し、液体吐出を制御するバルブとしての役割であるニードル先端部8Aが角度3〜10°の鋭角の構造を有して、第1ノズル7の第1ノズル孔7a及び第2ノズル9の第2ノズル孔9a、さらには第3ノズル10のノズル孔10aにまで突き出させ、液体を吐出させる際、ニードル引き代としての開度を8〜15μ単位で調整可能な構造にしてエア霧化をすることとした。8〜15μ単位でニードル8の引き代が調整可能なマイクロアジャスト2Dを取付けることによりバルブ開閉毎の吐出量の再現性が確保され、安定吐出が得られる。  As described above, in the present embodiment, the needle tip 8A, which serves as a valve for controlling liquid discharge, with respect to the first nozzle 7 having the first nozzle hole 7a having an outlet opening diameter of 0.2 to 0.6 mmφ. Has an acute angle structure of 3 to 10 °, and protrudes to the first nozzle hole 7a of the first nozzle 7, the second nozzle hole 9a of the second nozzle 9, and further to the nozzle hole 10a of the third nozzle 10. When the liquid is ejected, the air opening is made into a structure in which the opening as the needle pulling allowance can be adjusted in units of 8 to 15 μm. By attaching the micro-adjustment 2D in which the pulling amount of the needle 8 can be adjusted in units of 8 to 15 μm, the reproducibility of the discharge amount every time the valve is opened and closed is ensured, and stable discharge is obtained.

液体吐出は、極細ニードル先端部8Aに沿って液体がにじみ出るとき、その周囲の圧力0.1〜0.3Mpaの第一段霧化用圧縮空気流により負圧効果で液体が霧化されて、0.8〜1.5mmφの第2吐出ノズル9の第2ノズル孔9aから噴出され、口径1.0〜2.0mmφの第3ノズル10の第3ノズル孔10aから圧力0.1〜0.3Mpaの第二段霧化用兼渦巻用圧縮空気流により衝突拡散によってさらなる液体の微粒化促進と霧化パターン領域の拡散が行なえる。  In the liquid discharge, when the liquid oozes out along the ultrafine needle tip 8A, the liquid is atomized by the negative pressure effect by the compressed air flow for the first stage atomization at a pressure of 0.1 to 0.3 Mpa around it, A pressure of 0.1 to 0. 0 is ejected from the second nozzle hole 9a of the second discharge nozzle 9 having a diameter of 0.8 to 1.5 mm and from the third nozzle hole 10a of the third nozzle 10 having a diameter of 1.0 to 2.0 mm. With the compressed air flow for the second stage atomization and vortex of 3 Mpa, further atomization of the liquid can be promoted and the atomization pattern region can be diffused by collision diffusion.

即ち、本実施形態では、液体を低吐出量にてスプレイする噴射ヘッド1で、10〜100CPSの低粘度の液体を第1〜第3の吐出ノズル7、9、10に対し、液体吐出を制御する鋭角なニードル先端部8Aが突き出している丸型噴霧の台形分布を有したスプレイパターン15にて、被塗物14に効率的に塗布付着させることができる。  That is, in this embodiment, the ejection head 1 that sprays liquid at a low ejection amount controls the liquid ejection of the low viscosity liquid of 10 to 100 CPS to the first to third ejection nozzles 7, 9, and 10. The spray pattern 15 having a trapezoidal distribution of a round spray projecting from an acute needle tip 8A can be efficiently applied and adhered to the article 14 to be coated.

即ち、本実施形態の低吐出量用液体噴射ヘッド1では、10〜100CPSの低粘度の液体を出口口径0.2〜0.6mmφの第1ノズル孔7aを有した第1ノズル7に対し、液体吐出を制御する角度3〜10°の鋭角なニードル先端部8Aを有して該ニードル先端部8Aが第1ノズル孔7a、第2ノズル孔9a及び第3ノズル孔10aにまで突き出していることを特徴として、液体吐出の際にニードル先端部8Aに沿って液体がにじみ出るときその周囲の第一段霧化用圧縮空気圧0.1〜0.3Mpaの空気流により負圧効果で、液体がスプレイされて口径0.8〜1.5mmφの第2の吐出ノズル9の第2ノズル孔9aから噴出され、口径1.0〜2.0mmφの第3のノズル10から第二段霧化用圧縮空気の圧力0.1〜0.3Mpaの渦巻状空気流により衝突拡散によって液体の微粒化と促進霧化領域を拡散せしめると共に、ヘッド後部に設けたニードル部8を8〜15μ毎の移動距離を制御出来るマイクロアジャスト2Dを有することにより、第1ノズル7とニードル先端部8Aの間隙を極微小調整できることにより、低粘度液体の少量吐出が可能となった。  That is, in the low discharge amount liquid jet head 1 of the present embodiment, a low viscosity liquid of 10 to 100 CPS is supplied to the first nozzle 7 having the first nozzle hole 7a having an outlet diameter of 0.2 to 0.6 mmφ. An acute needle tip 8A having an angle of 3 to 10 ° for controlling liquid discharge is provided, and the needle tip 8A protrudes to the first nozzle hole 7a, the second nozzle hole 9a, and the third nozzle hole 10a. When the liquid oozes out along the needle tip 8A during the liquid discharge, the liquid is sprayed by the negative pressure effect by the air flow of the surrounding first stage atomizing compression air pressure 0.1-0.3Mpa. Compressed air for second-stage atomization is ejected from the second nozzle hole 9a of the second discharge nozzle 9 having a diameter of 0.8 to 1.5 mmφ and from the third nozzle 10 having a diameter of 1.0 to 2.0 mmφ. Pressure of 0.1-0.3 Mpa By having a microadjustment 2D that can control the moving distance of every 8 to 15 μm of the needle part 8 provided at the rear part of the head while diffusing the atomization region and the accelerating atomization region of the liquid by collision diffusion by the spiral air flow. Since the gap between the nozzle 7 and the needle tip 8A can be extremely finely adjusted, a small amount of low-viscosity liquid can be discharged.

このように、本実施形態では、液体を、塗着効率を下げずに幅広く微細霧化させることができ、例えば0.1〜10μの薄い成膜を形成するための低吐出量用の液体自動噴射ヘッド(スプレイガン)1を得ることができる。  As described above, in this embodiment, the liquid can be widely atomized without lowering the coating efficiency. For example, the liquid automatic for low discharge amount for forming a thin film of 0.1 to 10 μm can be obtained. An ejection head (spray gun) 1 can be obtained.

また、本実施形態の自動噴射ヘッド1では、段差パターンを有した被塗物、例えば半導体シリコーンウェハーに液状レジスト剤を噴霧塗布する場合において、粒子が微細化されており、かつ溶媒が蒸発して液体粘度も増大することにより、該段差の凸部や凹部における角隅部(エッジ部)においても塗膜が下に垂れることが極小にされ、所定厚みの成膜、例えば6〜10μといった成膜を形成することができ、全体的に均一な成膜を塗布することができる。  Further, in the automatic ejection head 1 of the present embodiment, when a liquid resist agent is spray-coated on an object to be coated having a step pattern, for example, a semiconductor silicone wafer, the particles are miniaturized and the solvent is evaporated. By increasing the liquid viscosity, it is minimized that the coating film hangs down even at the corners (edges) of the convex portions and concave portions of the step, and a film having a predetermined thickness, for example, 6 to 10 μm, is formed. Thus, a uniform film formation can be applied as a whole.

前記、渦巻状パターンの第二段霧化パターン13が形成され、被塗物14に付着、塗布される際の第二段霧化パターン13の流量分布15は、全パターンのほぼ3分の2(2/3)がフラット状の台形分布である。この霧化パターンの流量分布15は、第一段霧化用圧縮空気供給圧力と第二段霧化用圧縮空気供給圧力(又は流量)によって変化する。各霧化用圧縮空気圧力がほぼ同一であるとフラット状の台形分布が得られるが、第二段霧化用圧縮空気供給圧力が第一段霧化用圧縮空気供給圧力に対し半分以下であるとそれは変化する。  The flow rate distribution 15 of the second-stage atomization pattern 13 when the second-stage atomization pattern 13 having a spiral pattern is formed and attached to and coated on the workpiece 14 is approximately two-thirds of the entire pattern. (2/3) is a flat trapezoidal distribution. The flow rate distribution 15 of the atomization pattern varies depending on the first-stage atomization compressed air supply pressure and the second-stage atomization compressed air supply pressure (or flow rate). A flat trapezoidal distribution is obtained when the compressed air pressure for atomization is substantially the same, but the compressed air supply pressure for the second stage atomization is less than half of the compressed air supply pressure for the first stage atomization. And it changes.

次に、その測定実験結果を説明する。
図5は、低吐出量用液体噴射ヘッド1を1直線上に移動した時の膜厚測定結果のパターン流量分布を表している。図5で分かるように、▲3▼、▲4▼の塗布条件である第一段霧化用圧縮空気圧力、第二段霧化用圧縮空気圧力がそれぞれ0.1Mpa〜0.15Mpaあたりが、霧化パターンの流量分布15は全パターンのほぼ2/3がフラット状の台形分布である。第二段霧化用圧縮空気圧力を上げていけばパターン幅は広がる傾向にあるが膜厚は予定した数字より低下した。それは塗着効率が下がるためと考えられる。第二段霧化用圧縮空気圧力は余り上げない方が塗着効率が維持でき、比較的安定した台形分布ができる。塗着効率を測定すると、▲1▼が88%、▲2▼が86%、▲3▼82%で▲4▼が79%、▲5▼、▲6▼76%以下であった。
Next, the measurement experiment results will be described.
FIG. 5 shows the pattern flow rate distribution of the film thickness measurement result when the low ejection amount liquid jet head 1 is moved on one straight line. As can be seen in FIG. 5, the first stage atomization compressed air pressure and the second stage atomization compressed air pressure, which are the application conditions of (3) and (4), are around 0.1 Mpa to 0.15 Mpa, respectively. The flow rate distribution 15 of the atomization pattern is a trapezoidal distribution in which approximately 2/3 of all patterns are flat. If the compressed air pressure for the second stage atomization is increased, the pattern width tends to widen, but the film thickness is lower than the expected number. This is thought to be due to a decrease in coating efficiency. If the compressed air pressure for the second stage atomization is not increased too much, the coating efficiency can be maintained and a relatively stable trapezoidal distribution can be achieved. When the coating efficiency was measured, (1) was 88%, (2) 86%, (3) 82%, (4) 79%, (5), (6) 76% or less.

図6は、▲1▼、▲2▼、▲3▼と▲6▼の塗布条件で、ノズルから被塗面までの距離をそれぞれ離したスプレイ後の液粘度の増加を測定したものである。霧化用圧縮空気圧力が上昇すれば空気量も増加されて液体の微粒化された粘度は増加する傾向がある。これは溶剤がより蒸発し固形分が増加するためである。特に▲3▼、▲6▼の条件はスプレイ後の塗布膜が垂れにくいことを意味するものである。  FIG. 6 shows the increase in liquid viscosity after spraying with the distance from the nozzle to the surface to be coated under the coating conditions (1), (2), (3) and (6). If the compressed air pressure for atomization rises, the amount of air also increases and the atomized viscosity of the liquid tends to increase. This is because the solvent evaporates more and the solid content increases. In particular, the conditions (3) and (6) mean that the coating film after spraying is difficult to sag.

(測定1)
霧化パターンの流量分布15の測定。
(1)液体粘度 20CPSとした。
即ち、原液AZ P4330(NV値30%)を重量比1に対し希釈溶剤としてプロピレングリコールモノメチルエーテルアセテートを重量比1を加えて、固形分比率15%(体積NV値0.11%)で粘度20CPSの液体を得た。
(2)液体の比重は、1.33。
(3)液体供給定量ポンプ6bは、ギヤポンプであり液圧0.01Mpaで吐出量1.5cc/分(min)。
(4)ノズルと被塗物間の距離は、40mm。
(Measurement 1)
Measurement of the flow distribution 15 of the atomization pattern.
(1) Liquid viscosity 20 CPS.
That is, with the stock solution AZ P4330 (NV value 30%) as a diluent solvent with a weight ratio of 1, propylene glycol monomethyl ether acetate is added with a weight ratio of 1 and the solid content ratio is 15% (volume NV value 0.11%) and the viscosity is 20 CPS Obtained liquid.
(2) The specific gravity of the liquid is 1.33.
(3) The liquid supply metering pump 6b is a gear pump and has a discharge pressure of 1.5 cc / min (min) at a hydraulic pressure of 0.01 Mpa.
(4) The distance between the nozzle and the object to be coated is 40 mm.

(5)一段霧化用圧縮空気圧力を0.1Mpa〜0.25Mpaそれぞれ変化。
(6)二段霧化用圧縮空気圧力を0.02Mpa〜0.25Mpaそれぞれ変化。
(7)低吐出量用液体噴射ヘッド1を1直線上に移動した時の速度は、900mmm/分。
(8)低吐出量用液体噴射ヘッド1を1直線上に移動した時の膜厚測定実施。
その際の膜厚測定を図5に示し、液体をスプレイした後の粘度アップ測定を図6に示す。図5中の▲1▼〜▲6▼の塗布条件を表1に示す。
(5) The first stage atomization compressed air pressure is changed by 0.1 Mpa to 0.25 Mpa, respectively.
(6) The two-stage atomization compressed air pressure is changed by 0.02 Mpa to 0.25 Mpa, respectively.
(7) The speed when the low ejection amount liquid jet head 1 is moved on one straight line is 900 mmm / min.
(8) Measurement of the film thickness when the low ejection amount liquid jet head 1 is moved on one straight line.
The film thickness measurement at that time is shown in FIG. 5, and the viscosity increase measurement after spraying the liquid is shown in FIG. Table 1 shows the coating conditions (1) to (6) in FIG.

Figure 0005293989
Figure 0005293989

以上の条件に基づきに、低吐出量用液体噴射ヘッド1をX、Y軸及びZ軸方向に動作する直交型マニュプレーターに搭載して、平板の被塗物における塗布成膜結果を下記に記載する。  Based on the above conditions, the low ejection volume liquid jet head 1 is mounted on an orthogonal manipulator operating in the X, Y and Z axis directions, and the coating film formation results on the flat substrate are as follows: Describe.

(1)低吐出量用液体噴射ヘッド
第1ノズル7は塗布材(液体)を吐出する穴径が小径であればあるほど吐出流量は絞れる。本実験でより効果があったのは第1ノズル孔7aの出口開口径D1が0.3mmφの小口径の第1ノズル7と、ニードル8は先端から5°(度)の傾斜がついた針状テーパーニードルであった。低吐出量用液体噴射ヘッドをX、Y軸及びZ軸方向に動作する直交型マニュプレーターに搭載し、スプレイパターンの両端をラップさせて塗布する方法をとった。
(1) Low discharge amount liquid jet head The discharge flow rate of the first nozzle 7 is reduced as the hole diameter for discharging the coating material (liquid) is smaller. In this experiment, the first nozzle 7 having a small diameter with an outlet opening diameter D1 of the first nozzle hole 7a of 0.3 mmφ, and the needle 8 are needles with an inclination of 5 ° (degrees) from the tip. Taper needle. The low ejection amount liquid jet head was mounted on an orthogonal manipulator operating in the X, Y and Z axis directions, and the both ends of the splay pattern were wrapped and applied.

(2)塗布材料
液状レジスト剤として、クライアントジャパン(株)製の原液AZ P4330 (NV値30%)を重量比1に対し希釈溶剤としてプロピレングリコールモノメチルエーテルアセテートを重量比1を加えた固形分比率15%で粘度20CPSが最適であった。その他の粘度30〜50CPSでも結果は良好であった。
(2) Coating material As a liquid resist agent, a solid content ratio obtained by adding a stock solution AZ P4330 (NV value 30%) manufactured by Client Japan Co., Ltd. to a weight ratio 1 and propylene glycol monomethyl ether acetate 1 in a weight ratio 1 A viscosity of 20 CPS was optimal at 15%. The results were good even at other viscosities of 30 to 50 CPS.

(3)吐出液圧
0.015MPa
(4)塗布室温及び相対湿度
20℃ 65%
(5)被塗物
200mm角サイズのフラットガラス板、
及び幅25μ、高さ50μ段差のパターンを搭載した6インチウェハー。
(6)目標塗布膜厚さ
フラットガラス面に対し3μ±5%以内(3σ)。
段差のパターンを搭載した6インチウェハーに対し各面及び角隅部6μ〜10μ目標。
(3) Discharge fluid pressure 0.015 MPa
(4) Application room temperature and relative humidity 20 ° C 65%
(5) Coated object 200 mm square flat glass plate,
And a 6-inch wafer on which a pattern having a width of 25 μm and a height of 50 μm is mounted.
(6) Target coating film thickness Within 3 μ ± 5% (3σ) with respect to the flat glass surface.
Targets of 6μ to 10μ on each side and corners for 6 inch wafer with stepped pattern.

(7)その他塗布条件
ノズル移動速度(X軸) 300mm/min
ノズルと被塗物間距離 40mm
吐出量 1.5cc/min
塗布回数 1回
被塗物塗布時表面温度 30℃
(7) Other application conditions Nozzle moving speed (X axis) 300 mm / min
40mm distance between nozzle and substrate
Discharge rate 1.5cc / min
Number of coatings 1 time Surface temperature at coating object 30 ° C

第一段霧化用圧縮空気圧力 0.15MPa(以下霧化エア圧力と呼ぶ)
第二段霧化用圧縮空気圧力 0.1MPa(以下パターンエア圧力と呼ぶ)
塗布ピッチ 10mm
塗布後乾燥条件 100℃
乾燥時間 3分
上記の諸条件による実験の結果は、所望する良い塗布状態が得られた。その塗布状態の結果を表2に示す。
Compressed air pressure for first stage atomization 0.15 MPa (hereinafter referred to as atomizing air pressure)
Compressed air pressure for second stage atomization 0.1 MPa (hereinafter referred to as pattern air pressure)
Application pitch 10mm
Drying conditions after coating 100 ° C
Drying time: 3 minutes As a result of the experiment under the above conditions, a desired good coating state was obtained. The results of the application state are shown in Table 2.

Figure 0005293989
Figure 0005293989

上記データーの目標値=30.000膜厚[Å]、精度5%
このときのフラットガラス板200角で塗布使用量3cc。
この場合目標精度を5%とすると、
USL=31,500、LSL=28,500、UCL=30,330、LCL=29,773、#of excp.=0.0、#of samp=96、平均膜厚=30051.5、Min膜厚=30,002、Max膜厚=30,810、diff.=0.17%、Cp=5.391、Cpk=5.206、Stdev.=92.8、3Sigma=278.3、3 Sigma%=0.93%。
このときの粒径分布測定結果を図7に示す。
Target value of the above data = 30.000 film thickness [Å], accuracy 5%
The amount of coating used is 3 cc with a flat glass plate of 200 squares.
In this case, if the target accuracy is 5%,
USL = 31,500, LSL = 28,500, UCL = 30,330, LCL = 29,773, #of exc. = 0.0, #of samp = 96, average film thickness = 30051.5, Min film thickness = 30,002, Max film thickness = 30,810, diff. = 0.17%, Cp = 5.391, Cpk = 5.206, Stdev. = 92.8, 3 Sigma = 278.3, 3 Sigma% = 0.93%.
The particle size distribution measurement result at this time is shown in FIG.

本発明の少量液体の噴霧装置としての低吐出量用液体自動噴射ヘッドの使用系統図である。  It is a systematic diagram of the use of a liquid ejection head for low discharge amount as a small amount liquid spraying apparatus of the present invention. 本発明の少量液体の噴霧装置としての低吐出量用液体自動噴射ヘッドの縦断面図である。  It is a longitudinal cross-sectional view of the liquid automatic ejection head for low discharge amount as a small amount liquid spraying device of the present invention. 図2のA部拡大図であり、第1〜第3ノズルの拡大詳細図である。  FIG. 3 is an enlarged view of a part A in FIG. 2, and is an enlarged detailed view of first to third nozzles. 図3の底面図であり、第3ノズルの底面図である。  FIG. 4 is a bottom view of FIG. 3 and is a bottom view of a third nozzle. 塗布パターンの測定結果を示すグラフであり、塗布幅と膜厚の関係を示すグラフである。  It is a graph which shows the measurement result of an application pattern, and is a graph which shows the relation between application width and film thickness. 液体をスプレイした後の粘度アップ測定結果を示すものであり、ノズルから被塗物までの距離と粘度との関係を示すグラフである。  It is a graph which shows the viscosity-up measurement result after spraying a liquid, and shows the relationship between the distance from a nozzle to a to-be-coated object, and a viscosity. 表1の▲1▼における第一段霧化用圧縮空気圧力及び第二段霧化用圧縮空気圧力での塗布条件での粒径分布測定結果を示すグラフである。  It is a graph which shows the particle size distribution measurement result on the application | coating conditions in the compressed air pressure for the 1st stage atomization in (1) of Table 1, and the compressed air pressure for the 2nd stage atomization.

符号の説明Explanation of symbols

1 低吐出量用液体自動噴射ヘッド(少量液体の噴霧装置)
1a 噴射ヘッド本体
2 バルブエアピストン部
2A エアピストンカバー
2B エアピストン
2C マイクロアジャスト(ニードル移動量調整装置)
2D マイクロアジャストエンド
2E ピストンシール用Oリング
2F ばね
3 ヘッド駆動用圧縮空気配管
3a ヘッド駆動用電磁弁
3b ヘッド駆動用エアレギュレーター
4 液体タンク
5 第一段霧化用圧縮空気供給配管
5a 第一段霧化用電磁弁
5b 第一段霧化用エアレギュレーター
5A ヘッド内第一段霧化用圧縮空気供給通路
6 液体供給配管
6a 液体供給切替バルブ
6b 液体供給用定量供給ポンプ
6c 液体戻り配管
6A ヘッド内液体供給通路
7 第1ノズル
7a 第1ノズル孔
8 ニードル本体
8A ニードル先端部
8B 液体シール用Oリング
9 第2ノズル
9a 第2ノズル孔
10 第3ノズル
10a 第3ノズル孔
10b 第二霧化用兼渦巻流形成用圧縮空気通路
10c 傾斜面
11 第二段霧化用圧縮空気供給配管
11a 第二段霧化用電磁弁
11b 第二段霧化用エアレギュレーター
11A ヘッド内第二段霧化用圧縮空気通路
11B 第3ノズル押え用ナット
12 第一段霧化パターン
13 第二段霧化パターン
14 被塗物
15 霧化パターンの流量分布
D1 第1ノズル孔の出口開口径
D2 第2ノズル孔の開口径
D3 第3ノズル孔の開口径
1 Liquid ejection head for low discharge volume (Small liquid spraying device)
1a Injection head body 2 Valve air piston part 2A Air piston cover 2B Air piston 2C Micro-adjustment (needle movement amount adjusting device)
2D Micro adjustment end 2E Piston seal O-ring 2F Spring 3 Head drive compressed air pipe 3a Head drive solenoid valve 3b Head drive air regulator 4 Liquid tank 5 First stage atomization compressed air supply pipe 5a First stage fog Electrostatic valve 5b 1st stage atomizing air regulator 5A In-head first stage atomizing compressed air supply passage 6 Liquid supply pipe 6a Liquid supply switching valve 6b Liquid supply fixed supply pump 6c Liquid return pipe 6A Liquid in head Supply passage 7 First nozzle 7a First nozzle hole 8 Needle body 8A Needle tip 8B Liquid seal O-ring 9 Second nozzle 9a Second nozzle hole 10 Third nozzle 10a Third nozzle hole 10b Second atomization and swirl Flow forming compressed air passage 10c Inclined surface 11 Second stage atomizing compressed air supply pipe 11a Second stage atomizing solenoid valve 11 Second stage atomization air regulator 11A Compressed air passage 11B for second stage atomization in the head Third nut pressing nut 12 First stage atomization pattern 13 Second stage atomization pattern 14 Object 15 Atomization pattern Flow distribution D1 Outlet opening diameter D2 of the first nozzle hole D2 opening diameter of the second nozzle hole D3 Opening diameter of the third nozzle hole

Claims (2)

小量の液体を微粒化して被塗物に塗布する噴霧装置であって、
液体供給通路と、
先端部が針状で先端まで一様な勾配で長細く尖った極細のニードルと、
該ニードルの該先端部との間で弁機構を構成し、該ニードル先端部に対応した形状の極細の第1ノズル孔を有し、該ニードル先端部が該第1ノズル孔に対して挿抜自在に嵌合可能である第1ノズルと、
該第1ノズルの周囲を取り囲んで第1ノズルとの間で環状の第1霧化用圧縮気体通路を形成し、下端に小口径の第2ノズル孔を形成した第2ノズルと、
該第2ノズル下端部に、該第2ノズルの第2ノズル孔を取り囲むようにして、かつ、下端部が該第2ノズルの下面よりも所定距離突出して形成された第3ノズルの第3ノズル孔が形成され、該第3ノズル孔の周囲に、外側壁である逆円錐状の傾斜面に沿って第2霧化用兼渦巻流形成用の圧縮気体が流れるように、該第2霧化用兼渦巻流形成用の複数の圧縮気体供給通路を形成した第3ノズルと、
該ニードルの後端部と当接可能に設けられ、該針状ニードル先端部と該第1ノズルの第1ノズル孔との開き間隙を極微小量調整可能なニードル移動量調整装置と、
を備え、
該ニードルの先端部は弁機構が開いた状態で第3ノズルの第3ノズル孔の内部まで突き出して位置するようにして、液体が、第1ノズル孔とニードル先端部との間の先端に行くほど環状隙間が小さくなる極小間隙を通りつつ極細ニードル先端部に沿ってにじみ出る構成にし、
液体吐出時に第1ノズルの第1ノズル孔から該ニードル先端部に沿って液体を滲み出させながら該第1霧化用圧縮気体通路を流れる第1霧化用圧縮気体によって微粒化させつつ第2ノズルの第2ノズル孔から噴出させ、つぎに該噴出流を第3ノズルの第3ノズル孔を通して噴出させつつ第2霧化用兼渦巻流形成用圧縮気体を該噴出流に衝突させることにより、該噴出流をさらに微粒化させると共に旋回かつ拡散せしめ、被塗物に塗布することを特徴とする少量液体の噴霧装置。
A spraying device for atomizing a small amount of liquid and applying it to an object to be coated,
A liquid supply passage;
The tip is needle-shaped and the needle is very thin with a uniform gradient to the tip .
A valve mechanism is formed between the tip of the needle and has a very fine first nozzle hole having a shape corresponding to the needle tip, and the needle tip can be inserted into and removed from the first nozzle hole. A first nozzle that can be fitted to
A second nozzle that surrounds the first nozzle and forms an annular first atomizing compressed gas passage between the first nozzle and a second nozzle hole having a small diameter at the lower end;
The third nozzle of the third nozzle is formed at the lower end of the second nozzle so as to surround the second nozzle hole of the second nozzle and the lower end protrudes from the lower surface of the second nozzle by a predetermined distance. hole is formed, around the third nozzle holes, to flow compressed gas for the second atomization and swirling flow formed along the opposite conical inclined surface is an outer wall, said second atomization A third nozzle formed with a plurality of compressed gas supply passages for forming a swirl flow for use;
A needle movement amount adjusting device which is provided so as to be in contact with a rear end portion of the needle, and which can adjust a very small amount of an opening gap between the tip portion of the needle needle and the first nozzle hole of the first nozzle;
With
The tip of the needle protrudes to the inside of the third nozzle hole of the third nozzle with the valve mechanism opened, and the liquid goes to the tip between the first nozzle hole and the needle tip. A structure that oozes along the tip of the ultrafine needle while passing through a very small gap as the annular gap becomes smaller,
While the liquid is discharged, the second nozzle is atomized by the first atomizing compressed gas flowing through the first atomizing compressed gas passage while the liquid oozes from the first nozzle hole of the first nozzle along the tip of the needle. Jetting from the second nozzle hole of the nozzle, and then causing the jet stream to jet through the third nozzle hole of the third nozzle and causing the compressed gas for forming the second atomization and swirl flow to collide with the jet stream, A spraying device for a small amount of liquid, characterized in that the jet stream is further atomized, swirled and diffused, and applied to an object to be coated.
該液体供給通路へ供給される液体の粘度は10〜100CPSの低粘度であり、該第1ノズルの第1ノズル孔の出口開口径は0.2〜0.6mmであり、該針状のニードル先端部の角度は3〜10度であり、該第2ノズルの第2ノズル孔の開口内径は0.8〜1.5mmであり、該第3ノズルの第3ノズル孔の開口径は1.0〜2.0mmであり、該ニードル移動量調整装置による該針状ニードル先端部と該第1ノズルの第1ノズル孔との開き間隙を極微小量調整するためのニードルの移動距離を、8〜15μ(ミクロン)毎に調整可能とし、液体吐出量を0.1〜10.0cm/minとすることにより少量の液体を微粒化し塗布することを特徴とする請求項1の少量液体の噴霧装置。 The liquid supplied to the liquid supply passage has a low viscosity of 10 to 100 CPS, the outlet diameter of the first nozzle hole of the first nozzle is 0.2 to 0.6 mm, and the needle needle The angle of the tip is 3 to 10 degrees, the opening inner diameter of the second nozzle hole of the second nozzle is 0.8 to 1.5 mm, and the opening diameter of the third nozzle hole of the third nozzle is 1. The moving distance of the needle for adjusting an extremely small opening gap between the tip of the needle needle and the first nozzle hole of the first nozzle by the needle moving amount adjusting device is 0 to 2.0 mm. The spraying of a small amount of liquid according to claim 1, wherein a small amount of liquid is atomized and applied by adjusting the liquid discharge amount to 0.1 to 10.0 cm 3 / min. apparatus.
JP2007214144A 2007-07-24 2007-07-24 Small liquid spray equipment Active JP5293989B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2007214144A JP5293989B2 (en) 2007-07-24 2007-07-24 Small liquid spray equipment
DE102008033732A DE102008033732A1 (en) 2007-07-24 2008-07-18 Sprayer for small quantities of liquid
US12/177,429 US7681808B2 (en) 2007-07-24 2008-07-22 Spray device for small amount of liquid
KR1020080071578A KR20090010923A (en) 2007-07-24 2008-07-23 Spray device for small amount of liquid
TW097128180A TWI494168B (en) 2007-07-24 2008-07-24 Spray device for small amount of liquid
CN2008101343215A CN101352705B (en) 2007-07-24 2008-07-24 Spray device for small amount of liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007214144A JP5293989B2 (en) 2007-07-24 2007-07-24 Small liquid spray equipment

Publications (2)

Publication Number Publication Date
JP2009028701A JP2009028701A (en) 2009-02-12
JP5293989B2 true JP5293989B2 (en) 2013-09-18

Family

ID=40157616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007214144A Active JP5293989B2 (en) 2007-07-24 2007-07-24 Small liquid spray equipment

Country Status (6)

Country Link
US (1) US7681808B2 (en)
JP (1) JP5293989B2 (en)
KR (1) KR20090010923A (en)
CN (1) CN101352705B (en)
DE (1) DE102008033732A1 (en)
TW (1) TWI494168B (en)

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7564564B2 (en) * 2006-08-22 2009-07-21 Artium Technologies, Inc. Automatic set-up for instrument functions
US9332982B2 (en) * 2009-11-09 2016-05-10 Ethicon, Llc Surgical needle coatings and methods
US9259219B2 (en) 2009-11-09 2016-02-16 Ethicon, Llc Surgical needle coatings and methods
US9221075B2 (en) * 2009-11-09 2015-12-29 Ethicon, Inc. Surgical needle coatings and methods
CN102019241B (en) * 2010-10-22 2012-08-01 山东大学 Combined nozzle for preparing supercritical fluid nano-micron materials
CN102133558B (en) * 2010-12-10 2012-10-03 山东大学 Accurate adjusting annular gap combined nozzle for preparing supercritical fluid nano/micron material
JP5732376B2 (en) * 2011-06-21 2015-06-10 東京エレクトロン株式会社 Two-fluid nozzle, substrate liquid processing apparatus, and substrate liquid processing method
JP2013169486A (en) * 2012-02-17 2013-09-02 Hitachi Koki Co Ltd High pressure washing device
KR101347262B1 (en) * 2012-04-25 2014-01-06 한국항공대학교산학협력단 Shear coaxial injector with 3-phase separated spray
KR101406089B1 (en) * 2012-05-25 2014-07-15 주식회사 티에스디벨로프먼트 Helical spray nozzle of a handheld coatings
KR101415620B1 (en) * 2013-03-26 2014-07-04 주식회사 은일 Coating method and its device of dampproof-insulation materials for circuit board
KR101397384B1 (en) * 2013-03-28 2014-05-20 엔젯 주식회사 Spray nozzle and system for coating for the same
CN104174549B (en) * 2013-05-20 2017-08-22 日本电产增成株式会社 Liquor device for discharging fixed
JP3191270U (en) * 2013-12-12 2014-06-19 島田 ▲隆▼治 Low discharge volume liquid material injection valve for applying medium and high viscosity liquid material
JP6494983B2 (en) * 2014-11-21 2019-04-03 ニッタ株式会社 Dispersing apparatus and dispersing method
CN104747579A (en) * 2015-03-19 2015-07-01 谭建忠 Flexible shaft system with self-controlled spraying passage
JP6496186B2 (en) * 2015-05-26 2019-04-03 株式会社Screenホールディングス Substrate processing equipment
WO2017019769A1 (en) * 2015-07-27 2017-02-02 Dmg Mori Seiki Usa Powder delivery systems and methods for additive manufacturing apparatus
JP6395690B2 (en) * 2015-11-05 2018-09-26 Shimada Appli合同会社 Spray coating apparatus and method
KR102033313B1 (en) * 2016-03-02 2019-10-18 주식회사 탑 엔지니어링 Equipment for manufacturing camera module
JP6270896B2 (en) * 2016-03-29 2018-01-31 本田技研工業株式会社 COATING NOZZLE, COATING DEVICE, AND COATING METHOD USING THEM
CN105935634A (en) * 2016-06-29 2016-09-14 深圳贵之族生科技有限公司 Atomization spraying device for viscous liquid
JP6524594B2 (en) * 2016-07-07 2019-06-05 パナソニックIpマネジメント株式会社 Method of manufacturing element chip
CN107096677B (en) * 2017-04-18 2019-06-28 江苏大学 A kind of low-frequency ultrasonic atomizing device of big atomization quantity
CN110573263B (en) * 2017-04-21 2021-12-14 诺信公司 Dispensing system
CN107185765B (en) 2017-05-04 2019-04-30 江苏大学 A kind of band can bumpy flow impeller ladder cavate low-frequency ultrasonic atomizing spray head
CN107214007A (en) * 2017-07-04 2017-09-29 深圳市德瑞茵精密科技有限公司 A kind of air gun and its atomizer of sprayed with adhesive coating
CN107253296B (en) * 2017-08-10 2023-06-02 青岛科技大学 High-pressure atomizing and spraying device
CN107685934A (en) * 2017-08-18 2018-02-13 深圳市弗雷德电子有限公司 Atomization jetting device
US11197666B2 (en) 2017-09-15 2021-12-14 Cilag Gmbh International Surgical coated needles
CN107470050B (en) * 2017-09-30 2023-04-18 江西远达环保有限公司 Spray gun with cooling effect for desulfurization and denitrification
CN107470049B (en) * 2017-09-30 2023-04-18 江西远达环保有限公司 Spray gun pipe with anti-vaporization function for desulfurization and denitrification
US11524129B2 (en) * 2018-01-23 2022-12-13 Shl Medical Ag Aerosol generator with obstructed air jets
CN114901402A (en) * 2019-12-27 2022-08-12 新时代技研株式会社 Applicator, nozzle and mechanical foaming device for discharging a mixture of gas and pasty material
US20220323989A1 (en) * 2020-09-08 2022-10-13 Denso Ten Limited Application device and application method
KR102649715B1 (en) * 2020-10-30 2024-03-21 세메스 주식회사 Surface treatment apparatus and surface treatment method
JP2022086568A (en) * 2020-11-30 2022-06-09 新東工業株式会社 Nozzle, development device, and processed object processing method
CN114887339A (en) * 2022-04-27 2022-08-12 江苏宇通干燥工程有限公司 Spray drier

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5189307U (en) * 1975-01-16 1976-07-16
JPS62161829U (en) * 1986-04-04 1987-10-14
US4785996A (en) * 1987-04-23 1988-11-22 Nordson Corporation Adhesive spray gun and nozzle attachment
CN2034876U (en) * 1988-05-03 1989-03-29 贾杰臣 Sprayer
JPH0615203A (en) * 1992-02-17 1994-01-25 P C G Tekunika:Kk Paint ejection valve
EP0746420B1 (en) * 1992-04-20 1999-12-01 Spraying Systems Co. Air assisted atomizing spray nozzle
US5800867A (en) * 1992-08-13 1998-09-01 Nordson Corporation Deflection control of liquid or powder stream during dispensing
JP3655005B2 (en) * 1995-05-02 2005-06-02 科研製薬株式会社 Spray gun and granulation coating method using the same
US5590815A (en) * 1995-07-13 1997-01-07 Monturas S.A. Minature pump sprayer
US6149076A (en) * 1998-08-05 2000-11-21 Nordson Corporation Dispensing apparatus having nozzle for controlling heated liquid discharge with unheated pressurized air
EP1181984A4 (en) * 1999-03-29 2004-12-22 Santuuru Kk Method and device for spiral spray coating
US7762476B2 (en) * 2002-08-19 2010-07-27 Illinois Tool Works Inc. Spray gun with improved atomization
JP4437272B2 (en) * 2002-08-30 2010-03-24 ノードソン株式会社 How to spray liquid
JP2004167397A (en) * 2002-11-20 2004-06-17 Toyota Auto Body Co Ltd Coating gun
FR2859650B1 (en) * 2003-09-12 2006-02-24 Gloster Sante Europ APPARATUS FOR BRUSTING A LIQUID COMPOSITION
TWM250715U (en) * 2003-12-22 2004-11-21 Visiontac Ltd Spraying structure

Also Published As

Publication number Publication date
TWI494168B (en) 2015-08-01
TW200909066A (en) 2009-03-01
KR20090010923A (en) 2009-01-30
CN101352705A (en) 2009-01-28
JP2009028701A (en) 2009-02-12
DE102008033732A1 (en) 2009-01-29
US20090026291A1 (en) 2009-01-29
CN101352705B (en) 2012-02-22
US7681808B2 (en) 2010-03-23

Similar Documents

Publication Publication Date Title
JP5293989B2 (en) Small liquid spray equipment
JP4014693B2 (en) Method and apparatus for applying a liquid coating with an improved spray nozzle
EP1108476B1 (en) Low-pressure atomizing spray gun
US5165605A (en) Low pressure air atomizing spray gun
US8113445B2 (en) Spray gun having air cap with unique spray shaping features
KR101250678B1 (en) Air misterization cap for spray gun
TW200406259A (en) Spray gun with improved pre-atomization fluid mixing and breakup
KR101751941B1 (en) Valve for ejecting small amount of liquid material and capable of being assembled and disassembled without use of tool
AU2016252285A1 (en) Low pressure spray tip configurations
US10464076B2 (en) Air cap and nozzle assembly for a spray gun, and spray gun
JP6404513B2 (en) Spray application equipment
KR101949915B1 (en) Apparatus for spray coating and method for preventing cobwebbing in spray coating
JP5336763B2 (en) Spray gun for internal coating.
EP0411830B1 (en) Low pressure air atomizing spray gun
JP3191270U (en) Low discharge volume liquid material injection valve for applying medium and high viscosity liquid material
US6267300B1 (en) Spray back fluid applicator
JP2000167446A (en) Coating head
JP2005028204A (en) Auxiliary device of spray gun
JP2558243Y2 (en) Internal mixing air spray gun
JPH0330853A (en) Spray apparatus
EP4263064A1 (en) Two-fluid nozzle with an arcuate opening
JPS635141B2 (en)
JPH01203066A (en) Method and equipment for spraying liquid
JPH09173918A (en) Structure of coating spray gun
JPS6311060B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130521

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130529

R150 Certificate of patent or registration of utility model

Ref document number: 5293989

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250