JP5292663B2 - Assembled battery and vehicle equipped with the assembled battery - Google Patents

Assembled battery and vehicle equipped with the assembled battery Download PDF

Info

Publication number
JP5292663B2
JP5292663B2 JP2005042759A JP2005042759A JP5292663B2 JP 5292663 B2 JP5292663 B2 JP 5292663B2 JP 2005042759 A JP2005042759 A JP 2005042759A JP 2005042759 A JP2005042759 A JP 2005042759A JP 5292663 B2 JP5292663 B2 JP 5292663B2
Authority
JP
Japan
Prior art keywords
battery
case
secondary batteries
assembled battery
stack
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005042759A
Other languages
Japanese (ja)
Other versions
JP2005302698A (en
Inventor
龍也 東野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2005042759A priority Critical patent/JP5292663B2/en
Publication of JP2005302698A publication Critical patent/JP2005302698A/en
Application granted granted Critical
Publication of JP5292663B2 publication Critical patent/JP5292663B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/64Constructional details of batteries specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/66Arrangements of batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/21Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having the same nominal voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/26Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by cooling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Abstract

<P>PROBLEM TO BE SOLVED: To provide a battery pack allowing for improving the cooling efficiency of secondary cells. <P>SOLUTION: The battery pack is equipped with 8 sets of battery stacks 30a to 30h, with each being constituted of 10 stacked secondary cells; heat sinks 20 between which the secondary cells 10a to 10j are interposed; a case 40, in which the battery stacks 30a to 30h are disposed on the same plane and housed in an internal space 41 thereof; an inlet duct 50, communicating the exterior of the battery pack and the internal space 41 of the case 40; an outlet duct 60, communicating the internal space 41 of the case 40 and the exterior of the battery pack; and a fan 70 disposed in the outlet duct 60, wherein the cooling wind taken into the internal space 41 of the case 40 via the inlet duct 50 by negative pressure produced by the rotating drive of the fan 70 enters each passage formed in the heat sinks 20 and indirectly cools the secondary cells, and enters each flow channel formed between each battery stacks 30a to 30h and directly cools the secondary cells. <P>COPYRIGHT: (C)2006,JPO&amp;NCIPI

Description

本発明は、ラミネートフィルムを外装部材として用いた薄型二次電池を複数積層した電池積層体を2以上並べて構成される組電池及び当該組電池を搭載した車輌に関する。   The present invention relates to an assembled battery configured by arranging two or more battery stacks in which a plurality of thin secondary batteries using a laminate film as an exterior member are stacked, and a vehicle equipped with the assembled battery.

所望する容量や電圧を確保するために、ラミネートフィルムを外装部材として用いた薄型二次電池を複数積層した電池積層体を同一平面上に並列に2以上並べて組電池を構成する技術が従来から知られている(例えば、特許文献1参照)。   In order to secure a desired capacity and voltage, there has been conventionally known a technique for forming an assembled battery by arranging two or more battery stacks in which a plurality of thin secondary batteries using a laminate film as an exterior member are stacked in parallel on the same plane. (For example, refer to Patent Document 1).

このような組電池では、放充電に伴って各電池積層体を構成する二次電池が発熱するために、各二次電池同士の間にヒートシンクを介在させて、このヒートシンクの内部に形成された通路に冷却風を送風することにより、このヒートシンクを介して二次電池の間接的な冷却が行われている。しかしながら、このような手法により十分な冷却効果を確保しようとすると、ヒートシンクの形状が複雑になったり枚数が多くなり、組電池のコスト増加を招く。これに対し、単にヒートシンクの形状を単純化したり枚数を減らすと、各二次電池の冷却効率が悪化する。
特開2003−303583号公報
In such an assembled battery, since the secondary battery constituting each battery stack generates heat as the battery is discharged, a heat sink is interposed between the secondary batteries to form the inside of the heat sink. By blowing cooling air through the passage, the secondary battery is indirectly cooled through the heat sink. However, if a sufficient cooling effect is ensured by such a method, the shape of the heat sink becomes complicated and the number of the heat sinks increases, resulting in an increase in cost of the assembled battery. On the other hand, if the shape of the heat sink is simply simplified or the number of sheets is reduced, the cooling efficiency of each secondary battery is deteriorated.
JP 2003-303583 A

本発明は、二次電池の冷却効率を向上させることが可能な組電池及び当該組電池を搭載した車輌を提供することを目的とする。
上記目的を達成するために、本発明によれば、セパレータを介して積層された電極板を、合成樹脂材料から成る合成樹脂層及び金属材料から成る金属層を有する外装部材に収容し、前記外装部材の外周縁を熱融着して熱融着部を形成して前記電極板を封止すると共に、前記電極板に接続された電極端子が前記外装部材の外周縁から導出した二次電池を複数積層した電池積層体を備えた組電池であって、前記二次電池を冷却するための冷媒を供給する冷媒供給手段と、前記電池積層体を内部に収容可能なケースと、前記冷媒供給手段が接続される入口側開口と出口側開口とを有し、前記ケースを収容する筐体と、をさらに備え、前記ケースには、前記冷媒供給手段から供給される冷媒を当該ケース内に導入又は排出するための開口部が複数形成されており、前記冷媒供給手段から供給された冷媒は、一の前記開口部を介して前記ケース内に導入され、前記二次電池の熱融着部により前記ケースの内壁面と前記電池積層体との間に形成された流路を通過し、他の前記開口部を介して当該ケースから排出され、前記ケースの前記開口部の周囲には、前記冷媒供給手段から供給された冷媒を前記開口部に向かうように方向付けるエアスクープが設けられている組電池、及び、該組電池を搭載した車輌が提供される。
An object of this invention is to provide the assembled battery which can improve the cooling efficiency of a secondary battery, and the vehicle carrying the said assembled battery.
To achieve the above object, according to the present invention, an electrode plate laminated via a separator is accommodated in an exterior member having a synthetic resin layer made of a synthetic resin material and a metal layer made of a metal material, A secondary battery in which the outer peripheral edge of the member is heat-sealed to form a heat-sealed portion to seal the electrode plate, and the electrode terminal connected to the electrode plate is led out from the outer peripheral edge of the exterior member. A battery pack including a plurality of stacked battery stacks, a coolant supply means for supplying a coolant for cooling the secondary battery, a case capable of housing the battery stack, and the coolant supply means A housing having an inlet side opening and an outlet side opening connected to each other, and housing the case , wherein the case is configured to introduce or supply the refrigerant supplied from the refrigerant supply means into the case. Multiple openings for discharging The refrigerant supplied from the refrigerant supply means is introduced into the case through the one opening, and the inner wall surface of the case and the battery stack are formed by the heat fusion part of the secondary battery. Passing through the flow path formed between the first and second cases, and is discharged from the case through the other opening. Around the opening of the case, the refrigerant supplied from the refrigerant supply means is opened to the opening. Provided are an assembled battery provided with an air scoop that is directed toward the portion , and a vehicle equipped with the assembled battery.

本発明では、合成樹脂層及び金属層を有するラミネートフィルムを外装部材として用いた二次電池を複数積層した電池積層体を内部に収容したケースを筐体内に収容した組電池において、二次電池を冷却するための冷媒を供給する冷媒供給手段を設け、この冷媒供給手段により、ケースの内壁面と電池積層体の間に形成された流路に冷媒を通過させる。これにより、冷媒が各二次電池の外装部材に接触して直接的に冷却するので、組電池を構成する各二次電池を効率的に冷却することが出来る。
In the present invention, in a battery pack in which a case in which a battery stack in which a plurality of secondary batteries using a laminate film having a synthetic resin layer and a metal layer as an exterior member are stacked is housed is housed in a housing , the secondary battery is coolant supply means for supplying a coolant for cooling is provided, this by the refrigerant supply means, passing the refrigerant flow path formed between the inner wall and the cell stack of the case. Thereby, since a refrigerant | coolant contacts the exterior member of each secondary battery and it cools directly, each secondary battery which comprises an assembled battery can be cooled efficiently.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

[第1実施形態]
図1は本発明の実施形態に係る二次電池の全体を示す平面図、図2は図1のII-II線に沿った二次電池の断面図である。
[First Embodiment]
FIG. 1 is a plan view showing an entire secondary battery according to an embodiment of the present invention, and FIG. 2 is a cross-sectional view of the secondary battery taken along line II-II in FIG.

図1及び図2は一つの薄型電池10(単位電池)を示す。この薄型電池10を複数積層することにより所望の電圧、容量の組電池が構成される。   1 and 2 show one thin battery 10 (unit battery). A plurality of thin batteries 10 are stacked to form an assembled battery having a desired voltage and capacity.

先ず、本実施形態に係る二次電池10について説明すると、この電池10はリチウム系の平板状の積層タイプの薄型電池であり、図1及び図2に示すように、3枚の正極板101と、5枚のセパレータ102と、3枚の負極板103と、正極端子104と、負極端子105と、上部外装部材106と、下部外装部材107と、特に図示しない電解質とから構成されている。このうちの正極板101、セパレータ102、負極板103及び電解質を特に発電要素108と称する。   First, the secondary battery 10 according to the present embodiment will be described. This battery 10 is a lithium-based flat-type laminated thin battery, and as shown in FIGS. 1 and 2, three positive plates 101 and It is composed of five separators 102, three negative plates 103, a positive terminal 104, a negative terminal 105, an upper exterior member 106, a lower exterior member 107, and an electrolyte (not shown). Among these, the positive electrode plate 101, the separator 102, the negative electrode plate 103, and the electrolyte are particularly referred to as a power generation element 108.

発電要素108を構成する正極板101は、正極板104まで伸びている正極側集電体101aと、正極側集電体101aの一部の両主面にそれぞれ形成された正極層101b、101cと、を有している。なお、正極板101の正極層101b、101cは、正極側集電体101aの全体の両主面に亘って形成されているのではなく、図2に示すように、正極板101、セパレータ102及び負極板103を積層して発電要素108を構成する際に、正極板101においてセパレータ102に実質的に重なる部分のみに正極層101b、101cが形成されている。   The positive electrode plate 101 constituting the power generation element 108 includes a positive electrode side current collector 101a extending to the positive electrode plate 104, and positive electrode layers 101b and 101c formed on both main surfaces of a part of the positive electrode side current collector 101a, respectively. ,have. In addition, the positive electrode layers 101b and 101c of the positive electrode plate 101 are not formed over both main surfaces of the entire positive electrode current collector 101a, but as shown in FIG. When the power generation element 108 is configured by laminating the negative electrode plate 103, the positive electrode layers 101 b and 101 c are formed only on the portion of the positive electrode plate 101 that substantially overlaps the separator 102.

この正極板101の正極側集電体101aは、例えば、アルミニウム箔、アルミニウム合金箔、銅箔、又は、ニッケル箔等の電気化学的に安定した金属箔である。   The positive electrode side current collector 101a of the positive electrode plate 101 is an electrochemically stable metal foil such as an aluminum foil, an aluminum alloy foil, a copper foil, or a nickel foil.

また、この正極板101の正極層101b、101cは、例えば、ニッケル酸リチウム(LiNiO)、マンガン酸リチウム(LiMnO)、又は、コバルト酸リチウム(LiCoO)等のリチウム複合酸化物や、カルコゲン(S、Se、Te)化物等の正極活物質と、カーボンブラック等の導電剤と、ポリ四フッ化エチレンの水性ディスパージョン等の接着剤とを混合したものを、正極側集電体101aの一部の両主面に塗布し、乾燥及び圧延することにより形成されている。 The positive electrode layers 101b and 101c of the positive electrode plate 101 are made of, for example, lithium composite oxide such as lithium nickelate (LiNiO 2 ), lithium manganate (LiMnO 2 ), or lithium cobaltate (LiCoO 2 ), or chalcogen. A mixture of a positive electrode active material such as (S, Se, Te) compound, a conductive agent such as carbon black, and an adhesive such as an aqueous dispersion of polytetrafluoroethylene is used for the positive electrode side current collector 101a. It is formed by applying to some of both main surfaces, drying and rolling.

発電要素108を構成する負極板103は、負極端子105まで伸びている負極側集電体103aと、当該負極側集電体103aの一部の両主面にそれぞれ形成された負極層103b、103cと、を有している。なお、負極板103の負極層103b、103cは、負極側集電体103aの全体の両主面に亘って形成されているのではなく、図2に示すように、正極板101、セパレータ102及び負極板103を積層して発電要素108を構成する際に、負極板103においてセパレータ102に実質的に重なる部分のみに負極層103b、103cが形成されている。   The negative electrode plate 103 constituting the power generation element 108 includes a negative electrode side current collector 103a extending to the negative electrode terminal 105, and negative electrode layers 103b and 103c formed on both main surfaces of a part of the negative electrode side current collector 103a, respectively. And have. Note that the negative electrode layers 103b and 103c of the negative electrode plate 103 are not formed over both main surfaces of the entire negative electrode side current collector 103a, but as shown in FIG. When the power generation element 108 is configured by laminating the negative electrode plate 103, the negative electrode layers 103 b and 103 c are formed only on the portion of the negative electrode plate 103 that substantially overlaps the separator 102.

この負極板103の負極側集電体103aは、例えば、ニッケル箔、銅箔、ステンレス箔、又は、鉄箔等の電気化学的に安定した金属箔である。   The negative electrode side current collector 103a of the negative electrode plate 103 is an electrochemically stable metal foil such as nickel foil, copper foil, stainless steel foil, or iron foil.

また、この負極板103の負極層103b、103cは、例えば、非晶質炭素、難黒鉛化炭素、易黒鉛化炭素、又は、黒鉛等のような上記の正極活物質のリチウムイオンを吸蔵及び放出する負極活物質に、有機物焼成体の前駆体材料としてのスチレンブタジエンゴム樹脂粉末の水性ディスパージョンを混合し、乾燥させた後に粉砕することで、炭素粒子表面に炭化したスチレンブタジエンゴムを担持させたものを主材料とし、これにアクリル樹脂エマルジョン等の結着剤をさらに混合し、この混合物を負極側集電体103aの一部の両主面に塗布し、乾燥及び圧延することにより形成されている。   Further, the negative electrode layers 103b and 103c of the negative electrode plate 103 occlude and release lithium ions of the positive electrode active material such as amorphous carbon, non-graphitizable carbon, graphitizable carbon, or graphite. An aqueous dispersion of a styrene butadiene rubber resin powder as a precursor material of an organic fired body is mixed with the negative electrode active material, and dried and pulverized to support carbonized styrene butadiene rubber on the carbon particle surfaces. It is formed by mixing a binder, such as an acrylic resin emulsion, and applying this mixture to both main surfaces of part of the negative electrode side current collector 103a, followed by drying and rolling. Yes.

特に、負極活物質として非晶質炭素や難黒鉛化炭素を用いると、充放電時における電位の平坦特性に乏しく放電量に伴って出力電圧も低下するので、通信機器や事務機器の電源には不向きであるが、電気自動車の電源として用いると急激な出力低下がないので有利である。   In particular, when amorphous carbon or non-graphitizable carbon is used as the negative electrode active material, the flatness of the potential during charge / discharge is poor and the output voltage decreases with the amount of discharge. Although unsuitable, it is advantageous when used as a power source for an electric vehicle because there is no sudden drop in output.

発電要素108のセパレータ102は、上述した正極板101と負極板103との短絡を防止するもので、電解質を保持する機能を備えても良い。このセパレータ102は、例えば、ポリエチレン(PE)やポリプロピレン(PP)等のポリオレフィン等から構成される微多孔性膜であり、過電流が流れると、その発熱によって層の空孔が閉塞され電流を遮断する機能をも有する。   The separator 102 of the power generation element 108 prevents a short circuit between the positive electrode plate 101 and the negative electrode plate 103 described above, and may have a function of holding an electrolyte. This separator 102 is a microporous film made of polyolefin such as polyethylene (PE) or polypropylene (PP), for example. When an overcurrent flows, the pores of the layer are blocked by the heat generation and the current is cut off. It also has a function to

なお、本発明のセパレータ102は、ポリオレフィン等の単層膜にのみ限られず、ポリプロピレン膜をポリエチレン膜でサンドイッチした三層構造や、ポリオレフィン微多孔性膜と有機不織布等を積層したものを用いることも出来る。このようにセパレータ102を複層化することで、過電流の防止機能、電解質保持機能及びセパレータの形状維持(剛性向上)機能等の諸機能を付与することが出来る。   The separator 102 of the present invention is not limited to a single-layer film such as polyolefin, but a three-layer structure in which a polypropylene film is sandwiched with a polyethylene film, or a laminate of a polyolefin microporous film and an organic nonwoven fabric may be used. I can do it. Thus, by making the separator 102 into multiple layers, various functions such as an overcurrent prevention function, an electrolyte holding function, and a separator shape maintenance (rigidity improvement) function can be provided.

以上の発電要素108は、セパレータ102を介して正極板101と負極板103とが交互に積層されている。そして、3枚の正極板101は、正極側集電体101aを介して、金属箔製の正極端子104にそれぞれ接続される一方で、3枚の負極板103は、負極側集電体103aを介して、同様に金属箔製の負極端子105にそれぞれ接続されている。   In the power generation element 108 described above, the positive electrode plates 101 and the negative electrode plates 103 are alternately stacked via the separators 102. The three positive plates 101 are respectively connected to the positive terminal 104 made of metal foil via the positive current collector 101a, while the three negative plates 103 are connected to the negative current collector 103a. In the same manner, each is connected to a negative electrode terminal 105 made of metal foil.

なお、発電要素108の正極板101、セパレータ102、及び、負極板103は、本発明では上記の枚数に何ら限定されず、例えば、1枚の正極板101、3枚のセパレータ102、及び、1枚の負極板103でも発電要素108を構成することが出来、必要に応じて正極板、セパレータ及び負極板の枚数を選択して構成することが出来る。   In addition, the positive electrode plate 101, the separator 102, and the negative electrode plate 103 of the power generation element 108 are not limited to the above number in the present invention. For example, one positive electrode plate 101, three separators 102, and 1 The power generation element 108 can also be configured with a single negative plate 103, and can be configured by selecting the number of positive plates, separators, and negative plates as required.

正極端子104も負極端子105も電気化学的に安定した金属材料であれば特に限定されないが、正極端子104としては、上述の正極側集電体101aと同様に、例えば、アルミニウム箔、アルミニウム合金箔、銅箔、又は、ニッケル箔等を挙げることが出来る。また、負極端子105としては、上述の負極側集電体103aと同様に、例えば、ニッケル箔、銅箔、ステンレス箔、又は、鉄箔等を挙げることが出来る。また、本実施形態では、電極板101、103の集電体101a、103aを構成する金属箔自体を電極端子104、105まで延長することにより、電極板101、103を電極端子104、105に直接接続しているが、電極板101、103の集電体101a、103aと、電極端子104、105とを、集電体101a、103aを構成する金属箔とは別の材料や部品により接続しても良い。   The positive electrode terminal 104 and the negative electrode terminal 105 are not particularly limited as long as they are electrochemically stable metal materials. Examples of the positive electrode terminal 104 include, for example, an aluminum foil and an aluminum alloy foil, similar to the positive electrode current collector 101a described above. , Copper foil, or nickel foil. Moreover, as the negative electrode terminal 105, nickel foil, copper foil, stainless steel foil, iron foil, etc. can be mentioned similarly to the above-mentioned negative electrode side collector 103a, for example. In the present embodiment, the metal foils constituting the current collectors 101 a and 103 a of the electrode plates 101 and 103 are extended to the electrode terminals 104 and 105, so that the electrode plates 101 and 103 are directly connected to the electrode terminals 104 and 105. Although connected, the current collectors 101a and 103a of the electrode plates 101 and 103 and the electrode terminals 104 and 105 are connected by a material or component different from the metal foil constituting the current collectors 101a and 103a. Also good.

発電要素108は、図2に示すようなカップ状に成形された上部外装部材106と、平板状の下部外装部材107との間に収容されて封止されている。本実施形態における上部外装部材106及び下部外装部材107(外装部材)は何れも、特に図示しないが、薄型電池10の内側から外側に向かって、例えば、ポリエチレン、変性ポリエチレン、ポリプロピレン、変性ポリプロピレン、又は、アイオノマー等の耐電解液性及び熱融着性に優れた樹脂フィルムから構成されている内側層(合成樹脂層)と、例えば、アルミニウム等の金属箔から構成されている中間層(金属層)と、例えば、ポリアミド系樹脂又はポリエステル系樹脂等の電気絶縁性に優れた樹脂フィルムで構成されている外側層(合成樹脂層)と、の三層構造となっている。従って、上部外装部材106及び下部外装部材107は何れも、例えば、アルミニウム箔等の金属箔の一方の面(二次電池10の内側面)をポリエチレン等の耐電解液性及び熱融着性に優れた樹脂でラミネートし、他方の面(二次電池10の外側面)をポリアミド系樹脂等の電気絶縁性に優れた樹脂でラミネートした、樹脂−金属薄膜ラミネートフィルム等の可撓性を有する材料で形成されている。   The power generation element 108 is accommodated and sealed between an upper exterior member 106 formed in a cup shape as shown in FIG. 2 and a flat lower exterior member 107. Both the upper exterior member 106 and the lower exterior member 107 (exterior member) in the present embodiment are not particularly illustrated, but, for example, polyethylene, modified polyethylene, polypropylene, modified polypropylene, or the like from the inside to the outside of the thin battery 10 , An inner layer (synthetic resin layer) composed of a resin film excellent in resistance to electrolytic solution and heat fusion such as ionomer, and an intermediate layer (metal layer) composed of a metal foil such as aluminum, for example And, for example, it has a three-layer structure including an outer layer (synthetic resin layer) made of a resin film excellent in electrical insulation such as a polyamide resin or a polyester resin. Therefore, both of the upper exterior member 106 and the lower exterior member 107 have, for example, one surface of a metal foil such as an aluminum foil (the inner surface of the secondary battery 10) resistant to an electrolytic solution such as polyethylene and heat fusion. A flexible material such as a resin-metal thin film laminate film in which the other surface (the outer surface of the secondary battery 10) is laminated with a resin having an excellent electrical insulation property such as a polyamide-based resin. It is formed with.

このように、外装部材が樹脂層に加えて金属層を具備することにより、外装部材自体の強度向上を図ることが可能となる。また、外装部材の内側層を、例えば、ポリエチレン等の熱融着性に優れた樹脂で構成することにより、金属製の電極端子との良好な融着性を確保することが可能となる。   As described above, when the exterior member includes the metal layer in addition to the resin layer, it is possible to improve the strength of the exterior member itself. Further, by forming the inner layer of the exterior member with a resin having excellent heat-fusibility, such as polyethylene, it is possible to ensure good fusing property with the metal electrode terminal.

なお、図1及び図2に示すように、封止された外装部材106、107の一方の端部から正極端子104が導出し、当該他方の端部から負極端子105が導出するが、電極端子104、105の厚さ分だけ上部外装部材106と下部外装部材107との融着部に隙間が生じるので、二次電池10内部の封止性を維持するために、電極端子104、105と外装部材106、107とが接触する部分に、例えば、ポリエチレンやポリプロピレン等から構成されたシールフィルムを介在させても良い。このシールフィルムは、正極端子104及び負極端子105の何れにおいても、外装部材106、107を構成する樹脂と同系統の樹脂で構成することが熱融着性の観点から好ましい。   As shown in FIGS. 1 and 2, the positive terminal 104 is led out from one end of the sealed exterior members 106 and 107, and the negative terminal 105 is led out from the other end. Since a gap is formed in the fusion part between the upper exterior member 106 and the lower exterior member 107 by the thickness of 104, 105, the electrode terminals 104, 105 and the exterior are maintained in order to maintain the sealing performance inside the secondary battery 10. For example, a seal film made of polyethylene, polypropylene, or the like may be interposed in a portion where the members 106 and 107 come into contact. It is preferable from the viewpoint of heat-fusibility that this seal film is made of the same type of resin as the resin constituting the exterior members 106 and 107 in both the positive electrode terminal 104 and the negative electrode terminal 105.

これらの外装部材106、107によって、上述した発電要素108、正極端子104の一部及び負極端子105の一部を包み込み、当該外装部材106、107により形成される空間に、有機液体溶媒に過塩素酸リチウム、ホウフッ化リチウムや六フッ化リン酸リチウム等のリチウム塩を溶質とした液体電解質を注入しながら、外装部材106、107により形成される空間を吸引して真空状態とした後に、外装部材106、107の外周縁を熱プレスにより熱融着して熱融着部109を形成して封止する。   These exterior members 106 and 107 enclose the power generation element 108, part of the positive electrode terminal 104 and part of the negative electrode terminal 105 described above, and in the space formed by the exterior members 106 and 107, perchloric acid is added to the organic liquid solvent. While injecting a liquid electrolyte having a lithium salt such as lithium oxide, lithium borofluoride or lithium hexafluorophosphate as a solute, the space formed by the exterior members 106 and 107 is sucked into a vacuum state, and then the exterior member The outer peripheral edges of 106 and 107 are heat-sealed by hot press to form a heat-sealed portion 109 and sealed.

有機液体溶媒として、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ジメチルカーボネート(DMC)やメチルエチルカーボネート等のエステル系溶媒を挙げることが出来るが、本発明の有機液体溶媒はこれに限定されることなく、エステル系溶媒に、γ−ブチラクトン(γ−BL)、ジエトシキエタン(DEE)等のエーテル系溶媒その他を混合、調合した有機液体溶媒を用いることが出来る。   Examples of the organic liquid solvent include ester solvents such as propylene carbonate (PC), ethylene carbonate (EC), dimethyl carbonate (DMC), and methyl ethyl carbonate, but the organic liquid solvent of the present invention is limited to this. Without limitation, an organic liquid solvent prepared by mixing and preparing an ether solvent such as γ-butylactone (γ-BL) or dietoshietane (DEE) in the ester solvent can be used.

以下に、上述の二次電池10を複数接続することにより構成される組電池100aについて説明する。   Below, the assembled battery 100a comprised by connecting two or more above-mentioned secondary batteries 10 is demonstrated.

図3は本発明の第1実施形態に係る組電池の全体斜視図、図4は図3に示す組電池を構成する電池積層体の配列を示す平面図、図5は図4のV-V線に沿った断面図、図6(A)〜(C)は図3に示す組電池に用いられるヒートシンクを示す図であり、図6(A)はその平面図、図6(B)はその側面図、図6(C)はその正面図、図7は図4及び図5に示す複数の電池積層体における温度分布を示すグラフである。   3 is an overall perspective view of the assembled battery according to the first embodiment of the present invention, FIG. 4 is a plan view showing the arrangement of battery stacks constituting the assembled battery shown in FIG. 3, and FIG. 5 is taken along the line VV in FIG. 6A to 6C are views showing a heat sink used in the assembled battery shown in FIG. 3, FIG. 6A is a plan view thereof, and FIG. 6B is a side view thereof. FIG. 6C is a front view thereof, and FIG. 7 is a graph showing temperature distribution in the plurality of battery stacks shown in FIGS.

本発明の第1実施形態に係る組電池100aは、図3〜図5に示すように、上述の二次電池10を10個積層してそれぞれ構成されている8組の電池積層体30a〜30hと、電池積層体30a〜30hが有する二次電池10a〜10jが間に介装されたヒートシンク20と、電池積層体30a〜30hを同一平面上に配置して内部空間41に収容する筐体40と、組電池100aの外部と筐体40の内部空間41とを筐体40の入口側開口42を介して連通する入口ダクト50と、この筐体40の内部空間41と組電池100aの外部とを筐体40の出口側開口43を介して連通する出口ダクト60と、出口ダクト60内に配設されたファン70と、を備えている。   As shown in FIGS. 3 to 5, an assembled battery 100 a according to the first embodiment of the present invention includes eight battery stacks 30 a to 30 h each configured by stacking ten of the above-described secondary batteries 10. And the heat sink 20 in which the secondary batteries 10a to 10j included in the battery stacks 30a to 30h are interposed, and the housing 40 that houses the battery stacks 30a to 30h on the same plane and accommodates them in the internal space 41. An inlet duct 50 that communicates the outside of the assembled battery 100a and the internal space 41 of the housing 40 via the inlet-side opening 42 of the housing 40, and the internal space 41 of the housing 40 and the outside of the assembled battery 100a. Are provided through an outlet side opening 43 of the housing 40 and a fan 70 disposed in the outlet duct 60.

先ず、この組電池100aの筐体40の内部空間41に収容されている各電池積層体30a〜30hについて詳細に説明すると、図5に示すように、何れの電池積層体30a〜30hも、二次電池10a〜10jを10段積層して構成されている。   First, the battery stacks 30a to 30h housed in the internal space 41 of the casing 40 of the assembled battery 100a will be described in detail. As shown in FIG. The secondary batteries 10a to 10j are stacked in 10 stages.

具体的には、同図に示すように、第1の二次電池10aと第2の二次電池とが互いの下部外装部材107同士が密着するように、即ち、一方の二次電池が他方の二次電池に対して裏返した状態で積層されており、同様の要領で、第3の二次電池10cと第4の二次電池10d、第5の二次電池10eと第6の二次電池10f、第7の二次電池10gと第8の二次電池10h、及び、第9の二次電池10iと第10の二次電池10jが相互に下部外装部材107を密着させて積層されている。なお、互いに下部外装部材107同士を密着させた二次電池同士は、同極端子同士が例えば超音波溶接等により直接接合してある。   Specifically, as shown in the figure, the first secondary battery 10a and the second secondary battery are arranged so that the lower exterior members 107 are in close contact with each other, that is, one secondary battery is in the other. In the same manner, the third secondary battery 10c and the fourth secondary battery 10d, the fifth secondary battery 10e and the sixth secondary battery are stacked in an inverted manner. The battery 10f, the seventh secondary battery 10g and the eighth secondary battery 10h, and the ninth secondary battery 10i and the tenth secondary battery 10j are stacked with the lower exterior member 107 in close contact with each other. Yes. In addition, in the secondary batteries in which the lower exterior members 107 are in close contact with each other, the same polarity terminals are directly joined by, for example, ultrasonic welding.

さらに、各電池積層体30a〜30hの何れも、第2の二次電池10bと第3の二次電池10cとが互いの上部外装部材106を対向させるように、即ち、他方の二次電池が一方の二次電池に対して裏返した状態で、ヒートシンク20を介して積層されており、同様の要領で、第4の二次電池10dと第5の二次電池10e、第6の二次電池10fと第7の二次電池10g、及び、第8の二次電池10hと第9の二次電池10iが相互に上部外装部材106を対向させるように、それぞれヒートシンク20を介して積層されており、さらに、第1の二次電池10a及び第10の二次電池10jの上部外装部材106の上に最上層及び最下層のヒートシンク20がそれぞれ積層されている。なお、図4及び図5に示すように、異なる電池積層体30a〜30hであっても、これらの同一段には、同一のヒートシンク20が介装されている。従って、図5に示すように、組電池100aには合計6枚のヒートシンク20が介装されている。   Further, in each of the battery stacks 30a to 30h, the second secondary battery 10b and the third secondary battery 10c are arranged such that the upper exterior member 106 faces each other, that is, the other secondary battery is In a state of being turned upside down with respect to one of the secondary batteries, it is laminated via the heat sink 20, and in the same manner, the fourth secondary battery 10d, the fifth secondary battery 10e, and the sixth secondary battery. 10f and the seventh secondary battery 10g, and the eighth secondary battery 10h and the ninth secondary battery 10i are stacked via the heat sink 20 so that the upper exterior member 106 faces each other. Further, the uppermost layer and the lowermost layer heat sink 20 are laminated on the upper exterior member 106 of the first secondary battery 10a and the tenth secondary battery 10j, respectively. As shown in FIGS. 4 and 5, even in different battery stacks 30 a to 30 h, the same heat sink 20 is interposed in the same stage. Therefore, as shown in FIG. 5, a total of six heat sinks 20 are interposed in the assembled battery 100a.

各二次電池10a〜10jがそれぞれ介装された各ヒートシンク20は、図6(A)〜(C)に示すように、8組の電池積層体30a〜30hの投影面積を包含するような大きさを有する平板状部材であり、例えば、A6063に代表されるAl−Mg−Si系合金等の熱伝導性及び機械加工性に優れた金属材料で構成され、内部に8本の通路21が長手方向に沿って形成されたホロー押出成形材で構成されている。このヒートシンク20は、通路21が伸びている方向が各二次電池10a〜10iの電極端子104、105の導出方向と実質的に直交するように、各電池積層体30a〜30hに積層されている。   As shown in FIGS. 6A to 6C, each heat sink 20 in which each of the secondary batteries 10a to 10j is interposed is large enough to include the projected areas of the eight battery stacks 30a to 30h. For example, it is made of a metal material excellent in thermal conductivity and machinability such as an Al—Mg—Si based alloy represented by A6063, and has eight passages 21 in the longitudinal direction. It is comprised with the hollow extrusion molding material formed along the direction. The heat sink 20 is stacked on each of the battery stacks 30a to 30h so that the direction in which the passage 21 extends is substantially orthogonal to the direction in which the electrode terminals 104 and 105 of the secondary batteries 10a to 10i are led out. .

以上のように構成される8組の電池積層体30a〜30hは、図4に示すように、各二次電池10a〜10jの電極端子104、105の導出方向が筐体40の入口側開口42から出口側開口43に向かう方向に対して実質的に直交するように、筐体40の内部空間41に2行4列に配置されている。   As shown in FIG. 4, the eight battery stacks 30 a to 30 h configured as described above are arranged such that the lead-out directions of the electrode terminals 104 and 105 of the secondary batteries 10 a to 10 j are the entrance side openings 42 of the housing 40. Are arranged in two rows and four columns in the internal space 41 of the housing 40 so as to be substantially orthogonal to the direction from the first to the outlet side opening 43.

このように配置された8組の電池積層体30a〜30hは、図4及び図5に示すように、第1の電池積層体30aの各二次電池10a〜10jの負極端子105と、第5の電池積層体30eの同一段の二次電池10a〜10jの正極端子104とが直接接合されており、同様の要領で、第2の電池積層体30bの各二次電池10a〜10jの負極端子105と、第6の電池積層体30fの同一段の二次電池10a〜10jの正極端子104とが直接接合され、第3の電池積層体30cの各二次電池10a〜10jの負極端子105と、第7の電池積層体30gの同一段の二次電池10a〜10jの正極端子104とが直接接合され、さらに、第4の電池積層体30dの各二次電池10a〜10jの負極端子105と、第8の電池積層体30hの同一段の二次電池10a〜10jの正極端子104とが直接接合されている。また、第1〜第4の電池積層体30a〜30dの各二次電池10a〜10jの正極端子104同士は、例えばバスバ(不図示)を介して電気的に接続されており、同様に、第5〜第8の電池積層体30e〜30hの各二次電池10a〜10jの負極端子105同士も、例えばバスバ(不図示)を介して電気的に接続されている。電極端子104、105同士、或いは、電極端子104、105及びバスバを接合する手法としては、例えば、超音波接合や冷間圧接等を例示することが出来、大電流による通電時の発熱を考慮すると、当該電極端子104、105同士は10〜15mm以上の重なり代を確保する必要があり、この重なり代を大きくする程、冷却風による冷却効率が向上する。 As shown in FIGS. 4 and 5, the eight battery stacks 30a to 30h arranged in this way are connected to the negative terminal 105 of each of the secondary batteries 10a to 10j of the first battery stack 30a and the fifth battery stack 30a to 30h. Are connected directly to the positive terminals 104 of the secondary batteries 10a to 10j in the same stage, and in the same manner, the negative terminals of the secondary batteries 10a to 10j of the second battery stack 30b. 105 and the positive terminal 104 of the secondary battery 10a to 10j in the same stage of the sixth battery stack 30f are directly joined, and the negative terminal 105 of each secondary battery 10a to 10j of the third battery stack 30c The positive terminals 104 of the secondary batteries 10a to 10j in the same stage of the seventh battery stack 30g are directly joined, and further, the negative terminals 105 of the secondary batteries 10a to 10j of the fourth battery stack 30d , Eighth battery stack 30h A positive terminal 104 of the same stage of the secondary battery 10a~10j is directly joined. The positive terminals 104 of the secondary batteries 10a to 10j of the first to fourth battery stacks 30a to 30d are electrically connected to each other through, for example, a bus bar (not shown). The negative terminals 105 of the secondary batteries 10a to 10j of the fifth to eighth battery stacks 30e to 30h are also electrically connected via, for example, a bus bar (not shown). As a method for joining the electrode terminals 104 and 105 or between the electrode terminals 104 and 105 and the bus bar, for example, ultrasonic welding, cold pressure welding or the like can be exemplified, and heat generation during energization due to a large current is considered. The electrode terminals 104 and 105 need to have an overlap margin of 10 to 15 mm 2 or more, and the greater the overlap margin, the better the cooling efficiency by the cooling air.

このように配置された各電池積層体30a〜30h同士の間には、図5に示すように、電極端子104、105が導出している外装部材106、107の熱融着部109により流路31が形成されている。各流路31は、同図に示すように、外装部材106、107として樹脂−金属薄膜ラミネートフィルムを用いた薄型の二次電池10a〜10jを複数積層した電池積層体30a〜30hを複数並べて配置した際に、当該外装部材106、107の熱融着部109及び電極端子104、105が存在するために電池積層体30a〜30h同士とヒートシンク20との間に必然的に形成された隙間を利用して、二次電池10a〜10jの電極端子104、105の導出方向に対して実質的に直交するようにそれぞれ形成されている。   Between the battery stacks 30a to 30h arranged in this way, as shown in FIG. 5, a flow path is formed by the heat fusion part 109 of the exterior members 106 and 107 from which the electrode terminals 104 and 105 are led out. 31 is formed. As shown in the figure, each flow path 31 has a plurality of battery stacks 30a to 30h in which a plurality of thin secondary batteries 10a to 10j using a resin-metal thin film laminate film as exterior members 106 and 107 are stacked. In this case, since the heat fusion part 109 and the electrode terminals 104 and 105 of the exterior members 106 and 107 exist, a gap that is inevitably formed between the battery stacks 30a to 30h and the heat sink 20 is used. Thus, the secondary batteries 10a to 10j are formed so as to be substantially orthogonal to the lead-out direction of the electrode terminals 104 and 105, respectively.

次に作用について説明する。   Next, the operation will be described.

先ず、組電池100aのファン70が回転駆動すると、入口ダクト50及び筐体40の内部空間41に負圧が発生し、組電池100aの外部から入口ダクト50を介して筐体40の内部空間41に冷却風が取り入れられる。   First, when the fan 70 of the assembled battery 100a is rotationally driven, negative pressure is generated in the inlet duct 50 and the inner space 41 of the casing 40, and the inner space 41 of the casing 40 is passed from the outside of the assembled battery 100a via the inlet duct 50. Cooling air is taken in.

入口ダクト50から筐体40の入口側開口42を介して当該内部空間41に取り入れられた冷却風は、ヒートシンク20に形成された各通路21に進入すると同時に、各電池積層体30a〜30hの間に形成された各流路31に進入する。   The cooling air taken into the internal space 41 from the inlet duct 50 through the inlet-side opening 42 of the housing 40 enters each passage 21 formed in the heat sink 20 and at the same time, between each battery stack 30a-30h. It enters into each flow path 31 formed in this.

各通路21に進入した冷却風は、ファン70の回転駆動により生じた負圧により、当該各通路21内を通過して筐体40の出口側開口43に向かう。この通過の際、各通路21を通過する冷却風が、ヒートシンク20を介して、上部外装部材106のカップ部を冷却し、各二次電池10a〜10jが当該冷却風により間接的に冷却される。   The cooling air that has entered the passages 21 passes through the passages 21 toward the outlet opening 43 of the housing 40 due to the negative pressure generated by the rotational drive of the fan 70. During this passage, the cooling air passing through each passage 21 cools the cup portion of the upper exterior member 106 via the heat sink 20, and the secondary batteries 10a to 10j are indirectly cooled by the cooling air. .

また、各流路31に進入した冷却風は、ファン70の回転駆動により生じた負圧により、各二次電池10a〜10jの電極端子104、105の導出方向に実質的に直交する方向に沿って各流路31内を通過して筐体40の出口側開口43に向かう。この通過の際、各流路31を通過する冷却風が、各電極端子104、105と、外装部材106の短辺における斜面部及び熱融着部109を冷却し、各二次電池10a〜10jが当該冷却風により直接的に冷却される。   In addition, the cooling air that has entered each flow path 31 is along a direction substantially orthogonal to the lead-out direction of the electrode terminals 104 and 105 of the secondary batteries 10a to 10j due to the negative pressure generated by the rotational drive of the fan 70. And pass through each flow path 31 toward the outlet opening 43 of the housing 40. During this passage, the cooling air passing through each flow path 31 cools each electrode terminal 104, 105, the inclined surface portion on the short side of the exterior member 106 and the heat fusion part 109, and each secondary battery 10 a to 10 j. Is directly cooled by the cooling air.

各通路21及び各流路31を通過して筐体40の出口側開口43に至った冷却風は、ファン70の駆動により、出口ダクト60を介して組電池100aの外部に排出される。なお、本発明において冷媒供給手段により供給される冷媒は、組電池の外部から取り入れられる冷却風に限定されず、気体であっても液体であっても良い。   The cooling air that has passed through each passage 21 and each flow path 31 and reached the outlet-side opening 43 of the housing 40 is discharged to the outside of the assembled battery 100 a through the outlet duct 60 by driving the fan 70. In the present invention, the refrigerant supplied by the refrigerant supply means is not limited to the cooling air taken from the outside of the assembled battery, and may be gas or liquid.

このように、ヒートシンク20による間接的な冷却に加えて、二次電池10a〜10jに冷却風を直接当てて直接的に冷却することにより、図7に示すように、間接冷却のみを採用した従来構造と比較して、電池積層体30a〜30hの温度分布を全体的に低温側にスライドさせることが可能となる。なお、同図における縦軸の位置レベルとは、各電池積層体30a〜30h内における二次電池10a〜10jの積層位置を示す。具体的には、位置レベルがゼロの場合には、電池積層体の最内段(図5にて第5及び第6の二次電池10e、10fの段)を示し、位置レベルがプラス方向に行くに従って電池積層体の上段側(図5にて第9及び第10の二次電池10i、10jの段側)に上がるのに対し、マイナス方向に下がるに従って、電池積層体の下段側(図5にて第1及び第2の二次電池10a、10bの段側)に下がることを示している。従って、同図より、各電池積層体30a〜30hにおいて、位置レベルがゼロである最内段に位置する第5及び第6の二次電池10e、10fの収束温度が最も高く、位置レベルが最も高く又は最も低い最外段に位置する第1、第2、第9及び第10の二次電池10a、10b、10i及び10jの収束温度が最も低いことが分かる。   In this way, in addition to indirect cooling by the heat sink 20, by directly applying cooling air to the secondary batteries 10 a to 10 j and directly cooling them, as shown in FIG. 7, only indirect cooling is adopted. Compared to the structure, the temperature distribution of the battery stacks 30a to 30h can be slid to the low temperature side as a whole. In addition, the position level of the vertical axis | shaft in the same figure shows the lamination | stacking position of the secondary batteries 10a-10j in each battery laminated body 30a-30h. Specifically, when the position level is zero, the innermost stage of the battery stack (the stages of the fifth and sixth secondary batteries 10e and 10f in FIG. 5) is shown, and the position level is in the positive direction. While going up to the upper side of the battery stack (the side of the ninth and tenth secondary batteries 10i, 10j in FIG. 5), the lower side of the battery stack (FIG. 5) as it goes down in the minus direction. 1 shows that the first and second secondary batteries 10a and 10b are stepped down). Therefore, from the same figure, in each of the battery stacks 30a to 30h, the convergence temperature of the fifth and sixth secondary batteries 10e and 10f located at the innermost stage where the position level is zero is the highest, and the position level is the highest. It can be seen that the first, second, ninth, and tenth secondary batteries 10a, 10b, 10i, and 10j located at the highest or lowest outermost stage have the lowest convergence temperature.

図8は、例えば、電気自動車等の車輌1のフロア下に第1実施形態に係る組電池100aを搭載した例を示す模式図である。上述のような冷却効率の向上が図られた二次電池で構成される組電池を電気自動車等の車輌に用いることが特に有効である。   FIG. 8 is a schematic diagram illustrating an example in which the assembled battery 100a according to the first embodiment is mounted below the floor of the vehicle 1 such as an electric vehicle. It is particularly effective to use an assembled battery composed of a secondary battery with improved cooling efficiency as described above for a vehicle such as an electric vehicle.

以上のように本発明の第1実施形態に係る組電池では、複数の二次電池を積層した電池積層体を複数並べて配置した場合に、電池積層体が有する各二次電池の熱融着部及び電極端子により電池積層体同士の間に形成された流路に冷却風を通過させて二次電池を直接的に冷却することにより、従来のヒートシンクのみによる間接的な冷却と比較して、組電池を構成する二次電池を効率的に冷却することが可能になる。   As described above, in the assembled battery according to the first embodiment of the present invention, when a plurality of battery stacks in which a plurality of secondary batteries are stacked are arranged side by side, the heat fusion part of each secondary battery included in the battery stack is provided. And cooling the secondary battery directly by passing cooling air through the flow path formed between the battery stacks by the electrode terminals, compared with the indirect cooling only by the conventional heat sink. It becomes possible to cool the secondary battery which comprises a battery efficiently.

また、本発明の第1実施形態に係る組電池では、電池積層体を構成する各二次電池を冷却風により直接的に冷却することにより、ヒートシンクの形状を複雑にしたり枚数を増やす等して組電池のコスト増加を招くことなく、組電池を構成する二次電池の冷却効率を向上させることが出来る。   In the assembled battery according to the first embodiment of the present invention, the secondary battery constituting the battery stack is directly cooled by cooling air, thereby complicating the shape of the heat sink or increasing the number of the heat sinks. The cooling efficiency of the secondary battery constituting the assembled battery can be improved without increasing the cost of the assembled battery.

さらに、本発明の第1実施形態では、外装部材として樹脂−金属薄膜ラミネートフィルムを用いた薄型の二次電池を複数積層した電池積層体を複数並べた組電池において、電池積層体を並べた際に外装部材の熱融着部及び電極端子により必然的に形成される隙間を、冷却風を通過させる流路として利用するので、直接冷却のために専用の流路をわざわざ形成する必要もない。   Furthermore, in the first embodiment of the present invention, when the battery stacks are arranged in an assembled battery in which a plurality of battery stacks in which a plurality of thin secondary batteries using a resin-metal thin film laminate film as an exterior member are stacked are arranged. In addition, since the gap inevitably formed by the heat-sealed portion of the exterior member and the electrode terminal is used as a flow path through which the cooling air passes, it is not necessary to bother to form a dedicated flow path for direct cooling.

また、直接冷却のために流路を専用に形成した場合には、当該流路形成により組電池の体積の増加を伴うおそれもあるが、本発明の第1実施形態に係る組電池では、電池積層体を複数並べて配置した際に、電池積層体が有する各二次電池の外装部材の熱融着部及び電極端子により必然的に形成される隙間を、冷却風が通過する流路として利用するので、組電池の体積を増加させることなく冷却効率を高めることが出来る。   Further, when the flow path is formed exclusively for direct cooling, there is a risk that the formation of the flow path may increase the volume of the assembled battery. However, in the assembled battery according to the first embodiment of the present invention, the battery When a plurality of laminated bodies are arranged side by side, the gap inevitably formed by the heat-sealed portion and the electrode terminal of the exterior member of each secondary battery included in the battery laminated body is used as a flow path through which cooling air passes. Therefore, the cooling efficiency can be increased without increasing the volume of the assembled battery.

さらに、本発明の第1実施形態に係る組電池では、熱伝導率の高い金属製の電極端子を冷却風により直接冷却することにより、組電池を構成する各二次電池をさらに効率的に冷却することが可能となる。   Furthermore, in the assembled battery according to the first embodiment of the present invention, each secondary battery constituting the assembled battery is further efficiently cooled by directly cooling the metal electrode terminals having high thermal conductivity with cooling air. It becomes possible to do.

[第2実施形態]
図9は本発明の第2実施形態に係る組電池を構成する電池積層体の配列を示す平面図、図10は図9のX-X線に沿った断面図、図11は図9及び図10に示す複数の電池積層体における温度分布を示すグラフである。
[Second Embodiment]
9 is a plan view showing the arrangement of the battery stack constituting the assembled battery according to the second embodiment of the present invention, FIG. 10 is a cross-sectional view taken along line XX of FIG. 9, and FIG. 11 is shown in FIGS. It is a graph which shows the temperature distribution in the some battery laminated body shown.

本発明の第2実施形態に係る組電池100bは、筐体40の内部空間41における電池積層体30a〜30dの数及び向きと、各電池積層体30a〜30dの各二次電池10a〜10jがずれるように積層されている点で上述の第1実施形態に係る組電池100aと相違するが、その他の構成は第1実施形態に係る組電池100aの構成と同一である。以下に、第2実施形態に係る組電池100bについて、第1実施形態に係る組電池100aとの相違点のみを説明する。   In the assembled battery 100b according to the second embodiment of the present invention, the number and orientation of the battery stacks 30a to 30d in the internal space 41 of the housing 40 and the secondary batteries 10a to 10j of the battery stacks 30a to 30d are Although it is different from the assembled battery 100a according to the first embodiment described above in that it is stacked so as to deviate, other configurations are the same as the configuration of the assembled battery 100a according to the first embodiment. Only the difference between the assembled battery 100b according to the second embodiment and the assembled battery 100a according to the first embodiment will be described below.

本発明の第2実施形態に係る組電池100bは、図9に示すように、第1実施形態と同様の二次電池10を10段積層して構成されている4組の電池積層体30a〜30dを備えている。そして、これら4組の電池積層体30a〜30dは、同図に示すように、各二次電池10a〜10jの電極端子104、105の導出方向が筐体40の入口側開口42から出口側開口43に向かう方向に対して実質的に平行となるように、筐体40の内部空間41に2行2列に配置されている点で第1実施形態に係る組電池100aと異なる。   As shown in FIG. 9, the assembled battery 100 b according to the second embodiment of the present invention includes four battery stacks 30 a to 30 that are configured by stacking 10 secondary batteries 10 similar to those in the first embodiment. 30d. And these four battery laminated bodies 30a-30d, as shown in the figure, the lead-out direction of the electrode terminals 104 and 105 of each secondary battery 10a-10j is the outlet side opening from the inlet side opening 42 of the housing | casing 40. 43 is different from the assembled battery 100a according to the first embodiment in that it is arranged in two rows and two columns in the internal space 41 of the housing 40 so as to be substantially parallel to the direction toward 43.

因みに、第1実施形態のように電極端子の導出方向を冷却風の進行方向に対して実質的に直交するように電池積層体を配置した場合と、本実施形態のように電極端子の導出方向を冷却風の進行方向に対して実質的に平行となるように電池積層体を配置した場合とでは、前者の温度分布幅をτ1とし、後者の温度分布幅をτ2とすると、これらの間にはτ1=ρ×τ2、但し、0.5≦ρ≦0.9(ρ値は第1実施形態における電極端子同士の重なり代に依存する)の関係が成立し、外装部材のみより電極端子をも直接冷却する方が10〜50%程度冷却効率が優れているが、組電池の筐体内部における電池積層体の配置は、電池積層体の数やサイズ、二次電池の接続方法、及び、筐体のサイズ等に基づいて設定される。   Incidentally, when the battery stack is arranged so that the lead-out direction of the electrode terminals is substantially perpendicular to the traveling direction of the cooling air as in the first embodiment, the lead-out direction of the electrode terminals as in this embodiment. When the battery stack is arranged so as to be substantially parallel to the traveling direction of the cooling air, the former temperature distribution width is τ1, and the latter temperature distribution width is τ2. Τ1 = ρ × τ2, where 0.5 ≦ ρ ≦ 0.9 (ρ value depends on the overlap between the electrode terminals in the first embodiment), and the electrode terminal is determined only by the exterior member. Although the cooling efficiency is better by about 10 to 50% when directly cooling, the arrangement of the battery stack inside the assembled battery case is the number and size of the battery stack, the connection method of the secondary battery, and It is set based on the size of the housing.

さらに、本実施形態に係る組電池100bの各電池積層体30a〜30dは、当該電池積層体30a〜30dを構成する複数の二次電池10a〜10jがずれて積層されている点で第1実施形態に係る組電池100aと相違する。   Furthermore, each battery laminated body 30a-30d of the assembled battery 100b which concerns on this embodiment is 1st implementation by the point by which the some secondary battery 10a-10j which comprises the said battery laminated body 30a-30d is shifted and laminated | stacked. It differs from the assembled battery 100a which concerns on a form.

具体的には、図10に示すように、第1の電池積層体30aは、電池積層方向に沿って、当該第1の電池積層体30aの最内段の二次電池10e、10fに向かうに従って、当該第1の電池積層体30aの側方に配置された第3の電池積層体30cに近づくように、各二次電池10a〜10jが積層されている。同様に、特に図示しないが、第2の電池積層体30bは、電池積層方向に沿って、当該第2の電池積層体30bの最内段に配置された二次電池10e、10fに向かうに従って、当該第2の電池積層体30bの側方に配置された第4の電池積層体30dに近付くように、各二次電池10a〜10jが積層されている。   Specifically, as shown in FIG. 10, the first battery stack 30a is directed toward the innermost secondary batteries 10e and 10f of the first battery stack 30a along the battery stacking direction. The secondary batteries 10a to 10j are stacked so as to approach the third battery stacked body 30c disposed on the side of the first battery stacked body 30a. Similarly, although not particularly illustrated, the second battery stack 30b is moved along the battery stacking direction toward the secondary batteries 10e and 10f arranged at the innermost stage of the second battery stack 30b. The secondary batteries 10a to 10j are stacked so as to approach the fourth battery stack 30d disposed on the side of the second battery stack 30b.

また、図10に示すように、第3の電池積層体30cは、電池積層方向に沿って、当該第3の電池積層体30cの最内段の二次電池10e、10fに向かうに従って、当該第3の電池積層体30cの側方に配置された第1の電池積層体30aに近付くように、各二次電池10a〜10jが積層されている。同様に、特に図示しないが、第4の電池積層体30dは、電池積層方向に沿って、当該第4の電池積層体30dの最内段に配置された二次電池10e、10fに向かうに従って、当該第4の電池積層体30dの側方に配置された第2の電池積層体30bに近付くように、各二次電池10a〜10jが積層されている。   In addition, as shown in FIG. 10, the third battery stack 30c moves along the battery stacking direction toward the innermost secondary batteries 10e, 10f of the third battery stack 30c. Each of the secondary batteries 10a to 10j is stacked so as to approach the first battery stack 30a disposed on the side of the third battery stack 30c. Similarly, although not specifically illustrated, the fourth battery stack 30d is directed toward the secondary batteries 10e and 10f arranged in the innermost stage of the fourth battery stack 30d along the battery stacking direction. The secondary batteries 10a to 10j are stacked so as to approach the second battery stacked body 30b disposed on the side of the fourth battery stacked body 30d.

より具体的には、図10に示すように、第1の電池積層体30aにおいて、最内段に積層された第5及び第6の二次電池10e、10fに対して、次に外段に積層された第3及び第4の二次電池10c、10dと第7及び第8の二次電池10g、10hとがオフセット量α分だけ第3の電池積層体30cから離れるように積層されている。さらに、この第1の電池積層体30aにおいて、最外段に積層された第1及び第2の二次電池10a、10bと、第9及び第10の二次電池10i、10jとが、最内段の二次電池10e、10fに対してオフセット量β分だけ第3の電池積層体30cから離れるように積層されている(但し、α<β)。   More specifically, as shown in FIG. 10, in the first battery stack 30a, the fifth and sixth secondary batteries 10e and 10f stacked in the innermost stage are next in the outer stage. The stacked third and fourth secondary batteries 10c and 10d and the seventh and eighth secondary batteries 10g and 10h are stacked so as to be separated from the third battery stack 30c by an offset amount α. . Further, in the first battery stack 30a, the first and second secondary batteries 10a and 10b stacked in the outermost stage and the ninth and tenth secondary batteries 10i and 10j are the innermost. The secondary batteries 10e and 10f are stacked so as to be separated from the third battery stack 30c by an offset amount β (where α <β).

第3の電池積層体30cにおいても、同図に示すように、最内段に積層されている第5及び第6の二次電池10e、10fに対して、次に外段に積層された第3、第4、第7及び第8の二次電池10c、10d、10g及び10hがオフセット量α分だけ第1の電池積層体30aから離れるように積層されており、さらに、最外段に積層された第1、第2、第9及び第10の二次電池10a、10b、10i及び10jがオフセット量β分だけ第1の電池積層体30aから離れるように積層されている。なお、本実施形態では、一の電池積層体をずらして積層する共に、これに隣接する他の電池積層体もずらして積層しているが、本発明では一の電池積層体のみをずらして積層しても良い。   Also in the third battery stack 30c, as shown in the figure, the fifth and sixth secondary batteries 10e and 10f stacked in the innermost stage are then stacked in the outer stage. The third, fourth, seventh, and eighth secondary batteries 10c, 10d, 10g, and 10h are stacked so as to be separated from the first battery stack 30a by an offset amount α, and further stacked on the outermost stage. The first, second, ninth and tenth secondary batteries 10a, 10b, 10i and 10j are stacked so as to be separated from the first battery stack 30a by an offset amount β. In this embodiment, one battery stack is shifted and stacked, and other battery stacks adjacent thereto are also shifted and stacked. However, in the present invention, only one battery stack is shifted and stacked. You may do it.

従って、第1の電池積層体30aと第3の電池積層体30cとは、図10に示すように、各積層体30a、30cの最内段の二次電池10e、10f同士が最も接近しており、これに対して、次に外段に積層された二次電池10c、10d、10g及び10h同士がオフセット量2×α分離れて積層されており、さらに、最外段に積層された二次電池10a、10b、10i及び10jがオフセット量2×β分相互に離れて積層されている。   Therefore, as shown in FIG. 10, the first battery stack 30a and the third battery stack 30c are arranged such that the innermost secondary batteries 10e and 10f of the stacks 30a and 30c are closest to each other. On the other hand, the secondary batteries 10c, 10d, 10g, and 10h stacked next in the outer stage are stacked with an offset amount of 2 × α separated, and further, the secondary batteries stacked in the outermost stage Secondary batteries 10a, 10b, 10i and 10j are stacked apart from each other by an offset amount of 2 × β.

特に図示しないが、第2の電池積層体30bと第4の電池積層体30dとについても、最内段の二次電池10e、10fが最も接近しており、これに対して、外段の二次電池10c、10d、10h及び10gがオフセット量2×α分相互に離れて積層されており、最外段の二次電池10a、10b、10i及び10jがオフセット量2×β分相互に離れて積層されている。   Although not shown in particular, the second battery stack 30b and the fourth battery stack 30d are also closest to the innermost secondary batteries 10e and 10f, whereas the second The secondary batteries 10c, 10d, 10h, and 10g are stacked apart from each other by an offset amount 2 × α, and the outermost secondary batteries 10a, 10b, 10i, and 10j are separated from each other by an offset amount 2 × β. Are stacked.

このように配置された各電池積層体30a〜30dには、図10に示すように、各二次電池10a〜10jの外装部材106、107の熱融着部109により流路32a〜32cが形成されている。   In each of the battery stacks 30a to 30d arranged in this way, as shown in FIG. 10, flow paths 32a to 32c are formed by the heat-sealing portions 109 of the exterior members 106 and 107 of the secondary batteries 10a to 10j. Has been.

各流路32a〜32cは、同図に示すように、外装部材106、107として樹脂−金属薄膜ラミネートフィルムを用いた薄型の二次電池10a〜10jを複数積層した電池積層体30a〜30dを複数並べて配置した際に、当該外装部材106、107の熱融着部109が存在するために電池積層体30a〜30d同士とヒートシンク20との間に必然的に形成された隙間を利用して、二次電池10a〜10jの長手方向に沿ってそれぞれ形成されている。   As shown in the figure, each of the flow paths 32a to 32c includes a plurality of battery stacks 30a to 30d each including a plurality of thin secondary batteries 10a to 10j each using a resin-metal thin film laminate film as the exterior members 106 and 107. Since the heat fusion part 109 of the exterior members 106 and 107 exists when arranged side by side, two gaps inevitably formed between the battery stacks 30a to 30d and the heat sink 20 are used. Each of the secondary batteries 10a to 10j is formed along the longitudinal direction.

これらの流路32a〜32cは、上述のように二次電池をオフセットさせて積層することにより電池積層体30a〜30dを構成したことに伴って、図10に示すように、外段に行くに従って断面積が大きくなっている。   As shown in FIG. 10, these flow paths 32 a to 32 c are formed as the battery stacks 30 a to 30 d are configured by offsetting and stacking the secondary batteries as described above, as shown in FIG. 10. The cross-sectional area is large.

具体的には、各電池積層体30a〜30dの最内段に位置する流路32a(図10において第5及び第6の二次電池10e、10f同士の間に形成された流路)の断面積Saが最も小さく、次に外段に位置する流路32b(図10において第3、第4、第7及び第8の二次電池10c、10d、10g及び10h同士の間に形成された流路)の断面積Sbが次に大きく、さらに、最外段に位置する流路32c(図10において第1、第2、第9及び第10の二次電池10a、10b、10i及び10j同士の間に形成された流路)の断面積Scが最も大きくなっている(Sa<Sb<Sc)。   Specifically, the flow path 32a (the flow path formed between the fifth and sixth secondary batteries 10e and 10f in FIG. 10) located at the innermost stage of each battery stack 30a to 30d is interrupted. The flow path 32b that has the smallest area Sa and is positioned next to the outer stage (the flow formed between the third, fourth, seventh, and eighth secondary batteries 10c, 10d, 10g, and 10h in FIG. 10). The cross-sectional area Sb of the second channel is the next largest, and the flow path 32c (in FIG. 10, the first, second, ninth and tenth secondary batteries 10a, 10b, 10i and 10j) The cross-sectional area Sc of the channel formed between them is the largest (Sa <Sb <Sc).

本実施形態に係る組電池の作用について説明すると、第1実施形態と同様に、ファン70が回転駆動することにより組電池内に負圧が生じ、これに伴って、組電池の外部から入口ダクト50を介して筐体40の内部空間41に冷却風が取り入れられ、ヒートシンク20に形成された各通路21に進入すると同時に、各電池積層体30a〜30dの間に形成された各流路32a〜32cに進入する。なお、ヒートシンク20は、第1実施形態と同様に、通路21が伸びている方向が、筐体40の入口側開口42から出口側開口43に向かう方向に対して実質的に平行となるように配置されている。   The operation of the assembled battery according to the present embodiment will be described. Similarly to the first embodiment, a negative pressure is generated in the assembled battery as the fan 70 is driven to rotate, and accordingly, the inlet duct from the outside of the assembled battery. The cooling air is taken into the internal space 41 of the housing 40 through 50 and enters the passages 21 formed in the heat sink 20, and at the same time, the flow paths 32 a to 32 a formed between the battery stacks 30 a to 30 d. Enter 32c. As in the first embodiment, the heat sink 20 is such that the direction in which the passage 21 extends is substantially parallel to the direction from the inlet side opening 42 to the outlet side opening 43 of the housing 40. Has been placed.

各通路21に進入した冷却風は、第1実施形態と同様に、負圧により各通路21内を通過して筐体40の出口側開口43に向かう。この各通路21を通過する冷却風が、ヒートシンク20を介して、各二次電池10a〜10jを間接的に冷却する。   The cooling air that has entered each passage 21 passes through each passage 21 due to negative pressure toward the outlet-side opening 43 of the housing 40, as in the first embodiment. The cooling air passing through the passages 21 indirectly cools the secondary batteries 10 a to 10 j via the heat sink 20.

また、各流路32に進入した冷却風は、負圧により、各二次電池10a〜10jの長手方向に沿って各流路32内を通過して筐体40の出口側開口43に向かう。この各流路32を通過する冷却風が、外装部材106の長辺における斜面部及び熱融着部109を冷却し、各二次電池10a〜10jが当該冷却風により直接的に冷却される。   Further, the cooling air that has entered each flow path 32 passes through each flow path 32 along the longitudinal direction of each of the secondary batteries 10 a to 10 j toward the outlet side opening 43 of the housing 40 due to negative pressure. The cooling air passing through each flow path 32 cools the inclined surface portion and the thermal fusion bonding portion 109 on the long side of the exterior member 106, and the secondary batteries 10a to 10j are directly cooled by the cooling air.

この際、上述のように各流路32a〜32cは電池積層体30a〜30dの中央部から外側に向かうに従って断面積が大きくなるように(Sa<Sb<Sc)形成されていることにより、ファン70の回転駆動により生じた所定の風量V[m/min]の冷却風が各流路32a〜32cに進入すると、電池積層体30a〜30dの最内段の流路32a内での風速VaはV/Sa、外段の流路32b内での風速VbはV/Sb、最外段の流路32c内での風速VcはV/Scとなり、最内段の流路32aでの風速Vaが最も早くなり、外段に行くに従って風速が遅くなっており(Va>Vb>Vc)、電池積層体30a〜30dの中央部に向かうに従い、冷却風の風速が速くなっている。 At this time, as described above, each of the flow paths 32a to 32c is formed so that the cross-sectional area increases from the center of the battery stacks 30a to 30d to the outside (Sa <Sb <Sc). When the cooling air having a predetermined air volume V [m 3 / min] generated by the rotational driving of 70 enters the respective flow paths 32a to 32c, the wind speed Va in the innermost flow path 32a of the battery stacks 30a to 30d. V / Sa, the wind speed Vb in the outer-stage flow path 32b is V / Sb, the wind speed Vc in the outermost-stage flow path 32c is V / Sc, and the wind speed Va in the innermost-stage flow path 32a. The wind speed becomes slower as going to the outer stage (Va>Vb> Vc), and the wind speed of the cooling wind becomes faster toward the center of the battery stacks 30a to 30d.

各通路21及び各流路32a〜32cを通過して筐体40の出口側開口43に至った冷却風は、ファン70の駆動により、出口ダクト60を介して組電池100bの外部に排出される。   The cooling air that has passed through the passages 21 and the flow paths 32 a to 32 c and reached the outlet opening 43 of the housing 40 is discharged to the outside of the assembled battery 100 b through the outlet duct 60 by driving the fan 70. .

このように、二次電池の収束温度が高くなる最内段の二次電池10e、10fの間に形成された流路32aに最も速い風速で冷却風を通過させるのに対し、収束温度が比較的低い最外段の二次電池10a、10b、10i及び10jの間に形成された流路32cに遅い風速で冷却風を通過させることにより、二次電池をずらさない場合(図7の一点鎖線参照)と比較して、図11に示すように、電池積層体10a〜10dにおける最内段の二次電池10e、10fの収束温度Ta’と、最外段の二次電池10a、10b、10i及び10jの収束温度Tc’との差である温度のバラツキ|Tc’−Ta’|を抑制することが出来る。   In this way, the cooling air is passed through the flow path 32a formed between the innermost secondary batteries 10e and 10f where the convergence temperature of the secondary battery is high, while the convergence temperature is compared. When the secondary battery is not displaced by passing cooling air at a low wind speed through the flow path 32c formed between the secondary batteries 10a, 10b, 10i, and 10j at the lowest outermost level (the one-dot chain line in FIG. 7). 11), the convergence temperature Ta ′ of the innermost secondary batteries 10e and 10f in the battery stacks 10a to 10d and the outermost secondary batteries 10a, 10b, and 10i as shown in FIG. And the temperature variation | Tc′−Ta ′ | which is a difference from the convergence temperature Tc ′ of 10j can be suppressed.

なお、図10に示すオフセット量α、βは、電池積層体30a〜30dにおいて、隣接する二次電池10a〜10jの外装部材106、107同士が接触しないで、当該重なり代を調整することにより任意に設定することが可能であり、温度のバラツキが極力ゼロに近付くように設定される。   Note that the offset amounts α and β shown in FIG. 10 can be arbitrarily set by adjusting the overlap allowance in the battery stacks 30a to 30d without the exterior members 106 and 107 of the adjacent secondary batteries 10a to 10j coming into contact with each other. The temperature variation is set as close to zero as possible.

また、本実施形態に係る組電池100bは、図10に示すように、二次電池10a〜10jをずらして積層して電池積層体30a〜30dを構成しているために電池積層体30a〜30dと筐体40との間に略断面三角形状の隙間が形成されているが、この隙間を、各二次電池10a〜10jの電圧や温度を検出する検出線やサーミスタや熱伝対を配策する配線用空間33として利用することにより、組電池全体の体積を増加させずに組電池を構成することが可能となっている。具体的には、本実施形態に係る組電池における配線用空間33の断面積γは、二次電池10の幅をWとし、電池積層体30の高さをHとすると、上述のオフセット量βより、γ=(H×β)/2×2=H×βで表すことが出来る。但し、H≦100mmであり、βは風速の制御量やヒートシンクの幅等に制約される。   In addition, as shown in FIG. 10, the assembled battery 100b according to the present embodiment includes the battery stacks 30a to 30d because the secondary batteries 10a to 10j are shifted and stacked to form the battery stacks 30a to 30d. A gap having a substantially cross-sectional triangle shape is formed between the battery 40 and the housing 40, and the detection line, thermistor, and thermocouple for detecting the voltage and temperature of each of the secondary batteries 10a to 10j are arranged in the gap. By using it as the wiring space 33, it is possible to configure the assembled battery without increasing the volume of the entire assembled battery. Specifically, the cross-sectional area γ of the wiring space 33 in the assembled battery according to the present embodiment has the above-described offset amount β when the width of the secondary battery 10 is W and the height of the battery stack 30 is H. Therefore, γ = (H × β) / 2 × 2 = H × β can be expressed. However, H ≦ 100 mm, and β is limited by the control amount of the wind speed, the width of the heat sink, and the like.

このように、電池積層体30a〜30d同士の間に形成された隙間に冷却風を通過させ、電池積層体30a〜30dと筐体40との間に形成された隙間に配線類を集中して配策することにより、組電池全体の体積を増加させることなく、二次電池をずらして積層して電池積層体を構成することが出来る。なお、配線用空間33には冷却風が進入出来ない構成されており、冷却効率低下の防止が図られている。   As described above, the cooling air is passed through the gap formed between the battery stacks 30a to 30d, and the wirings are concentrated in the gap formed between the battery stacks 30a to 30d and the housing 40. By arranging the batteries, the secondary battery can be shifted and stacked to form a battery stack without increasing the overall volume of the assembled battery. The wiring space 33 is configured such that cooling air cannot enter, and a reduction in cooling efficiency is prevented.

以上のように本発明の第2実施形態に係る組電池では、複数の二次電池を積層した電池積層体を複数並べて配置した場合に、電池積層体が有する各二次電池の熱融着部により電池積層体の間に形成された流路に冷却風を通過させて二次電池を直接的に冷却することにより、従来のヒートシンクのみによる間接的な冷却と比較して、組電池を構成する二次電池を効率的に冷却することが可能となる。   As described above, in the assembled battery according to the second embodiment of the present invention, when a plurality of battery stacks in which a plurality of secondary batteries are stacked are arranged side by side, the heat fusion part of each secondary battery included in the battery stack is provided. As a result, the secondary battery is directly cooled by passing cooling air through the flow path formed between the battery stacks, thereby forming an assembled battery as compared with indirect cooling using only a conventional heat sink. The secondary battery can be efficiently cooled.

また、本発明の第2実施形態に係る組電池では、電池積層体を構成する各二次電池を冷却風により直接的に冷却することにより、ヒートシンクを複雑にしたり枚数を増やす等して組電池のコスト増加を招くことなく、組電池を構成する二次電池の冷却効率を向上させることが出来る。   Further, in the assembled battery according to the second embodiment of the present invention, the secondary battery constituting the battery stack is directly cooled by cooling air so that the heat sink is complicated or the number of the batteries is increased. Thus, the cooling efficiency of the secondary battery constituting the assembled battery can be improved without incurring an increase in cost.

さらに、本発明の第2実施形態では、外装部材として樹脂−金属薄膜ラミネートフィルムを用いた薄型の二次電池を複数積層した電池積層体を複数並べた組電池において、電池積層体を並べた際に外装部材の熱融着部により必然的に形成される隙間を、冷却風を通過させる流路として利用するので、直接冷却するために専用の流路をわざわざ形成する必要もない。   Furthermore, in the second embodiment of the present invention, when the battery stacks are arranged in an assembled battery in which a plurality of battery stacks in which a plurality of thin secondary batteries using a resin-metal thin film laminate film as an exterior member are stacked are arranged. In addition, since the gap inevitably formed by the heat-sealed portion of the exterior member is used as a flow path through which the cooling air passes, it is not necessary to bother to form a dedicated flow path for direct cooling.

また、直接冷却のために流路を専用に形成した場合には、当該流路形成により組電池の体積の増加を伴うおそれもあるが、本発明の第2実施形態に係る組電池では、電池積層体を複数並べて配置した際に、電池積層体が有する各二次電池の外装部材の熱融着部により必然的に形成される隙間を、冷却風が通過する流路として利用するので、組電池の体積を増加させることなく冷却効率を高めることが出来る。   In addition, when the flow path is formed exclusively for direct cooling, there is a risk that the formation of the flow path may increase the volume of the assembled battery. However, in the assembled battery according to the second embodiment of the present invention, the battery When a plurality of stacked bodies are arranged side by side, the gap inevitably formed by the heat-sealed portion of the exterior member of each secondary battery included in the battery stacked body is used as a flow path through which the cooling air passes. Cooling efficiency can be increased without increasing the volume of the battery.

さらに、本発明の第2実施形態に係る組電池では、電池積層体の中央部での流路の断面積が最小になるように、複数の二次電池がずれて積層されて電池積層体が構成されているので、収束温度が高くなる中央部での冷却風の風速を速くして、収束温度が低くなる外周部での冷却風の風速を遅くすることにより、電池積層体における温度のバラツキを抑制することが可能となる。   Furthermore, in the assembled battery according to the second embodiment of the present invention, a plurality of secondary batteries are stacked in a shifted manner so that the cross-sectional area of the flow path at the center of the battery stack is minimized. Therefore, the temperature variation in the battery stack is increased by increasing the cooling air velocity at the center where the convergence temperature is high and decreasing the cooling air velocity at the outer periphery where the convergence temperature is low. Can be suppressed.

また、本発明の第2実施形態に係る組電池では、二次電池の長手方向に沿って冷却風を直接吹き付けることにより、冷却風と二次電池との広範な接触面積を確保することが出来るので、組電池を構成する各二次電池をさらに効率的に冷却することが可能となる。   In the assembled battery according to the second embodiment of the present invention, a wide contact area between the cooling air and the secondary battery can be secured by directly blowing the cooling air along the longitudinal direction of the secondary battery. Therefore, it becomes possible to cool each secondary battery which comprises an assembled battery more efficiently.

[第3実施形態]
図12は本発明の第3実施形態において内部に電池積層体を収容したケースを示す斜視図、図13は図12に示すケース及び電池積層体を上下反転し、さらに分解して示す分解斜視図、図14は本発明の第3実施形態におけるケースの開口部及びエアスクープを詳細に示す断面図、図15は本発明の第3実施形態に係る組電池を構成する電池積層体の配列を示す平面図、図16は図15のXVI-XVI線に沿った断面図、図17は本発明の第3実施形態における開口部の面積と電池の最高到達温度との関係を示すグラフ、図18は本発明の第3実施形態における開口部の長さと当該開口部周囲に生じる最大応力・変位との関係を示すグラフである。
[Third Embodiment]
12 is a perspective view showing a case in which a battery stack is accommodated in the third embodiment of the present invention. FIG. 13 is an exploded perspective view showing the case and the battery stack shown in FIG. FIG. 14 is a cross-sectional view showing in detail a case opening and an air scoop in the third embodiment of the present invention, and FIG. 15 shows an array of battery stacks constituting the assembled battery according to the third embodiment of the present invention. FIG. 16 is a cross-sectional view taken along the line XVI-XVI of FIG. 15, FIG. 17 is a graph showing the relationship between the area of the opening and the maximum battery temperature in the third embodiment of the present invention, and FIG. It is a graph which shows the relationship between the length of the opening part in 3rd Embodiment of this invention, and the largest stress and displacement which arises around the said opening part.

本発明の第3実施形態に係る組電池100cに用いられる二次電池10、筐体40、入口ダクト50、出口ダクト60、及び、ファン70の構成は、第1実施形態で説明したものと同一である。以下に、第3実施形態に係る組電池100cについて、第1実施形態に係る組電池100aとの相違点のみを説明する。   The configurations of the secondary battery 10, the casing 40, the inlet duct 50, the outlet duct 60, and the fan 70 used in the assembled battery 100c according to the third embodiment of the present invention are the same as those described in the first embodiment. It is. Only the difference between the assembled battery 100c according to the third embodiment and the assembled battery 100a according to the first embodiment will be described below.

本実施形態に係る組電池100cでは、図12及び図13に示すように、電極端子104、105が実質的に同一方向に導出するような姿勢で、8個の二次電池10a〜10hを積層することにより電池積層体30が構成されている。そして、本実施形態では、この電池積層体30が中空形状のケース35の内部に収容されている。   In the assembled battery 100c according to the present embodiment, as shown in FIGS. 12 and 13, eight secondary batteries 10a to 10h are stacked in such a posture that the electrode terminals 104 and 105 are led out in substantially the same direction. By doing so, the battery stack 30 is configured. In this embodiment, the battery stack 30 is accommodated in a hollow case 35.

ケース35は、一方の面が開口した箱形状を成すロアケース36と、その開口を閉じる蓋体を成すアッパケース37と、を含んでいる。このアッパケース37の縁部37aは、カシメ加工によって、ロアケース36の周壁36cの縁部36dに巻き締められている(図12の部分拡大断面図参照)。ロアケース36及びアッパケース37は、比較的薄肉のアルミニウム板や鋼板等の伝熱性に優れた材料から成る板材から形成され、プレス加工によって所定形状が付与されている。   The case 35 includes a lower case 36 having a box shape with one surface open, and an upper case 37 forming a lid for closing the opening. The edge 37a of the upper case 37 is wound around the edge 36d of the peripheral wall 36c of the lower case 36 by caulking (see a partially enlarged cross-sectional view in FIG. 12). The lower case 36 and the upper case 37 are made of a plate material made of a material having excellent heat transfer properties such as a relatively thin aluminum plate or steel plate, and are given a predetermined shape by press working.

電池積層体30を構成する各二次電池10a〜10h同士は、スペーサ部35aにおいて、電極端子104、105同士が直接接続されたりバスバ(不図示)を介して接続される等して直列接続や並列接続等の所望の接続形式で接続されており、その結果として、各二次電池10a〜10kは、正極出力端子38及び負極出力端子39に電気的に接続されている。   The secondary batteries 10a to 10h constituting the battery stack 30 are connected in series in the spacer portion 35a such that the electrode terminals 104 and 105 are directly connected or connected via a bus bar (not shown). The secondary batteries 10 a to 10 k are electrically connected to the positive electrode output terminal 38 and the negative electrode output terminal 39 as a result.

正極出力端子38は、ロアケース36の周壁36cの一部に形成された第1の切欠36eを介してケース35から外部に導出している。同様に、負極出力端子39も、ロアケース36の周壁36cの一部に形成された第2の切欠36fを介してケース35から外部に導出している。また、ロアケース36の周壁36cの一部に第3の切欠36gが形成されており、この第3の切欠36gを介してメス側コネクタ35cがケース35から外部に導出している。このメス側コネクタ35cは、特に図示しないが、スペーサ部35aにおいて各二次電池10a〜10hの電極端子104、105に接続されており、オス側コネクタ(不図示)が挿入され、当該オス側コネクタに接続された電圧検出器(不図示)が各二次電池10a〜10hの電圧を検出することにより、組電池100cの充放電管理を行うことが可能となっている。これら正極出力端子38、メス側コネクタ35c、及び、負極出力端子39の間には、絶縁性を維持するための絶縁カバー35bがそれぞれ介装されている。   The positive electrode output terminal 38 is led out from the case 35 through a first notch 36e formed in a part of the peripheral wall 36c of the lower case 36. Similarly, the negative output terminal 39 is also led out from the case 35 via a second notch 36f formed in a part of the peripheral wall 36c of the lower case 36. A third cutout 36g is formed in a part of the peripheral wall 36c of the lower case 36, and the female connector 35c is led out from the case 35 through the third cutout 36g. Although not particularly shown, the female connector 35c is connected to the electrode terminals 104 and 105 of the secondary batteries 10a to 10h in the spacer portion 35a, and a male connector (not shown) is inserted. By detecting the voltage of each of the secondary batteries 10a to 10h by a voltage detector (not shown) connected to the battery pack 100, it is possible to perform charge / discharge management of the assembled battery 100c. Insulating covers 35b for maintaining insulation are interposed between the positive electrode output terminal 38, the female connector 35c, and the negative electrode output terminal 39, respectively.

ケース35の隅部の4箇所にボルト(不図示)を挿通させるために、ロアケース36の隅部の4箇所に貫通孔36hが形成されていると共に、アッパケース37の隅部の4箇所に貫通孔37bが形成されている。また、各スペーサ部35aの両端2箇所にも、スリーブ35dを挿通させるための貫通孔35a1が形成されている。   In order to insert bolts (not shown) at four corners of the case 35, through holes 36h are formed at the four corners of the lower case 36, and through the four corners of the upper case 37. A hole 37b is formed. In addition, through holes 35a1 through which the sleeves 35d are inserted are also formed at two positions on both ends of each spacer portion 35a.

以上のような構成のケース35は、次のように組み立てられる。即ち、積層された8個の二次電池10a〜10hの両極端子104、105にスペーサ部35aを取り付けてロアケース36内に収容した後に、スペーサ部35aの各貫通孔35a1にスリーブ35dをそれぞれ挿入し、各スペーサ部35aの上面に緩衝材35eを載せ、ロアケース36にアッパケース37を被せた後に、ロアケース36の周壁36cの縁部36dにアッパケース37の縁部37aが巻き付けられて、ロアケース36とアッパケース37とが固定される。   The case 35 having the above configuration is assembled as follows. That is, after attaching the spacer part 35a to the bipolar terminals 104 and 105 of the eight stacked secondary batteries 10a to 10h and accommodating them in the lower case 36, the sleeves 35d are inserted into the respective through holes 35a1 of the spacer part 35a. After placing the cushioning material 35e on the upper surface of each spacer portion 35a and covering the lower case 36 with the upper case 37, the edge portion 37a of the upper case 37 is wound around the edge portion 36d of the peripheral wall 36c of the lower case 36. The upper case 37 is fixed.

外装部材106、107として柔軟性を有する樹脂−金属薄膜ラミネートフィルムを用いた本実施形態における二次電池10a〜10hでは、電池性能の維持を図るために電極板101、103間の距離を均一に保つ必要がある。これに対し、本実施形態では、最上段及び最下段の二次電池10a、10jをケース35の上下の内壁面に密着させると共に各二次電池10a〜10hを密着させた状態で当該ケース35内に収容することにより、電極板101、103の積層方向に圧力を印加することが可能となっている。また、これに加えて、各二次電池10a〜10hとケース35の上下面がそれぞれ密着していることにより、ケース35の上下面を介して各二次電池10a〜10hの放熱を行うことが可能となっている。   In the secondary batteries 10a to 10h in the present embodiment using a flexible resin-metal thin film laminate film as the exterior members 106 and 107, the distance between the electrode plates 101 and 103 is made uniform in order to maintain the battery performance. Need to keep. On the other hand, in the present embodiment, the uppermost and lowermost secondary batteries 10a and 10j are in close contact with the upper and lower inner wall surfaces of the case 35 and the secondary batteries 10a to 10h are in close contact with each other in the case 35. It is possible to apply pressure in the stacking direction of the electrode plates 101 and 103 by housing in the container. In addition to this, the secondary batteries 10a to 10h and the upper and lower surfaces of the case 35 are in close contact with each other, so that the secondary batteries 10a to 10h can be dissipated through the upper and lower surfaces of the case 35. It is possible.

以上のような構成に加えて、さらに本実施形態では、図12〜図14に示すように、ケース35を構成するロアケース36の周壁36cの一部に、ケース35の内部を外部と連通させる4つの開口部36aが形成されており、ファン70により入口ダクト50を介して供給された冷却風をケース35内に導入又は排出することが可能となっている。なお、図14は、ケース35内に収容された二次電池10a〜10hの電極端子104、105の導出方向に平行な面で開口部36a及びエアスクープ36bを切断した図である。   In addition to the above-described configuration, in this embodiment, as shown in FIGS. 12 to 14, the interior of the case 35 is communicated with the outside through a part of the peripheral wall 36 c of the lower case 36 constituting the case 35. Two openings 36 a are formed, and cooling air supplied by the fan 70 via the inlet duct 50 can be introduced into or discharged from the case 35. FIG. 14 is a view in which the opening 36a and the air scoop 36b are cut along a plane parallel to the lead-out direction of the electrode terminals 104 and 105 of the secondary batteries 10a to 10h housed in the case 35.

各開口部36aは、ロアケース36の周壁36cのうち、二次電池10a〜10hの長手方向(電極端子104、105の導出方向)に沿った2つの周壁36c1の両端の合計4箇所に形成されており、各二次電池10a〜10kの正極端子104又は負極端子105の近傍に位置している。因みに、図12では、開口部36aを介して、ケース35内に収容された各二次電池10a〜10hの熱融着部109が見えている。   Each opening 36a is formed at a total of four locations on both ends of the two peripheral walls 36c1 along the longitudinal direction of the secondary batteries 10a to 10h (the lead-out direction of the electrode terminals 104 and 105) in the peripheral wall 36c of the lower case 36. And located near the positive terminal 104 or the negative terminal 105 of each of the secondary batteries 10a to 10k. Incidentally, in FIG. 12, the heat fusion part 109 of each secondary battery 10a-10h accommodated in the case 35 can be seen through the opening part 36a.

また、本実施形態では、入口ダクト50を介して供給された冷却風を開口部36aに向かうように方向付けるエアスクープ36bが、各開口部36aの周囲にそれぞれ設けられている。   In the present embodiment, air scoops 36b for directing the cooling air supplied through the inlet duct 50 toward the openings 36a are provided around the openings 36a.

ロアケース36の周壁36c1において負極端子105側に形成された開口部36aの周囲に設けられたエアスクープ36bは、図14に示すように、当該開口部36aの正極端子104側の周囲に設けられており、負極端子105側から正極端子104側に向かうに従ってケース35外部への盛り上がりが徐々に減少するような形状を有している。   The air scoop 36b provided around the opening 36a formed on the negative electrode terminal 105 side in the peripheral wall 36c1 of the lower case 36 is provided around the positive electrode terminal 104 side of the opening 36a as shown in FIG. In addition, the bulge to the outside of the case 35 gradually decreases from the negative electrode terminal 105 side toward the positive electrode terminal 104 side.

これに対し、ロアケース36の周壁36c1において正極端子104側に形成された開口部36aの周囲に設けられたエアスクープ36bは、当該開口部36aの負極端子105側の周囲に設けられており、正極端子104側から負極端子105側に向かうに従って、ケース35外部への盛り上がりが徐々に減少するような形状を有している。   On the other hand, the air scoop 36b provided around the opening 36a formed on the positive electrode terminal 104 side in the peripheral wall 36c1 of the lower case 36 is provided around the negative electrode terminal 105 side of the opening 36a. The shape is such that the rise to the outside of the case 35 gradually decreases from the terminal 104 side toward the negative electrode terminal 105 side.

なお、何れのエアスクープ36bも、例えば、ロアケース36の周壁36c1自体を盛り上げるようなプレス加工を行うことにより形成されているが、ロアケース36の縁部36dに形成された巻き締め部より盛り上がることがないように形成されている。   Each air scoop 36b is formed, for example, by performing a pressing process that raises the peripheral wall 36c1 itself of the lower case 36, but may rise from the tightening portion formed on the edge 36d of the lower case 36. It is formed so that there is no.

本実施形態に係る組電池100cは、図15及び図16に示すように、以上に説明したような構成の12個の電池積層体30a〜30lから構成されており、各電池積層体30a〜30lは、ケース35a〜35lの内部にそれぞれ収容された状態で、筐体40の内部空間41に配置されている。電池積層体30a〜30lをそれぞれ収容したケース35a〜35lは、内部に収容した各二次電池10a〜10hの電極端子104、105の導出方向が筐体40の入口側開口42から出口側開口43に向かう方向に沿うような姿勢で、筐体40の内部空間41に配列3段4列で配置されている。なお、電池積層体30a〜30lは、当該符号30a〜30lの末尾のアルファベットと同一のものを符号末尾に有するケース35a〜35lの内部にそれぞれ収容されている。   As shown in FIGS. 15 and 16, the assembled battery 100 c according to the present embodiment is composed of twelve battery stacks 30 a to 30 l configured as described above, and each battery stack 30 a to 30 l. Are arranged in the internal space 41 of the housing 40 while being accommodated in the cases 35a to 35l, respectively. Cases 35a to 35l each housing battery stacks 30a to 30l are arranged such that the lead-out directions of electrode terminals 104 and 105 of secondary batteries 10a to 10h housed therein are from inlet side opening 42 to outlet side opening 43 of case 40, respectively. Are arranged in three rows and four rows in an internal space 41 of the housing 40 in a posture along the direction toward the head. The battery stacks 30a to 30l are respectively housed in cases 35a to 35l having the same alphabetical characters at the end of the reference characters 30a to 30l at the end of the reference characters.

3段に積層されたケース35a〜35l同士の間には、カラー(不図示)がそれぞれ介装されており、空間を隔てて積層されている。また、相互に隣接するケース35a〜35l同士は、ロアケース36の巻き締め部を許容するように、空間を隔てて並列に配置されている。各ケース35a〜35lの出力端子38、39は、ケーブル等を通じて筐体から外部に導出する端子に電気的に接続されている。   Collars (not shown) are interposed between the cases 35a to 35l stacked in three stages, and are stacked with a space therebetween. Further, the mutually adjacent cases 35a to 35l are arranged in parallel with a space therebetween so as to allow the winding portion of the lower case 36 to be allowed. The output terminals 38 and 39 of the cases 35a to 35l are electrically connected to terminals led out from the housing through cables or the like.

次に作用について説明する。   Next, the operation will be described.

先ず、組電池100cのファン70が回転駆動すると、入口ダクト50及び筐体40の内部空間41に負圧が発生し、組電池100cの外部から入口ダクト50を介して筐体40の内部空間41に冷却風が取り入れられる。   First, when the fan 70 of the assembled battery 100c is rotationally driven, negative pressure is generated in the inlet duct 50 and the inner space 41 of the housing 40, and the inner space 41 of the housing 40 is passed from the outside of the assembled battery 100c via the inlet duct 50. Cooling air is taken in.

入口ダクト50から筐体40の入口側開口42を介して当該内部空間41に取り入れられた冷却風は、各ケース35a〜35lの間に形成された空間に進入する。この空間を通過する冷却風により、ケース35a〜35l自体が冷却され、このケース35a〜35lを介して、当該ケース35a〜35l内に収容された各二次電池10a〜10hが間接的に冷却される。   The cooling air taken into the internal space 41 from the inlet duct 50 through the inlet-side opening 42 of the housing 40 enters a space formed between the cases 35a to 35l. The cases 35a to 35l themselves are cooled by the cooling air passing through the space, and the secondary batteries 10a to 10h accommodated in the cases 35a to 35l are indirectly cooled via the cases 35a to 35l. The

また、当該空間に進入した冷却風の一部は、図15に示すように、各ケース35a〜35lのロアケース36の周壁36c1の一方の端部側に形成された開口部36aから筐体40の内部空間41に進入し、ケース35内部に形成された流路34を通過して、当該冷却風が外装部材106の長辺における斜面部及び熱融着部109を冷却し、各二次電池10a〜10hが冷却風により直接的に冷却される。   Further, as shown in FIG. 15, a part of the cooling air that has entered the space passes through the opening 36 a formed on one end side of the peripheral wall 36 c 1 of the lower case 36 of each of the cases 35 a to 35 l from the case 40. The cooling air enters the internal space 41 and passes through the flow path 34 formed inside the case 35, and the cooling air cools the inclined surface portion and the heat-sealing portion 109 on the long side of the exterior member 106, and each secondary battery 10a. -10 h is directly cooled by the cooling air.

冷却風が通過する流路34は、図16の部分拡大断面図に示すように、ケース35内に収容された各二次電池10a〜10hと、それに対向するケース35の内壁面351との間に形成されている。この流路34は、外装部材106、107として樹脂―金属薄膜ラミネートフィルムを用いた薄型の二次電池10a〜10hを複数積層した電池積層体30をケース35内に収容した際に、当該外装部材106、107の熱融着部109が存在するために、電池積層体30とケース35の内壁面351との間に必然的に形成される隙間を利用して形成されている。本実施形態では、この流路34は、図15に示すように、二次電池10a〜10hの電極端子104、105の導出方向に沿うように形成されている。   As shown in the partially enlarged cross-sectional view of FIG. 16, the flow path 34 through which the cooling air passes is between the secondary batteries 10 a to 10 h housed in the case 35 and the inner wall surface 351 of the case 35 facing it. Is formed. When the battery stack 30 in which a plurality of thin secondary batteries 10 a to 10 h using a resin-metal thin film laminate film are stacked as the exterior members 106 and 107 is accommodated in the case 35, the flow path 34 is provided with the exterior member. Since the heat-sealed portions 109 of 106 and 107 exist, they are formed by utilizing a gap that is inevitably formed between the battery stack 30 and the inner wall surface 351 of the case 35. In the present embodiment, the flow path 34 is formed along the lead-out direction of the electrode terminals 104 and 105 of the secondary batteries 10a to 10h, as shown in FIG.

ここで、開口部が形成されていない従来のケースを採用した場合と冷却効果について比較すると、図17に示すように、本実施形態のようにケース35に開口部36aを形成した場合には、当該開口部36aから導入された冷却風の直接冷却により冷却効率が向上し、当該ケース35内に収容された二次電池10a〜10hの最高到達温度が著しく低下する。但し、二次電池10a〜10hの電極端子104、105の導出方向に沿った開口部36aの長さが長すぎると、図18に示すように、ケース35に所定の力を加えた場合に開口部36aの周囲にかかる最大応力に変化が生じる。そのため、ケース35の肉厚等にもよるが、開口部36aの長さは、二次電池10a〜10hの電極端子104、105の導出方向に沿ったケース35の長さの30%程度以下とすることが好ましい。なお、図17中のL20、L40及びL80は、ケース35内に収容された二次電池10a〜10hの電極端子104、105の導出方向に沿った開口部36aの長さが20mm、40mm及び80mmであることをそれぞれ示しており、図17は、開口部36aの幅を一定にした状態で長さを変化させることにより当該開口部36aの開口面積を変化させたグラフである。   Here, when comparing the cooling effect with the case where the conventional case in which the opening is not formed is adopted, as shown in FIG. 17, when the opening 36a is formed in the case 35 as in the present embodiment, The cooling efficiency is improved by direct cooling of the cooling air introduced from the opening 36a, and the maximum temperature reached of the secondary batteries 10a to 10h accommodated in the case 35 is remarkably lowered. However, if the length of the opening 36a along the lead-out direction of the electrode terminals 104 and 105 of the secondary batteries 10a to 10h is too long, the opening is obtained when a predetermined force is applied to the case 35 as shown in FIG. A change occurs in the maximum stress applied around the portion 36a. Therefore, although depending on the thickness of the case 35, the length of the opening 36a is about 30% or less of the length of the case 35 along the lead-out direction of the electrode terminals 104 and 105 of the secondary batteries 10a to 10h. It is preferable to do. Note that L20, L40, and L80 in FIG. 17 are 20 mm, 40 mm, and 80 mm in length of the opening 36a along the lead-out direction of the electrode terminals 104, 105 of the secondary batteries 10a-10h accommodated in the case 35. FIG. 17 is a graph in which the opening area of the opening 36a is changed by changing the length while keeping the width of the opening 36a constant.

ケース35内の流路34を通過した冷却風は、図15に示すように、周壁36c1の他方の端部側に形成された開口部36aから筐体40の内部空間41に排出される。当該開口部36aから排出された冷却風は、ケース35a〜35lの間を通過した冷却風と共に、筐体40の出口側開口43に至り、さらに、ファン70の駆動により、出口ダクト60を介して組電池100cの外部に排出される。   As shown in FIG. 15, the cooling air that has passed through the flow path 34 in the case 35 is discharged into the internal space 41 of the housing 40 from the opening 36a formed on the other end side of the peripheral wall 36c1. The cooling air discharged from the opening 36 a reaches the outlet side opening 43 of the housing 40 together with the cooling air that has passed between the cases 35 a to 35 l, and is further driven by the fan 70 through the outlet duct 60. It is discharged outside the assembled battery 100c.

以上のように本発明の第3実施形態に係る組電池は、二次電池を複数積層した電池積層体を内部に収容したケースを複数並べて配置した場合に、ケースの内壁面と電池積層体との間に形成された流路に冷却風を通過させて、二次電池を直接的に冷却することにより、組電池を効率的に冷却することが可能となる。   As described above, the assembled battery according to the third embodiment of the present invention includes a case in which a plurality of cases in which a plurality of battery stacks in which a plurality of secondary batteries are stacked are arranged side by side, and the inner wall surface of the case, the battery stack, The assembled battery can be efficiently cooled by allowing the cooling air to pass through the flow path formed between the two and directly cooling the secondary battery.

また、本発明の第3実施形態では、外装部材として樹脂−金属薄膜ラミネートフィルムを用いた薄型の二次電池を複数積層した電池積層体をケースに収容した際に、二次電池の外装部材の熱融着部により、電池積層体とケースの内壁面との間に必然的に形成される隙間を、冷却風を通過させる流路として利用するので、直接冷却するために専用の流路をわざわざ形成する必要もない。これにより、組電池の体積を増加させることなく冷却効率を高めることが出来る。   Moreover, in 3rd Embodiment of this invention, when the battery laminated body which laminated | stacked the thin secondary battery using the resin-metal thin film laminate film as an exterior member was accommodated in the case, of the exterior member of a secondary battery. The gap that is inevitably formed between the battery stack and the inner wall surface of the case by the heat-sealing part is used as a flow path through which the cooling air passes, so a dedicated flow path is used for direct cooling. There is no need to form. Thereby, the cooling efficiency can be increased without increasing the volume of the assembled battery.

さらに、本発明の第3実施形態では、所定間隔を空けてケース同士を積層することにより、当該間隔内に冷却風が通過してケース自体が冷却されることにより、上述のような直接冷却に加えて、当該ケース内に収容された二次電池を間接的に冷却することが出来る。   Furthermore, in the third embodiment of the present invention, by stacking the cases with a predetermined interval, the cooling air passes through the interval and the case itself is cooled. In addition, the secondary battery accommodated in the case can be indirectly cooled.

また、本発明の第3実施形態では、二次電池の長手方向に沿って冷却風を直接吹き付けることにより、冷却風と二次電池との広範な接触面積を確保することが出来るので、組電池をさらに効率的に冷却することが可能となる。   In the third embodiment of the present invention, since the cooling air is directly blown along the longitudinal direction of the secondary battery, a wide contact area between the cooling air and the secondary battery can be secured. Can be further efficiently cooled.

[第4実施形態]
図19は本発明の第4実施形態に係る組電池を構成する電池積層体の配列を示す平面図である。
[Fourth Embodiment]
FIG. 19 is a plan view showing an array of battery stacks constituting the assembled battery according to the fourth embodiment of the present invention.

本発明の第4実施形態に係る組電池100dは、筐体40の内部空間41に配置されたケース35a〜35lの向きが上述の第3実施形態に係る組電池100cと相違するが、その他の構成は第3実施形態に係る組電池100cの構成と同一である。以下に、第4実施形態に係る組電池100dについて、第3実施形態に係る組電池100cとの相違点のみを説明する。   The assembled battery 100d according to the fourth embodiment of the present invention is different from the assembled battery 100c according to the third embodiment described above in that the directions of the cases 35a to 35l arranged in the internal space 41 of the housing 40 are different. The configuration is the same as that of the assembled battery 100c according to the third embodiment. Hereinafter, only the difference between the assembled battery 100d according to the fourth embodiment and the assembled battery 100c according to the third embodiment will be described.

本発明の第4実施形態に係る組電池100dは、第3実施形態と同様の二次電池10を8段積層して構成された12組の電池積層体30a〜30lを備えており、各電池積層体30a〜30lは、ケース35a〜35lの内部に収容された状態で筐体40の内部空間41に配置されている。そして、本実施形態では、各ケース35a〜35lは、図19に示すように、各二次電池10a〜10hの電極端子104、105の導出方向が筐体40の入口側開口42から出口側開口43に向かう方向に対して実質的に直交するように、筐体40の内部空間41に12列に配置されている点で第3実施形態に係る組電池100cと異なる。即ち、上述の第3実施形態では、ケース35a〜35lを筐体40の内部空間に横たえた状態で配置しているのに対し、本実施形態では、ケース35a〜35lを起立させた状態で筐体40の内部空間41に配置している点で異なる。   The assembled battery 100d according to the fourth embodiment of the present invention includes 12 battery stacks 30a to 30l configured by stacking eight stages of secondary batteries 10 similar to those of the third embodiment. The stacked bodies 30a to 30l are arranged in the internal space 41 of the housing 40 in a state of being accommodated in the cases 35a to 35l. In the present embodiment, as shown in FIG. 19, the cases 35 a to 35 l are arranged so that the electrode terminals 104 and 105 of the secondary batteries 10 a to 10 h are led out from the inlet side opening 42 of the housing 40 to the outlet side opening. The battery pack 100 is different from the assembled battery 100 c according to the third embodiment in that it is arranged in 12 rows in the internal space 41 of the housing 40 so as to be substantially orthogonal to the direction toward 43. That is, in the above-described third embodiment, the cases 35a to 35l are arranged in a state of being laid in the internal space of the housing 40, whereas in the present embodiment, the cases 35a to 35l are erected. It differs in that it is arranged in the internal space 41 of the body 40.

本実施形態に係る組電池100dの作用について説明すると、第3実施形態と同様に、ファン70が回転駆動することにより組電池内に負圧が生じ、これに伴って、組電池の外部から入口ダクト50を介して筐体40の内部空間に41に冷却風が取り入れられ、各ケース35a〜35lの間に形成された空間に進入し、ケース35a〜35lを介して、当該ケース35a〜35l内に収容された各二次電池10a〜10hが間接的に冷却される。   The operation of the assembled battery 100d according to the present embodiment will be described. Similarly to the third embodiment, a negative pressure is generated in the assembled battery when the fan 70 is driven to rotate. Cooling air is taken into the internal space 41 of the housing 40 through the duct 50 and enters the space formed between the cases 35a to 35l, and the cases 35a to 35l are passed through the cases 35a to 35l. The secondary batteries 10a to 10h housed in the are indirectly cooled.

また、当該空間に進入した冷却風の一部は、各ケース35a〜35lのロアケース36の一方の周壁36c1に形成された開口部36aから筐体40の内部空間41に進入し、ケース35内部に形成された流路34を通過して、当該冷却風が、各電極端子104、105と、外装部材106の短辺における斜面部及び熱融着部109と、を冷却し、各二次電池10a〜10hが当該冷却風により直接的に冷却される。   Further, a part of the cooling air entering the space enters the internal space 41 of the housing 40 from the opening 36a formed in one peripheral wall 36c1 of the lower case 36 of each of the cases 35a to 35l and enters the inside of the case 35. Passing through the formed flow path 34, the cooling air cools the electrode terminals 104 and 105 and the inclined surface portion and the thermal fusion bonding portion 109 on the short side of the exterior member 106, and each secondary battery 10a. -10 h is directly cooled by the cooling air.

なお、流路34は、特に図示しないが、ケース35内に収容された各二次電池10a〜10hと、それに対向するケース35の内壁面351との間に形成されており、二次電池10a〜10hの熱融着部109及び電極端子104、105の存在により必然的に形成された隙間を利用して形成されている。本実施形態では、この流路34は、図19に示すように、二次電池10a〜10hの電極端子104、105の導出方向に対して実質的に直交する方向に沿って形成されている。   Although not particularly illustrated, the flow path 34 is formed between each of the secondary batteries 10a to 10h accommodated in the case 35 and the inner wall surface 351 of the case 35 facing the secondary battery 10a. It is formed using a gap that is inevitably formed by the presence of the thermal fusion part 109 and the electrode terminals 104 and 105 of 10 hours. In the present embodiment, as shown in FIG. 19, the flow path 34 is formed along a direction substantially orthogonal to the lead-out direction of the electrode terminals 104 and 105 of the secondary batteries 10a to 10h.

ケース35内の流路34を通過した冷却風は、他方の周壁36c1に形成された開口部36aから筐体40の内部空間41に排出される。当該開口部36aから排出された冷却風は、ケース35a〜35lの間を通過した冷却風と共に、筐体40の出口側開口43に至り、さらに、ファン70の駆動により、出口ダクト60を介して組電池100dの外部に排出される。   The cooling air that has passed through the flow path 34 in the case 35 is discharged into the internal space 41 of the housing 40 from the opening 36a formed in the other peripheral wall 36c1. The cooling air discharged from the opening 36 a reaches the outlet side opening 43 of the housing 40 together with the cooling air that has passed between the cases 35 a to 35 l, and is further driven by the fan 70 through the outlet duct 60. It is discharged outside the assembled battery 100d.

以上のように本発明の第4実施形態に係る組電池は、二次電池を複数積層した電池積層体を内部に収容したケースを複数並べて配置した場合に、ケースの内壁面と電池積層体との間に形成された流路に冷却風を通過させて、二次電池を直接的に冷却することにより、組電池を効率的に冷却することが可能となる。   As described above, the assembled battery according to the fourth embodiment of the present invention includes an inner wall surface of the case, a battery stack, and a case in which a plurality of cases each containing a battery stack in which a plurality of secondary batteries are stacked are arranged side by side. The assembled battery can be efficiently cooled by allowing the cooling air to pass through the flow path formed between the two and directly cooling the secondary battery.

また、本発明の第4実施形態では、外装部材として樹脂−金属薄膜ラミネートフィルムを用いた薄型の二次電池を複数積層した電池をケースに収容した際に、二次電池の外装部材の熱融着部により、電池積層体とケースの内壁面との間に必然的に形成される隙間を、冷却風を通過させる流路として利用するので、直接冷却するための専用の流路をわざわざ形成する必要もない。これにより、組電池の体積を増加させることなく冷却効率を高めることが出来る。   Further, in the fourth embodiment of the present invention, when a battery in which a plurality of thin secondary batteries using a resin-metal thin film laminate film is used as an exterior member is accommodated in a case, the heat fusion of the exterior member of the secondary battery is performed. Since the gap that is inevitably formed between the battery stack and the inner wall surface of the case is used as a flow path through which the cooling air passes, a dedicated flow path for direct cooling is purposely formed. There is no need. Thereby, the cooling efficiency can be increased without increasing the volume of the assembled battery.

さらに、本発明の第実施形態では、所定間隔を空けてケース同士を積層することにより、当該間隔内に冷却風が通過してケース自体が冷却されることにより、上述のような直接冷却に加えて、当該ケース内に収容された二次電池を間接的に冷却することが出来る。
Furthermore, in the fourth embodiment of the present invention, by stacking the cases with a predetermined interval, the cooling air passes through the interval and the case itself is cooled. In addition, the secondary battery accommodated in the case can be indirectly cooled.

また、本発明の第4実施形態では、熱伝導率の高い金属製の電極端子を冷却風により直接冷却することにより、組電池を構成する各二次電池をさらに効率的に冷却することが可能となる。   Further, in the fourth embodiment of the present invention, each secondary battery constituting the assembled battery can be more efficiently cooled by directly cooling the metal electrode terminal having high thermal conductivity with the cooling air. It becomes.

なお、以上説明した実施形態は、本発明の理解を容易にするために記載されたものであって、本発明を限定するために記載されたものではない。したがって、上記の実施形態に開示された各要素は、本発明の技術的範囲に属する全ての設計変更や均等物をも含む趣旨である。   The embodiment described above is described for facilitating the understanding of the present invention, and is not described for limiting the present invention. Therefore, each element disclosed in the above embodiment is intended to include all design changes and equivalents belonging to the technical scope of the present invention.

上述の第1実施形態では、二次電池を10段積層した電池積層体を8組配置して組電池を構成し、第2実施形態では、同様の電池積層体を4組配置して組電池を構成したが、本発明では特にこれらに限定されず、一つの電池積層体をN個の二次電池を積層して構成しても良く、M組の電池積層体を任意の配列で配置することが出来る(但し、M及びNは何れも任意の自然数)。   In the above-described first embodiment, eight sets of battery stacks in which 10 stages of secondary batteries are stacked are arranged to constitute an assembled battery, and in the second embodiment, four sets of similar battery stacks are arranged to form an assembled battery. However, the present invention is not particularly limited thereto, and one battery stack may be formed by stacking N secondary batteries, and M battery stacks are arranged in an arbitrary arrangement. (Where M and N are any natural numbers).

同様に、上述の第3及び第4実施形態では、二次電池を8段積層した電池積層体を12個配置して組電池を構成したが、本発明では特にこれに限定されず、一つの電池積層体をN個の二次電池を積層して構成しても良く。M組の電池積層体を配置することが出来る。   Similarly, in the above-described third and fourth embodiments, the battery pack is configured by arranging 12 battery stacks in which 8 stages of secondary batteries are stacked. However, in the present invention, the present invention is not particularly limited to this. The battery stack may be formed by stacking N secondary batteries. M sets of battery stacks can be arranged.

また、第1、第3及び第4実施形態において第2実施形態のように二次電池をずらして積層して電池積層体を構成しても良い。さらに、第2〜第4実施形態に係る組電池を第1実施形態で説明した車輌のフロア下に搭載しても良い。   In the first, third, and fourth embodiments, the battery stack may be configured by shifting and stacking the secondary batteries as in the second embodiment. Furthermore, the assembled battery according to the second to fourth embodiments may be mounted under the vehicle floor described in the first embodiment.

図1は、本発明の実施形態に係る二次電池の全体の平面図である。FIG. 1 is a plan view of an entire secondary battery according to an embodiment of the present invention. 図2は、図1のII-II線に沿った二次電池の断面図である。FIG. 2 is a cross-sectional view of the secondary battery taken along line II-II in FIG. 図3は、本発明の第1実施形態に係る組電池の全体斜視図である。FIG. 3 is an overall perspective view of the assembled battery according to the first embodiment of the present invention. 図4は、図3に示す組電池を構成する電池積層体の配列を示す平面図である。FIG. 4 is a plan view showing an arrangement of battery stacks constituting the assembled battery shown in FIG. 図5は、図4のV-V線に沿った断面図である。FIG. 5 is a cross-sectional view taken along line VV in FIG. 図6(A)〜(C)は、図3に示す組電池に用いられるヒートシンクを示す図であり、図6(A)はその平面図、図6(B)はその側面図、図6(C)はその正面図である。6A to 6C are views showing a heat sink used in the assembled battery shown in FIG. 3, wherein FIG. 6A is a plan view thereof, FIG. 6B is a side view thereof, and FIG. C) is a front view thereof. 図7は、図4及び図5に示す複数の電池積層体における温度分布を示すグラフである。FIG. 7 is a graph showing the temperature distribution in the plurality of battery stacks shown in FIGS. 4 and 5. 図8は、本発明の第1実施形態に係る組電池を搭載した車輌の模式図である。FIG. 8 is a schematic view of a vehicle equipped with the assembled battery according to the first embodiment of the present invention. 図9は、本発明の第2実施形態に係る組電池を構成する電池積層体の配列を示す平面図である。FIG. 9 is a plan view showing the arrangement of the battery stack constituting the assembled battery according to the second embodiment of the present invention. 図10は、図9のX-X線に沿った断面図である。FIG. 10 is a cross-sectional view taken along line XX in FIG. 図11は、図9及び図10に示す複数の電池積層体における温度分布を示すグラフである。FIG. 11 is a graph showing temperature distribution in the plurality of battery stacks shown in FIGS. 9 and 10. 図12は、本発明の第3実施形態に係る組電池において、内部に電池積層体を収容したケースを示す斜視図である。FIG. 12 is a perspective view showing a case in which the battery stack is housed in the assembled battery according to the third embodiment of the present invention. 図13は、図12に示すケース及び電池積層体を上下反転し、さらに分解して示す分解斜視図である。FIG. 13 is an exploded perspective view showing the case and battery stack shown in FIG. 図14は、ケースに形成された開口部及びエアスクープを詳細に示す断面図である。FIG. 14 is a cross-sectional view showing in detail the opening and air scoop formed in the case. 図15は、本発明の第3実施形態に係る組電池を構成する電池積層体の配列を示す平面図である。FIG. 15 is a plan view showing the arrangement of the battery stack constituting the assembled battery according to the third embodiment of the present invention. 図16は、図15のXVI-XVI線に沿った断面図である。16 is a cross-sectional view taken along line XVI-XVI in FIG. 図17は、本発明の第3実施形態における開口部の面積と電池の最高到達温度との関係を示すグラフである。FIG. 17 is a graph showing the relationship between the area of the opening and the maximum temperature reached by the battery in the third embodiment of the present invention. 図18は、本発明の第3実施形態における開口部の長さと開口周囲に生じる最大応力・変位との関係を示すグラフである。FIG. 18 is a graph showing the relationship between the length of the opening and the maximum stress / displacement generated around the opening in the third embodiment of the present invention. 図19は、本発明の第4実施形態に係る組電池を構成する電池積層体の配列を示す平面図である。FIG. 19 is a plan view showing the arrangement of the battery stack constituting the assembled battery according to the fourth embodiment of the present invention.

符号の説明Explanation of symbols

1…車輌
10、10a〜10j…二次電池
20…ヒートシンク
21…通路
30、30a〜30l…電池積層体
31、32a〜32c、34…流路
33…配線用空間
35、35a〜35l…ケース
36…ロアケース
36a…開口部
36b…エアスクープ
36c…周壁
36d…縁部
36e〜37g…第1〜第3の切欠
36h…貫通孔
37…アッパケース
37a…縁部
37b…貫通孔
38…正極出力端子
39…負極出力端子
40…筐体
41…内部空間
42…入口側開口
43…出口側開口
50…入口ダクト
60…出口ダクト
70…ファン
100a〜100d…組電池
DESCRIPTION OF SYMBOLS 1 ... Vehicle 10, 10a-10j ... Secondary battery 20 ... Heat sink 21 ... Passage 30, 30a-30l ... Battery laminated body 31, 32a-32c, 34 ... Channel 33 ... Space 35 for wiring, 35a-35l ... Case 36 ... lower case 36a ... opening 36b ... air scoop 36c ... peripheral wall 36d ... edge parts 36e to 37g ... first to third notches 36h ... through hole 37 ... upper case 37a ... edge part 37b ... through hole 38 ... positive electrode output terminal 39 ... Negative electrode output terminal 40 ... Housing 41 ... Internal space 42 ... Inlet side opening 43 ... Outlet side opening 50 ... Inlet duct 60 ... Outlet duct 70 ... Fans 100a to 100d ... Assembly battery

Claims (12)

セパレータを介して積層された電極板を、合成樹脂材料から成る合成樹脂層及び金属材料から成る金属層を有する外装部材に収容し、前記外装部材の外周縁を熱融着して熱融着部を形成して前記電極板を封止すると共に、前記電極板に接続された電極端子が前記外装部材の外周縁から導出した二次電池を複数積層した電池積層体を備えた組電池であって、
前記二次電池を冷却するための冷媒を供給する冷媒供給手段と、
前記電池積層体を内部に収容可能なケースと、
前記冷媒供給手段が接続される入口側開口と出口側開口とを有し、前記ケースを収容する筐体と、をさらに備え、
前記ケースには、前記冷媒供給手段から供給される冷媒を当該ケース内に導入又は排出するための開口部が複数形成されており、
前記冷媒供給手段から供給された冷媒は、一の前記開口部を介して前記ケース内に導入され、前記二次電池の熱融着部により前記ケースの内壁面と前記電池積層体との間に形成された流路を通過し、他の前記開口部を介して当該ケースから排出され、
前記ケースの前記開口部の周囲には、前記冷媒供給手段から供給された冷媒を前記開口部に向かうように方向付けるエアスクープが設けられている組電池。
The electrode plates laminated via the separator are accommodated in an exterior member having a synthetic resin layer made of a synthetic resin material and a metal layer made of a metal material, and the outer peripheral edge of the exterior member is heat-sealed to form a heat-sealed portion. A battery assembly including a battery stack in which a plurality of secondary batteries in which electrode terminals connected to the electrode plate are led out from the outer peripheral edge of the exterior member are stacked are formed. ,
Refrigerant supply means for supplying a refrigerant for cooling the secondary battery;
A case capable of accommodating the battery stack therein;
A housing having an inlet-side opening and an outlet-side opening to which the refrigerant supply means is connected, and housing the case;
The case is formed with a plurality of openings for introducing or discharging the refrigerant supplied from the refrigerant supply means into the case,
The refrigerant supplied from the refrigerant supply means is introduced into the case through the one opening, and is formed between the inner wall surface of the case and the battery stack by the heat fusion part of the secondary battery. Passes through the formed flow path, is discharged from the case through the other opening,
An assembled battery in which an air scoop is provided around the opening of the case to direct the refrigerant supplied from the refrigerant supply means toward the opening.
前記冷媒供給手段から供給された冷媒は、前記二次電池に直接触れながら前記流路を通過する請求項1記載の組電池。  The assembled battery according to claim 1, wherein the refrigerant supplied from the refrigerant supply means passes through the flow path while directly touching the secondary battery. 複数の前記二次電池が相互に密着していると共に、前記電池積層体の最上段及び最下段の二次電池が前記ケースの内壁面に密着している請求項1又は2記載の組電池。  The assembled battery according to claim 1 or 2, wherein the plurality of secondary batteries are in close contact with each other, and the uppermost and lowermost secondary batteries of the battery stack are in close contact with the inner wall surface of the case. 前記ケースには、所定間隔を空けて他の前記ケースが積層されている請求項1〜3の何れかに記載の組電池。 The assembled battery according to any one of claims 1 to 3, wherein another case is stacked on the case at a predetermined interval. 前記流路は、前記二次電池の長手方向に沿って形成されている請求項1〜4の何れかに記載の組電池。 The assembled battery according to any one of claims 1 to 4, wherein the flow path is formed along a longitudinal direction of the secondary battery. 前記流路は、前記二次電池の電極端子が導出する方向に対して実質的に直交するように形成されている請求項1〜4の何れかに記載の組電池。 The assembled battery according to any one of claims 1 to 4, wherein the flow path is formed so as to be substantially orthogonal to a direction in which an electrode terminal of the secondary battery is led out. 前記電池積層体は、前記複数の二次電池がずれるように積層されて構成されている請求項1〜の何れかに記載の組電池。 The battery stack is assembled battery according to any one of claims 1 to 6, wherein said plurality of secondary batteries are formed by laminating to be shifted. 一の前記電池積層体は、当該一の電池積層体の二次電池の積層方向に沿って当該一の電池積層体の中央部に向かうに従い、各二次電池が他の前記電池積層体に近付くように積層されている請求項記載の組電池。 As the one battery stack moves toward the center of the one battery stack along the stacking direction of the secondary batteries of the one battery stack, each secondary battery approaches the other battery stack. The assembled battery according to claim 7, which is laminated as described above. さらに、前記他の電池積層体は、当該他の電池積層体の二次電池の積層方向に沿って当該他の電池積層体の中央部に向かうに従い、各二次電池が前記一の電池積層体に近付くように積層されている請求項記載の組電池。 Further, each of the secondary battery stacks moves toward the center of the other battery stack along the stacking direction of the secondary batteries of the other battery stack. The assembled battery according to claim 8 , wherein the battery pack is stacked so as to approach the battery. 前記二次電池の電極板は、リチウム−マンガン系複合酸化物、リチウム−ニッケル系複合酸化物、又は、リチウム−コバルト系複合酸化物から成る正極活物質を有する正極板を含む請求項1〜の何れかに記載の組電池。 Electrode plate of the secondary battery, lithium - manganese composite oxide, lithium - nickel compound oxide or lithium - claim including a positive electrode plate having a positive electrode active material composed of cobalt-based composite oxide 1-9 The assembled battery according to any one of the above. 前記二次電池の電極板は、結晶性炭素材、又は、非結晶性炭素材から成る負極活物質を有する負極板を含む請求項1〜10の何れかに記載の組電池。 The assembled battery according to any one of claims 1 to 10 , wherein the electrode plate of the secondary battery includes a negative electrode plate having a negative electrode active material made of a crystalline carbon material or an amorphous carbon material. 請求項1〜11の何れかに記載の組電池を搭載した車輌。

A vehicle equipped with the assembled battery according to any one of claims 1 to 11 .

JP2005042759A 2004-03-17 2005-02-18 Assembled battery and vehicle equipped with the assembled battery Expired - Fee Related JP5292663B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005042759A JP5292663B2 (en) 2004-03-17 2005-02-18 Assembled battery and vehicle equipped with the assembled battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004076301 2004-03-17
JP2004076301 2004-03-17
JP2005042759A JP5292663B2 (en) 2004-03-17 2005-02-18 Assembled battery and vehicle equipped with the assembled battery

Publications (2)

Publication Number Publication Date
JP2005302698A JP2005302698A (en) 2005-10-27
JP5292663B2 true JP5292663B2 (en) 2013-09-18

Family

ID=35333902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005042759A Expired - Fee Related JP5292663B2 (en) 2004-03-17 2005-02-18 Assembled battery and vehicle equipped with the assembled battery

Country Status (1)

Country Link
JP (1) JP5292663B2 (en)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2894388B1 (en) * 2005-12-02 2016-01-22 Renault Sas ELECTRICITY GENERATION MODULE COMPRISING A PLURALITY OF ELECTROCHEMICAL CELLS
JP5070697B2 (en) * 2005-12-19 2012-11-14 日産自動車株式会社 Battery module
KR20080113240A (en) * 2006-03-15 2008-12-29 닛본 덴끼 가부시끼가이샤 Charging apparatus and charging/discharging apparatus
JP4904863B2 (en) * 2006-03-15 2012-03-28 日産自動車株式会社 Battery module and manufacturing method thereof
JP2007280617A (en) * 2006-04-03 2007-10-25 Sony Corp Battery pack
JP4857896B2 (en) 2006-05-11 2012-01-18 トヨタ自動車株式会社 Battery pack and vehicle
JP4569534B2 (en) 2006-07-19 2010-10-27 トヨタ自動車株式会社 Assembled battery
KR100792948B1 (en) 2006-12-12 2008-01-08 현대자동차주식회사 Battery cell assembly for electric vehicle
JP4337905B2 (en) 2007-04-18 2009-09-30 トヨタ自動車株式会社 Cooling device for electric equipment mounted on vehicle
JP5119727B2 (en) * 2007-05-08 2013-01-16 マツダ株式会社 Laminate battery pack cooling device
JP4656102B2 (en) 2007-07-27 2011-03-23 トヨタ自動車株式会社 Solid battery
JP5326275B2 (en) * 2007-12-26 2013-10-30 マツダ株式会社 Battery pack
DE102009052254A1 (en) * 2009-11-06 2011-05-12 Behr Gmbh & Co. Kg Power storage device
KR101450274B1 (en) * 2010-12-13 2014-10-23 에스케이이노베이션 주식회사 Cell Case for Secondary Battery
JP5583041B2 (en) * 2011-02-04 2014-09-03 三菱重工業株式会社 Battery module
JP2012204038A (en) * 2011-03-24 2012-10-22 Kayaba Ind Co Ltd Electrical storage device
KR101247462B1 (en) * 2011-05-20 2013-03-25 세방전지(주) Battery pack
JP5754337B2 (en) * 2011-10-11 2015-07-29 トヨタ自動車株式会社 Power storage device
JP5609949B2 (en) * 2012-11-07 2014-10-22 ソニー株式会社 Battery pack
JP6123746B2 (en) * 2014-07-11 2017-05-10 株式会社デンソー Assembled battery
CN104409793A (en) * 2014-11-24 2015-03-11 东风汽车公司 Power battery thermal management system for electric vehicle
JP6601235B2 (en) * 2016-01-26 2019-11-06 株式会社デンソー Battery pack
CN106659087B (en) * 2016-12-30 2019-04-26 华为技术有限公司 Single plate cooling device and its assembly method, internet device
CN107302063A (en) * 2017-08-25 2017-10-27 成都优力德新能源有限公司 A kind of heat-dissipating casing applied to new energy car battery
KR102311075B1 (en) 2018-04-09 2021-10-07 주식회사 엘지에너지솔루션 Battery Pack Having Pack Housing
CN112670640B (en) * 2020-12-17 2022-08-12 湖南久森新能源有限公司 Lithium ion battery with good heat dissipation effect

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3379134B2 (en) * 1993-03-10 2003-02-17 日産自動車株式会社 Battery insulation structure for electric vehicles
DE4407156C1 (en) * 1994-03-04 1995-06-08 Deutsche Automobilgesellsch Electric storage battery housing for electrically-driven automobile
JPH11178115A (en) * 1997-12-10 1999-07-02 Nissan Motor Co Ltd Battery cooling structure and battery cooling method for electric vehicle
JP2003346924A (en) * 2002-05-29 2003-12-05 Fuji Heavy Ind Ltd Cooling system and method for battery pack
JP4114415B2 (en) * 2002-06-28 2008-07-09 日産自動車株式会社 Electrode laminated battery cooling device

Also Published As

Publication number Publication date
JP2005302698A (en) 2005-10-27

Similar Documents

Publication Publication Date Title
JP5292663B2 (en) Assembled battery and vehicle equipped with the assembled battery
US7353900B2 (en) Battery cooling system
JP4543710B2 (en) Assembled battery
EP2605328B1 (en) Battery pack of novel structure
EP2608310B1 (en) Battery module with compact structure and excellent heat radiation characteristics, and medium- or large-sized battery pack
EP2849275B1 (en) Battery module including high-efficiency cooling structure
EP2930781B1 (en) Heat sink with two or more separated channels including insulation material
CN108028336A (en) Battery module assembly with the stabilization fixing device for unit module
JP5772428B2 (en) Secondary battery cooling device
EP2933871B1 (en) Heat sink having two or more separated channels arranged vertically with common inlet and common outlet
TW201737528A (en) Indirect cooling system capable of uniformly cooling battery modules and battery pack including the same
TW201304248A (en) Assembled cell
JP2020500409A (en) Battery module
JP2006079987A (en) Hybrid battery system
JP2005251617A (en) Secondary battery and battery pack
KR20230070490A (en) energy storage cell
JP2006351245A (en) Battery pack
JP5002894B2 (en) Secondary battery
JP4052127B2 (en) Thin battery support structure, assembled battery and vehicle
JP4696511B2 (en) Battery cooling system
JP2005149783A (en) Secondary battery, battery pack, complex battery pack, and vehicle
JP4784058B2 (en) Battery cooling system
JP5157043B2 (en) Assembled battery
US11862395B2 (en) Energy bank including integrated supercapacitor-battery structures
US11817260B2 (en) Integrated supercapacitor-battery structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130527

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees