JP5291427B2 - Photovoltaic generator - Google Patents

Photovoltaic generator Download PDF

Info

Publication number
JP5291427B2
JP5291427B2 JP2008266124A JP2008266124A JP5291427B2 JP 5291427 B2 JP5291427 B2 JP 5291427B2 JP 2008266124 A JP2008266124 A JP 2008266124A JP 2008266124 A JP2008266124 A JP 2008266124A JP 5291427 B2 JP5291427 B2 JP 5291427B2
Authority
JP
Japan
Prior art keywords
photovoltaic generator
generator according
junction
cell
band gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008266124A
Other languages
Japanese (ja)
Other versions
JP2010098033A (en
Inventor
健一 近藤
貴裕 松本
吉鎬 梁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP2008266124A priority Critical patent/JP5291427B2/en
Publication of JP2010098033A publication Critical patent/JP2010098033A/en
Application granted granted Critical
Publication of JP5291427B2 publication Critical patent/JP5291427B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Description

本発明は、太陽電池、波長分解スペクトルアナライザ用受光器等の光起電力発生装置に関する。
The present invention relates to a photovoltaic power generation device such as a solar cell or a wavelength-resolved spectrum analyzer photoreceiver.

一般に、光起電力発生装置としての太陽電池においては、半導体のバンドギャップを超えるエネルギーを有する入射光子をpn接合(あるいはpin接合)の空乏層(あるいはi層)で捕捉して電子−正孔対を創成し、この電荷(電子、正孔)を2つの出力端子に取出し、出力端子間に上述のバンドギャップに等しい電位差を発生させるものである。   In general, in a solar cell as a photovoltaic generator, an incident photon having energy exceeding the band gap of a semiconductor is captured by a depletion layer (or i layer) of a pn junction (or pin junction), and an electron-hole pair is captured. And the electric charges (electrons and holes) are taken out to the two output terminals, and a potential difference equal to the above-mentioned band gap is generated between the output terminals.

従来の単結晶シリコン、多結晶シリコン、アモルファスシリコン等の1つのセルよりなる単一接合型太陽電池においては、図9に示すように、入射光子のエネルギーのシリコンのバンドギャップを超えた分は不完全利用分となり、また、入射光子のエネルギーがシリコンのバンドギャップより小さい場合は、その入射光子自体が捕捉されず透過損失分となる。この結果、不完全利用分及び透過損失分が大きいので、エネルギー変換効率は低かった。   In a single-junction solar cell composed of a single cell of conventional single crystal silicon, polycrystalline silicon, amorphous silicon, or the like, the amount of incident photon energy exceeding the silicon band gap is not as shown in FIG. If the energy of the incident photon is smaller than the band gap of silicon, the incident photon itself is not captured and becomes a transmission loss. As a result, the energy conversion efficiency was low because the incomplete utilization and the transmission loss were large.

太陽電池のエネルギー変換効率を向上させるために、複数のpn接合素子あるいはpin接合素子(以下、セル)を縦方向に接続した多接合型太陽電池が開発されている(参照:特許文献1、特許文献2、特許文献3、特許文献4)。   In order to improve the energy conversion efficiency of solar cells, multi-junction solar cells in which a plurality of pn junction elements or pin junction elements (hereinafter referred to as cells) are connected in the vertical direction have been developed (see Patent Document 1, Patent). Literature 2, Patent Literature 3, Patent Literature 4).

図10は従来のInGaP/InGaAs/Geよりなる3接合型太陽電池の斜視図である。すなわち、図10においては、Geによるボトムセル101、InGaAsによるミドルセル102及びInGaPによるトップセル103が縦方向に接合してある。この場合、光吸収端バンドギャップ(吸収可能な最小エネルギー)が大きいセルが上側に位置し、光吸収端バンドギャップが小さいセルが下側に位置し、エネルギー変換効率を増加させている。   FIG. 10 is a perspective view of a conventional 3-junction solar cell made of InGaP / InGaAs / Ge. That is, in FIG. 10, a bottom cell 101 made of Ge, a middle cell 102 made of InGaAs, and a top cell 103 made of InGaP are joined in the vertical direction. In this case, a cell having a large light absorption end band gap (minimum energy that can be absorbed) is positioned on the upper side, and a cell having a small light absorption end band gap is positioned on the lower side, thereby increasing the energy conversion efficiency.

図10の3接合型太陽電池においては、図11に示すように、波長660nm以下の入射光子をInGaPトップセル103で吸収して光電変換するが、InGaPのバンドギャップを超えた分は不完全利用分となり、さらに、InGaAsミドルセル102の不完全利用分と共に波長890nm−2000nmの入射光子はGeボトムセル101で吸収して光電変換するが、Geのバンドギャップを超えた分は不完全利用分となる。さらにまた、波長2000nm以上の入射光子自体は捕捉されず、透過損失分となる。この結果、最終的な不完全利用分及び透過損失分は図11の単一接合型太陽電池の場合に比べて小さくなり、エネルギー変換効率は向上する。
特開2004−296658号公報 特開2004−319934号公報 特開2004−327889号公報 特開2007−324563号公報
In the three-junction solar cell of FIG. 10, incident photons having a wavelength of 660 nm or less are absorbed and photoelectrically converted by the InGaP top cell 103 as shown in FIG. 11, but the portion exceeding the band gap of InGaP is incompletely used. In addition, incident photons having a wavelength of 890 nm to 2000 nm are absorbed by the Ge bottom cell 101 and photoelectrically converted together with the incomplete utilization of the InGaAs middle cell 102, but the portion exceeding the Ge bandgap becomes the incomplete utilization. Furthermore, incident photons themselves having a wavelength of 2000 nm or more are not captured, resulting in a transmission loss. As a result, the final incomplete use and transmission loss are smaller than in the case of the single junction solar cell of FIG. 11, and the energy conversion efficiency is improved.
JP 2004-296658 A JP 2004-319934 A JP 2004-327889 A JP 2007-324563 A

しかしながら、図10の従来の3接合型太陽電池においては、積層数の増加による光の結合損失と共に、不完全利用分及び透過損失分は小さくなるもまだ不充分であり、従って、エネルギー変換効率はまだ小さいという課題があった。   However, in the conventional three-junction solar cell of FIG. 10, with the light coupling loss due to the increase in the number of stacked layers, the incomplete use amount and the transmission loss amount are small but still insufficient. There was a problem that it was still small.

また、図10の従来の3接合型太陽電池は、組成の異なる層を多数積層するので、蒸気圧が高い組成の場合、ベーキングを行って飛ばさなくてはならず、成長温度が大きく異なるために、壁面、周辺から剥がれたごみの問題があり、トップセルの成長温度がミドルセルあるいはボトムセルの成長温度より高い場合、ミドルセルあるいはボトムセルの損傷のおそれがある。この結果、製造コストが高く、かつ製造が困難でもあった。   In addition, since the conventional three-junction solar cell in FIG. 10 has a large number of layers having different compositions, if the composition has a high vapor pressure, it must be baked and blown, and the growth temperature is greatly different. If the growth temperature of the top cell is higher than the growth temperature of the middle cell or the bottom cell, the middle cell or the bottom cell may be damaged. As a result, the manufacturing cost is high and the manufacturing is difficult.

尚、図10の従来の3接合型太陽電池においては、セルの数を増加させれば、不完全利用分及び透過損失分はさらに小さくなってエネルギー変換効率を向上できるが、セルの数の増加は積層数の増加をさらに招き、製造コスト及び製造難易度の点で問題である。   In the conventional three-junction solar cell of FIG. 10, if the number of cells is increased, the amount of incomplete use and transmission loss can be further reduced and the energy conversion efficiency can be improved, but the number of cells is increased. Further increases the number of layers, and is problematic in terms of manufacturing cost and manufacturing difficulty.

上述の課題を解決するために、本発明に係る光起電力発生装置は、基板と、基板上に横方向に形成された異なるバンドギャップを有する複数のpn接合素子あるいはpin接合素子と、基板上に形成され、各バンドギャップに対応する傾斜角度の山型傾斜の凹凸面を有するGaNバッファ層とを具備し、各pn接合素子もしくはpin接合素子は各バンドギャップに対応する組成のInAlGaN層より構成され、InAlGaN層はGaNバッファ層に形成されたものである。複数のpn接合素子あるいはpin接合素子(セル)は基板の横方向に配列されるので、バンドギャップが異なる多数のセルを基板上に配列することができ、この結果、エネルギー変換効率は向上する。また、セルの数が増加しても積層数は増加しないので、製造コストは低くなると共に製造は容易となる。 In order to solve the above-described problems, a photovoltaic power generation apparatus according to the present invention includes a substrate, a plurality of pn junction elements or pin junction elements having different band gaps formed laterally on the substrate, and the substrate. It is formed on, and and a GaN buffer layer having an uneven surface of the mountain-shaped inclination of the inclined angles corresponding to the respective band gaps, the pn junction element or the pin junction element is constituted by the InAlGaN layer having a composition corresponding to the bandgap The InAlGaN layer is formed on the GaN buffer layer . Since the plurality of pn junction elements or pin junction elements (cells) are arranged in the lateral direction of the substrate, a large number of cells having different band gaps can be arranged on the substrate, and as a result, energy conversion efficiency is improved. Moreover, since the number of stacked layers does not increase even if the number of cells increases, the manufacturing cost is reduced and the manufacturing is facilitated.

また、pn接合素子もしくはpin接合素子(セル)は2つの出力端子間に直列に接続され、光起電力発生装置は太陽電池として作用する。   Further, the pn junction element or the pin junction element (cell) is connected in series between the two output terminals, and the photovoltaic power generation device functions as a solar cell.

さらに、pn接合素子もしくはpin接合素子(セル)はそれぞれ独立の出力端子を有し、光起電力発生装置は波長分解スペクトルアナライザ用受光器としても作用する。   Furthermore, each of the pn junction element or the pin junction element (cell) has an independent output terminal, and the photovoltaic power generation device also functions as a wavelength-resolved spectrum analyzer photoreceiver.

本発明によれば、バンドギャップが異なる複数のpn接合素子もしくはpin接合素子(セル)を基板上に横方向に形成しているので、積層数を増加させることなく、pn接合素子もしくはpin接合素子(セル)の数を容易に増加でき、従って、エネルギー変換効率を容易に増加できる。   According to the present invention, a plurality of pn junction elements or pin junction elements (cells) having different band gaps are formed on the substrate in the lateral direction. The number of (cells) can be easily increased, and therefore the energy conversion efficiency can be easily increased.

図1は本発明に係る光起電力発生装置の第1の実施の形態を示し、(A)は平面図、(B)は断面図を示す。尚、図1の光起電力発生装置は太陽電池として作用する。   1A and 1B show a first embodiment of a photovoltaic power generation apparatus according to the present invention, where FIG. 1A is a plan view and FIG. 1B is a cross-sectional view. In addition, the photovoltaic generator of FIG. 1 acts as a solar cell.

図1において、サファイア基板1上に複数のセル2−1、2−2、…、2−7が形成されている。各セル2−1、2−2、…、2−7は、n型GaNバッファ層21、n型InAlGaN層22、p型InAlGaN層23、ITO、ZnO等よりなる透明電極24、n型GaNバッファ層21上に形成されたn側電極25、及び透明電極24上に形成されたp側電極26によって構成されている。   1, a plurality of cells 2-1, 2-2,..., 2-7 are formed on a sapphire substrate 1. Each of the cells 2-1, 2-2,..., 2-7 includes an n-type GaN buffer layer 21, an n-type InAlGaN layer 22, a p-type InAlGaN layer 23, a transparent electrode 24 made of ITO, ZnO, etc., an n-type GaN buffer. The n-side electrode 25 is formed on the layer 21, and the p-side electrode 26 is formed on the transparent electrode 24.

セル2−1、2−2、…、2−7は2つの出力端子OUT1、OUT2間に直列接続されている。すなわち、セル2−1のp側電極26はセル2−2のn側電極25にボンディングワイヤ3−1によって接続され、また、セル2−2のp側電極26はセル2−3のn側電極25にボンディングワイヤ3−2によって接続され、以下同様にして、セル2−6のp側電極26はセル2−7のn側電極25にボンディングワイヤ3−6によって接続されている。尚、ボンディングワイヤ3−0はセル2−1のn側電極25を出力端子(パッド)OUT1に接続し、ボンディングワイヤ3−7はセル2−7のp側電極26を出力端子(パッド)OUT2に接続している。なお、以上のボンディングワイヤ3−1、3−2、…、3−6はセル化プロセス中に配線電極パターンを設けることによって接続させてもよい。 The cells 2-1, 2-2,..., 2-7 are connected in series between the two output terminals OUT 1 and OUT 2 . That is, the p-side electrode 26 of the cell 2-1 is connected to the n-side electrode 25 of the cell 2-2 by the bonding wire 3-1, and the p-side electrode 26 of the cell 2-2 is connected to the n-side of the cell 2-3. In the same manner, the p-side electrode 26 of the cell 2-6 is connected to the n-side electrode 25 of the cell 2-7 by the bonding wire 3-6. The bonding wire 3-0 connects the n-side electrode 25 of the cell 2-1 to the output terminal (pad) OUT 1 , and the bonding wire 3-7 connects the p-side electrode 26 of the cell 2-7 to the output terminal (pad). Connected to OUT 2 . The above bonding wires 3-1, 3-2,..., 3-6 may be connected by providing a wiring electrode pattern during the cell forming process.

各セル2−1、2−2、…、2−7のn型InAlGaN層22、p型InAlGaN層23の組成は異なり、従って、バンドギャップは異なる。また、n型InAlGaN層22、p型InAlGaN層23間には入射光子の捕捉のための空乏層が形成されるが、i型あるいは故意に不純物を添加していないアンドープド(un-doped)InAlGaN層を形成してもよい。   The compositions of the n-type InAlGaN layer 22 and the p-type InAlGaN layer 23 of each of the cells 2-1, 2-2,..., 2-7 are different, and therefore the band gaps are different. In addition, a depletion layer for trapping incident photons is formed between the n-type InAlGaN layer 22 and the p-type InAlGaN layer 23, but an i-type or undoped InAlGaN layer not intentionally added with impurities. May be formed.

各セル2−1、2−2、…、2−7の半導体材料としては、上述のごとく、InAlGaNを用いる。この理由は、Si、Geでは太陽光の利用は十分でなく、また、GaAlAs、InGaPもInAlGaNに比べて太陽光の利用は十分でないからである。すなわち、図2に示すように、InAlGaNの組成を異ならせると、GaAlAs、InGaPの組成を異ならせた場合に比べて吸収端バンドギャップの変化範囲が大きいことが分かる。尚、図2において、InAlGaNの主成分がInNに近付くとその吸収端バンドギャップは赤外領域の光子エネルギーに対応し、InAlGaNの主成分がInGaNのときにその吸収端バンドギャップは可視域の光子エネルギーに対応し、InAlGaNの主成分がAlNに近付くとその吸収端バンドギャップは紫外領域の光子エネルギーに対応する。   As described above, InAlGaN is used as the semiconductor material of each of the cells 2-1, 2-2,. This is because the utilization of sunlight is not sufficient in Si and Ge, and the utilization of sunlight is also insufficient in GaAlAs and InGaP compared to InAlGaN. That is, as shown in FIG. 2, it can be seen that when the composition of InAlGaN is varied, the range of change of the absorption edge band gap is larger than when the compositions of GaAlAs and InGaP are varied. In FIG. 2, when the main component of InAlGaN approaches InN, the absorption edge band gap corresponds to the photon energy in the infrared region, and when the main component of InAlGaN is InGaN, the absorption edge band gap is a photon in the visible region. When the main component of InAlGaN approaches AlN, the absorption edge band gap corresponds to the photon energy in the ultraviolet region.

次に、図1の光起電力発生装置の製造方法を図3、図4を参照して説明する。   Next, the manufacturing method of the photovoltaic generator of FIG. 1 is demonstrated with reference to FIG. 3, FIG.

始めに、図3の(A)を参照すると、サファイア基板1上にSiを添加した厚さ約2μmのn型GaNバッファ層21を有機金属化学的気相成長(MOCVD)法によって成長させる。   First, referring to FIG. 3A, an n-type GaN buffer layer 21 having a thickness of about 2 μm to which Si is added is grown on a sapphire substrate 1 by metal organic chemical vapor deposition (MOCVD).

次に、図3の(B)を参照すると、n型GaNバッファ層21上にレジスト層21aを塗布する。他方、山型傾斜を有する凹凸面を有する金型21bを用意する。この山型傾斜は横方向に20nmから数μmの間隔で変化するが、山型傾斜のピッチ及び傾斜角は後述のプリズムあるいは回折格子の出力スペクトルの拡がりに対応させて設計される。尚、金型21bの金属材料の代りに、ガラス、樹脂で型を形成することもできる。   Next, referring to FIG. 3B, a resist layer 21 a is applied on the n-type GaN buffer layer 21. On the other hand, a mold 21b having a concavo-convex surface having a chevron slope is prepared. This crest-shaped inclination changes in the lateral direction at intervals of 20 nm to several μm, but the pitch and the inclination angle of the crest-shaped inclination are designed in accordance with the spread of the output spectrum of the prism or diffraction grating described later. The mold can be formed of glass or resin instead of the metal material of the mold 21b.

図3の(B)の状態で、金型21bをレジスト層21aに低下させて金型21bの凹凸面をレジスト層21aに転写して図3の(C)の状態となる。尚、金型21bを用いたインプリント技術の代りに、金属マスクを用いてフォトリソグラフィつまり露光現像によりレジスト層21aに凹凸面を形成してもよい。   In the state of FIG. 3B, the mold 21b is lowered to the resist layer 21a, and the uneven surface of the mold 21b is transferred to the resist layer 21a, resulting in the state of FIG. Instead of the imprint technique using the mold 21b, a concavo-convex surface may be formed on the resist layer 21a by photolithography, that is, exposure development using a metal mask.

次に、図3の(C)の状態で、レジスト層21a及びn型GaNバッファ層21をCl2ガスを用いたリアクティブイオンエッチング(RIE)法によりエッチングバックし、この結果、レジスト層21aの凹凸面がn型GaNバッファ層21の表面に転写される。 Next, in the state of FIG. 3C, the resist layer 21a and the n-type GaN buffer layer 21 are etched back by a reactive ion etching (RIE) method using Cl 2 gas. As a result, the resist layer 21a The uneven surface is transferred to the surface of the n-type GaN buffer layer 21.

次に、図4の(B)を参照すると、凹凸面が形成されたn型GaNバッファ層21上にSiを添加したn型InAlGaN層22及びMgを添加したp型InAlGaN層23をMOCVD法により成長させる。この場合、n型GaNバッファ層21の山型傾斜の傾斜角θに応じてInAlGaN層22、23のバンドギャップが変化する。すなわち、図5に示すように、山型傾斜角θを変化させると、InAlGaNのIn比率が変化し、光吸収端バンドギャップを変化できる。尚、山型傾斜角θが大きい程、InAlGaN層22、23の膜厚は小さくなるので、InAlGaNを量子井戸構造のウェル層にした場合、光吸収端バンドギャップは更に大きな変化を示す。また、n型InAlGaN層22とp型InAlGaN層23との間にi型あるいは故意に不純物を添加していないアンドープドInAlGaN層を形成してもよい。   Next, referring to FIG. 4B, an n-type InAlGaN layer 22 to which Si is added and a p-type InAlGaN layer 23 to which Mg is added on an n-type GaN buffer layer 21 having an uneven surface formed by MOCVD. Grow. In this case, the band gaps of the InAlGaN layers 22 and 23 change according to the inclination angle θ of the mountain-shaped inclination of the n-type GaN buffer layer 21. That is, as shown in FIG. 5, when the mountain-shaped inclination angle θ is changed, the In ratio of InAlGaN changes and the light absorption edge band gap can be changed. In addition, since the film thickness of the InAlGaN layers 22 and 23 becomes smaller as the mountain-shaped inclination angle θ becomes larger, the light absorption edge band gap shows a larger change when InAlGaN is used as a well layer of a quantum well structure. Further, an i-type or undoped InAlGaN layer to which no impurity is intentionally added may be formed between the n-type InAlGaN layer 22 and the p-type InAlGaN layer 23.

次に、図4の(C)を参照すると、全面にITOもしくはZnO等よりなる透明電極24を形成する。   Next, referring to FIG. 4C, a transparent electrode 24 made of ITO or ZnO is formed on the entire surface.

次に、図示しないが、フォトリソグラフィ及びエッチングにより、n型GaNバッファ層21を露出させ、その後、n型InAlGaN層22の露出部にはn側電極25を形成し、透明電極24上にはp側電極26を形成する。また、透明電極24、p型InAlGaN層23及びn型InAlGaN層22をサファイア基板1の第1の方向でレーザカット法により切断し、セル2−1、2−2、…、2−7をサファイア基板1上で分離する(図1参照)。次いで、セル2−1の左端とセル2−7の右端にサファイア基板1を第1の方向と直交する第2の方向でレーザスクライブ法により切断する。最後に、セル2−1、2−2、…、2−7のn側電極25、p側電極26に、ボンディングワイヤ3−0、3−1、…、3−7を施すことにより、セルユニットが完成する。もちろん、ユニットが7個のセルで構成されている例を示すが、7個に限定しているものではない。セルのサイズやユニットの中のセルの数は出力電圧や分光ユニットの都合によって変えてもよい。また、レーザスクライブ法以外にダイアモンド・ポイントによるポイントスクライブ法などを使用してもよい。   Next, although not shown, the n-type GaN buffer layer 21 is exposed by photolithography and etching, and then an n-side electrode 25 is formed on the exposed portion of the n-type InAlGaN layer 22, and the p-type electrode is formed on the transparent electrode 24. The side electrode 26 is formed. Further, the transparent electrode 24, the p-type InAlGaN layer 23, and the n-type InAlGaN layer 22 are cut by the laser cutting method in the first direction of the sapphire substrate 1, and the cells 2-1, 2-2,. Separate on the substrate 1 (see FIG. 1). Next, the sapphire substrate 1 is cut by a laser scribing method in a second direction orthogonal to the first direction at the left end of the cell 2-1 and the right end of the cell 2-7. Finally, the bonding wires 3-0, 3-1,..., 3-7 are applied to the n-side electrode 25 and the p-side electrode 26 of the cells 2-1, 2-2,. The unit is completed. Of course, an example in which a unit is composed of seven cells is shown, but the unit is not limited to seven. The cell size and the number of cells in the unit may be changed according to the output voltage and the convenience of the spectroscopic unit. In addition to the laser scribing method, a point scribing method using diamond points may be used.

図1の光起電力発生装置を太陽電池として用いる場合には、分光機能を有する光学ユニットが、図6、図7のごとく、付加される。図6に示すごとく、光学ユニットは太陽光を集光する凸レンズ4a及び集光された光を分光する柱状三角プリズム5bを有する。他方、図7に示すごとく、光学ユニットは太陽光を集光する凸レンズ4b及び集光された光を分光する反射型回折格子5bを有する。これにより、広範囲の太陽光を分光し、分光された光はそのエネルギーに応じたバンドギャップを有するセル2−1、2−2、…、2−7に入射されることになり、この結果、エネルギー変換効率を向上できる。尚、太陽光の代りに人工光源を用いてもよい。また、図7の反射型回折格子5bは透過型回折格子でもよい。   When the photovoltaic power generation apparatus of FIG. 1 is used as a solar cell, an optical unit having a spectroscopic function is added as shown in FIGS. As shown in FIG. 6, the optical unit includes a convex lens 4a that collects sunlight and a columnar triangular prism 5b that separates the collected light. On the other hand, as shown in FIG. 7, the optical unit has a convex lens 4b that collects sunlight and a reflective diffraction grating 5b that separates the collected light. Thereby, a wide range of sunlight is dispersed, and the dispersed light is incident on the cells 2-1, 2-2,..., 2-7 having a band gap corresponding to the energy, and as a result, Energy conversion efficiency can be improved. An artificial light source may be used instead of sunlight. Further, the reflection type diffraction grating 5b in FIG. 7 may be a transmission type diffraction grating.

図1の光起電力発生装置においては、7個のセル2−1、2−2、…、2−7を直列接続しているが、本発明は7個のセルに限定されることはない。   In the photovoltaic power generation apparatus of FIG. 1, seven cells 2-1, 2-2,..., 2-7 are connected in series, but the present invention is not limited to seven cells. .

図8は本発明に係る光起電力発生装置の第2の実施の形態を示し、(A)は平面図、(B)は断面図を示す。尚、図8の光起電力発生装置は波長分解スペクトルアナライザ用受光器として作用する。   8A and 8B show a second embodiment of the photovoltaic power generation apparatus according to the present invention, where FIG. 8A is a plan view and FIG. 8B is a cross-sectional view. Note that the photovoltaic power generation apparatus of FIG. 8 acts as a wavelength-resolved spectrum analyzer light receiver.

図8においては、各セル2−1、2−2、…、2−7のn側電極25、p側電極26は独立に出力端子OUT11,OUT72;OUT21,OUT22;…;OUT71,OUT72として作用する。この結果、各バンドギャップに対応する光量を検出することができるので、波長分解スペクトルアナライザ受光器として作用することができる。尚、図8においても、必要に応じて図6、図7の光学ユニットを付加することができる。 In FIG. 8, the n-side electrode 25 and the p-side electrode 26 of each of the cells 2-1, 2-2,..., 2-7 are independently output terminals OUT 11 , OUT 72 ; OUT 21 , OUT 22 ; Acts as 71 and OUT 72 . As a result, since the light quantity corresponding to each band gap can be detected, it can act as a wavelength-resolved spectrum analyzer light receiver. In FIG. 8, the optical units shown in FIGS. 6 and 7 can be added as necessary.

本発明に係る光起電力発生装置の第1の実施の形態を示し、(A)は平面図、(B)は断面図を示す。1 shows a first embodiment of a photovoltaic power generation apparatus according to the present invention, where (A) is a plan view and (B) is a cross-sectional view. 太陽光スペクトルに対する半導体の光吸収端バンドギャップの変化範囲を示すグラフである。It is a graph which shows the change range of the light absorption edge band gap of the semiconductor with respect to a sunlight spectrum. 図1の光起電力発生装置製造方法を説明する断面図である。It is sectional drawing explaining the photovoltaic generator production | generation apparatus of FIG. 図1の光起電力発生装置製造方法を説明する断面図である。It is sectional drawing explaining the photovoltaic generator production | generation apparatus of FIG. 図1における山型傾斜角とInAlGaNの光吸収端バンドギャップの関係を示すグラフである。It is a graph which shows the relationship between the crest-shaped inclination angle in FIG. 1, and the light absorption edge band gap of InAlGaN. 図1の光起電力発生装置に光学ユニットを付加した第1の例を示す図である。It is a figure which shows the 1st example which added the optical unit to the photovoltaic generator of FIG. 図1の光起電力発生装置に光学ユニットを付加した第2の例を示す図である。It is a figure which shows the 2nd example which added the optical unit to the photovoltaic generator of FIG. 本発明に係る光起電力発生装置の第2の実施の形態を示し、(A)は平面図、(B)は断面図を示す。2nd Embodiment of the photovoltaic generator which concerns on this invention is shown, (A) is a top view, (B) shows sectional drawing. 従来の単一接合型太陽電池のエネルギー変換効率を説明する太陽光エネルギー密度を示すグラフである。It is a graph which shows the solar energy density explaining the energy conversion efficiency of the conventional single junction type solar cell. 従来の3接合型太陽電池を示す斜視図である。It is a perspective view which shows the conventional 3 junction type solar cell. 従来の3接合型太陽電池のエネルギー変換効率を説明する太陽光エネルギー密度を示すグラフである。It is a graph which shows the solar energy density explaining the energy conversion efficiency of the conventional 3 junction type solar cell.

符号の説明Explanation of symbols

1…サファイア基板
2−1、2−2、…、2−7…セル
3−0、3−1、…、3−7…ボンディングワイヤ
4a、4b…凸レンズ
5a…柱状三角プリズム
5b…反射型回折格子
21…n型GaNバッファ層
21a…レジスト層
21b…金型
22…n型InAlGaN層
23…p型InAlGaN層
24…透明電極
25…n側電極
26…p側電極
101…ボトムセル
102…ミドルセル
103…トップセル
DESCRIPTION OF SYMBOLS 1 ... Sapphire substrate 2-1, 2-2, ..., 2-7 ... Cell 3-0, 3-1, ..., 3-7 ... Bonding wire 4a, 4b ... Convex lens 5a ... Columnar triangular prism 5b ... Reflective diffraction Lattice 21 ... n-type GaN buffer layer 21a ... resist layer 21b ... mold 22 ... n-type InAlGaN layer 23 ... p-type InAlGaN layer 24 ... transparent electrode 25 ... n-side electrode 26 ... p-side electrode 101 ... bottom cell 102 ... middle cell 103 ... Top cell

Claims (9)

基板と、
該基板上に横方向に形成された異なるバンドギャップを有する複数のpn接合素子あるいはpin接合素子と
前記基板上に形成され、前記各バンドギャップに対応する傾斜角度の山型傾斜の凹凸面を有するGaNバッファ層と
を具備し、
前記各pn接合素子もしくはpin接合素子は前記各バンドギャップに対応する組成のInAlGaN層より構成され、
該InAlGaN層は前記GaNバッファ層に形成された光起電力発生装置。
A substrate,
A plurality of pn junction elements or pin junction elements having different band gaps formed laterally on the substrate ;
A GaN buffer layer formed on the substrate, and having a concavo-convex surface with an inclined angle corresponding to each band gap ,
Each pn junction element or pin junction element is composed of an InAlGaN layer having a composition corresponding to each band gap,
The InAlGaN layer is a photovoltaic generator formed on the GaN buffer layer .
前記pn接合素子あるいはpin接合素子のバンドギャップは前記基板の横方向に変化した請求項1に記載の光起電力発生装置。   The photovoltaic generator according to claim 1, wherein a band gap of the pn junction element or the pin junction element changes in a lateral direction of the substrate. 前記pn接合素子もしくはpin接合素子は2つの出力端子間に直列に接続された請求項1に記載の光起電力発生装置。   The photovoltaic generator according to claim 1, wherein the pn junction element or the pin junction element is connected in series between two output terminals. 前記pn接合素子もしくはpin接合素子はそれぞれ独立の出力端子を有する請求項1に記載の光起電力発生装置。   The photovoltaic generator according to claim 1, wherein each of the pn junction element or the pin junction element has an independent output terminal. さらに、分光機能を有する光学ユニットを具備し、
該光学ユニットの出力スペクトルに応じて前記pn接合素子もしくはpin接合素子を配列した請求項1に記載の光起電力発生装置。
Furthermore, an optical unit having a spectroscopic function is provided,
The photovoltaic generator according to claim 1, wherein the pn junction elements or pin junction elements are arranged in accordance with an output spectrum of the optical unit.
前記光学ユニットは、
集光レンズと、
該集光レンズによって集光された光を分光して前記出力スペクトルを発生する光分散素子と
を具備する請求項に記載の光起電力発生装置。
The optical unit is
A condenser lens;
The photovoltaic generator according to claim 5 , further comprising: a light dispersion element that splits light collected by the condenser lens to generate the output spectrum.
前記集光レンズは凸レンズを含有する請求項に記載の光起電力発生装置。 The photovoltaic generator according to claim 6 , wherein the condenser lens includes a convex lens. 前記光分散素子はプリズムを含有する請求項に記載の光起電力発生装置。 The photovoltaic generator according to claim 6 , wherein the light dispersing element includes a prism. 前記光分散素子は回折格子を含有する請求項に記載の光起電力発生装置。 The photovoltaic generator according to claim 6 , wherein the light dispersion element includes a diffraction grating.
JP2008266124A 2008-10-15 2008-10-15 Photovoltaic generator Expired - Fee Related JP5291427B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008266124A JP5291427B2 (en) 2008-10-15 2008-10-15 Photovoltaic generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008266124A JP5291427B2 (en) 2008-10-15 2008-10-15 Photovoltaic generator

Publications (2)

Publication Number Publication Date
JP2010098033A JP2010098033A (en) 2010-04-30
JP5291427B2 true JP5291427B2 (en) 2013-09-18

Family

ID=42259529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008266124A Expired - Fee Related JP5291427B2 (en) 2008-10-15 2008-10-15 Photovoltaic generator

Country Status (1)

Country Link
JP (1) JP5291427B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011249506A (en) * 2010-05-26 2011-12-08 Kobe Steel Ltd Sunlight-separation photovoltaic power generator
JPWO2012073941A1 (en) * 2010-11-29 2014-05-19 シャープ株式会社 Photoelectric conversion element
CN102544171A (en) * 2010-12-21 2012-07-04 财团法人工业技术研究院 Multi-band light collection and energy conversion module
WO2012090636A1 (en) * 2010-12-28 2012-07-05 シャープ株式会社 Photoelectric conversion element and method for producing photoelectric conversion element
JP5090543B2 (en) * 2011-02-03 2012-12-05 シャープ株式会社 Photoelectric conversion element and method for producing photoelectric conversion element
JP5626796B2 (en) * 2011-03-25 2014-11-19 国立大学法人東京農工大学 Series connection type solar cell and solar cell system
EP2631954A1 (en) * 2012-02-21 2013-08-28 Justus-Liebig-Universität Gießen Copper oxide (Cu2O, Cu4O3 or CuO) heterojunctions, in particular for solar cells and tandem cells

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5148985A (en) * 1974-10-24 1976-04-27 Sharp Kk
US4021267A (en) * 1975-09-08 1977-05-03 United Technologies Corporation High efficiency converter of solar energy to electricity
JPS5680177A (en) * 1979-12-04 1981-07-01 Nec Corp Power generator by solar ray
JPS5877262A (en) * 1981-10-20 1983-05-10 ビクト−ル・フオスカノウイツチ・アフイアン Solar battery
JP3580169B2 (en) * 1999-03-24 2004-10-20 日亜化学工業株式会社 Nitride semiconductor device
JP2004343022A (en) * 2003-05-15 2004-12-02 Toshiaki Mihara Solar power generation method and device
KR20080013979A (en) * 2005-05-03 2008-02-13 유니버시티 오브 델라웨어 Ultra and very-high efficiency solar cells

Also Published As

Publication number Publication date
JP2010098033A (en) 2010-04-30

Similar Documents

Publication Publication Date Title
JP5291427B2 (en) Photovoltaic generator
US8624103B2 (en) Nitride-based multi-junction solar cell modules and methods for making the same
US8835980B2 (en) Semiconductor wafer, photoelectric conversion device, method of producing semiconductor wafer, and method of producing photoelectric conversion device
JP5502871B2 (en) Photocell
US10811551B2 (en) Tandem solar cell including metal disk array
KR20100084843A (en) Multijunction solar cell
JP2010118667A (en) Four junction inverted metamorphic multijunction solar cell with two metamorphic layers
JPH05114747A (en) Improved monolithic tandem-type solar cell
US9324911B2 (en) Methods of fabricating dilute nitride semiconductor materials for use in photoactive devices and related structures
Sugiyama et al. Quantum wire‐on‐well (WoW) cell with long carrier lifetime for efficient carrier transport
CN101345268B (en) Semiconductor photovoltaic element with joining structure
RU2539102C1 (en) Multijunction solar cell
KR20120131866A (en) Photoelectric element and manufacturing method of the same
KR101136882B1 (en) Photovoltaic device of based on nitride semiconductor and method of fabricating the same
CN111463303B (en) High-voltage series structure multi-junction solar cell and manufacturing method thereof
US20110278537A1 (en) Semiconductor epitaxial structures and semiconductor optoelectronic devices comprising the same
US9048376B2 (en) Solar cell devices and apparatus comprising the same
KR20180067620A (en) Solar cell, manufacturing method thereof, and solar cell module comprising the same
JPH08204215A (en) Series connected solar cell
JP2662309B2 (en) Compound semiconductor solar cells
US20120318337A1 (en) Solar Cell
TWI395340B (en) Multijunction solar cell
TW201349545A (en) Multi-junction photovoltaic cell and a method of manufacturing the same
KR101734567B1 (en) Solar Cell and Method of Fabricating the same
WO2010143342A1 (en) Nitride semiconductor solar cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121015

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130521

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130607

R150 Certificate of patent or registration of utility model

Ref document number: 5291427

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees