JP5290087B2 - Electron beam emitter - Google Patents

Electron beam emitter Download PDF

Info

Publication number
JP5290087B2
JP5290087B2 JP2009190580A JP2009190580A JP5290087B2 JP 5290087 B2 JP5290087 B2 JP 5290087B2 JP 2009190580 A JP2009190580 A JP 2009190580A JP 2009190580 A JP2009190580 A JP 2009190580A JP 5290087 B2 JP5290087 B2 JP 5290087B2
Authority
JP
Japan
Prior art keywords
electron
electron emission
anode
electrode
electron beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009190580A
Other languages
Japanese (ja)
Other versions
JP2011044277A (en
Inventor
方紀 羽場
義久 石黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Life Technology Research Institute Inc
Original Assignee
Life Technology Research Institute Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Life Technology Research Institute Inc filed Critical Life Technology Research Institute Inc
Priority to JP2009190580A priority Critical patent/JP5290087B2/en
Publication of JP2011044277A publication Critical patent/JP2011044277A/en
Application granted granted Critical
Publication of JP5290087B2 publication Critical patent/JP5290087B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、電子放出体(エミッタ)から発生した電子線を集束させ、X線の発生を内部に遮蔽し、そのまま外部に放射する装置に関する。 The present invention relates to an apparatus that focuses an electron beam generated from an electron emitter (emitter), shields the generation of X-rays inside, and emits the same as it is.

電子線をタングステンなどの金属に衝突させることでX線が発生する。また電子線は粒子線としての性質を有し、X線は光としての性質を有する。物性が異なるため両者の用途も異なり、X線は非破壊検査装置とかX線CT装置などに利用され、一方電子線は物質中の分子に作用してイオン種やラジカル種などの反応活性種を生成するため、ラジカル反応やグラフト重合反応、レジスト膜の改質の他に、殺菌などにも利用されている。 X-rays are generated when an electron beam collides with a metal such as tungsten. The electron beam has a property as a particle beam, and the X-ray has a property as light. The X-rays are used in non-destructive inspection equipment or X-ray CT equipment, etc., while the electron beam acts on molecules in the substance to select reactive species such as ionic species and radical species. Therefore, in addition to radical reaction, graft polymerization reaction, and resist film modification, it is also used for sterilization.

上記の電子線放射装置としては特許文献1に開示されるものが知られている。この電子線放射装置はカソード電極(陰極)上に電子放出層を形成し、このカソード電極と対向するアノード電極(陽極)との間に、前記電子放出層から電子を引き出すためのゲート電極を配置し、ゲート電極とカソード電極との間に印加する電圧と、アノード電極とカソード電極との間に印加する電圧とを個別に管理している。 As the above-mentioned electron beam emission device, the one disclosed in Patent Document 1 is known. In this electron beam emission device, an electron emission layer is formed on a cathode electrode (cathode), and a gate electrode for extracting electrons from the electron emission layer is disposed between the cathode electrode and an anode electrode (anode) opposite to the cathode electrode. In addition, the voltage applied between the gate electrode and the cathode electrode and the voltage applied between the anode electrode and the cathode electrode are individually managed.

また、電子放出体として、特許文献2に示されるカーボンナノチューブや特許文献3に示されるグラフェンシートが多層に重なった尖頭形状の炭素膜が知られている。 As an electron emitter, a pointed carbon film in which carbon nanotubes shown in Patent Document 2 and graphene sheets shown in Patent Document 3 are stacked in multiple layers is known.

特開2002−093307号公報JP 2002-093307 A 特開2006−290691号公報JP 2006-290691 A 特開2008−150253号公報JP 2008-150253 A

図6は従来の電子放出体(エミッタ)と陽極との関係を示す図であり、ステンレスなどからなる陽極には窓部が形成され、この窓部は軽元素であるベリリウム箔で大気・真空間を封止されている。最近の低電圧・超低電圧電子管では電子放出体と陽極との間には100kV以下の加速電圧が印加される。そして、電圧が印加されると電子放出体から陽極に向けて電子が放出されるが、電子はある程度の広がりをもって放出されるため、その一部が陽極に当たる。陽極はステンレスからなるため電子が衝突するとX線を発生してしまう。 FIG. 6 is a diagram showing a relationship between a conventional electron emitter (emitter) and an anode. A window portion is formed on an anode made of stainless steel or the like, and this window portion is formed of beryllium foil, which is a light element, between the atmosphere and vacuum. Is sealed. In recent low-voltage / ultra-low-voltage electron tubes, an acceleration voltage of 100 kV or less is applied between the electron emitter and the anode. When a voltage is applied, electrons are emitted from the electron emitter toward the anode. However, since electrons are emitted with a certain extent, some of them hit the anode. Since the anode is made of stainless steel, X-rays are generated when electrons collide.

電子線がX線に変換されると、外部に放射される事による煩雑さ、食品の殺菌などにはX線は好ましくない。そこで、特許文献1ではゲート電極を設け、ゲート電極で透過する電子線を絞り、陽極の窓部のみに電子線が照射されるようにしている。 When an electron beam is converted into an X-ray, the X-ray is not preferable for the troublesomeness caused by radiating to the outside, the sterilization of food, and the like. Therefore, in Patent Document 1, a gate electrode is provided, an electron beam transmitted through the gate electrode is narrowed, and the electron beam is irradiated only to the window portion of the anode.

しかしながら、特許文献1にあってもゲート電極と電子放出体との間に印加する電圧は40kV程度で、ゲート電極と電子放出体との間隔を4mmとすると、10kV/mmの電界がエミッタにかかることになる。一方、通常のエミッタの電界特性は1〜1.5kV/mmが閾値で、これ以上になると急激に電流が流れることになり、10kV/mmの電界では数10〜数100mAの電流が流れてしまう。このような大電流が流れると窓即ち陽極ロスが多大となり窓の冷却能力を超えてしまい最後には窓が破損する。 However, even in Patent Document 1, the voltage applied between the gate electrode and the electron emitter is about 40 kV, and if the distance between the gate electrode and the electron emitter is 4 mm, an electric field of 10 kV / mm is applied to the emitter. It will be. On the other hand, the electric field characteristic of a normal emitter has a threshold value of 1 to 1.5 kV / mm. When the threshold is exceeded, a current flows rapidly, and a current of several tens to several hundreds of mA flows in an electric field of 10 kV / mm. . When such a large current flows, the window, that is, the anode loss increases, exceeding the cooling capacity of the window, and finally the window is damaged.

また、特許文献2、3に開示される炭素膜を電子放出面に形成しても、電子放出面に作用する電界強度を下げることにはならず、好ましい電流値(0.1〜1mA/cm)に調整することができない。 Further, even if the carbon films disclosed in Patent Documents 2 and 3 are formed on the electron emission surface, the electric field strength acting on the electron emission surface is not lowered, but a preferable current value (0.1 to 1 mA / cm 2 ) cannot be adjusted.

上記課題を解決するため本発明に係る電子線放射装置は、直流電源の陰極側に接続される給電体(カソード)に給電部が形成され、直流電源の陽極側に接続される金属板(アノード)には電子線が透過する薄い金属箔で塞がれた窓部が形成され、前記給電部には電子放出チップ(エミッタ)が着脱自在に取り付けられ、この電子放出チップは導電性材料からなるチップ本体を備え、このチップ本体には前記給電体に対する結合部が設けられ、またチップ本体の先部は環状をなすガード電極とされ、このガード電極で囲まれる内側部でガード電極よりも引っ込んだ位置に炭素膜を形成した電子放出面が設けられた構成とした。 In order to solve the above-described problems, an electron beam emission apparatus according to the present invention includes a metal plate (anode) in which a power supply unit (cathode) is formed on a power supply body (cathode) connected to the cathode side of a DC power supply and connected to the anode side of the DC power supply. ) Is formed with a window portion closed by a thin metal foil through which an electron beam is transmitted, and an electron emission tip (emitter) is detachably attached to the power supply portion, and the electron emission tip is made of a conductive material. A chip body is provided, and the chip body is provided with a coupling portion to the power supply body, and the tip portion of the chip body is an annular guard electrode, and is retracted from the guard electrode at an inner portion surrounded by the guard electrode. The structure is such that an electron emission surface on which a carbon film is formed is provided at the position.

前記電子放出チップと陽極となる金属板との間で且つ電子放出チップに近い位置にグリッド電極を配置し、前記電子放出チップとグリッド電極との間に印加する電圧を、前記電子放出チップと陽極との間に印加する電圧に比較して小さくすることで、更に実効電界を下げることができる。 A grid electrode is disposed between the electron emission tip and a metal plate serving as an anode and at a position close to the electron emission tip, and a voltage applied between the electron emission tip and the grid electrode is set between the electron emission tip and the anode. The effective electric field can be further reduced by making it smaller than the voltage applied between the two.

本発明に係る電子線放射装置によれば、内部に組み込む電子放出チップの構造として、給電体(カソード)に対する結合部を設けたため、交換が容易であり、多数の電子放出チップを給電体(カソード)に取り付ける場合に有利である。   According to the electron beam emission apparatus of the present invention, since the coupling portion to the power supply body (cathode) is provided as the structure of the electron emission chip incorporated inside, the replacement is easy, and a large number of electron emission chips are connected to the power supply body (cathode). ) Is advantageous when attached to.

電子放出チップと陽極との間の電界強度は、電子放出チップの先端と陽極との間隔で決定され、本発明にあっては、電子放出チップ先端はガード電極の先端となっており、電子放出面はこのガード電極の先端よりも引っ込んでいるので、電子放出面での電界強度は弱くなり大電流が流れるのを防止できる。   The electric field strength between the electron emission tip and the anode is determined by the distance between the tip of the electron emission tip and the anode. In the present invention, the tip of the electron emission tip is the tip of the guard electrode. Since the surface is retracted from the tip of the guard electrode, the electric field intensity at the electron emission surface is weakened and a large current can be prevented from flowing.

本発明に係る電子線放出装置の構成図Configuration diagram of an electron beam emission apparatus according to the present invention 陰極側に接続される給電体の正面図Front view of the feeder connected to the cathode side 電子放出チップを給電体に結合した状態の断面図Sectional view of the electron emission tip coupled to the feeder 電子放出チップの先部の拡大図Enlarged view of the tip of the electron emission tip (a)乃至(c)は電子放出チップの別実施例を示す図(A) thru | or (c) is a figure which shows another Example of an electron emission chip | tip. 従来の課題を説明した図A diagram explaining a conventional problem

以下に本発明の好適な実施例を添付図面に基づいて説明する。図1に示すように、電子線放射装置は真空容器内に直流電源の陰極側に接続される給電体(カソード)1と、直流電源の陽極側に接続される金属板(アノード)2と、これら給電体1と金属板2との間に配置されるグリッド電極3を備える。 Preferred embodiments of the present invention will be described below with reference to the accompanying drawings. As shown in FIG. 1, the electron beam emission apparatus includes a power supply body (cathode) 1 connected to the cathode side of the DC power source in the vacuum vessel, a metal plate (anode) 2 connected to the anode side of the DC power source, A grid electrode 3 is provided between the power feeder 1 and the metal plate 2.

前記給電体1には給電部としての複数の雌ネジ穴4が形成され、この雌ネジ穴4に電子放出チップ(エミッタ)5の雄ネジ部6が螺合している。 A plurality of female screw holes 4 as power supply parts are formed in the power supply body 1, and male screw parts 6 of electron emission chips (emitters) 5 are screwed into the female screw holes 4.

電子放出チップ5はステンレスなどの導電性材料からなるチップ本体7を備え、このチップ本体7の先部は環状をなすガード電極8とされ、このガード電極8で囲まれる内側部には基板9が埋め込まれ、この基板9の表面は凹面10とされている。 The electron emission chip 5 includes a chip body 7 made of a conductive material such as stainless steel. The tip of the chip body 7 is a guard electrode 8 having an annular shape, and a substrate 9 is formed on the inner side surrounded by the guard electrode 8. The surface of the substrate 9 is embedded as a concave surface 10.

この凹面10は一定の曲率半径R0を有し、平行な光線が入射したと仮定すると収束する焦点Fが存在する。焦点Fは例えば金属板(アノード)2の位置になるように設定する。 This concave surface 10 has a constant radius of curvature R0, and there is a focal point F that converges assuming that parallel rays are incident. For example, the focal point F is set so as to be at the position of the metal plate (anode) 2.

前記凹面10の表面には電子放出用の炭素膜11が数μm〜数十μmの厚さで形成されている。この炭素膜11は多数の突起が面状に展開して構成され、更に前記突起は凹面10の表面に形成される隆起部とこの隆起部から伸びる針状部からなる。 On the surface of the concave surface 10, a carbon film 11 for electron emission is formed with a thickness of several μm to several tens of μm. The carbon film 11 is constituted by a number of protrusions developed in a planar shape, and the protrusions further include a raised portion formed on the surface of the concave surface 10 and a needle-like portion extending from the raised portion.

また前記ガード電極8は前記炭素膜11よりも突出している。即ち電子放出面である炭素膜11はガード電極8の先端よりも引っ込んだ位置にある。 The guard electrode 8 protrudes from the carbon film 11. That is, the carbon film 11 which is an electron emission surface is in a position retracted from the tip of the guard electrode 8.

ここで、ガード電極8の外周側の曲率半径R1は炭素膜2側の曲率半径R2以上に設定されている。このようにガード電極3の形状をR1≧R2とすることで、炭素膜2面での局部的な電界集中を抑制し、熱劣化に伴う電流劣化や放電現象が起こらないようにすることができる。また前記凹面10の曲率半径R0についてはR0≧R1としている。R0≧R1とすることで、電子放出チップへの電界集中を制限し、また各チップ間の電界印加を平均化している。このことにより、実際の印加電圧において、電子放出体へは必要な電流に制御できる効果がある。 Here, the curvature radius R1 on the outer peripheral side of the guard electrode 8 is set to be equal to or larger than the curvature radius R2 on the carbon film 2 side. Thus, by setting the shape of the guard electrode 3 to R1 ≧ R2, it is possible to suppress local electric field concentration on the surface of the carbon film 2 and to prevent current deterioration and discharge phenomenon due to thermal deterioration from occurring. . Further, the radius of curvature R0 of the concave surface 10 satisfies R0 ≧ R1. By setting R0 ≧ R1, electric field concentration on the electron-emitting chip is limited, and electric field application between the chips is averaged. Thus, there is an effect that the electron emitter can be controlled to a necessary current at an actual applied voltage.

前記金属板(アノード)2は例えばステンレスからなり、各電子放出チップ5に対応する箇所に窓部12が形成され、これら窓部12をベリリウム箔13で閉塞している。 The metal plate (anode) 2 is made of, for example, stainless steel, and window portions 12 are formed at locations corresponding to the respective electron emission chips 5, and these window portions 12 are closed with a beryllium foil 13.

以上において、給電体(カソード)1と金属板(アノード)2との間に50kVの直流電圧を印加し、給電体(カソード)1とグリッド電極3との間に1kVの直流電圧を印加する。   In the above, a DC voltage of 50 kV is applied between the power supply body (cathode) 1 and the metal plate (anode) 2, and a DC voltage of 1 kV is applied between the power supply body (cathode) 1 and the grid electrode 3.

すると、給電体(カソード)1とグリッド電極3との間に印加した電圧によって電子が引き出され、グリッド電極3で絞られた電子は給電体(カソード)1と金属板(アノード)2との間に印加した電圧によって加速せしめられて窓部12のベリリウム箔13を透過して外部に放出される。   Then, electrons are drawn out by the voltage applied between the power feeder (cathode) 1 and the grid electrode 3, and the electrons constricted by the grid electrode 3 are between the power feeder (cathode) 1 and the metal plate (anode) 2. Is accelerated by the voltage applied to the light and transmitted through the beryllium foil 13 of the window portion 12 and released to the outside.

ここで、グリッド電極3を設けない2極構造とすることも考えられる。この場合、図4に示すように、金属板(アノード)2とガード電極8との距離をd、印加電圧をVとすると、電界の強さEは、E=V/dとなる。そして、ガード電極8の先端部から電子放出面である凹面10(炭素膜11)を引っ込めることで、凹面10(炭素膜11)にかかる電界が小さくなる。電子線の場合には高電圧を必要としないので、凹面10(炭素膜11)をガード電極8の先端から後退(h)させて0.1〜1mA程度の電流が流れるようにしている。後退量は0.5〜2.0mmが好ましい。   Here, it is also possible to adopt a bipolar structure in which the grid electrode 3 is not provided. In this case, as shown in FIG. 4, when the distance between the metal plate (anode) 2 and the guard electrode 8 is d and the applied voltage is V, the electric field strength E is E = V / d. By retracting the concave surface 10 (carbon film 11), which is an electron emission surface, from the tip of the guard electrode 8, the electric field applied to the concave surface 10 (carbon film 11) is reduced. Since an electron beam does not require a high voltage, the concave surface 10 (carbon film 11) is retracted (h) from the tip of the guard electrode 8 so that a current of about 0.1 to 1 mA flows. The retraction amount is preferably 0.5 to 2.0 mm.

図に示した3極構造の場合は給電体(カソード)1とグリッド電極3との間に印加電圧を1kV程度に落とすことができるので、大電流が流れるおそれはないが、この場合でも凹面10(炭素膜11)をガード電極8の先端から後退させることで、安定して電子を発生せしめることができる。   In the case of the three-pole structure shown in the figure, the applied voltage can be reduced to about 1 kV between the power feeder (cathode) 1 and the grid electrode 3, so there is no possibility that a large current flows. By retracting the (carbon film 11) from the tip of the guard electrode 8, electrons can be stably generated.

図5(a)〜(c)は電子放出チップ5の別実施例を示し、(a)に示す電子放出チップ5は、給電体1の雌ネジ穴4に螺合する雄ネジ部14をチップの背面側に設けている。   5 (a) to 5 (c) show another embodiment of the electron emission tip 5. The electron emission tip 5 shown in FIG. 5 (a) has a male screw portion 14 that is screwed into the female screw hole 4 of the power supply body 1. It is provided on the back side.

図5(b)に示す電子放出チップ5は、雌ネジ部15を形成し、給電体1にはこの雌ネジ部15が螺合する雄ネジ部を設けるようにしている。 The electron-emitting chip 5 shown in FIG. 5B is formed with a female screw portion 15, and the power feeding body 1 is provided with a male screw portion into which the female screw portion 15 is screwed.

図5(c)に示す電子放出チップ5は、長尺状をなし、全体の周縁にガード電極8が設けられている。この実施例にあっては、給電体1にスライドさせて係合するための凸部16が長さ方向に沿って形成され、給電体1にはこの凸部16が係合する溝(蟻溝)を設ける。 The electron emission chip 5 shown in FIG. 5C has a long shape, and a guard electrode 8 is provided on the entire periphery. In this embodiment, a convex portion 16 is formed along the length direction to be slid and engaged with the power supply body 1, and the power supply body 1 has a groove (a dovetail groove) with which the convex portion 16 is engaged. ).

本発明に係る電子放出装置は化学反応の促進や、殺菌などに応用することができる。   The electron-emitting device according to the present invention can be applied to the promotion of chemical reaction and sterilization.

1…給電体(カソード)、2…金属板(アノード)、3…グリッド電極、4…雌ネジ穴、5…電子放出チップ(エミッタ)、6…雄ネジ部、7…チップ本体、8…ガード電極、9…基板、10…凹面、11…炭素膜、12…窓部、13…ベリリウム箔、14…雄ネジ部、15…雌ネジ部、16…凸部、R0…凹面の曲率半径、R1…ガード電極の外周側の曲率半径、R2…ガード電極の内周側の曲率半径、。 DESCRIPTION OF SYMBOLS 1 ... Power feeding body (cathode), 2 ... Metal plate (anode), 3 ... Grid electrode, 4 ... Female screw hole, 5 ... Electron emission chip | tip (emitter), 6 ... Male screw part, 7 ... Chip body, 8 ... Guard Electrode, 9 ... substrate, 10 ... concave surface, 11 ... carbon film, 12 ... window portion, 13 ... beryllium foil, 14 ... male screw portion, 15 ... female screw portion, 16 ... convex portion, R0 ... radius of curvature of concave surface, R1 ... curvature radius on the outer peripheral side of the guard electrode, R2 ... radius of curvature on the inner peripheral side of the guard electrode.

Claims (2)

直流電源の陰極側に接続される給電体に給電部が形成され、直流電源の陽極側に接続される金属板には電子線が透過する薄い金属箔で塞がれた窓部が形成され、前記給電部には電子放出チップが着脱自在に取り付けられ、この電子放出チップは導電性材料からなるチップ本体を備え、このチップ本体には前記給電体に対する結合部が設けられ、またチップ本体の先部は環状をなすガード電極とされ、このガード電極で囲まれる内側部でガード電極よりも引っ込んだ位置に炭素膜を形成した電子放出面が設けられていることを特徴とする電子線放射装置。 A power feeding part is formed on the power feeding body connected to the cathode side of the DC power source, and a metal plate connected to the anode side of the DC power source is formed with a window part closed with a thin metal foil through which an electron beam passes, An electron-emitting chip is detachably attached to the power supply section, and the electron-emitting chip includes a chip body made of a conductive material. The chip body is provided with a coupling section for the power supply body. The electron beam emitting device is characterized in that the part is an annular guard electrode, and an electron emission surface in which a carbon film is formed is provided at a position retracted from the guard electrode in an inner part surrounded by the guard electrode. 請求項1に記載の電子線放射装置において、前記電子放出チップと陽極となる金属板との間で且つ電子放出チップに近い位置にグリッド電極を配置し、前記電子放出チップとグリッド電極との間に印加する電圧を、前記電子放出チップと陽極との間に印加する電圧に比較して小さくしたことを特徴とする電子線放射装置。




2. The electron beam emitting device according to claim 1, wherein a grid electrode is disposed between the electron emission tip and a metal plate serving as an anode and close to the electron emission tip, and between the electron emission tip and the grid electrode. The electron beam emitting device is characterized in that a voltage applied to the electrode is made smaller than a voltage applied between the electron emission tip and the anode.




JP2009190580A 2009-08-20 2009-08-20 Electron beam emitter Expired - Fee Related JP5290087B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009190580A JP5290087B2 (en) 2009-08-20 2009-08-20 Electron beam emitter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009190580A JP5290087B2 (en) 2009-08-20 2009-08-20 Electron beam emitter

Publications (2)

Publication Number Publication Date
JP2011044277A JP2011044277A (en) 2011-03-03
JP5290087B2 true JP5290087B2 (en) 2013-09-18

Family

ID=43831573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009190580A Expired - Fee Related JP5290087B2 (en) 2009-08-20 2009-08-20 Electron beam emitter

Country Status (1)

Country Link
JP (1) JP5290087B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3494583B2 (en) * 1999-01-13 2004-02-09 松下電器産業株式会社 Method for manufacturing electron-emitting device
JP3554238B2 (en) * 1999-12-20 2004-08-18 シャープ株式会社 Cold cathode
EP1313122A4 (en) * 2000-07-19 2007-10-31 Matsushita Electric Ind Co Ltd Electron emission element and production method therefor, and image display unit using this
JP3797145B2 (en) * 2001-06-26 2006-07-12 松下電工株式会社 Matrix electron source and display device using the same

Also Published As

Publication number Publication date
JP2011044277A (en) 2011-03-03

Similar Documents

Publication Publication Date Title
JP4878311B2 (en) Multi X-ray generator
US20170133192A1 (en) X-ray generator and x-ray imaging apparatus
US9281155B2 (en) Radiation generating apparatus and radiation imaging apparatus
US20140140486A1 (en) Radiation generating apparatus and radiation imaging apparatus
JP2007265981A5 (en)
KR20140043146A (en) Radiation generating apparatus and radiation imaging apparatus
US10453643B2 (en) Shielded, transmission-target, x-ray tube
US11183357B2 (en) MBFEX tube
JP2007095689A (en) X-ray generator by cold electron source
JP2009009942A (en) One-dimensional grid mesh for high-compression electron gun
US9431206B2 (en) X-ray generation tube, X-ray generation device including the X-ray generation tube, and X-ray imaging system
JP5021716B2 (en) X-ray generator and portable nondestructive inspection device
Kim et al. Small-sized flat-tip CNT emitters for miniaturized X-ray tubes
JP2007538359A (en) High-dose X-ray tube
WO2008156361A2 (en) Miniature x-ray source with guiding means for electrons and / or ions
US20130259206A1 (en) Shielding Electrode for an X-Ray Generator
US8750458B1 (en) Cold electron number amplifier
JP5290087B2 (en) Electron beam emitter
KR20150114368A (en) X-ray source device using nano structure and apparatus for generating x-ray using replaceable x-ray source cartridge
JP2013225490A (en) Array type particle beam irradiation device and control method thereof
CN111328176B (en) Suspended grid cathode structure, electron gun, electron accelerator and irradiation device
JP5312555B2 (en) Multi X-ray generator
Choi et al. Development of new X-ray source based on carbon nanotube field emission and application to the non destructive imaging technology
KR101324480B1 (en) Micro focus x-ray tube
JP2008256584A (en) Electron beam irradiation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120814

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130524

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130605

LAPS Cancellation because of no payment of annual fees