JP5270145B2 - Method for producing hardened surface layered cement - Google Patents

Method for producing hardened surface layered cement Download PDF

Info

Publication number
JP5270145B2
JP5270145B2 JP2007326881A JP2007326881A JP5270145B2 JP 5270145 B2 JP5270145 B2 JP 5270145B2 JP 2007326881 A JP2007326881 A JP 2007326881A JP 2007326881 A JP2007326881 A JP 2007326881A JP 5270145 B2 JP5270145 B2 JP 5270145B2
Authority
JP
Japan
Prior art keywords
gas
carbon dioxide
cement
concentration
mode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007326881A
Other languages
Japanese (ja)
Other versions
JP2009149456A (en
Inventor
賢三 渡邉
康祐 横関
剛 取違
昇 坂田
重之 伊達
実 盛岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Denka Co Ltd
Original Assignee
Kajima Corp
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp, Denki Kagaku Kogyo KK filed Critical Kajima Corp
Priority to JP2007326881A priority Critical patent/JP5270145B2/en
Priority to PCT/JP2008/072962 priority patent/WO2009078430A1/en
Publication of JP2009149456A publication Critical patent/JP2009149456A/en
Application granted granted Critical
Publication of JP5270145B2 publication Critical patent/JP5270145B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B40/00Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
    • C04B40/02Selection of the hardening environment
    • C04B40/0231Carbon dioxide hardening
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B11/00Apparatus or processes for treating or working the shaped or preshaped articles
    • B28B11/24Apparatus or processes for treating or working the shaped or preshaped articles for curing, setting or hardening
    • B28B11/245Curing concrete articles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/04Portland cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00439Physico-chemical properties of the materials not provided for elsewhere in C04B2111/00
    • C04B2111/00448Low heat cements

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Devices For Post-Treatments, Processing, Supply, Discharge, And Other Processes (AREA)

Abstract

An apparatus for carbonation curing is provided which can be kept at any desired carbon dioxide concentration exceeding 20%, preferably exceeding 30%. The apparatus for carbonation curing has a shielded space where a cured cement object is placed and shielded from the outside atmospheric environment. The shielded space is equipped with: a gas introduction opening which is connected to a carbon dioxide supply source through a gas flow rate regulation mechanism; and a gas discharge opening which is connected to the outside through a gas inflow prevention mechanism. The gas flow rate regulation mechanism and the gas inflow prevention mechanism can be switched so that the mode of controlling the internal atmosphere can be any of at least a 'gas replacement mode' and a 'stationary mode.' This apparatus is especially suitable for use in the carbonation curing of a cured object formed from a kneaded cement mixture containing low-heat portland cement and ?C2S, the amount of the ?C2S being 30±10 parts by mass per 100 parts by mass of the binder, and having a water/binder ratio of 35% or lower.

Description

本発明は、炭酸ガスを使用してセメント硬化体の炭酸化養生を行うための炭酸化養生設備を用いて表層が緻密化されたセメント硬化体を製造する方法に関する。 The present invention relates to a method of manufacturing a hardened cement body surface is densified using a carbonation curing equipment for performing the carbonation curing of the hardened cement paste using carbon dioxide.

コンクリートやモルタルに代表されるセメント硬化体は、大気中の二酸化炭素が表面から侵入して炭酸イオンとセメント成分が反応すると、その領域が中性化する。この中性化はセメント硬化体のひび割れを招く要因となる他、鉄筋コンクリートでは中性化の領域が深くなると鉄筋を腐食させる要因ともなる。このため、一般的には中性化は抑制すべきであるとされ、中性化を軽減するための措置も種々検討されている。   In the hardened cement typified by concrete and mortar, when carbon dioxide in the atmosphere enters from the surface and carbonate ions react with cement components, the region becomes neutral. This neutralization causes cracking of the hardened cement body, and in reinforced concrete, when the neutralization region becomes deeper, it also causes corrosion of the reinforcing steel. For this reason, it is generally considered that neutralization should be suppressed, and various measures for reducing neutralization have been studied.

一方、発明者らはγC2S(γ−2CaO・SiO2、γビーライトとも呼ばれる)を配合したセメント系材料について、炭酸ガスによる強制的な中性化(以下「炭酸化」という)を施した場合の表層部の構造変化に関する研究を行ってきた。その結果、γC2Sは水と反応しない一方で炭酸イオンと反応し、その反応生成物がわずかに膨張してセメントマトリクスの空隙を埋めることで緻密な構造が形成されることを見出した。この手法を用いると、コンクリートやモルタルの表面近傍に緻密で化学的に安定した層を設けることができ、セメントマトリクスからのカルシウムイオンの溶脱や、外部からの塩化物イオン等の侵入を抑制した長期耐久性に優れたセメント系材料が実現される(特許文献1〜3)。 On the other hand, the inventors applied forced neutralization (hereinafter referred to as “carbonation”) with carbon dioxide gas to cementitious materials containing γC 2 S (γ-2CaO · SiO 2 , also called γ belite). We have been studying structural changes in the surface layer. As a result, it was found that γC 2 S does not react with water but reacts with carbonate ions, and the reaction product slightly expands to fill the voids of the cement matrix to form a dense structure. Using this method, it is possible to provide a dense and chemically stable layer near the surface of concrete and mortar, and to suppress the leaching of calcium ions from the cement matrix and the entry of chloride ions etc. from the outside. A cement-based material having excellent durability is realized (Patent Documents 1 to 3).

セメント硬化体を炭酸化することが可能な養生装置として、特許文献4には、硬化体が格納されて密閉される容器を備えたものが記載されている。   As a curing device capable of carbonating a hardened cement body, Patent Document 4 describes a device including a container in which the hardened body is stored and sealed.

特開2006−348465号公報JP 2006-348465 A 特開2006−182583号公報JP 2006-182583 A 特開2007−22878号公報JP 2007-22878 A 特開2006−143531号公報JP 2006-143531 A

従来一般的に、炭酸化養生を行う養生室(中性化養生槽)では、炭酸ガス濃度を20%程度に維持することが、実用上の限界とされる。一方、特許文献4の養生装置では密閉状態で炭酸化養生を行うので、炭酸ガス濃度100%という高濃度ガス中での養生(いわゆる「袋養生」、図4参照)が可能である。ただし、炭酸ガス濃度100%の場合と、従来の養生室(中性化養生槽)を用いて炭酸ガス濃度20%とした場合とでは、4週間の養生後に得られたコンクリートの炭酸化深さや空隙間に大きな変化はなく(図4)、中性化の進行は同等となっている(段落0034)。炭酸ガス濃度を100%としても、20%の場合と中性化の進行が同等であるのは、特許文献4に開示の養生方法は密閉容器中での養生(袋養生)であることが一因と推察される。すなわち、従来の養生室では炭酸ガスの補充を行いながら所定の炭酸ガス濃度が維持されるが、袋養生では基本的に炭酸ガスの補充はない。特許文献4には養生期間中に密閉容器内の炭酸ガス濃度を一定に保つための手段は記載されていない。   Conventionally, in a curing room (neutralization curing tank) that performs carbonation curing, it is regarded as a practical limit to maintain the carbon dioxide gas concentration at about 20%. On the other hand, since the curing apparatus of Patent Document 4 performs carbonation curing in a sealed state, curing in a high-concentration gas having a carbon dioxide concentration of 100% (so-called “bag curing”, see FIG. 4) is possible. However, when the carbon dioxide concentration is 100% and when the conventional curing room (neutralization curing tank) is used and the carbon dioxide concentration is 20%, the carbonation depth of the concrete obtained after curing for 4 weeks There is no significant change between the voids (FIG. 4), and the progress of neutralization is equivalent (paragraph 0034). Even if the carbon dioxide gas concentration is 100%, the progress of neutralization is equivalent to the case of 20% because the curing method disclosed in Patent Document 4 is curing in a sealed container (bag curing). It is assumed that this is the cause. That is, a predetermined carbon dioxide gas concentration is maintained while replenishing carbon dioxide in the conventional curing room, but basically no carbon dioxide is replenished in the bag curing. Patent Document 4 does not describe means for keeping the carbon dioxide gas concentration in the sealed container constant during the curing period.

これまで、20%を超える炭酸ガス濃度領域でのセメント硬化体の炭酸化挙動については系統的な調査報告がなく、より耐久性のあるセメント硬化体を開発する上で検討の余地が残っていた。また、最近では環境問題への更なる配慮や、鉄筋コンクリートの耐久性向上のために、従来にも増してカルシウムの溶脱やイオンの侵入に対する抵抗力を改善したコンクリートの要求が強まっている。   Up to now, there has been no systematic research report on the carbonation behavior of hardened cement in the carbon dioxide concentration region exceeding 20%, and there remains room for study to develop a hardened hardened cement. . Recently, in order to further consider environmental problems and improve the durability of reinforced concrete, there is an increasing demand for concrete with improved resistance to calcium leaching and ion intrusion.

本発明はこのような現状に鑑み、炭酸ガス濃度を20%を超える任意の濃度に維持することができる実用的な炭酸化養生設備を用いて、従来よりも耐久性を向上させた表層緻密化セメント硬化体を提供することを目的とする。 The present invention has been made in view of such a situation, using a practical carbonation curing equipment can be maintained at any concentration of the carbon dioxide concentration exceeds 20%, the surface layer dense with improved durability than conventional An object of the present invention is to provide a hardened cementitious body.

上記目的を達成するために、本発明では、セメント硬化体を収容して外部の大気環境から遮蔽する遮蔽空間を有し、その遮蔽空間には、ガス流量調整機構を介して炭酸ガス供給源につながるガス導入口と、ガス流入防止機構を介して外部につながるガス排出口があり、前記ガス流量調整機構とガス流入防止機構は、内部雰囲気の制御モードを少なくとも下記X、Yのいずれかに設定するように切り替え操作が可能である炭酸化養生設備を使用することができる
モードX; ガス導入口から炭酸ガスを遮蔽空間に導入するとともにガス排出口から遮蔽空間のガスを外部に排出することにより遮蔽空間内の炭酸ガス濃度を上昇させるモード(ガス置換モード)
モードY; 炭酸ガスの平均導入流量を前記ガス置換モードよりも小さくした状態で遮蔽空間内の炭酸ガス濃度を定常状態に制御するモード(定常モード)
前記ガス排出口は、さらに二酸化炭素トラップ機構を介して外部につながるようにすることもできる。
In order to achieve the above object, the present invention has a shielding space that contains a cemented body and shields it from the external atmospheric environment, and the shielding space has a carbon dioxide gas supply source via a gas flow rate adjusting mechanism. There are a gas inlet connected to the gas outlet and a gas outlet connected to the outside via a gas inflow prevention mechanism. The gas flow rate adjustment mechanism and the gas inflow prevention mechanism set the control mode of the internal atmosphere to at least one of the following X and Y Thus, a carbonation curing facility that can be switched can be used .
Mode X: A mode in which carbon dioxide gas is introduced into the shielded space from the gas inlet and gas in the shielded space is discharged to the outside from the gas outlet (gas replacement mode).
Mode Y: Mode in which the carbon dioxide concentration in the shielded space is controlled to a steady state in a state where the average introduction flow rate of carbon dioxide gas is smaller than that in the gas replacement mode (steady mode)
The gas discharge port can be further connected to the outside via a carbon dioxide trap mechanism.

この炭酸化養生設備を用いると、セメント硬化体の表層部を炭酸ガス濃度20超え〜90体積%好ましくは30超え〜90体積%の雰囲気下で炭酸化させることができる。その場合、γC2Sを含まない一般的な組成のセメント混練物の硬化体であっても、表層部のセメントマトリクスは大幅に緻密化することがわかった。また、低熱ポルトランドセメントをベースとしてγC2Sを含有する特定組成のセメント混練物の硬化体においては、特に炭酸ガス濃度50〜90%の雰囲気下で炭酸化させたとき、比較的短い養生期間で顕著な表層緻密化が実現できることが明らかになった。 When this carbonation curing equipment is used, the surface layer portion of the cement hardened body can be carbonated in an atmosphere having a carbon dioxide concentration of 20 to 90% by volume, preferably 30 to 90% by volume. In that case, it was found that the cement matrix in the surface layer portion was greatly densified even in the case of a hardened body of a cement kneaded material having a general composition not containing γC 2 S. Moreover, in the hardened body of a cement kneaded material having a specific composition containing γC 2 S based on low heat Portland cement, particularly when carbonized in an atmosphere having a carbon dioxide gas concentration of 50 to 90%, the curing period is relatively short. It became clear that remarkable surface densification can be realized.

そのような表層緻密化セメント硬化体を製造する方法として、セメント混練物の硬化体を、大気環境から遮蔽され炭酸ガス濃度が20超え〜90%の範囲に維持されている遮蔽空間に置くことにより、その硬化体の表層部を炭酸化させる表層緻密化セメント硬化体の製造方法が提供される。 As a method for producing such a surface densified cement hardened body, placing the cured product of the cement kneaded product, the closed space where the carbon dioxide concentration is shielded from the atmosphere environment is maintained in the range of 20 exceeds 90% By this, the manufacturing method of the surface layer densified cement hardening body which carbonates the surface layer part of the hardening body is provided.

より具体的には、セメント混練物の硬化体を炭酸化養生するに際し、ガス流量調整機構を介して炭酸ガス供給源につながるガス導入口と、ガス流入防止機構を介して外部につながるガス排出口を有する遮蔽空間に、脱型されているセメント硬化体を置き、ガス導入口から炭酸ガスを遮蔽空間に導入するとともにガス排出口から遮蔽空間のガスを外部に排出することによって遮蔽空間内のセメント硬化体配置位置の炭酸ガス濃度を20超え〜90%の所定濃度まで上昇させるモード(ガス置換モード)を経た後、ガス導入口からの炭酸ガス導入量とガス排出口からのガス排出量を調整して、炭酸ガスの平均導入流量を前記ガス置換モードよりも小さくした状態で遮蔽空間内の炭酸ガス濃度を定常状態に制御するモード(定常モード)を実施することによって、セメント硬化体の表層部を炭酸ガス濃度20超え〜90%の雰囲気下で炭酸化させる表層緻密化セメント硬化体の製造方法が提供される。上記の「定常状態」は、必ずしも炭酸ガス濃度が常時一定である必要はなく、ある範囲内(例えば目標濃度(%)±10(%))で変動しても良い。   More specifically, when carbonizing and curing the hardened body of the cement kneaded material, a gas inlet connected to a carbon dioxide supply source via a gas flow rate adjusting mechanism and a gas outlet connected to the outside via a gas inflow prevention mechanism The cemented body in the shielded space is placed by placing the hardened cement that has been removed in the shielded space, introducing carbon dioxide from the gas inlet to the shielded space, and discharging the gas in the shielded space from the gas outlet. After passing through the mode (gas replacement mode) to raise the carbon dioxide concentration at the position where the cured body is placed to over 20 to 90%, adjust the amount of carbon dioxide introduced from the gas inlet and the amount of gas discharged from the gas outlet. Then, a mode (steady mode) for controlling the carbon dioxide concentration in the shielded space to a steady state with the average introduction flow rate of carbon dioxide being smaller than that in the gas replacement mode is performed. And the method of manufacturing a surface densified cement hardened body to carbonation in an atmosphere of carbon dioxide concentration 20 exceeding 90% of the surface layer portion of the hardened cement is provided. The above “steady state” does not necessarily require the carbon dioxide concentration to be constantly constant, and may vary within a certain range (for example, target concentration (%) ± 10 (%)).

特に、混練物の配合を、低熱ポルトランドセメントとγC2Sを含有し、結合材100質量部に対しγC2S配合量が30±10質量部、水結合材比が35%以下となるようにし、その硬化体に対して、上記炭酸ガス濃度範囲を50〜90%の範囲とすることによって、表層部の極めて顕著な緻密化が実現される。結合材には、低熱ポルトランドセメントを40質量%以上含有させることが好ましく、その他にフライアッシュやシリカフュームなどの混和材を結合材として含有させることができる。水結合材比は例えば30±5%の範囲に管理することができる。γC2Sについては、例えばブレーン比表面積が1500〜8000cm2/g程度のものを使用することができる。ダスティング直後のブレーン比表面積が1500〜2000cm2/gのものが特に好適である。本発明の表層緻密化セメント硬化体の製造方法は、前記の炭酸化養生設備を用いることによって好適に実施できる。 In particular, the kneaded mixture contains low heat Portland cement and γC 2 S so that the amount of γC 2 S is 30 ± 10 parts by mass and the water binder ratio is 35% or less with respect to 100 parts by mass of the binder. By setting the carbon dioxide concentration range to a range of 50 to 90% with respect to the cured product, extremely remarkable densification of the surface layer portion is realized. The binder preferably contains 40% by mass or more of low heat Portland cement, and may additionally contain admixtures such as fly ash and silica fume as the binder. The water binder ratio can be managed in the range of 30 ± 5%, for example. As for γC 2 S, for example, those having a Blaine specific surface area of about 1500 to 8000 cm 2 / g can be used. Particularly preferred are those having a Blaine specific surface area of 1500 to 2000 cm 2 / g immediately after dusting. The manufacturing method of the surface-densified cement hardening body of this invention can be implemented suitably by using the said carbonation curing equipment.

上記の炭酸化養生設備によれば、炭酸ガス濃度を20%を超える任意の濃度に設定して炭酸化養生を行うことができる。これにより、従来知られていなかった高炭酸ガス濃度領域でのセメント硬化体の炭酸化挙動を種々研究することが可能になり、新たな高耐久性セメント系材料の開発に資することができる。また、本発明の表層緻密化セメント硬化体の製造方法によれば、非常に緻密化された表層部を有するものが得られ、しかもその炭酸化領域は浅く形成されるので、これは鉄筋コンクリートの高耐久化に極めて有用である。炭酸化によるこのような顕著な効果は、炭酸ガス濃度を100%近くに高めなくても十分実現できるので、本発明の炭酸化養生設備は特段に密閉性の高い容器で構成する必要がなく、コスト面でも実用性が高い。 According to said carbonation curing equipment, carbonation curing can be performed by setting the carbon dioxide gas concentration to an arbitrary concentration exceeding 20%. This makes it possible to study various carbonation behaviors of hardened cement in a high carbon dioxide concentration region, which has not been known so far, and contributes to the development of a new highly durable cement-based material. According to the manufacturing method of the surface densified cement cured product of the present invention, those having a very densified surface layer portion is obtained, and since the carbonation region is formed shallowly, which reinforced concrete high It is extremely useful for durability. Such a remarkable effect by carbonation can be sufficiently realized without increasing the carbon dioxide gas concentration to nearly 100%. Therefore, the carbonation curing equipment of the present invention does not need to be configured with a particularly highly sealed container, It is highly practical in terms of cost.

図1に本発明の実施に好適に使用できる炭酸化養生設備の構成を模式的に例示する。
本発明の炭酸化養生設備は、遮蔽体2によって大気環境1から遮蔽された遮蔽空間3を有している。遮蔽体2は、大気環境1から遮蔽空間3への大気の侵入および遮蔽空間3から大気環境1への二酸化炭素の流出が防止できる材料で構成され、遮蔽空間3側は80℃程度までの耐熱性を有する素材であることが好ましい。また、保温性および保湿性に優れた構造を有することが望ましい。遮蔽空間3の中には被養生体であるセメント硬化体4が脱型された状態で収容される。セメント硬化体4は、炭酸化が必要な表面が遮蔽空間内のガス雰囲気に曝されるように配置される。
FIG. 1 schematically illustrates the configuration of a carbonation curing facility that can be suitably used in the practice of the present invention.
The carbonation curing equipment of the present invention has a shielded space 3 that is shielded from the atmospheric environment 1 by the shield 2. The shield 2 is made of a material that can prevent the intrusion of the atmosphere from the atmospheric environment 1 into the shielded space 3 and the outflow of carbon dioxide from the shielded space 3 to the atmospheric environment 1, and the shielded space 3 side has a heat resistance up to about 80 ° C. It is preferable that the material has properties. Moreover, it is desirable to have a structure excellent in heat retention and moisture retention. In the shielded space 3, the hardened cement body 4 that is a living body is accommodated in a demolded state. The cement hardened body 4 is disposed so that the surface that needs to be carbonized is exposed to the gas atmosphere in the shielding space.

遮蔽空間3の中には炭酸ガスを導入するためのガス導入口11が設けられている。ガス導入口11は、ガス流路21によって炭酸ガス供給源5につながっている。炭酸ガス供給源5は、大気圧より高い圧力で二酸化炭素含有ガスを供給することができる装置であり、例えば炭酸ガスボンベや二酸化炭素含有ガスが収容されたタンクが採用でき、必要に応じてガスを送り出すポンプ機構を内蔵させることができる。炭酸ガス供給源5とガス導入口11の間には、炭酸ガスの流量を調整するためのガス流量調整機構6が介在している。ガス流量調整機構6としては流量調整可能な弁を用いることが好ましいが、開/閉2段階の弁としてもよい。二酸化炭素は空気より重いことから、ガス導入口11の設置位置はセメント硬化体4の配置位置よりも高くすることが望ましい。   A gas introduction port 11 for introducing carbon dioxide gas is provided in the shielding space 3. The gas inlet 11 is connected to the carbon dioxide supply source 5 by a gas flow path 21. The carbon dioxide gas supply source 5 is a device that can supply carbon dioxide-containing gas at a pressure higher than atmospheric pressure. For example, a tank containing a carbon dioxide gas cylinder or carbon dioxide-containing gas can be adopted, and gas can be supplied as necessary. A pumping mechanism can be built in. A gas flow rate adjusting mechanism 6 for adjusting the flow rate of carbon dioxide gas is interposed between the carbon dioxide gas supply source 5 and the gas inlet 11. As the gas flow rate adjusting mechanism 6, it is preferable to use a valve capable of adjusting the flow rate, but it may be a two-stage valve. Since carbon dioxide is heavier than air, it is desirable that the installation position of the gas inlet 11 be higher than the installation position of the cement hardened body 4.

また、遮蔽空間3の中には当該空間内のガスを外部に排出するためのガス排出口12が設けられている。ガス排出口12は、ガス流路22によって外部につながっているが、途中にガス流入防止機構7が介在している。ガス流入防止機構7は、ガス流路22を通って外部の大気が遮蔽空間3内に流入するのを防止するものであり、例えば逆止弁や開閉弁を使用することができる。開閉弁を使用する場合には、前述のガス導入口11からの炭酸ガスの導入を止めているときに当該開閉弁が「閉」になるように制御することでガス流入を防止することができる。後述のガス置換モードにおいて遮蔽空間3内の空気を迅速に効率良く炭酸ガスで置換するためには、ガス排出口22の設置位置はセメント硬化体4の配置位置よりも高くすることが望ましい。   Further, a gas exhaust port 12 for exhausting the gas in the space to the outside is provided in the shielded space 3. The gas discharge port 12 is connected to the outside by the gas flow path 22, but the gas inflow prevention mechanism 7 is interposed in the middle. The gas inflow prevention mechanism 7 prevents the outside air from flowing into the shielded space 3 through the gas flow path 22, and for example, a check valve or an on-off valve can be used. When the on-off valve is used, gas inflow can be prevented by controlling the on-off valve to be “closed” when the introduction of the carbon dioxide gas from the gas inlet 11 is stopped. . In order to quickly and efficiently replace the air in the shielded space 3 with carbon dioxide gas in the gas replacement mode described later, it is desirable that the installation position of the gas discharge port 22 be higher than the installation position of the cement hardened body 4.

ガス排出口12から外部につながるガス流路22には、必要に応じて二酸化炭素トラップ機構8を介在させる。簡単な構造の二酸化炭素トラップ機構8としては、例えば、水酸化カルシウム水溶液中にガスを通す装置が採用できる。   A carbon dioxide trap mechanism 8 is interposed in the gas flow path 22 connected from the gas discharge port 12 to the outside as necessary. As the carbon dioxide trap mechanism 8 having a simple structure, for example, a device that allows gas to pass through an aqueous calcium hydroxide solution can be employed.

この炭酸ガス養生設備には、遮蔽空間3内の二酸化炭素濃度を測定するための炭酸ガス濃度測定装置13を設けることが望ましい。セメント硬化体4の設置高さに相当する遮蔽空間3内の位置での炭酸ガス濃度がモニターできるようにセンサーまたは検出用ガス採取口の位置を設定することが望ましい。さらに、遮蔽空間3内のガスの温度を制御する温度調整機14を設けることが望ましく、また、湿度を制御する湿度調整機15を設けることが望ましい。図1に例示されるものは、遮蔽空間3内のガスを取り込んで、適正な温度および湿度に調整されたガスを遮蔽空間3に戻すタイプのものであり、温度調整機14と湿度調整機15が一体化された温度・湿度調整機である。 In this carbon dioxide gas curing facility, it is desirable to provide a carbon dioxide concentration measuring device 13 for measuring the carbon dioxide concentration in the shielded space 3. It is desirable to set the position of the sensor or the detection gas sampling port so that the carbon dioxide gas concentration at the position in the shielding space 3 corresponding to the installation height of the hardened cement body 4 can be monitored. Furthermore, it is desirable to provide a temperature adjuster 14 that controls the temperature of the gas in the shielded space 3, and it is also desirable to provide a humidity adjuster 15 that controls the humidity. The example illustrated in FIG. 1 is a type that takes in the gas in the shielded space 3 and returns the gas adjusted to an appropriate temperature and humidity to the shielded space 3. The temperature adjuster 14 and the humidity adjuster 15 are shown in FIG. Is an integrated temperature / humidity adjuster.

上記のガス流量調整機構6とガス流入防止機構7は、互いに連携した動作によって、下記X、Yのモードを切り替えて実施できるようになっている。
モードX; ガス導入口11から炭酸ガスを遮蔽空間3に導入するとともにガス排出口12ら遮蔽空間3のガスを外部に排出することにより遮蔽空間3内の炭酸ガス濃度を上昇させるモード(ガス置換モード)
モードY; 炭酸ガスの平均導入流量を前記ガス置換モードよりも小さくした状態で遮蔽空間3内の炭酸ガス濃度を定常状態に制御するモード(定常モード)
The gas flow rate adjusting mechanism 6 and the gas inflow preventing mechanism 7 can be implemented by switching between the following X and Y modes by operating in cooperation with each other.
Mode X: A mode in which carbon dioxide gas is introduced into the shielded space 3 from the gas inlet 11 and the gas in the shielded space 3 is exhausted to the outside from the gas outlet 12 (gas replacement). mode)
Mode Y: Mode in which the carbon dioxide concentration in the shielded space 3 is controlled to a steady state with the average introduction flow rate of carbon dioxide being smaller than that in the gas replacement mode (steady mode)

モードXの「ガス置換モード」は、基本的に炭酸ガス供給源5で発生する大気圧より大きいガス供給圧力によって、遮蔽空間3のガスをガス排出口12から追い出すモードである。つまり、遮蔽空間3内の圧力が大気圧と大差ない状態において内部のガスを入れ替えることになるので、この方法は、遮蔽空間3内の炭酸ガス濃度を概ね90%程度以下の範囲で調整する場合に適している。炭酸ガス濃度を100%にまで引き上げることは困難であるが、後述のように炭酸ガス濃度80%程度でも本発明の目的は十分に達成できる。   The “gas replacement mode” of mode X is a mode in which the gas in the shielded space 3 is expelled from the gas discharge port 12 by a gas supply pressure larger than the atmospheric pressure generated in the carbon dioxide gas supply source 5 basically. That is, since the internal gas is replaced in a state where the pressure in the shielded space 3 is not significantly different from the atmospheric pressure, this method is used when the carbon dioxide concentration in the shielded space 3 is adjusted within a range of approximately 90% or less. Suitable for Although it is difficult to raise the carbon dioxide concentration to 100%, the object of the present invention can be sufficiently achieved even when the carbon dioxide concentration is about 80% as described later.

ガス流量調整機構6に開閉弁を使用し、ガス流入防止機構7に逆止弁を使用した場合は、ガス流量調整機構6の開閉弁を「開」にすることによって炭酸ガスが導入されるとともに、遮蔽空間3の内部に存在していた空気は自ら逆止弁を押し開けることによって外部に排出され、遮蔽空間3の内部の空気は炭酸ガスに置換される。遮蔽空間3の炭酸ガス濃度が設定値を超えた時点でガス流量調整機構6の開閉弁を「閉」にすれば、逆止弁も「閉」になり、モードXの「ガス置換モード」からモードYの「定常モード」に移行することができる。あるいは、ガス流量調整機構6の弁の開度を絞ることにより、逆止弁を「開」に保ちながら少量の炭酸ガスを導入し続けるようにして「定常モード」に移行することもできる。上記逆止弁の代わりに開閉弁を使用した場合は、ガス流量調整機構6の開閉弁とガス流入防止機構7の開閉弁の動作を連動させる必要がある。その場合は、例えば両者とも電磁弁を使用し、ガス流量制御装置31によって両者を「開」に設定することで「ガス置換モード」とし、その後、両者を「閉」にしてガスの導入および排出を中止するか、あるいは両者の開度を絞ってガス流入防止機構7の開閉弁から外部のガスが流入しない状態でガスを流すようにすることで「定常モード」に切り替えることができる。   When an on-off valve is used for the gas flow rate adjustment mechanism 6 and a check valve is used for the gas inflow prevention mechanism 7, carbon dioxide gas is introduced by opening the on-off valve of the gas flow rate adjustment mechanism 6. The air existing inside the shielded space 3 is discharged to the outside by pushing the check valve open by itself, and the air inside the shielded space 3 is replaced with carbon dioxide. If the on / off valve of the gas flow rate adjusting mechanism 6 is “closed” when the carbon dioxide gas concentration in the shielded space 3 exceeds the set value, the check valve is also “closed”, and the mode X is changed from the “gas replacement mode”. The mode Y can be shifted to the “steady mode”. Alternatively, by switching the opening of the valve of the gas flow rate adjusting mechanism 6, it is possible to shift to the “steady mode” so that a small amount of carbon dioxide gas is continuously introduced while the check valve is kept “open”. When an on-off valve is used instead of the check valve, the on-off valve of the gas flow rate adjustment mechanism 6 and the on-off valve of the gas inflow prevention mechanism 7 need to be linked. In this case, for example, both use solenoid valves, and both are set to “open” by the gas flow rate control device 31 to set “gas replacement mode”, and then both are closed to introduce and discharge gas. Can be switched to the “steady mode” by stopping the gas flow or by allowing the gas to flow in a state in which the external gas does not flow from the on-off valve of the gas inflow prevention mechanism 7 by reducing the opening degree of both.

モードYの「定常モード」は、遮蔽空間3の炭酸ガス濃度を概ね一定に保ちながら炭酸化養生を進行させる過程である。遮蔽空間3内の炭酸ガスは、セメント硬化体4の炭酸化反応に消費される他、不可避的に遮蔽空間3から外部にリークすることによっても減少する。このため、ガス流量調整機構6とガス流入防止機構7の開閉弁をいずれも「閉」にした状態で放置すると徐々に炭酸ガス濃度は低下する。したがって、「定常モード」を維持するためには途中で炭酸ガスの補給が必要である。補給の方法は、ガス流量調整機構6の開閉弁とガス流入防止機構7の開閉弁または逆止弁とを単純に開/閉を繰り返すように作動させる方法と、両者の弁の開度を絞って少量の炭酸ガスを連続的に導入する方法が挙げられる。いずれにしても、炭酸ガス濃度測定装置13によって遮蔽空間3内の炭酸ガス濃度をモニターしながら、一定範囲内の炭酸ガス濃度が維持されるようにガス流量調整機構6とガス流入防止機構7の動作を連動して制御することが望ましい。   The “steady mode” of mode Y is a process in which the carbonation curing is advanced while the carbon dioxide gas concentration in the shielded space 3 is kept substantially constant. The carbon dioxide gas in the shielded space 3 is consumed by the carbonation reaction of the cement hardened body 4 and inevitably decreases by leaking from the shielded space 3 to the outside. For this reason, if the on-off valves of the gas flow rate adjustment mechanism 6 and the gas inflow prevention mechanism 7 are both left in the “closed” state, the carbon dioxide gas concentration gradually decreases. Therefore, in order to maintain the “steady mode”, carbon dioxide needs to be replenished on the way. The replenishment method includes a method in which the on-off valve of the gas flow rate adjusting mechanism 6 and the on-off valve or check valve of the gas inflow prevention mechanism 7 are simply operated to repeatedly open and close, and the opening of both valves is reduced. And a method of continuously introducing a small amount of carbon dioxide gas. In any case, the gas flow rate adjusting mechanism 6 and the gas inflow preventing mechanism 7 are controlled so that the carbon dioxide concentration in the shielded space 3 is monitored by the carbon dioxide concentration measuring device 13 so that the carbon dioxide concentration within a certain range is maintained. It is desirable to control the operation in conjunction with each other.

次に、上記の炭酸化養生設備を使用した表層緻密化セメント硬化体の製造方法について説明する。まず、セメント混練物を打設した後、所定時間経過後に型枠を外し、硬化途上にある脱型されたセメント硬化体4(モルタルまたはコンクリート)を遮蔽体2で覆われた場所に配置する。プレキャスト製品の場合は、当該製品を工場などに設置した遮蔽体2の内部に移動して、炭酸化が必要な表面が雰囲気ガスに曝されるように配置した上で、遮蔽空間3を構築すればよい。現場で打設されたセメント硬化体4の場合も、遮蔽体2の設置方法を工夫すること(例えばシート状の遮蔽体2で構造物を覆うこと)によって遮蔽空間3を構築することが可能である。 Next, the manufacturing method of the surface layer densified cement hardening body using said carbonation curing equipment is demonstrated. First, after placing the cement kneaded material, the mold is removed after a predetermined time, and the demolded cement hardened body 4 (mortar or concrete) in the course of hardening is placed in a place covered with the shield 2. In the case of a precast product, the shielded space 3 is constructed after moving the product into the shield 2 installed in a factory or the like so that the surface requiring carbonation is exposed to the atmospheric gas. That's fine. Also in the case of the cement hardened body 4 placed on site, it is possible to construct the shielding space 3 by devising the installation method of the shielding body 2 (for example, covering the structure with the sheet-like shielding body 2). is there.

遮蔽空間3を構築した後、「ガス置換モード」を実施する。すなわち、ガス流量調整機構6の弁を「開」とし、ガス流入防止機構7に開閉弁が使用されている場合はこれも「開」とすることによって、ガス導入口11から遮蔽空間3に炭酸ガスを導入するとともに、炭酸ガス供給源5からの炭酸ガス導入圧力を利用して遮蔽空間3に存在していた空気をガス排出口12から外部に追い出していく。遮蔽空間3内の、特にセメント硬化体4の配置されている部位における炭酸ガス濃度が20超え〜90%好ましくは30超え〜90%の範囲内に設定した所定の濃度を上回るまで「ガス置換モード」を継続する。炭酸ガス濃度は炭酸ガス濃度測定装置13によってモニターすれば正確に把握される。なお、低熱ポルトランドセメントとγC2Sを含有し、結合材100質量部に対しγC2S配合量が30±10質量部、水結合材比が35%以下であるセメント混練物の硬化体を対象とする場合は、特に炭酸ガス濃度を50%以上の範囲に設定することによって、非常に緻密な表層部を形成させることが可能になる。 After the shielding space 3 is constructed, the “gas replacement mode” is performed. That is, the valve of the gas flow rate adjusting mechanism 6 is set to “open”, and if the on / off valve is used for the gas inflow prevention mechanism 7, the valve is also set to “open”, so that the carbon dioxide is introduced into the shielded space 3 from the gas inlet 11. While introducing gas, the air which existed in the shielding space 3 is expelled outside from the gas discharge port 12 using the carbon dioxide introduction pressure from the carbon dioxide supply source 5. “Gas replacement mode” until the carbon dioxide concentration in the shielded space 3, particularly in the portion where the cemented body 4 is disposed, exceeds a predetermined concentration set in the range of more than 20 to 90%, preferably more than 30 to 90%. To continue. The carbon dioxide concentration can be accurately grasped by monitoring with the carbon dioxide concentration measuring device 13. Note that contain low heat Portland cement and γC 2 S, γC 2 S amount is 30 ± 10 parts by mass with respect to the binder 100 parts by weight, subject the cured product of the cement kneaded product water binder ratio is 35% or less In this case, it is possible to form a very dense surface layer portion by setting the carbon dioxide gas concentration in the range of 50% or more.

所定の炭酸ガス濃度になった後、「定常モード」に移行する。このモードを維持するためには炭酸ガスを補給することが必要である。補給の方法は前述のように、ガス流量調整機構6の開閉弁とガス流入防止機構7の開閉弁または逆止弁とを単純に開/閉を繰り返すように作動させる方法、あるいは、両者の弁の開度を絞って少量の炭酸ガスを連続的に導入する方法を採用すればよい。炭酸ガス濃度は多少変動しても構わないが、目的の緻密化表層を短期間で得るためには、それに必要な炭酸ガス濃度が確保されるように制御することが重要である。   After a predetermined carbon dioxide gas concentration is reached, the operation proceeds to the “steady mode”. In order to maintain this mode, it is necessary to replenish carbon dioxide. As described above, the replenishment method is a method in which the on-off valve of the gas flow rate adjusting mechanism 6 and the on-off valve or check valve of the gas inflow prevention mechanism 7 are simply operated so as to repeatedly open / close, or both valves A method in which a small amount of carbon dioxide gas is continuously introduced by narrowing the opening degree may be adopted. Although the carbon dioxide gas concentration may vary somewhat, in order to obtain the desired densified surface layer in a short period of time, it is important to control the carbon dioxide gas concentration necessary for it.

また、「定常モード」では雰囲気の温度および湿度を制御することが望ましい。養生温度が高いほどセメント水和反応の反応速度が増大し、またγC2Sを配合したものでは炭酸化温度が高いほど炭酸イオンとの反応の速度が大きくなるので、炭酸化養生を高温で行うと早期に高強度化および表層の高緻密化が実現できる。具体的には25℃以上の温度に制御することが望ましく、40℃以上に制御することがより効果的である。ただし、あまり高温での養生を実現するには困難を伴うことが多いので、通常70℃以下の範囲で行えばよい。湿度は40〜60%RHに制御することが望ましい。この範囲で炭酸化速度が最も大きくなる傾向がある。 In the “steady mode”, it is desirable to control the temperature and humidity of the atmosphere. The higher the curing temperature, the faster the cement hydration reaction rate, and the higher the carbonation temperature, the higher the rate of reaction with carbonate ions in the case of blending γC 2 S. Carbonation curing is performed at a high temperature. High strength and high density of the surface layer can be realized at an early stage. Specifically, it is desirable to control the temperature to 25 ° C. or higher, and it is more effective to control it to 40 ° C. or higher. However, since it is often difficult to realize curing at a very high temperature, it is usually performed in a range of 70 ° C. or less. It is desirable to control the humidity to 40-60% RH. Within this range, the carbonation rate tends to be greatest.

炭酸化養生期間は、通常、7〜28日の範囲とすればよい。すなわち、この期間内に「定常モード」を終え、炭酸化養生を終了させることができる。高濃度炭酸ガス下での養生によると、表層部が顕著に緻密化されるので、炭酸化の進行は比較的短期間で飽和する。   The carbonation curing period may be usually in the range of 7 to 28 days. That is, the “steady mode” is completed within this period, and the carbonation curing can be terminated. According to curing under high-concentration carbon dioxide gas, the surface layer is remarkably densified, so the progress of carbonation is saturated in a relatively short period of time.

表1に示す材料を用いて、表2に示す配合のモルタル混練物を作製した。γC2Sは石灰石、ケイ石の工業原料を用いて実キルンで1450℃、20分保持して焼成し、徐冷によってダスティングした直後のものをそのまま使用した。表2のモルタルAはJIS R5201−1997のモルタルであり、質量比でセメント1、標準砂3、水結合材比50質量%である。モルタルBは上記モルタルAにおいて、結合材の30質量%に相当する量のγC2Sを細骨材置換で添加したものである。モルタルCは低熱ポルトランドセメントをベースとした結合材を用い、結合材の30質量%に相当する量のγC2Sを細骨材置換で添加し、水結合材比30質量%としたものである。なお、γC2Sは配合上、不活性な粉体とみなし、結合材としては取り扱わない。 Using the materials shown in Table 1, a mortar kneaded material having the composition shown in Table 2 was prepared. γC 2 S was used as it was immediately after dusting by gradual cooling using an industrial raw material of limestone and silica that was calcined at 1450 ° C. for 20 minutes in an actual kiln. The mortar A in Table 2 is a mortar of JIS R5201-1997, and is a cement 1, standard sand 3, and a water binder ratio of 50% by mass. Mortar B is obtained by adding γC 2 S in an amount corresponding to 30% by mass of the binder to the above-mentioned mortar A by fine aggregate replacement. Mortar C uses a binder based on low heat Portland cement, and γC 2 S in an amount corresponding to 30% by mass of the binder is added by fine aggregate replacement to obtain a water binder ratio of 30% by mass. . Note that γC 2 S is regarded as an inert powder in terms of blending and is not handled as a binder.

これら3種類のモルタルとも、目標空気量は5%とした。モルタルフローについては、モルタルA、Bは目標値を定めず、モルタルCはモルタルフローで225±40mmとした。練混ぜ方法は、3種類のモルタルとも同様に行うことを基本として、10Lモルタルミキサーを使用して、結合材、γC2S、水の順番で投入し、3分間低速、細骨材を投入し2分間低速、その後2分間中速で合計7分間練混ぜて混練物を得た。 For these three types of mortar, the target air amount was 5%. Regarding the mortar flow, mortars A and B did not define target values, and mortar C was 225 ± 40 mm in mortar flow. The mixing method is basically the same for all three types of mortar. Using a 10L mortar mixer, add the binder, γC 2 S, and water in that order, and add the fine aggregate at low speed for 3 minutes. The mixture was kneaded at a low speed for 2 minutes and then at a medium speed for 2 minutes for a total of 7 minutes to obtain a kneaded product.

各混練物を型枠に打設した後、1日間湿空養生(温度20℃、湿度90%RH以上)を行い、その後、脱型し、モルタルからなるセメント硬化体(40×40×160mm)を得た。これを20℃で1日間水中養生した後、炭酸化養生を5日間行い、全養生期間を7日間とした。ここで、炭酸化深さは経過時間の平方根に比例するとされており、その精度も高いことが確認されていることから、早期に傾向を把握することを目的に炭酸化養生期間を比較的短い5日間とした。   After each kneaded material is placed in a mold, it is subjected to moisture curing (temperature 20 ° C., humidity 90% RH or more) for 1 day, then demolded, and hardened cement made of mortar (40 × 40 × 160 mm) Got. This was cured in water at 20 ° C. for 1 day, followed by carbonation curing for 5 days, for a total curing period of 7 days. Here, the carbonation depth is proportional to the square root of the elapsed time, and it is confirmed that the accuracy is also high, so the carbonation curing period is relatively short for the purpose of grasping the tendency at an early stage. 5 days.

炭酸化養生は、図1に示した構成を有する炭酸化養生設備によって行った。具体的には、遮蔽体2として恒温恒湿槽を用い、炭酸ガス供給源として二酸化炭素ボンベ、ガス流量調整機構6およびガス流入防止機構7として開/閉2段切り替えタイプの電磁弁を用いた。遮蔽空間3に相当する恒温恒湿槽内のガスを採取して炭酸ガス濃度を常時測定するように炭酸ガス濃度測定装置13を設置するとともに、その炭酸ガス濃度測定値に基づいて、ガス流量調整機構6およびガス流入防止機構7の電磁弁を同時に「開」または「閉」に切り替えるように制御するガス流量制御装置31を設置した。この恒温恒湿槽の中にセメント硬化体を40×160mmの面が全て炭酸ガスに曝されるように配置して炭酸化養生を行った。まず「ガス置換モード」により恒温高湿槽内部の空気を炭酸ガスで置換し、迅速に所定濃度の炭酸化雰囲気とした。その後「定常モード」に移行し、5日間の炭酸化を行った。炭酸化養生条件は、温度40℃、湿度50%RHを基本とし、モルタルCについては温度を10〜70℃、湿度を30〜90%の範囲で変動させた試験も実施した。炭酸ガス濃度は0〜80%の範囲で変化させた。ここで炭酸ガス濃度0%というのは、炭酸化養生の代わりに40℃での水中養生を行ったものである。「定常モード」では、炭酸ガス濃度を所定濃度±2体積%の範囲に制御した。例えば、炭酸ガス濃度「50%」と表示されるものは、48〜52%の制御下で実施したことを意味する。炭酸化処理後のセメント硬化体について、以下の項目を測定する試験に供した。   Carbonation curing was performed by a carbonation curing facility having the configuration shown in FIG. Specifically, a constant temperature and humidity chamber is used as the shield 2, a carbon dioxide cylinder is used as the carbon dioxide supply source, an open / closed two-stage switching type electromagnetic valve is used as the gas flow rate adjusting mechanism 6 and the gas inflow prevention mechanism 7. . The carbon dioxide concentration measuring device 13 is installed so that the gas in the constant temperature and humidity chamber corresponding to the shielded space 3 is collected and the carbon dioxide concentration is constantly measured, and the gas flow rate is adjusted based on the measured value of the carbon dioxide concentration. A gas flow rate control device 31 that controls the solenoid valve of the mechanism 6 and the gas inflow prevention mechanism 7 to be simultaneously switched to “open” or “closed” was installed. Carbonation curing was carried out by placing the cement hardened body in this constant temperature and humidity chamber so that the entire surface of 40 × 160 mm was exposed to carbon dioxide gas. First, in the “gas replacement mode”, the air inside the constant temperature and high humidity tank was replaced with carbon dioxide gas to quickly form a carbonation atmosphere of a predetermined concentration. After that, the “steady mode” was entered, and carbonation was carried out for 5 days. Carbonation curing conditions were based on a temperature of 40 ° C. and a humidity of 50% RH, and for mortar C, a test was performed in which the temperature was varied in the range of 10 to 70 ° C. and the humidity was 30 to 90%. The carbon dioxide concentration was varied in the range of 0-80%. Here, the carbon dioxide gas concentration of 0% is obtained by water curing at 40 ° C. instead of carbonation curing. In the “steady mode”, the carbon dioxide concentration was controlled within a range of a predetermined concentration ± 2% by volume. For example, what is displayed as a carbon dioxide concentration “50%” means that the carbon dioxide concentration was performed under the control of 48 to 52%. About the cement hardening body after carbonation processing, it used for the test which measures the following items.

〔炭酸化深さ〕
40×40×160mmのセメント硬化体の破断面に対し、JIS A1152−2002に準拠した方法でフェノールフタレインによる鮮明な赤紫色の着色が生じない領域を炭酸化領域と判定して、表面からの炭酸化深さを測定した。図2に、破断面におけるフェノールフタレインによる着色の様子および炭酸化深さ測定方法を模式的に示す。断面における測定は、打設面、底面を除いた側面のみを対象とし、さらに、打設面、底面に近い10mmを除いた中心近傍20mmを5mmピッチでノギスを用いて0.1mm単位で測定し、その平均値を採用した。
[Carbonation depth]
With respect to the fracture surface of the 40 × 40 × 160 mm hardened cement body, a region in which vivid reddish purple coloring due to phenolphthalein does not occur is determined as a carbonation region by a method in accordance with JIS A1152-2002. The carbonation depth was measured. FIG. 2 schematically shows the state of coloring with phenolphthalein on the fracture surface and the carbonation depth measurement method. The measurement in the cross section covers only the side surface excluding the placement surface and the bottom surface, and further measures 20 mm near the center excluding 10 mm close to the placement surface and the bottom surface in 0.1 mm units with a caliper at a 5 mm pitch. The average value was adopted.

図3に、温度40℃、湿度50%RHでの炭酸ガス濃度と炭酸化深さの関係を示す。モルタルAおよびBでは、炭酸ガス濃度が20%を超える領域において、炭酸ガス濃度の累乗に比例して炭酸化深さが増加する結果となった。一方、低熱ポルトランドセメントをベースとして所定量のγC2Sを配合したモルタルCでは、炭酸ガス濃度が高くなると、一定の炭酸化養生期間で生じる炭酸化領域の深さは減少するという特異な挙動が見られた。 FIG. 3 shows the relationship between the carbon dioxide concentration and the carbonation depth at a temperature of 40 ° C. and a humidity of 50% RH. In the mortars A and B, the carbonation depth increased in proportion to the power of the carbon dioxide concentration in the region where the carbon dioxide concentration exceeded 20%. On the other hand, in mortar C containing a predetermined amount of γC 2 S based on low heat Portland cement, when the carbon dioxide gas concentration is increased, the depth of the carbonation region generated in a certain carbonation curing period decreases. It was seen.

湿度の影響については、炭酸ガス濃度5〜10%での既往の検討結果から、40〜60%RHが最も炭酸化速度が大きいとされているが、20%を超える炭酸ガス濃度でも同様の傾向が見られた。γC2Sを配合したモルタルB、Cでも同様であった。つまり、γC2Sを含有するモルタルであっても、空隙水による炭酸ガスの供給速度と炭酸ガスの溶解によって炭酸化反応が律速されるものと考えられる。 Regarding the influence of humidity, it is said that 40-60% RH has the largest carbonation rate based on the results of previous studies at a carbon dioxide concentration of 5-10%, but the same tendency is observed at carbon dioxide concentrations exceeding 20%. It was observed. The same applies to mortars B and C containing γC 2 S. That is, even in the mortar containing γC 2 S, it is considered that the carbonation reaction is rate-determined by the supply rate of the carbon dioxide gas from the pore water and the dissolution of the carbon dioxide gas.

〔空隙率〕
水銀圧入法によって、炭酸化領域の表面から2mmまでの表面近傍部分について空隙率を測定した。図4に、温度40℃、湿度50%RHにおける炭酸ガス濃度と空隙率の関係を示す。いずれのモルタルも炭酸ガス濃度が増大すると空隙率が低減し、セメントマトリクスが緻密化する現象が見られた。γC2Sを配合していない一般的な組成のモルタルAでも、炭酸ガス濃度が80%になると、γC2Sを配合したモルタルBに近い空隙率にまで緻密化されることが確認された。ところが、モルタルCについては、20%を超える高炭酸ガス濃度領域において、極めて顕著な緻密化現象が発現した。このモルタルCは低熱ポルトランドセメントをベースにγC2Sを配合したものであるが、特に炭酸ガス濃度50%以上の領域では、γC2Sを配合したモルタルBとの対比においても空隙率の著しい低減効果が見られることから、モルタルCの特異な緻密化挙動は単にγC2Sを配合したことによるものではなく、セメントの種類や、水結合材比との適切な組合せによってもたらされたものと考えられる。そのメカニズムについては現時点で未解明であるが、バテライトが多く生成されるなどの水和物の種類が影響しているものと推測される。
[Porosity]
By the mercury intrusion method, the porosity was measured in the vicinity of the surface from the surface of the carbonation region to 2 mm. FIG. 4 shows the relationship between the carbon dioxide concentration and the porosity at a temperature of 40 ° C. and a humidity of 50% RH. In any mortar, when the carbon dioxide gas concentration increased, the porosity decreased and the cement matrix became denser. rC any mortar A typical composition not blended with 2 S, the carbon dioxide concentration of 80%, be densified to a porosity close to the mortar B blended with rC 2 S was confirmed. However, with regard to mortar C, a very remarkable densification phenomenon occurred in a high carbon dioxide concentration region exceeding 20%. This mortar C contains γC 2 S based on low heat Portland cement. However, especially in the region of carbon dioxide concentration of 50% or more, the porosity is remarkably reduced in comparison with mortar B containing γC 2 S. Since the effect is seen, the specific densification behavior of mortar C is not simply due to the blending of γC 2 S, but is brought about by an appropriate combination of cement type and water binder ratio Conceivable. Although the mechanism is not yet elucidated at present, it is presumed that the type of hydrate such as the production of a large amount of vaterite has an effect.

上記の炭酸化養生設備を用いた詳細な検討により、本発明者らは、モルタルCの例に見られるように、低熱ポルトランドセメントとγC2Sを含有し、結合材100質量部に対しγC2S配合量が30±10質量部、水結合材比が35%以下であるセメント混練物は、特に炭酸ガス濃度50%以上での炭酸化養生によって顕著な緻密化が可能であることを見出した。しかも、このようなセメント混練物の硬化体は、前述の図3に示されるように炭酸化領域が薄く形成され、硬化体内部まで深く炭酸化が進行することがない。これは顕著に緻密化された表層が早期に形成されるためと考えられる。したがって、このようなセメント混練物の硬化体を高炭酸ガス濃度下で炭酸化させたコンクリートは、鉄筋の腐食に対して長期間優れた耐久性を維持しうるものであると考えられ、場合によってはかぶり厚低減によるコンクリート構造物の合理化も可能になると考えられる。 Detailed examination using the above carbonation curing equipment, the present inventors have, as seen in the example of mortar C, contain low heat Portland cement and rC 2 S, rC respect binder 100 parts by 2 It has been found that a cement kneaded material having an S blending amount of 30 ± 10 parts by mass and a water binder ratio of 35% or less can be markedly densified by carbonation curing particularly at a carbon dioxide concentration of 50% or more. . Moreover, such a hardened body of cement kneaded material has a thin carbonation region as shown in FIG. 3 described above, and carbonation does not proceed deeply into the hardened body. This is considered because the surface layer remarkably densified is formed at an early stage. Therefore, it is considered that the concrete obtained by carbonizing the hardened body of the cement kneaded material under a high carbon dioxide gas concentration can maintain excellent durability for a long time against corrosion of the reinforcing bar. It is considered that the concrete structure can be rationalized by reducing the cover thickness.

本発明に適用できる炭酸化養生設備の構成の一例を模式的に示した図。The figure which showed typically an example of the structure of the carbonation curing equipment applicable to this invention. 炭酸化深さの測定方法を模式的に示した図。The figure which showed typically the measuring method of carbonation depth. 炭酸ガス濃度と炭酸化深さの関係を例示したグラフ。The graph which illustrated the relationship between carbon dioxide gas concentration and carbonation depth. 炭酸ガス濃度とセメント硬化体表層部の空隙率の関係を例示したグラフ。The graph which illustrated the relationship between the carbon dioxide gas concentration and the porosity of the cement hardened body surface layer.

符号の説明Explanation of symbols

1 大気環境
2 遮蔽体
3 遮蔽空間
4 セメント硬化体
5 炭酸ガス供給源
6 ガス流量調整機構
7 ガス流入防止機構
11 ガス導入口
12 ガス排出口
13 炭酸ガス濃度測定装置
14 温度調整機
15 湿度調整機
21、22 ガス流路
31 ガス流量制御装置
DESCRIPTION OF SYMBOLS 1 Atmospheric environment 2 Shielding body 3 Shielding space 4 Cement hardening body 5 Carbon dioxide supply source 6 Gas flow rate adjusting mechanism 7 Gas inflow prevention mechanism 11 Gas inlet 12 Gas outlet 13 Carbon dioxide concentration measuring device 14 Temperature adjuster 15 Humidity adjuster 21, 22 Gas flow path 31 Gas flow control device

Claims (2)

低熱ポルトランドセメントとγC2Sを含有し、結合材100質量部に対しγC2S配合量が30±10質量部、水結合材比が35%以下であるセメント混練物の硬化体を、大気環境から遮蔽され炭酸ガス濃度が50〜90%の範囲に維持されている遮蔽空間に置くことにより、その硬化体の表層部を炭酸化させる表層緻密化セメント硬化体の製造方法。 A hardened body of cement kneaded material containing low heat Portland cement and γC 2 S, the blending amount of γC 2 S is 30 ± 10 parts by weight with respect to 100 parts by weight of the binder, and the water binder ratio is 35% or less. A method for producing a surface-densified cement hardened body in which the surface layer portion of the hardened body is carbonated by placing it in a shielded space that is shielded from and maintained in a carbon dioxide concentration range of 50 to 90%. 低熱ポルトランドセメントとγC2Sを含有し、結合材100質量部に対しγC2S配合量が30±10質量部、水結合材比が35%以下であるセメント混練物の硬化体を炭酸化養生するに際し、ガス流量調整機構を介して炭酸ガス供給源につながるガス導入口と、ガス流入防止機構を介して外部につながるガス排出口を有する遮蔽空間に、脱型されているセメント硬化体を置き、ガス導入口から炭酸ガスを遮蔽空間に導入するとともにガス排出口から遮蔽空間のガスを外部に排出することにより遮蔽空間内のセメント硬化体配置位置の炭酸ガス濃度を50〜90%の所定濃度まで上昇させるモード(ガス置換モード)を経た後、ガス導入口からの炭酸ガス導入量とガス排出口からのガス排出量を調整して、炭酸ガスの平均導入流量を前記ガス置換モードよりも小さくした状態で遮蔽空間内の炭酸ガス濃度を定常状態に制御するモード(定常モード)を実施することによって、セメント硬化体の表層部を炭酸ガス濃度50〜90%の雰囲気下で炭酸化させる表層緻密化セメント硬化体の製造方法。 Containing low thermal portland cement and γC 2 S, 30 ± 10 parts by weight rC 2 S amount to the binder 100 parts by weight, carbonation curing of the water-binder ratio of cement kneaded product is less than 35% Curing In this case, the demolded cement cured body is placed in a shielded space having a gas inlet connected to the carbon dioxide supply source via the gas flow rate adjusting mechanism and a gas outlet connected to the outside via the gas inflow prevention mechanism. In addition, carbon dioxide gas is introduced into the shielded space from the gas inlet and the gas in the shielded space is discharged to the outside from the gas outlet, thereby setting the carbon dioxide concentration at the cement hardened body arrangement position in the shielded space to a predetermined concentration of 50 to 90%. After passing through the mode to increase the gas (gas replacement mode), the carbon dioxide gas introduction amount from the gas inlet and the gas discharge amount from the gas outlet are adjusted, and the average introduction flow rate of carbon dioxide is adjusted to the gas By carrying out a mode (steady mode) for controlling the carbon dioxide gas concentration in the shielded space to a steady state in a state smaller than the replacement mode, the surface layer portion of the hardened cement body is in an atmosphere having a carbon dioxide gas concentration of 50 to 90%. A method for producing a hardened surface layer-densified cement to be carbonated.
JP2007326881A 2007-12-19 2007-12-19 Method for producing hardened surface layered cement Active JP5270145B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007326881A JP5270145B2 (en) 2007-12-19 2007-12-19 Method for producing hardened surface layered cement
PCT/JP2008/072962 WO2009078430A1 (en) 2007-12-19 2008-12-17 Apparatus for carbonation curing and process for producing cured cement object with densified surface layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007326881A JP5270145B2 (en) 2007-12-19 2007-12-19 Method for producing hardened surface layered cement

Publications (2)

Publication Number Publication Date
JP2009149456A JP2009149456A (en) 2009-07-09
JP5270145B2 true JP5270145B2 (en) 2013-08-21

Family

ID=40795544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007326881A Active JP5270145B2 (en) 2007-12-19 2007-12-19 Method for producing hardened surface layered cement

Country Status (2)

Country Link
JP (1) JP5270145B2 (en)
WO (1) WO2009078430A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10016739B2 (en) 2013-03-14 2018-07-10 Solidia Technologies, Inc. Curing systems for materials that consume carbon dioxide and method of use thereof
CN108453877A (en) * 2018-04-06 2018-08-28 黄桂芳 A kind of steam-cured pond of fabrication of concrete electric pole
US11034625B2 (en) 2016-05-31 2021-06-15 Solidia Technologies, Inc. Conditioned curing systems and processes thereof

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4822373B1 (en) 2010-12-17 2011-11-24 中国電力株式会社 Carbonation curing equipment, carbonized concrete manufacturing method and carbon dioxide fixing method
JP5744538B2 (en) * 2011-01-26 2015-07-08 電気化学工業株式会社 Composition for building material and method for producing carbonated building material
CN102276220B (en) * 2011-05-31 2012-11-14 杭州康居金蝶住宅排气道有限公司 Fiber-reinforced exhaust duct
US8845940B2 (en) 2012-10-25 2014-09-30 Carboncure Technologies Inc. Carbon dioxide treatment of concrete upstream from product mold
AU2014212083A1 (en) 2013-02-04 2015-08-06 Coldcrete, Inc. System and method of applying carbon dioxide during the production of concrete
US10781140B2 (en) 2013-03-14 2020-09-22 Solidia Technologies, Inc. Method and apparatus for the curing of composite material by control over rate limiting steps in water removal
JP6240400B2 (en) * 2013-04-22 2017-11-29 国立大学法人 東京大学 Method for producing substance having hardened cement
US9376345B2 (en) 2013-06-25 2016-06-28 Carboncure Technologies Inc. Methods for delivery of carbon dioxide to a flowable concrete mix
US9108883B2 (en) 2013-06-25 2015-08-18 Carboncure Technologies, Inc. Apparatus for carbonation of a cement mix
US9388072B2 (en) 2013-06-25 2016-07-12 Carboncure Technologies Inc. Methods and compositions for concrete production
US10927042B2 (en) 2013-06-25 2021-02-23 Carboncure Technologies, Inc. Methods and compositions for concrete production
US20160107939A1 (en) 2014-04-09 2016-04-21 Carboncure Technologies Inc. Methods and compositions for concrete production
CA2937822C (en) * 2014-01-22 2023-05-16 Solidia Technologies, Inc. Method and apparatus for curing co2 composite material objects at near ambient temperature and pressure
WO2015123769A1 (en) 2014-02-18 2015-08-27 Carboncure Technologies, Inc. Carbonation of cement mixes
CA2943791C (en) 2014-04-07 2023-09-05 Carboncure Technologies Inc. Integrated carbon dioxide capture
BR112017002432B1 (en) * 2014-08-05 2022-05-17 Solidia Technologies, Inc Controller and curing system
CN106426534A (en) * 2015-08-13 2017-02-22 吉林省圣翔建材集团有限公司 Reaction device system allowing inorganic building materials to absorb carbon dioxide fast
AU2017249444B2 (en) 2016-04-11 2022-08-18 Carboncure Technologies Inc. Methods and compositions for treatment of concrete wash water
WO2018058139A1 (en) * 2016-09-26 2018-03-29 Solidia Technologies, Inc. Advanced curing equipment and methods of using same
SG11201912759RA (en) 2017-06-20 2020-01-30 Carboncure Tech Inc Methods and compositions for treatment of concrete wash water
WO2019006352A1 (en) 2017-06-30 2019-01-03 The Regents Of The University Of California Co2 mineralization in produced and industrial effluent water by ph-swing carbonation
CN107310021A (en) * 2017-07-27 2017-11-03 中国水利水电科学研究院 Concrete for hydraulic structure maintenance process and device under low pressure
WO2019112555A1 (en) * 2017-12-04 2019-06-13 Solidia Technologies, Inc. Composite materials, methods of production and uses thereof
CN109437828B (en) * 2018-12-07 2021-08-17 武汉理工大学 Steel slag carbonization hydration synergistic process
CN109694224B (en) * 2018-12-19 2021-10-22 武汉理工大学 High-durability concrete product with gradient structure and preparation method thereof
CN110315633A (en) * 2019-04-30 2019-10-11 武汉理工大学 The method and device of cement kiln oxygen-enriched combusting tail gas maintenance cement concrete product
GB2585362B (en) * 2019-06-11 2022-06-22 Boss Cabins Ltd Cabin
JP2022019100A (en) * 2020-07-17 2022-01-27 株式会社フジタ Concrete curing method and concrete curing member
JP7139541B1 (en) 2022-05-16 2022-09-20 オリエンタル白石株式会社 Carbonation curing method for precast concrete member
WO2023235530A1 (en) * 2022-06-02 2023-12-07 The Regents Of The University Of California Active curing systems and methods for concrete manufacturing by carbon dioxide sequestration

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3888931B2 (en) * 2002-05-22 2007-03-07 電気化学工業株式会社 Hardened cement and method for producing the same
JP2006143531A (en) * 2004-11-19 2006-06-08 Ishikawajima Constr Materials Co Ltd Curing apparatus for hardened body

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10016739B2 (en) 2013-03-14 2018-07-10 Solidia Technologies, Inc. Curing systems for materials that consume carbon dioxide and method of use thereof
US11034625B2 (en) 2016-05-31 2021-06-15 Solidia Technologies, Inc. Conditioned curing systems and processes thereof
CN108453877A (en) * 2018-04-06 2018-08-28 黄桂芳 A kind of steam-cured pond of fabrication of concrete electric pole
CN108453877B (en) * 2018-04-06 2019-11-22 浙江大学台州研究院 A kind of steam-cured pond of fabrication of concrete electric pole

Also Published As

Publication number Publication date
JP2009149456A (en) 2009-07-09
WO2009078430A1 (en) 2009-06-25

Similar Documents

Publication Publication Date Title
JP5270145B2 (en) Method for producing hardened surface layered cement
Shen et al. Numerical study of carbonation and its effect on chloride binding in concrete
CA2998408C (en) Co2-laden concrete precast products and the method of making the same
US10894743B2 (en) Method for enhancement of mechanical strength and CO2 storage in cementitious products
JP2021514922A (en) Suppression of corrosion in low-calcium silicate cement-based neutralized concrete
Sulapha et al. Carbonation of concrete containing mineral admixtures
EP3709118A1 (en) Network comprising a plurality of spatially separate cement mix operations
Gupta Effect of content and fineness of slag as high volume cement replacement on strength and durability of ultra-high performance mortar
Østnor et al. Durability of mortar with calcined marl as supplementary cementing material
Klapiszewska et al. Influence of zinc oxide particles dispersion on the functional and antimicrobial properties of cementitious composites
Su-Cadirci et al. Freeze-thaw resistance of pozzolanic hydrated lime mortars
JP6563270B2 (en) Cementitious hardened body and method for producing the same
Wee et al. Pore structure controlling the carbonation of a hardened cement matrix blended with mineral admixture
AL-Ameeri et al. the effects of carbonation on the chloride resistance of concretes with supplementary cementitious materials (SCMs)
CN109608141A (en) A kind of salt resistance corrosion concrete and preparation method thereof
Darweesh et al. Hydration of calcined bentonite Portland blended cement pastes
Kazemian et al. Investigation of type, size, and dosage effects of superabsorbent polymers on the hydration development of high-performance cementitious materials
Zeng et al. Accelerated early age hydration of cement pastes blended with sulphoaluminate expansive agent
Xu et al. Influence of alkali on carbonation of concrete
Rashetnia et al. Effect of natural zeolite and silica fume as a pozzolanic materials on the chloride diffusion of concrete
Nogueira et al. 6 Strategies for carbon capture in concrete production
JP6305874B2 (en) Method for producing hardened cementitious body
Lee et al. Quantitative evaluation of mineral admixtures on the properties, pore structure, and durability of cement-based composites
Vyšvařil et al. Sulfuric acid attack on various types of fine grained concrete
Liu Effect of early carbonation curing on concrete resistance to weathering carbonation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130509

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5270145

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250