JP5258349B2 - Defect detection apparatus and method - Google Patents

Defect detection apparatus and method Download PDF

Info

Publication number
JP5258349B2
JP5258349B2 JP2008085793A JP2008085793A JP5258349B2 JP 5258349 B2 JP5258349 B2 JP 5258349B2 JP 2008085793 A JP2008085793 A JP 2008085793A JP 2008085793 A JP2008085793 A JP 2008085793A JP 5258349 B2 JP5258349 B2 JP 5258349B2
Authority
JP
Japan
Prior art keywords
signal
value
film
light
difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008085793A
Other languages
Japanese (ja)
Other versions
JP2009236825A (en
Inventor
浩之 山本
健 中島
学 樋口
武 脇田
一弘 下田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2008085793A priority Critical patent/JP5258349B2/en
Priority to KR1020090021491A priority patent/KR101676333B1/en
Priority to TW098109651A priority patent/TWI447380B/en
Priority to CN200910149761.2A priority patent/CN101587081B/en
Publication of JP2009236825A publication Critical patent/JP2009236825A/en
Application granted granted Critical
Publication of JP5258349B2 publication Critical patent/JP5258349B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、フィルムの撮像により得られる信号に基づいて、フィルムの欠陥部分の信号を欠陥信号として検出する欠陥検出装置及び方法に関する。   The present invention relates to a defect detection apparatus and method for detecting a signal of a defective portion of a film as a defect signal based on a signal obtained by imaging a film.

光学異方性のある液晶層を透明なフィルム上に形成することにより、液晶表示装置の視野角を改善することができる光学補償フィルム(以下「位相差フィルム」という)が知られている。この位相差フィルムは、長尺な透明フィルムに配向膜を形成する工程と、その上に液晶を塗布し乾燥して液晶層を形成する工程を経て製造される(例えば特許文献1参照)。各製造工程は厳格な品質管理の下に置かれているが、異物の混入・付着による分子配向ムラ、支持体となる透明フィルムの厚みムラ、液晶層の塗工ムラ等の欠陥を完全に無くすことは容易ではない。   An optical compensation film (hereinafter referred to as “retardation film”) capable of improving the viewing angle of a liquid crystal display device by forming a liquid crystal layer having optical anisotropy on a transparent film is known. This retardation film is manufactured through a step of forming an alignment film on a long transparent film and a step of forming a liquid crystal layer by applying a liquid crystal thereon and drying (see, for example, Patent Document 1). Each manufacturing process is under strict quality control, but it completely eliminates defects such as molecular orientation unevenness due to foreign substance contamination and adhesion, transparent film thickness unevenness, and liquid crystal layer coating unevenness. It is not easy.

これまで、このような欠陥を検出するために、検査対象のフィルムに対して投光器から光を照射し、その検査対象からの光を受光器で受光し、その受光器が受光した光の信号を解析することによって、欠陥の位置、大きさ、強さをオンラインで把握していた。さらに、投光器と検査対象との間に第1の偏光板を、検査対象と受光器との間に第2の偏光板を、それぞれの偏光板の偏光方向が直交(クロスニコル)するように配置することで、検査対象上の欠陥により散乱・拡散した光のみを、受光器に入るようにする検査方法が知られている(特許文献2参照)。加えて、受光器で得た撮像信号に対しては微分処理を行い、フィルム上の欠陥部分の信号(以下「欠陥信号」という)の傾きを際立たせるとともに、その欠陥以外の部分の信号(以下「ノイズ信号」という)の傾きを緩やかにする方法が一般的に知られている。
特開平9−73081号公報 特開平6−148095号公報
Until now, in order to detect such defects, the film to be inspected is irradiated with light from the projector, the light from the inspection object is received by the light receiver, and the light signal received by the light receiver is received. By analyzing, the position, size, and strength of the defect were grasped online. Furthermore, the first polarizing plate is disposed between the projector and the inspection target, and the second polarizing plate is disposed between the inspection target and the light receiver so that the polarization directions of the respective polarizing plates are orthogonal (crossed Nicols). Thus, an inspection method is known in which only light scattered and diffused by a defect on the inspection object enters the light receiver (see Patent Document 2). In addition, the image pickup signal obtained by the light receiver is subjected to differential processing to make the slope of the signal of the defective portion on the film (hereinafter referred to as “defect signal”) stand out, and the signal of the portion other than the defect (hereinafter referred to as “defect signal”) A method of making the slope of “noise signal” gentle is generally known.
JP-A-9-73081 Japanese Unexamined Patent Publication No. 6-148095

上述のように、一対の偏光板をクロスニコルに配置した欠陥検査では、受光器で検出するフィルムの幅方向の撮像信号は、フィルムの光学的特性や受光器の感度特性から、中央部の輝度が高く、その中央部から両端部にかけて輝度が徐々に低くなる。このような撮像信号に対して微分処理を行った場合には、欠陥信号は、その周辺のノイズ信号の傾きに影響されてしまう。   As described above, in the defect inspection in which a pair of polarizing plates are arranged in crossed Nicols, the imaging signal in the width direction of the film detected by the light receiver is determined by the brightness of the central portion from the optical characteristics of the film and the sensitivity characteristics of the light receiver. And the brightness gradually decreases from the center to both ends. When differential processing is performed on such an image pickup signal, the defect signal is affected by the slope of the surrounding noise signal.

例えば、同程度の欠陥がフィルム上に複数存在し、各欠陥で散乱・錯乱する光の輝度が同じである場合に微分処理を行うと、ノイズ信号の傾きが負の領域にある欠陥信号は、その傾きが正の領域にある欠陥信号よりも小さくなってしまう(図7(B)参照)。そのため、欠陥検出のための閾値が一定の輝度値Th(図7(B)参照)に設定されている場合には、ノイズ信号の傾きが正の領域にある欠陥信号はTh以上であるため検出される一方、ノイズ信号の傾きが負の領域にある欠陥信号はTh未満であるため検出されない。したがって、散乱・錯乱した光の輝度が同じあるにもかかわらず、欠陥部分の信号が検出されないという問題がある。   For example, when there are multiple defects of the same degree on the film and the brightness of the light scattered and confused by each defect is the same, if differential processing is performed, the defect signal where the slope of the noise signal is negative is The inclination becomes smaller than the defect signal in the positive region (see FIG. 7B). Therefore, when the threshold value for defect detection is set to a constant luminance value Th (see FIG. 7B), the defect signal having a positive slope of the noise signal is detected because it is equal to or greater than Th. On the other hand, the defect signal in the region where the slope of the noise signal is negative is less than Th and is not detected. Therefore, there is a problem that the signal of the defective portion is not detected even though the scattered and confused light has the same luminance.

本発明は、欠陥部分の信号を漏れなく検出することができる欠陥検出装置及び方法を提供することを目的とする。   An object of the present invention is to provide a defect detection apparatus and method that can detect a signal of a defective portion without omission.

上記目的を達成するために、本発明は、クロスニコルに配置した第1及び第2偏光板の間にフィルムを挟んだ状態で、フィルムの欠陥を検出する欠陥検出装置において、輝線を1つのみ有する光を、第1偏光板に向けて照射する投光器と、第1偏光板、フィルム、及び第2偏光板を経た光のうち、700nm以上の光を除去する除去光学系と、除去光学系からの光を受光する撮像手段と、撮像手段で得られた撮像信号に対して微分処理を施す微分処理手段と、微分処理手段により得られる微分処理信号のうち、所定の画素範囲内で輝度値が最大となる極大信号と、所定の画素範囲内で輝度値が最小となる極小信号とを検出する信号検出手段と、順次更新される基準信号の輝度値と前記極大信号の輝度値の差分を第1差分値として求めるとともに、基準信号の輝度値と極小信号の輝度値の差分を第2差分値として求める差分値算出手段と、第1差分値と第2差分値を加算した加算値を求める加算手段と、加算値が一定値以上である場合に、所定の画素範囲内の信号を欠陥信号として特定する欠陥信号特定手段を備えることを特徴とする。
In order to achieve the above object, the present invention is a defect detection apparatus for detecting a defect in a film in a state where the film is sandwiched between first and second polarizing plates arranged in crossed Nicols. Of the light that passes through the first polarizing plate, the first polarizing plate, the film, and the second polarizing plate, the removal optical system that removes light of 700 nm or more, and the light from the removal optical system Among the image processing means for receiving the light, the differential processing means for performing differential processing on the imaging signal obtained by the imaging means, and the differential processing signal obtained by the differential processing means, the luminance value is maximum within a predetermined pixel range. A signal detecting means for detecting a local maximum signal and a local minimum signal having a minimum luminance value within a predetermined pixel range, and a difference between the luminance value of the reference signal and the luminance value of the local maximum signal sequentially updated as a first difference As a value The difference value calculation means for obtaining the difference between the luminance value of the reference signal and the luminance value of the minimal signal as the second difference value, the addition means for obtaining the addition value obtained by adding the first difference value and the second difference value, and the addition value is constant When the value is equal to or greater than the value, a defect signal specifying means for specifying a signal within a predetermined pixel range as a defect signal is provided.

フィルムは位相差フィルムであり、第1及び第2の偏光板の偏光方向は位相差フィルムの遅相軸に対して45°の方向に向けられていることが好ましい。   The film is a retardation film, and the polarization directions of the first and second polarizing plates are preferably oriented in the direction of 45 ° with respect to the slow axis of the retardation film.

本発明は、クロスニコルに配置した第1及び第2偏光板の間にフィルムを挟んだ状態で、フィルムの欠陥を検出する欠陥検出方法において、輝線を1つのみ有する光を、第1偏光板に向けて、投光器から照射し、第1偏光板、フィルム、及び第2偏光板を経た光のうち、700nm以上の光を除去光学系で除去し、除去光学系からの光を撮像手段で受光し、撮像手段で得られた撮像信号に対して微分処理を施し、微分処理により得られる微分処理信号のうち、所定の画素範囲内で輝度値が最大となる極大信号と、所定の画素範囲内で輝度値が最小となる極小信号とを検出し、順次更新される基準信号の輝度値と極大信号の輝度値の差分を第1差分値として求めるとともに、基準信号の輝度値と極小信号の輝度値の差分を第2差分値として求め、第1差分値と第2差分値を加算した加算値を求め、加算値が一定値以上である場合に、所定の画素範囲内の信号を欠陥信号として特定することを特徴とする。 The present invention is directed to a defect detection method for detecting a film defect in a state in which a film is sandwiched between first and second polarizing plates arranged in crossed Nicols, and directs light having only one bright line to the first polarizing plate. The light that has been irradiated from the projector and passed through the first polarizing plate, the film, and the second polarizing plate is removed by the removal optical system, and the light from the removal optical system is received by the imaging means. A differential process is performed on the imaging signal obtained by the imaging means, and among the differential processing signals obtained by the differentiation process, a maximum signal having a maximum luminance value within a predetermined pixel range and a luminance within the predetermined pixel range The minimum signal having the minimum value is detected, and the difference between the luminance value of the reference signal and the luminance value of the maximum signal that are sequentially updated is obtained as the first difference value, and the luminance value of the reference signal and the luminance value of the minimum signal are calculated. Find the difference as the second difference value, It obtains a first difference value and the addition value obtained by adding the second difference value, if the sum value is equal to or greater than a predetermined value, and identifies a signal in a predetermined pixel range as a defect signal.

本発明によれば、フィルムの欠陥部分の信号を欠陥信号として検出する際に、所定の画素範囲内で輝度値が最大となる極大信号と最小となる極小信号を求め、基準信号の輝度値と極大信号の輝度値の差分から得られる第1差分値に、基準信号の輝度値と極大信号の輝度値の差分から得られる第2差分値を加算した加算値を求め、この加算値が一定以上である場合に、所定の画素範囲内の信号を欠陥信号として特定することで、欠陥信号を漏れなく確実に検出することができる。   According to the present invention, when a signal of a defective portion of a film is detected as a defect signal, a maximum signal having a maximum luminance value and a minimum signal having a minimum value within a predetermined pixel range are obtained, and the luminance value of the reference signal is determined. An addition value obtained by adding the second difference value obtained from the difference between the luminance value of the reference signal and the luminance value of the reference signal to the first difference value obtained from the difference between the luminance values of the maximum signal is obtained, and the added value is equal to or larger than a certain value. In this case, the defect signal can be reliably detected without omission by specifying the signal within the predetermined pixel range as the defect signal.

図1に示すように、位相差フィルム製造ライン10は、配向膜形成装置11、液晶層形成装置12、欠陥検出装置13、及び巻取装置14を備えている。   As shown in FIG. 1, the retardation film production line 10 includes an alignment film forming device 11, a liquid crystal layer forming device 12, a defect detecting device 13, and a winding device 14.

配向膜形成装置11は、フィルムロール18から送り出された透明樹脂フィルム15の表面に、配向膜形成用樹脂が含まれる塗布液を塗布して加熱乾燥する。これにより、透明樹脂フィルム15の表面に配向膜形成用樹脂層が形成される。そして、配向膜形成装置11は、配向膜形成用樹脂層に対してラビング処理を施して配向膜を形成する。   The alignment film forming apparatus 11 applies a coating solution containing an alignment film forming resin to the surface of the transparent resin film 15 fed from the film roll 18 and heat-drys it. Thereby, an alignment film forming resin layer is formed on the surface of the transparent resin film 15. The alignment film forming apparatus 11 performs a rubbing process on the alignment film forming resin layer to form an alignment film.

液晶層形成装置12は、透明樹脂フィルム15の配向膜上に液晶化合物を含む塗布液を塗布し、塗布後に加熱乾燥して液晶層を形成する。そして、液晶層に対して紫外線を照射して、液晶層を架橋する。これにより、透明樹脂フィルム15の上に配向膜及び液晶層が形成された位相差フィルム16(以下「フィルム」という)が製造される。フィルム16は、以下で詳しく述べる欠陥検出装置13を経た後に、巻取装置14により巻き取られる。ここで、フィルムロール18を出て巻取装置14に巻き取られるまでのフィルム16の搬送方向を、X方向とする。また、X方向はフィルム16の遅相軸方位と一致している。   The liquid crystal layer forming apparatus 12 applies a coating liquid containing a liquid crystal compound on the alignment film of the transparent resin film 15, and heat-drys after application to form a liquid crystal layer. Then, the liquid crystal layer is irradiated with ultraviolet rays to crosslink the liquid crystal layer. Thereby, a retardation film 16 (hereinafter referred to as “film”) in which an alignment film and a liquid crystal layer are formed on the transparent resin film 15 is manufactured. The film 16 is wound up by the winding device 14 after passing through the defect detection device 13 described in detail below. Here, let the conveyance direction of the film 16 until it leaves the film roll 18 and is wound up by the winding device 14 be an X direction. Also, the X direction coincides with the slow axis direction of the film 16.

欠陥検出装置13はフィルム16上に発生した欠陥を検出する。欠陥としては、例えば、傷、厚みムラ、塗工ムラ、分子配向ムラなどが挙げられる。なお、検査対象とするフィルムは位相差フィルムに限る必要はなく、透明体や半透明体などの光を透過する部材であればよく、例えば反射防止フィルムなどがある。   The defect detection device 13 detects defects generated on the film 16. Examples of defects include scratches, thickness unevenness, coating unevenness, and molecular orientation unevenness. The film to be inspected is not limited to the retardation film, and may be any member that transmits light, such as a transparent body or a translucent body, such as an antireflection film.

欠陥検出装置13は、ガイドローラ20,21、ハロゲンランプ22、光量調整部23、受光器24、第1及び第2偏光板25,26、除去光学系27、コントローラ28を備えている。ガイドローラ20,21はフィルム16の搬送路に一定の間隔で離間して配置されている。これらガイドローラ20,21は回動自在であり、フィルム16の搬送に従動して回転する。また、フィルム16は、ガイドローラ20,21への掛け渡しによって平面状に保持されている。また、ガイドローラ21にはエンコーダ30が接続されており、このエンコーダ30はフィルム16が一定長搬送されるごとにエンコーダパルス信号を発生する。エンコーダパルス信号はコントローラ28に送信され、欠陥位置を特定する際に用いられる。   The defect detection device 13 includes guide rollers 20 and 21, a halogen lamp 22, a light amount adjustment unit 23, a light receiver 24, first and second polarizing plates 25 and 26, a removal optical system 27, and a controller 28. The guide rollers 20 and 21 are arranged in the conveyance path of the film 16 so as to be spaced apart at a constant interval. These guide rollers 20 and 21 are rotatable, and rotate following the conveyance of the film 16. Further, the film 16 is held in a planar shape by being passed over the guide rollers 20 and 21. An encoder 30 is connected to the guide roller 21. The encoder 30 generates an encoder pulse signal every time the film 16 is conveyed for a certain length. The encoder pulse signal is transmitted to the controller 28 and used when specifying the defect position.

ハロゲンランプ22はフィルム16の搬送路の下方に設置されている。ハロゲンランプ22は、図2に示すように、波長が600nmと800nmとの間で輝線を1つのみ有する。そのため、フィルム16上に干渉縞が生じることはほとんどない。また、仮に、干渉縞が生じた場合であっても、干渉縞のうち光が強まりあった明るい部分の輝度は、ハロゲンランプ22から発する光の輝度よりもほんのわずか大きい程度である。したがって、干渉縞が欠陥検出の精度に影響を与えることはない。なお、輝線を有さない又は1つのみ有する投光器であれば、ハロゲンランプに限る必要はない。   The halogen lamp 22 is installed below the conveyance path of the film 16. As shown in FIG. 2, the halogen lamp 22 has only one bright line between wavelengths of 600 nm and 800 nm. Therefore, interference fringes hardly occur on the film 16. Even if an interference fringe is generated, the brightness of the bright part of the interference fringe where the light is intense is only slightly larger than the brightness of the light emitted from the halogen lamp 22. Therefore, interference fringes do not affect the accuracy of defect detection. Note that the projector need not be limited to the halogen lamp as long as the projector has no bright line or only one projector.

光量調整部23は、ハロゲンランプ22の近傍に設置されたセンサ(図示省略)で検出した光量検出信号に基づき、光量が一定になるようにハロゲンランプ22を制御している。これにより、光量が均一な光をフィルム16に対して照射することができるため、常に同じ感度で欠陥検出を行うことができる。   The light amount adjusting unit 23 controls the halogen lamp 22 so that the light amount becomes constant based on a light amount detection signal detected by a sensor (not shown) installed in the vicinity of the halogen lamp 22. Thereby, since the film 16 can be irradiated with light having a uniform amount of light, defect detection can always be performed with the same sensitivity.

受光器24はCCDカメラから構成されており、フィルム16の搬送路の上方に設置されている。受光器24は、フィルム16の幅方向にライン状に並べられた多数の撮像素子を備えており、フィルム16が一定長搬送されるごとに、フィルム16をその幅方向に1ラインずつ撮像する。撮像で得られる信号には、フィルム16上の欠陥により散乱・錯乱した光の信号(以下「欠陥信号」という)と、第1及び第2偏光板25,26からわずかに透過する光などの信号(以下「ノイズ信号」という)が含まれている。これら信号はコントローラ28に送信される。なお、受光器は1台に限らず2台以上であってもよい。   The light receiver 24 is composed of a CCD camera, and is installed above the transport path of the film 16. The light receiver 24 includes a large number of imaging elements arranged in a line in the width direction of the film 16, and images the film 16 line by line in the width direction each time the film 16 is conveyed for a certain length. Signals obtained by imaging include signals of light scattered and confused due to defects on the film 16 (hereinafter referred to as “defect signals”), and signals such as light slightly transmitted from the first and second polarizing plates 25 and 26. (Hereinafter referred to as “noise signal”). These signals are transmitted to the controller 28. The number of light receivers is not limited to one and may be two or more.

第1及び第2偏光板25,26はヨウ素系偏光板から構成されており、図3に示すように、第1偏光板25はハロゲンランプ22とフィルム16との間に、第2偏光板26はフィルム16と受光器24との間に設置されている。また、第1及び第2偏光板25,26は、互いの偏光方向25a,26aが直交(クロスニコル)するように配置されている。なお、性能と価格の面からヨウ素系偏光板を用いているが、これに限らず、染料系偏光板、金属偏光子、方解石などからなる偏光板を用いてもよい。   The first and second polarizing plates 25 and 26 are composed of iodine-based polarizing plates, and the first polarizing plate 25 is disposed between the halogen lamp 22 and the film 16 as shown in FIG. Is installed between the film 16 and the light receiver 24. The first and second polarizing plates 25 and 26 are arranged so that their polarization directions 25a and 26a are orthogonal (crossed Nicols). In addition, although the iodine type polarizing plate is used from the surface of performance and a price, you may use not only this but the polarizing plate which consists of a dye type polarizing plate, a metal polarizer, calcite.

第1及び第2偏光板25,26をクロスニコルに配置することで、欠陥がないフィルム16が位置するときには、第1偏光板25により特定の偏光面に偏光した光はもう一方の第2偏光板26において遮られるため、その光は受光器24にほとんど入らない。即ち、受光器24は暗視野状態となる。一方、欠陥があるフィルム16が位置するときには、第1偏光板25により特定の偏光面に偏光した光は欠陥により散乱・錯乱し、その偏光面が変化する。このように偏光面が変化すると、もう一方の第2偏光板26から光が出るようになる。即ち、受光器24は受光状態となる。   By disposing the first and second polarizing plates 25 and 26 in crossed Nicols, when the film 16 having no defect is positioned, the light polarized by the first polarizing plate 25 to the specific polarization plane is the other second polarized light. Since the light is blocked by the plate 26, the light hardly enters the light receiver 24. That is, the light receiver 24 is in a dark field state. On the other hand, when the film 16 having a defect is located, the light polarized on the specific polarization plane by the first polarizing plate 25 is scattered and confused by the defect, and the polarization plane changes. When the polarization plane changes in this way, light comes out from the other second polarizing plate 26. That is, the light receiver 24 is in a light receiving state.

また、第1偏光板の偏光方向25aはX方向(フィルム16の遅相軸方向)に対する角度θが45°となるように設定されており、第2偏光板の偏光方向26aはX方向に対する角度(90°−θ)が45°になるように設定されている。   The polarization direction 25a of the first polarizing plate is set so that the angle θ with respect to the X direction (the slow axis direction of the film 16) is 45 °, and the polarization direction 26a of the second polarizing plate is an angle with respect to the X direction. (90 ° −θ) is set to be 45 °.

図4は、角度θに対して、第1偏光板25に入射する入射光の光量と第2偏光板26を透過する透過光の光量との比率(透過光量比(%))がどのように変化するかを示すグラフである。また、図5は、フィルム16の位相差に対して透過光量比がどのように変化するかを示すグラフであり、「○」は角度θが0°のときの透過光量比を、「□」は角度θが15°のときの透過光量比を、「△」は角度θが30°のときの透過光量比を、「◇」は角度θが45°のときの透過光量比を示している。   FIG. 4 shows the ratio of the amount of incident light incident on the first polarizing plate 25 and the amount of transmitted light transmitted through the second polarizing plate 26 with respect to the angle θ (transmitted light amount ratio (%)). It is a graph which shows whether it changes. FIG. 5 is a graph showing how the transmitted light amount ratio changes with respect to the phase difference of the film 16, and “◯” indicates the transmitted light amount ratio when the angle θ is 0 °, and “□”. Indicates the transmitted light amount ratio when the angle θ is 15 °, “Δ” indicates the transmitted light amount ratio when the angle θ is 30 °, and “◇” indicates the transmitted light amount ratio when the angle θ is 45 °. .

図4に示すように、角度θが45°のときに、透過光量比が最も高くなる。したがって、角度θを45°とすることで、傷などの欠陥により散乱・錯乱する光の光量が増加するため、S/N比を向上させることができる。また、図5に示すように、角度θが0°から45°にかけて徐々に透過光量比の位相差依存性が強くなり、角度θが45°のときに最も位相差依存性が強くなる。塗布ムラなどの位相差欠陥はその位相差欠陥で散乱・錯乱する光の光量が少ないため検出されないこともあったが、角度θを45°とすることで、位相差欠陥の部分の透過光量比が大きくなるため、傷などの欠陥だけでなく位相差欠陥も確実に検出することができる。   As shown in FIG. 4, when the angle θ is 45 °, the transmitted light amount ratio is the highest. Therefore, by setting the angle θ to 45 °, the amount of light scattered and confused by defects such as scratches increases, so that the S / N ratio can be improved. Further, as shown in FIG. 5, the phase difference dependency of the transmitted light amount ratio gradually increases as the angle θ increases from 0 ° to 45 °, and the phase difference dependency increases most when the angle θ is 45 °. Phase difference defects such as coating unevenness may not be detected because the amount of light scattered and confused by the phase difference defect is small, but by setting the angle θ to 45 °, the transmitted light amount ratio of the phase difference defect part Therefore, not only defects such as scratches but also phase difference defects can be reliably detected.

除去光学系27は赤外線カットフィルタから構成されており、受光器24の直前に設置されている。除去光学系27は、第2偏光板26からの光のうち、波長が700nm以上の光を除去する。これにより、波長が700nm未満の光のみが受光器24に入射するため、以下に示す理由から、高いS/N比で精度良く欠陥を検出することができる。   The removal optical system 27 is composed of an infrared cut filter and is installed immediately before the light receiver 24. The removal optical system 27 removes light having a wavelength of 700 nm or more from the light from the second polarizing plate 26. As a result, only light having a wavelength of less than 700 nm is incident on the light receiver 24, so that the defect can be detected with high accuracy at a high S / N ratio for the following reason.

図6は、欠陥検出装置13から除去光学系27を除いた状態で、第1偏光板の偏光方向25aの角度θを45°にした場合における第1及び第2偏光板25,26の光の透過率を示しており、これら第1及び第2偏光板25,26は、波長が700nmまでの光をほぼ遮光するが、波長が700nmを超える光については高い透過率で透過してしまう。一方、受光器24は、波長が700nmを超える光に対しても感度を有している。そのため、波長が700nmを超える光が受光器24のノイズ信号に含まれてしまう。   FIG. 6 shows the state of the light of the first and second polarizing plates 25 and 26 when the angle θ of the polarization direction 25a of the first polarizing plate is 45 ° with the removal optical system 27 removed from the defect detection device 13. The first and second polarizing plates 25 and 26 substantially block light with a wavelength up to 700 nm, but transmit light with a high transmittance with respect to light with a wavelength exceeding 700 nm. On the other hand, the light receiver 24 is sensitive to light having a wavelength exceeding 700 nm. Therefore, light having a wavelength exceeding 700 nm is included in the noise signal of the light receiver 24.

そこで、波長が700nm以上の光(ハッチングエリア35内の光)を除去光学系27により除去することで、波長が700nm未満の光のみが受光器24に入射する。そのため、波長が700nm以上の光が、受光器24のノイズ信号に含まれることがなくなる。これにより、ノイズ信号を最小限に抑えることができるため、十分に大きいS/N比を得ることができる。なお、欠陥である塗布スジを検出したときのS/N比は、波長が700nm以上の光を除去しない場合には1.5であるのに対して、波長が700nm以上の光を除去した場合には2.1に向上する。   Therefore, light having a wavelength of 700 nm or more (light in the hatching area 35) is removed by the removal optical system 27 so that only light having a wavelength of less than 700 nm enters the light receiver 24. For this reason, light having a wavelength of 700 nm or more is not included in the noise signal of the light receiver 24. Thereby, since a noise signal can be suppressed to the minimum, a sufficiently large S / N ratio can be obtained. Note that the S / N ratio when a coating stripe that is a defect is detected is 1.5 when light having a wavelength of 700 nm or more is not removed, whereas it is 1.5 when light having a wavelength of 700 nm or more is removed. Will improve to 2.1.

除去光学系27として、赤外線カットフィルタを用いたが、その他、誘電体多層膜を使用したバンドパスフィルタ、モノクロメータ、波長カットフィルタ、色ガラスフィルタ、回折格子などを用いてもよい。また、除去光学系27で除去する光の波長域は700nm以上に限る必要はなく、欠陥検出に使用する偏光板の種類に応じて適宜変更してもよい。また、波長600nm以上の光を除去する除去光学系を、ハロゲンランプ22と第1偏光板25との間に設置して、ハロゲンランプ22の光から輝線を除去してもよい。   Although an infrared cut filter is used as the removal optical system 27, a band pass filter using a dielectric multilayer film, a monochromator, a wavelength cut filter, a colored glass filter, a diffraction grating, or the like may be used. Further, the wavelength range of the light removed by the removal optical system 27 is not necessarily limited to 700 nm or more, and may be appropriately changed according to the type of polarizing plate used for defect detection. Further, a removal optical system that removes light having a wavelength of 600 nm or more may be installed between the halogen lamp 22 and the first polarizing plate 25 to remove bright lines from the light from the halogen lamp 22.

除去光学系27の設置位置は、受光器24の直前(以下「本発明の設置位置」という)以外に、以下のような6つの設置位置が考えられる。第1の設置位置はハロゲンランプ22と第1偏光板25との間、第2の設置位置は受光器24と第2偏光板26との間、第3の設置位置は第2偏光板26とフィルム16との間、第4の設置位置はフィルム16と第1偏光板25との間、第5の設置位置はハロゲンランプ22の内部、第6の設置位置はハロゲンランプ22との一体型である。   In addition to the position immediately before the light receiver 24 (hereinafter referred to as “installation position of the present invention”), the following six installation positions are conceivable for the removal optical system 27. The first installation position is between the halogen lamp 22 and the first polarizing plate 25, the second installation position is between the light receiver 24 and the second polarizing plate 26, and the third installation position is the second polarizing plate 26. Between the film 16, the fourth installation position is between the film 16 and the first polarizing plate 25, the fifth installation position is inside the halogen lamp 22, and the sixth installation position is integrated with the halogen lamp 22. is there.

上記第1〜第6の設置位置のうちいずれの設置位置が最適であるかを以下検討する。一般的に偏光板はハロゲンランプ22の光や熱に対して弱いことから第2〜第4の設置位置は好ましくない。これに対して、第1の設置位置では、ハロゲンランプ22からの光が除去光学系27を介して間接的に偏光板に当たるため、光や熱により偏光板の性能を劣化させることがない。したがって、第1の設置位置は好ましい。   Which of the first to sixth installation positions is optimal will be examined below. Generally, since the polarizing plate is weak against the light and heat of the halogen lamp 22, the second to fourth installation positions are not preferable. In contrast, at the first installation position, the light from the halogen lamp 22 indirectly strikes the polarizing plate via the removal optical system 27, so that the performance of the polarizing plate is not deteriorated by light or heat. Therefore, the first installation position is preferable.

また、受光器24のフォーカスはフィルムに合わせていることから、除去光学系27とフィルム16との距離はできるだけ離れているほうがよい。そのため、第3及び第4の設置位置は好ましくない。また、第6の設置位置については、ハロゲンランプ22を交換する度に欠陥の検出精度が変わってしまうため好ましくない。これに対して、除去光学系27をハロゲンランプ22内に配置すると、その除去光学系27は小さいもので済むため、安価となる。よって、第5の設置位置は好ましい。   Since the focus of the light receiver 24 is adjusted to the film, the distance between the removal optical system 27 and the film 16 should be as far as possible. Therefore, the third and fourth installation positions are not preferable. Further, the sixth installation position is not preferable because the defect detection accuracy changes every time the halogen lamp 22 is replaced. On the other hand, if the removal optical system 27 is disposed in the halogen lamp 22, the removal optical system 27 can be small, and hence the cost is low. Therefore, the fifth installation position is preferable.

以上から、本発明の設置位置、第1の設置位置、及び第5の設置位置のいずれかに除去光学系27を設置することが好ましいが、本発明の設置位置に除去光学系27を設置したときに最もS/N比が高くなる。したがって、本発明の設置位置に除去光学系27を設置することが最も好ましい。   From the above, it is preferable to install the removal optical system 27 at any of the installation position, the first installation position, and the fifth installation position of the present invention, but the removal optical system 27 is installed at the installation position of the present invention. Sometimes the S / N ratio is highest. Therefore, it is most preferable to install the removal optical system 27 at the installation position of the present invention.

コントローラ28は、受光器24で得られた撮像信号に基づき欠陥信号を検出する欠陥信号検出部28aと、欠陥信号とエンコーダ30からのエンコーダパルス信号とに基づきフィルム16上の欠陥の位置を特定する欠陥位置特定部28aとを備えている。欠陥信号検出部28aでは、まず、図7(A)に示す撮像信号40に対して微分処理を施す。これにより、図7(B)に示すように、輝度値の変化が大きい部分を際立たせた信号42(以下「微分処理信号」という)が得られる。なお、図7及び下記で示す図8の信号は一例であり、これに限られない。   The controller 28 specifies the position of the defect on the film 16 based on the defect signal detection unit 28 a that detects the defect signal based on the imaging signal obtained by the light receiver 24, and the defect signal and the encoder pulse signal from the encoder 30. And a defect position specifying unit 28a. In the defect signal detection unit 28a, first, differentiation processing is performed on the imaging signal 40 shown in FIG. As a result, as shown in FIG. 7B, a signal 42 (hereinafter referred to as “differential processing signal”) in which a portion with a large change in the luminance value is highlighted is obtained. Note that the signals in FIG. 7 and FIG. 8 shown below are examples, and the present invention is not limited to this.

次に、図8に示すように、微分処理信号42の中から、一定の画素範囲内で輝度値が最大となる極大信号50a,51a,52aと、一定の画素範囲内で輝度値が最小となる極小信号50b,51b,52bを特定する。そして、予め設定した基準信号55の輝度値と極大信号50a,51a,52aの輝度値との差分LA1,LB1,LC1(以下「第1差分値」という)を求めるとともに、基準信号45の輝度値と極小信号50b,51b,52bの輝度値との差分LA2,LB2,LC2(以下「第2差分値」という)を求める。ここで、基準信号55は、数秒前に受光器24で検出したノイズ信号を平均化したものであり、順次更新される。   Next, as shown in FIG. 8, from the differential processing signal 42, maximum signals 50a, 51a, and 52a in which the luminance value is maximum within a certain pixel range, and the luminance value is minimum within the certain pixel range. The minimum signals 50b, 51b, and 52b are specified. Then, differences LA1, LB1, and LC1 (hereinafter referred to as “first difference values”) between the preset luminance value of the reference signal 55 and the luminance values of the local maximum signals 50a, 51a, and 52a are obtained, and the luminance value of the reference signal 45 is also obtained. And differences LA2, LB2, and LC2 (hereinafter referred to as “second difference values”) between the luminance values of the minimum signals 50b, 51b, and 52b. Here, the reference signal 55 is obtained by averaging the noise signals detected by the light receiver 24 several seconds ago, and is sequentially updated.

次に、第1差分値LA1,LB1,LC1と第2差分値LA2,LB2,LC2とを加算した加算値LA,LB,LCを求める。そして、加算値LA,LB,LCが一定値以上であるか否かを判定する。判定の結果、加算値LA,LB,LCが一定値以上である場合には、その加算値を求めた画素範囲内の信号50,51,52が欠陥信号であると判定される。図8では、加算値LA,LB,LCは全て同じ値であるため、それら加算値LA,LB,LCを求めた画素範囲内の信号50,51,52を欠陥信号として特定する。   Next, addition values LA, LB, and LC obtained by adding the first difference values LA1, LB1, and LC1 and the second difference values LA2, LB2, and LC2 are obtained. Then, it is determined whether or not the added values LA, LB, and LC are equal to or greater than a certain value. If the addition values LA, LB, and LC are greater than or equal to a certain value as a result of the determination, it is determined that the signals 50, 51, and 52 within the pixel range for which the addition value has been obtained are defective signals. In FIG. 8, since the addition values LA, LB, and LC are all the same value, the signals 50, 51, and 52 within the pixel range for which the addition values LA, LB, and LC are obtained are specified as defect signals.

従来では、図7(B)に示すように、微分処理信号42に対して一定の閾値Thを設定し、その閾値Thを超える信号を欠陥信号と判定していた場合には、輝度の変化が大きい信号であっても閾値Th以下の信号の場合には、欠陥信号として判定されなかった。これに対して、本発明では、閾値Thに代えて、上述のように、輝度値の変化量を示す加算値に基づき欠陥信号の検出を行うことで、閾値Th以下であっても輝度の変化が大きい信号であれば、欠陥信号として漏れなく確実に検出することができる。   Conventionally, as shown in FIG. 7B, when a certain threshold value Th is set for the differential processing signal 42 and a signal exceeding the threshold value Th is determined as a defect signal, a change in luminance occurs. Even a large signal was not determined as a defect signal when the signal was equal to or less than the threshold Th. On the other hand, in the present invention, instead of the threshold value Th, as described above, the defect signal is detected based on the added value indicating the amount of change in the luminance value, so that the luminance change even when the threshold value Th is not more than the threshold value Th. If the signal is large, it can be reliably detected as a defect signal without omission.

上述したように、フィルム16の遅相軸に対する第1偏光板の偏光方向の角度θを45°とすることで、フィルム16の位相差に従って透過光量比が大きくなるため、位相差欠陥などの検出が可能となる。しかしながら、フィルム16は、幅方向の中央部が位相差が高く、その中央部から端部にかけて位相差が徐々に低くなるという位相差分布を有してるため、上記一定の閾値Thで欠陥判定を行った場合には、確実に欠陥検出が行われない場合がある。これに対して、本発明では、上記一定の閾値Thの代わりに、輝度値の変化量に基づき欠陥検出を行うことで、フィルム16の位相差分布にかかわらず、確実に欠陥検出を行うことができる。   As described above, by setting the angle θ of the polarization direction of the first polarizing plate to 45 ° with respect to the slow axis of the film 16, the transmitted light amount ratio increases according to the phase difference of the film 16. Is possible. However, since the film 16 has a phase difference distribution in which the phase difference is high in the central portion in the width direction and gradually decreases from the central portion to the end portion, the defect determination is performed with the constant threshold Th. If performed, defect detection may not be performed reliably. On the other hand, in the present invention, defect detection can be performed reliably regardless of the phase difference distribution of the film 16 by performing defect detection based on the amount of change in luminance value instead of the constant threshold Th. it can.

次に、本発明の欠陥検出装置の作用について説明する。欠陥検出装置13には、配向膜形成装置11及び液晶層形成装置12で製造されたフィルム16が送り込まれる。フィルム16は第1偏光板25と第2偏光板26の間を走行する。それら第1及び第2偏光板25,26に対しては、ハロゲンランプ22から光が発せられている。   Next, the operation of the defect detection apparatus of the present invention will be described. A film 16 manufactured by the alignment film forming device 11 and the liquid crystal layer forming device 12 is fed into the defect detection device 13. The film 16 travels between the first polarizing plate 25 and the second polarizing plate 26. Light is emitted from the halogen lamp 22 to the first and second polarizing plates 25 and 26.

ハロゲンランプ22からの光は、第1偏光板25により特定の偏光面に偏光する。ここで、フィルム16上に欠陥がない場合には偏光した光は第2偏光板26により遮られ、一方フィルム16上に欠陥がある場合には、偏光した光は欠陥により散乱・錯乱し、その散乱・錯乱した光が第2偏光板26から出るようになる。第2偏光板26から出た光は、除去光学系27により波長が700nm以上の光が除去される。そして、除去光学系27を経た光は、受光器24で受光される。   Light from the halogen lamp 22 is polarized to a specific polarization plane by the first polarizing plate 25. Here, when there is no defect on the film 16, the polarized light is blocked by the second polarizing plate 26. On the other hand, when there is a defect on the film 16, the polarized light is scattered and confused by the defect. The scattered / confused light comes out of the second polarizing plate 26. The light emitted from the second polarizing plate 26 is removed by the removal optical system 27 with a wavelength of 700 nm or more. The light that has passed through the removal optical system 27 is received by the light receiver 24.

受光器24は、フィルム16が一定長送られるごとに1ライン分の撮像を行う。欠陥信号検出部28aでは、受光器24で得られた撮像信号に対して微分処理を施し、微分処理信号を生成する。そして、微分処理信号から極大信号と極小信号を検出する。そして、基準信号の輝度値と極大信号の輝度値との差分値を第1差分値として求めるとともに、基準信号の輝度値と極小信号の輝度値との差分値を第2差分値として求める。そして、第1差分値と第2差分値を加算した加算値が一定値以上である場合には、その加算値を求めた画素範囲内の信号を欠陥信号として特定する。そして、欠陥位置特定部28bは、欠陥信号とエンコーダパルス信号とに基づきフィルム16上の欠陥位置を特定する。コントローラ28での結果は、ディスプレイ(図示省略)に表示される。   The light receiver 24 performs imaging for one line every time the film 16 is fed for a certain length. In the defect signal detection unit 28a, differential processing is performed on the imaging signal obtained by the light receiver 24 to generate a differential processing signal. Then, a maximum signal and a minimum signal are detected from the differential processing signal. Then, the difference value between the luminance value of the reference signal and the luminance value of the maximum signal is obtained as the first difference value, and the difference value between the luminance value of the reference signal and the luminance value of the minimum signal is obtained as the second difference value. And when the addition value which added the 1st difference value and the 2nd difference value is more than a fixed value, the signal in the pixel range which calculated | required the addition value is specified as a defect signal. And the defect position specific | specification part 28b specifies the defect position on the film 16 based on a defect signal and an encoder pulse signal. The result of the controller 28 is displayed on a display (not shown).

位相差フィルム製造ラインの概略図である。It is the schematic of a phase difference film manufacturing line. ハロゲンランプの分光放射強度を示すグラフである。It is a graph which shows the spectral radiant intensity of a halogen lamp. 欠陥検出装置の斜視図である。It is a perspective view of a defect detection apparatus. 角度θと透過光量比との関係を示すグラフである。It is a graph which shows the relationship between angle (theta) and transmitted light amount ratio. フィルムの位相差と透過光量比との関係を示すグラフである。It is a graph which shows the relationship between the phase difference of a film, and transmitted light amount ratio. クロスニコルに配置した一対の偏光板の分光透過率を示すグラフである。It is a graph which shows the spectral transmission factor of a pair of polarizing plate arrange | positioned at cross Nicol. (A)は撮像信号を示すグラフであり、(B)は微分処理信号を示すグラフである。(A) is a graph which shows an imaging signal, (B) is a graph which shows a differentiation process signal. 輝度値の変化を示す加算値を求める方法を説明する説明図である。It is explanatory drawing explaining the method of calculating | requiring the addition value which shows the change of a luminance value.

符号の説明Explanation of symbols

13 欠陥検出装置
16 フィルム
24 受光器
28 コントローラ
28a 欠陥信号検出部
28b 欠陥位置特定部
40 撮像信号
42 微分処理信号
50a,51a,52a 極大信号
50b,51b,52b 極小信号
55 基準信号
LA1,LB1,LC1 第1差分値
LA2,LB2,LC2 第2差分値
LA,LB,LC 加算値
DESCRIPTION OF SYMBOLS 13 Defect detection apparatus 16 Film 24 Light receiver 28 Controller 28a Defect signal detection part 28b Defect position specific | specification part 40 Imaging signal 42 Differentiated signal 50a, 51a, 52a Maximum signal 50b, 51b, 52b Minimum signal 55 Reference signal LA1, LB1, LC1 1st difference value LA2, LB2, LC2 2nd difference value LA, LB, LC addition value

Claims (3)

クロスニコルに配置した第1及び第2偏光板の間にフィルムを挟んだ状態で、前記フィルムの欠陥を検出する欠陥検出装置において、
輝線を1つのみ有する光を、前記第1偏光板に向けて照射する投光器と、
前記第1偏光板、前記フィルム、及び前記第2偏光板を経た光のうち、700nm以上の光を除去する除去光学系と、
前記除去光学系からの光を受光する撮像手段と、
前記撮像手段で得られた撮像信号に対して微分処理を施す微分処理手段と、
前記微分処理手段により得られる微分処理信号のうち、所定の画素範囲内で輝度値が最大となる極大信号と、前記所定の画素範囲内で輝度値が最小となる極小信号とを検出する信号検出手段と、
順次更新される基準信号の輝度値と前記極大信号の輝度値の差分を第1差分値として求めるとともに、前記基準信号の輝度値と前記極小信号の輝度値の差分を第2差分値として求める差分値算出手段と、
前記第1差分値と前記第2差分値を加算した加算値を求める加算手段と、
前記加算値が一定値以上である場合に、前記所定の画素範囲内の信号を欠陥信号として特定する欠陥信号特定手段を備えることを特徴とする欠陥検出装置。
In the defect detection device for detecting defects of the film in a state where the film is sandwiched between the first and second polarizing plates arranged in crossed Nicols,
A projector for irradiating light having only one emission line toward the first polarizing plate;
A removal optical system that removes light of 700 nm or more out of light that has passed through the first polarizing plate, the film, and the second polarizing plate;
Imaging means for receiving light from the removal optical system;
Differential processing means for performing differential processing on the imaging signal obtained by the imaging means;
Signal detection for detecting a maximum signal having a maximum luminance value within a predetermined pixel range and a minimum signal having a minimum luminance value within the predetermined pixel range among the differential processing signals obtained by the differential processing means. Means,
The difference between the luminance value of the reference signal and the luminance value of the maximum signal that are sequentially updated is determined as a first difference value, and the difference between the luminance value of the reference signal and the luminance value of the minimum signal is determined as a second difference value. A value calculating means;
Adding means for obtaining an added value obtained by adding the first difference value and the second difference value;
A defect detection apparatus comprising defect signal specifying means for specifying a signal within the predetermined pixel range as a defect signal when the added value is equal to or greater than a certain value.
前記フィルムは位相差フィルムであり、前記第1及び第2の偏光板の偏光方向は前記位相差フィルムの遅相軸に対して45°の方向に向けられていることを特徴とする請求項1記載の欠陥検出装置。   The said film is a phase difference film, The polarization direction of the said 1st and 2nd polarizing plate is orient | assigned to the direction of 45 degrees with respect to the slow axis of the said phase difference film. The defect detection apparatus described. クロスニコルに配置した第1及び第2偏光板の間にフィルムを挟んだ状態で、前記フィルムの欠陥を検出する欠陥検出方法において、
輝線を1つのみ有する光を、前記第1偏光板に向けて、投光器から照射し、
前記第1偏光板、前記フィルム、及び前記第2偏光板を経た光のうち、700nm以上の光を除去光学系で除去し、
前記除去光学系からの光を撮像手段で受光し、
前記撮像手段で得られた撮像信号に対して微分処理を施し、
前記微分処理により得られる微分処理信号のうち、所定の画素範囲内で輝度値が最大となる極大信号と、前記所定の画素範囲内で輝度値が最小となる極小信号とを検出し、
順次更新される基準信号の輝度値と前記極大信号の輝度値の差分を第1差分値として求めるとともに、前記基準信号の輝度値と前記極小信号の輝度値の差分を第2差分値として求め、
前記第1差分値と前記第2差分値を加算した加算値を求め、
前記加算値が一定値以上である場合に、前記所定の画素範囲内の信号を欠陥信号として特定することを特徴とする欠陥検出方法。
In a defect detection method for detecting defects in the film, with the film sandwiched between first and second polarizing plates arranged in crossed Nicols,
Irradiating light having only one bright line from the projector toward the first polarizing plate,
Of the light that has passed through the first polarizing plate, the film, and the second polarizing plate, light having a wavelength of 700 nm or more is removed by a removal optical system,
The image pickup means receives light from the removal optical system,
A differential process is performed on the imaging signal obtained by the imaging means,
Among the differential processing signals obtained by the differential processing, a maximum signal having a maximum luminance value within a predetermined pixel range and a minimum signal having a minimum luminance value within the predetermined pixel range are detected,
The difference between the luminance value of the reference signal and the luminance value of the maximum signal that are sequentially updated is determined as a first difference value, and the difference between the luminance value of the reference signal and the luminance value of the minimum signal is determined as a second difference value.
Obtain an added value obtained by adding the first difference value and the second difference value;
A defect detection method characterized by identifying a signal within the predetermined pixel range as a defect signal when the addition value is a certain value or more.
JP2008085793A 2008-03-28 2008-03-28 Defect detection apparatus and method Active JP5258349B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2008085793A JP5258349B2 (en) 2008-03-28 2008-03-28 Defect detection apparatus and method
KR1020090021491A KR101676333B1 (en) 2008-03-28 2009-03-13 Method and device for detecting defect
TW098109651A TWI447380B (en) 2008-03-28 2009-03-25 Defect detecting method and defect detecting device
CN200910149761.2A CN101587081B (en) 2008-03-28 2009-03-27 Defect detecting method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008085793A JP5258349B2 (en) 2008-03-28 2008-03-28 Defect detection apparatus and method

Publications (2)

Publication Number Publication Date
JP2009236825A JP2009236825A (en) 2009-10-15
JP5258349B2 true JP5258349B2 (en) 2013-08-07

Family

ID=41250939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008085793A Active JP5258349B2 (en) 2008-03-28 2008-03-28 Defect detection apparatus and method

Country Status (2)

Country Link
JP (1) JP5258349B2 (en)
CN (1) CN101587081B (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5556212B2 (en) * 2010-02-08 2014-07-23 住友化学株式会社 Defect inspection method for liquid crystal panel with polarizing plate
JP2011248079A (en) * 2010-05-26 2011-12-08 Sumitomo Chemical Co Ltd Optical sheet manufacturing method and optical sheet manufacturing apparatus
JP2012163533A (en) * 2011-02-09 2012-08-30 Fujifilm Corp Defect inspection apparatus and method for lenticular sheet
KR101294220B1 (en) * 2011-11-21 2013-08-07 동우 화인켐 주식회사 Apparatus for acquiring image of patterned retarder
US20130215419A1 (en) * 2012-02-22 2013-08-22 Cooper S. K. Kuo Optical inspection device
JP2013205091A (en) * 2012-03-27 2013-10-07 Dainippon Printing Co Ltd Film inspection system, and film inspection method
CN103487381A (en) * 2013-09-16 2014-01-01 达尼特材料科技(芜湖)有限公司 Membrane uniformity detection method and device
CN104390976A (en) * 2014-11-12 2015-03-04 河北铠朗新型材料科技有限公司 Online film coating monitoring system
JP6478728B2 (en) * 2015-03-11 2019-03-06 株式会社ディスコ Protective film detection method
JP6924002B2 (en) * 2016-07-22 2021-08-25 日東電工株式会社 Inspection equipment and inspection method
WO2019244484A1 (en) * 2018-06-22 2019-12-26 三菱電機株式会社 Laser processing device
WO2021010157A1 (en) * 2019-07-16 2021-01-21 コニカミノルタ株式会社 Method for detecting orientation non-uniformity defect in retardation film and apparatus for detecting orientation non-uniformity defect in retardation film

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09229642A (en) * 1996-02-27 1997-09-05 Matsushita Electric Ind Co Ltd Method for inspecting appearance of electronic part
US6650410B2 (en) * 2000-03-08 2003-11-18 Fuji Photo Film Co., Ltd. Apparatus, system and method for checking film for defects
JP4440485B2 (en) * 2000-03-08 2010-03-24 富士フイルム株式会社 Film defect inspection apparatus, defect inspection system, defect inspection method, and method for manufacturing film having birefringence characteristics
JP4396160B2 (en) * 2003-07-31 2010-01-13 住友化学株式会社 Foreign film inspection method for transparent film
JP4960026B2 (en) * 2006-06-09 2012-06-27 富士フイルム株式会社 Film defect inspection apparatus and film manufacturing method
JP2007333608A (en) * 2006-06-16 2007-12-27 Toray Ind Inc Inspection device and inspection method of irregular flaw on sheet

Also Published As

Publication number Publication date
CN101587081A (en) 2009-11-25
JP2009236825A (en) 2009-10-15
CN101587081B (en) 2014-04-23

Similar Documents

Publication Publication Date Title
JP5258349B2 (en) Defect detection apparatus and method
JP5024935B2 (en) Device and method for detecting defect of light transmitting member
JP4628824B2 (en) Film defect inspection apparatus and film manufacturing method
US7428049B2 (en) Apparatus and method for inspecting film defect
JP5825278B2 (en) Defect inspection apparatus and defect inspection method
KR101744606B1 (en) Film defect inspection device, defect inspection method, and release film
KR20180008721A (en) MEASURING APPARATUS AND METHOD FOR THIN FILM PROVIDED WITH TRANSPARENT SUBSTRATE
JP2008151814A (en) Defect inspection device for film, and defect inspection method for film
JP2008298566A (en) Apparatus and method for inspecting defect of film
KR101676333B1 (en) Method and device for detecting defect
JP2009236826A (en) Defect detector and defect detection method
JP3591160B2 (en) Surface inspection equipment
JP3109254B2 (en) Pinhole inspection equipment
JP2000028546A (en) Defect inspecting method and device for optically compensating film
JP2006078426A (en) Apparatus and method for inspecting defect
KR20100058012A (en) Optical system for detecting defect
WO1998015871A1 (en) Method of manufacturing liquid crystal display, optically inspecting instrument, and optically inspecting method
JP2013501244A (en) Non-uniformity measurement system and method for glass substrate
KR20140088789A (en) Inspection device for optical film
JP4728830B2 (en) Optical anisotropy parameter measuring method and measuring apparatus
JP2008241469A (en) Defect inspection apparatus
JP2007240343A (en) Method for inspecting application uneveness
JP2016070856A (en) Film inspection device
JP2009025593A (en) Inspection method of optical compensation plate
TW200526920A (en) Testing method for polariscope

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100716

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120321

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130327

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130423

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160502

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5258349

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250