JP5238419B2 - Wiring state detection method for power meter - Google Patents

Wiring state detection method for power meter Download PDF

Info

Publication number
JP5238419B2
JP5238419B2 JP2008230844A JP2008230844A JP5238419B2 JP 5238419 B2 JP5238419 B2 JP 5238419B2 JP 2008230844 A JP2008230844 A JP 2008230844A JP 2008230844 A JP2008230844 A JP 2008230844A JP 5238419 B2 JP5238419 B2 JP 5238419B2
Authority
JP
Japan
Prior art keywords
phase
voltage
current
power
line voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008230844A
Other languages
Japanese (ja)
Other versions
JP2010066055A (en
Inventor
秀彦 春原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hioki EE Corp
Original Assignee
Hioki EE Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hioki EE Corp filed Critical Hioki EE Corp
Priority to JP2008230844A priority Critical patent/JP5238419B2/en
Publication of JP2010066055A publication Critical patent/JP2010066055A/en
Application granted granted Critical
Publication of JP5238419B2 publication Critical patent/JP5238419B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、三相3線の電力ラインの電力を2電力計法にて測定する電力測定器における結線状態検出方法に関するものである。   The present invention relates to a connection state detection method in a power meter that measures the power of a three-phase three-wire power line by a two-watt meter method.

三相3線の電力ラインの電力測定には、通常、2電力計法が採用される。2電力計法においては、図6に模式的に示すように、R,S,Tの各相のうち、例えばR−S間の線間電圧U1,T−S間の線間電圧U2,R相の相電流I1およびT相の相電流I2を測定して、(U1×I1)+(U2×I2)より総電力が求められる。なお、U1,I1,U2,I2はベクトル値である。   For the power measurement of the three-phase three-wire power line, a two-watt meter method is usually employed. In the two-watt meter method, as schematically shown in FIG. 6, among the R, S, and T phases, for example, the line voltage U1 between R-S, the line voltage U2, R between T-S, for example. The phase current I1 and the phase current I2 of the T phase are measured, and the total power is obtained from (U1 × I1) + (U2 × I2). U1, I1, U2, and I2 are vector values.

また、測定にあたって、各相に電圧計の測定プローブと電流計の測定プローブとを取り付ける(結線する)が、往々にして間違える場合がある。特に、測定プローブを接続する相を間違えたり、電流計の測定プローブにクランプセンサを用いる場合には、電流の流れ方向と逆向きにクランプしてしまうことがある。   In addition, in measurement, a voltmeter measurement probe and an ammeter measurement probe are attached (connected) to each phase. In particular, when the phase for connecting the measurement probe is wrong or when a clamp sensor is used for the measurement probe of the ammeter, the current probe may be clamped in the opposite direction.

そこで、上記のような誤結線をチェックするため、線間電圧U1,U2と相電流I1,I2の位相関係により結線状態を確認できるようにしている。その一例が特許文献1に記載されており、これについて説明する。   Therefore, in order to check the erroneous connection as described above, the connection state can be confirmed by the phase relationship between the line voltages U1 and U2 and the phase currents I1 and I2. An example of this is described in Patent Document 1, which will be described.

特許文献1に記載されている電力測定器では、電圧入力部と電流入力部とから入力される交流電圧と交流電流とをA/D変換した波形データを波形メモリに格納したのち、交流電圧についてフーリエ変換して基本波成分を抽出する。   In the power measuring instrument described in Patent Document 1, the waveform data obtained by A / D converting the AC voltage and the AC current input from the voltage input unit and the current input unit are stored in the waveform memory, and then the AC voltage is used. The fundamental wave component is extracted by Fourier transform.

そして、基本波成分を用いて交流電圧の位相角を算出し、例えばディスプレイの表示画面に、図7に示すような線間電圧U1,U2、相電流I1,I2の位相関係をベクトルで表示する。   Then, the phase angle of the AC voltage is calculated using the fundamental wave component, and the phase relationship between the line voltages U1 and U2 and the phase currents I1 and I2 as shown in FIG. 7 is displayed as a vector on the display screen of the display, for example. .

また、例えば線間電圧U1を基準としたときの相電流I1,I2の位相差をθ1,θ2として、次のような位相判定を行う(なお、下記の閾値は一例で、機種ごとに異なる場合がある)。
I1−U1位相差判定;−90゜≦θ1≦30゜(範囲内OK,範囲超NG)
I2−U2位相差判定;30゜≦θ2≦150゜(範囲内OK,範囲超NG)
In addition, for example, the following phase determination is performed with the phase difference between the phase currents I1 and I2 when the line voltage U1 is used as a reference as θ1 and θ2 (the following threshold is an example, and varies depending on the model) There).
I1-U1 phase difference determination; -90 ° ≦ θ1 ≦ 30 ° (OK in range, over range NG)
I2-U2 phase difference determination: 30 ° ≦ θ2 ≦ 150 ° (OK within range, over range NG)

特開2000−258484号公報JP 2000-258484 A

上記の従来例によれば、ベクトル表示によって結線の状態を視覚的に判断することができ、また、測定している電圧,電流が歪んでいても、確実な結線の判断を行うことができる。   According to the above-described conventional example, the state of connection can be visually determined by vector display, and reliable connection determination can be performed even if the voltage and current being measured are distorted.

しかしながら、三相3線の電力ラインの電力測定で一般に用いられる2電力計法では、電圧表示が線間電圧であることから、もともと電流との位相差が30゜あり、そのため、線間電圧を基準とした位相差表示では、各相の位相関係(力率)が分かりずらい、という問題がある。   However, in the two-watt meter method generally used for power measurement of a three-phase three-wire power line, since the voltage display is a line voltage, there is originally a phase difference of 30 ° from the current. In the reference phase difference display, there is a problem that the phase relationship (power factor) of each phase is difficult to understand.

また、力率(電源品質)や結線の方法によっては、結線が間違っていても位相判定がOKと判定される場合がある。これについて、図8および図9により説明する。   Further, depending on the power factor (power quality) and the connection method, the phase determination may be determined to be OK even if the connection is incorrect. This will be described with reference to FIGS.

例えば、測定対象の三相3線の電源ラインの相電圧と相電流との関係が図9(a)のベクトル図の関係、すなわち、各相において電圧に対して電流が70゜遅れ状態にあるとして、図8に示すような誤結線をした場合を想定する。   For example, the relationship between the phase voltage and the phase current of the three-phase three-wire power supply line to be measured is the relationship of the vector diagram of FIG. 9A, that is, the current is in a state delayed by 70 ° with respect to the voltage in each phase. Assuming that an erroneous connection as shown in FIG.

このときの線間電圧U1を基準にした場合の相電流I1の位相差θ1は、図9(a)を参照して、θ1=120゜−70゜−30゜=20゜となり、−90゜≦θ1≦30゜の範囲内なので、結線確認の判定はOKとなる。   The phase difference θ1 of the phase current I1 based on the line voltage U1 at this time becomes θ1 = 120 ° −70 ° −30 ° = 20 ° with reference to FIG. 9A, and is −90 °. Since it is within the range of ≦ θ1 ≦ 30 °, the connection confirmation determination is OK.

また、線間電圧U1を基準にした場合の相電流I2の位相差θ2は、図9(a)を参照して、θ2=120゜−70゜+90゜=140゜となり、30゜≦θ2≦150゜の範囲内なので、結線確認の判定はOKとなる。   The phase difference θ2 of the phase current I2 with reference to the line voltage U1 is θ2 = 120 ° −70 ° + 90 ° = 140 ° with reference to FIG. 9A, and 30 ° ≦ θ2 ≦ Since it is within the range of 150 °, the connection confirmation judgment is OK.

ちなみに、結線が図6に示すように正しく行われている場合には、図9(b)を参照して、θ1=−70゜−30゜=−100゜となり、−90゜≦θ1≦30゜の範囲外なので、結線確認の判定はNGとなる。また、θ2=120゜−70゜−30゜=20゜となり、30゜≦θ2≦150゜の範囲外なので、結線確認の判定はNGとなる。   Incidentally, when the connection is correctly performed as shown in FIG. 6, referring to FIG. 9B, θ1 = −70 ° −30 ° = −100 °, and −90 ° ≦ θ1 ≦ 30. Since it is out of the range of °, the connection confirmation judgment is NG. In addition, θ2 = 120 ° −70 ° −30 ° = 20 °, which is out of the range of 30 ° ≦ θ2 ≦ 150 °, and therefore the determination of connection confirmation is NG.

したがって、本発明の課題は、三相3線の電力ラインの電力測定で一般に用いられる2電力計法による測定において、線間電圧基準から相電圧基準として各相の力率を表示することにより、電圧,電流の位相関係をより分かりやすくするとともに、誤結線を確実に検出できるようにすることにある。   Therefore, the problem of the present invention is to display the power factor of each phase from the line voltage reference to the phase voltage reference in the measurement by the two wattmeter method generally used in the power measurement of the three-phase three-wire power line, It is intended to make it easier to understand the phase relationship between voltage and current and to reliably detect misconnections.

上記課題を解決するため、本発明は、三相3線の電力ラインの電力を2電力計法にて測定する電力測定器における結線状態検出方法において、
上記2電力計法にて上記電力ラインの第一相と第二相の線間電圧U1,第二相と第三相の線間電圧U2,上記第一相の相電流I1および上記第三相の相電流I2をそれぞれ測定して、少なくとも一方の上記線間電圧U1を基準として、上記線間電圧U1と上記第一相の相電流I1との位相差θ1と、上記線間電圧U1と上記第三相の相電流I2との位相差θ2を求めたのち、
上記第一相の相電圧u1に対する上記第一相の相電流I1の位相差をα1,上記第三相の相電圧u2に対する上記第三相の相電流I2の位相差をα2,上記第一相の力率をPF1,上記第三相の力率をPF2として、上記第一相および上記第三相の力率PF1,PF2を、
α1=θ1+30゜としてPF1=cos(α1)
α2=θ2−90゜としてPF2=cos(α2)
よりそれぞれ求めるとともに、上記2電力計法による線間電圧U1,U2を上記相電圧u1,u2に変換し、所定の表示手段に上記PF1,PF2の値とともに、上記相電圧u1,u2と相電流I1,I2の位相関係をベクトル表示し、α1>0゜および/またはα2>0゜のときには、誤結線有りとして所定の手段により異常報知することを特徴としている。
In order to solve the above-described problem, the present invention provides a connection state detection method in a power meter that measures the power of a three- phase three-wire power line by a two-wattmeter method.
In the two-watt meter method, the first-phase and second-phase line voltage U1, the second-phase and third-phase line voltage U2, the first-phase phase current I1 and the third-phase phase of the power line. The phase current I2 is measured, and the phase difference θ1 between the line voltage U1 and the phase current I1 of the first phase, the line voltage U1, and the line voltage U1 are measured with respect to at least one line voltage U1. After obtaining the phase difference θ2 from the phase current I2 of the third phase,
The phase difference of the first phase phase current I1 with respect to the first phase phase voltage u1 is α1, the phase difference of the third phase phase current I2 with respect to the third phase phase voltage u2 is α2, and the first phase. The power factor of PF1, the power factor of the third phase as PF2, and the power factor PF1, PF2 of the first phase and the third phase as
α1 = θ1 + 30 ° and PF1 = cos (α1)
α2 = θ2−90 ° and PF2 = cos (α2)
With obtaining more respectively, the line voltage U1, U2 by the second power meter method and converting into the phase voltages u1, u2, together with the values of the PF1, PF2 on a predetermined display unit, the phase voltages u1, u2 and the phase current The phase relationship between I1 and I2 is displayed as a vector, and when α1> 0 ° and / or α2> 0 °, an abnormality is notified by a predetermined means that there is a misconnection .

本発明の好ましい態様によれば、α1>0゜のときには上記PF1を負の値とし、α2>0゜のときには上記PF2を負の値として上記表示手段上で異常報知する。
According to a preferred embodiment of the present invention, alpha 1> 0 and a negative value of the PF1 when the DEG, [alpha] 2> when 0 DEG you abnormality notifying on said display means the PF2 as a negative value.

本発明によれば、線間電圧U1を基準とした第一相の相電流I1の位相差θ1と第三相の相電流I2との位相差θ2を、それぞれ相電圧を基準とした位相差α1,α2に変換して、第一相,第三相の力率PF1(cos(α1)),力率PF2(cos(α2))の値とともに、2電力計法による線間電圧U1,U2を相電圧u1,u2に変換して相電圧u1,u2と相電流I1,I2の位相関係をベクトル表示するようにしたことにより、電圧,電流の位相関係をより分かりやすくすることができる。   According to the present invention, the phase difference θ1 between the phase difference θ1 of the first phase current I1 with respect to the line voltage U1 and the phase current I2 of the third phase with respect to the phase voltage α1 with respect to the phase voltage, respectively. , Α2, and the first and third phase power factors PF1 (cos (α1)) and power factor PF2 (cos (α2)) together with the line voltages U1 and U2 by the two-watt meter method. By converting the phase voltages u1 and u2 into a vector and displaying the phase relationship between the phase voltages u1 and u2 and the phase currents I1 and I2, the phase relationship between the voltage and current can be made easier to understand.

また、α1,α2>0゜は、電圧に対して電流が進みであることを意味するが、例えばモータ負荷の場合、「進み」になることはあり得ないので結線に問題があり、として異常表示することにより、誤結線を確実に検出できる。   In addition, α1, α2> 0 ° means that the current advances with respect to the voltage. For example, in the case of a motor load, since it cannot be “advance”, there is a problem in the connection, and there is an abnormality. By displaying, erroneous connection can be detected reliably.

異常表示として、ブザーや表示ランプ等を動作させてもよいが、力率PF1,PF2を負の値として表示することにより、ブザーや表示ランプ等を別途用意することなく、ユーザーに結線異常を適確に知らせることができる。   A buzzer, a display lamp, etc. may be operated as an abnormality display. However, by displaying the power factors PF1, PF2 as negative values, it is possible to make the connection abnormality suitable for the user without preparing a buzzer, a display lamp, etc. I can tell you.

次に、図1ないし図5により、本発明の実施形態について説明するが、本発明はこれに限定されるものではない。図1は本発明が備える電力測定器の構成を示すブロック図、図2は本発明の動作説明用のフローチャート、図3は電圧,電流の位相関係を示すベクトル図、図4(a),(b)は相電圧基準の電流位相差の求め方を示すベクトル図、図5は表示画面の表示例を示す模式図である。   Next, an embodiment of the present invention will be described with reference to FIGS. 1 to 5, but the present invention is not limited to this. FIG. 1 is a block diagram showing the configuration of a power measuring instrument provided in the present invention, FIG. 2 is a flowchart for explaining the operation of the present invention, FIG. 3 is a vector diagram showing the phase relationship between voltage and current, and FIGS. b) is a vector diagram showing how to obtain the phase phase reference current phase difference, and FIG. 5 is a schematic diagram showing a display example of the display screen.

まず、図1を参照して、この電力測定器は、基本的な構成として、電圧入力部11および電流入力部12と、入力された交流電圧,交流電流をそれぞれデジタルに変換するA/D変換部11a,12aと、変換された波形を取り込む波形取込部13と、取り込まれた波形を処理する演算制御手段としてのCPU14と、少なくともROM,RAM領域が確保されている記憶部15と、表示部16とを備えている。   First, referring to FIG. 1, this power measuring device has, as its basic configuration, a voltage input unit 11 and a current input unit 12, and an A / D conversion that converts input AC voltage and AC current into digital signals, respectively. Units 11a and 12a, a waveform acquisition unit 13 for acquiring the converted waveform, a CPU 14 as a calculation control means for processing the acquired waveform, a storage unit 15 in which at least ROM and RAM areas are secured, and a display Part 16.

2電力計法であることから、電圧入力部11には、三相3線の電力ラインのR,S,Tの各相の交流電圧(線間電圧)が入力され、A/D変換器11aでデジタルデータに変換されたうえで、波形取込部13に保存される。   Since it is a two-watt meter method, the voltage input unit 11 is supplied with AC voltages (line voltages) of R, S, and T phases of a three-phase three-wire power line, and an A / D converter 11a. Is converted into digital data and stored in the waveform capturing unit 13.

また、電流入力部12には、例えばR,Tの各相の交流電流(相電流)が入力され、A/D変換器12aでデジタルデータに変換されたうえで、波形取込部13に保存される。   Further, for example, R and T alternating currents (phase currents) are input to the current input unit 12, converted into digital data by the A / D converter 12 a, and stored in the waveform capturing unit 13. Is done.

次に、図2の動作フローチャートを参照して、CPU14は、波形取込部13から交流電圧の波形データを受け取り、これについてフーリエ変換し、基本波成分を抽出する(ステップS1〜S3)。   Next, referring to the operation flowchart of FIG. 2, the CPU 14 receives the waveform data of the AC voltage from the waveform capturing unit 13, performs Fourier transform on the waveform data, and extracts the fundamental wave component (steps S <b> 1 to S <b> 3).

次に、CPU14は、基本波成分を用いて交流電圧の実効値を算出し、記憶部15に格納する(ステップS4〜S5)。また、基本波成分を用いて交流電圧の位相角を算出し、記憶部15に格納する(ステップS6〜S7)。   Next, the CPU 14 calculates an effective value of the AC voltage using the fundamental wave component, and stores it in the storage unit 15 (steps S4 to S5). Further, the phase angle of the AC voltage is calculated using the fundamental wave component and stored in the storage unit 15 (steps S6 to S7).

入力されたすべての波形について処理が終了したかどうか判断し(ステップS8)、YESであれば、記憶部15からすべての位相角を読み出す(ステップS9)。そして、例えばR−S間の線間電圧U1を基準として、R相の相電流I1の位相差θ1と、T相の相電流I2の位相差θ2を算出する(ステップS10)。   It is determined whether or not processing has been completed for all input waveforms (step S8). If YES, all phase angles are read from the storage unit 15 (step S9). For example, the phase difference θ1 of the R-phase phase current I1 and the phase difference θ2 of the T-phase phase current I2 are calculated with reference to the line voltage U1 between R and S (step S10).

次に、R相の相電圧をu1,T相の相電圧をu2として、上記位相差θ1,θ2を線間電圧U1基準から、相電圧u1,u2基準に変換して位相差α1,α2を得たのち、R相,T相の力率PF1,PF2を算出し(ステップS11)、その位相差α1,α2、力率PF1,PF2を記憶部15に保存する(ステップS12)。   Next, assuming that the phase voltage of the R phase is u1 and the phase voltage of the T phase is u2, the phase differences θ1 and θ2 are converted from the line voltage U1 reference to the phase voltage u1 and u2 reference to obtain the phase differences α1 and α2. After obtaining the power factors PF1 and PF2 of the R phase and the T phase (step S11), the phase differences α1 and α2 and the power factors PF1 and PF2 are stored in the storage unit 15 (step S12).

ここで、図3,図4により、上記ステップS11での位相差α1,α2、力率PF1,PF2の求め方について説明する。図3は線間電圧U1,U2と相電流I1,I2,I3の位相関係を示すベクトル図で、図4(a),(b)は線間電圧基準の位相差θ1,θ2と相電圧基準の位相差α1,α2との関係を示すベクトル図である。   Here, with reference to FIG. 3 and FIG. 4, how to obtain the phase differences α1 and α2 and the power factors PF1 and PF2 in step S11 will be described. 3 is a vector diagram showing the phase relationship between the line voltages U1, U2 and the phase currents I1, I2, I3. FIGS. 4A and 4B show the phase differences θ1, θ2 of the line voltage reference and the phase voltage reference. It is a vector diagram which shows the relationship with phase difference α1, α2.

図3のベクトル図に示すように、線間電圧U1は相電圧u1に対して30゜の進みをもつ。また、線間電圧U1と相電圧u2との間には90゜の角度が存在する。位相差α1は相電圧u1から見た相電流I1の位相角、位相差α2は相電圧u2から見た相電流I2の位相角である。また、図3において、時計方向が負(位相遅れ)で、反時計方向が正(位相進み)である。   As shown in the vector diagram of FIG. 3, the line voltage U1 has a 30 ° advance with respect to the phase voltage u1. An angle of 90 ° exists between the line voltage U1 and the phase voltage u2. The phase difference α1 is the phase angle of the phase current I1 viewed from the phase voltage u1, and the phase difference α2 is the phase angle of the phase current I2 viewed from the phase voltage u2. In FIG. 3, the clockwise direction is negative (phase lag) and the counterclockwise direction is positive (phase advance).

図4()を参照して、線間電圧U1から見た相電流I1の位相差θ1は負(遅れ)であり、−θ1=30゜−α1であるから、
α1=θ1+30゜
として算出され、R相の力率PF1は、PF1=cos(α1)で表される。
Referring to FIG. 4B , the phase difference θ1 of the phase current I1 viewed from the line voltage U1 is negative (delayed), and −θ1 = 30 ° −α1.
It is calculated as α1 = θ1 + 30 °, and the power factor PF1 of the R phase is represented by PF1 = cos (α1).

次に、図4()を参照して、線間電圧U1から見た相電流I2の位相差θ2は正(進み)であり、θ2+(−α2)=90゜であるから、
α2=θ2−90゜
として算出され、T相の力率PF2は、PF2=cos(α2)で表される。
Next, referring to FIG. 4 (a), the phase difference .theta.2 of the phase current I2 at line voltage U1 is positive (lead), θ2 + (- α2) = from 90 °,
It is calculated as α2 = θ2-90 °, and the T-phase power factor PF2 is represented by PF2 = cos (α2).

本発明では、表示部16に、結線確認用の情報としてPF1,PF2を表示する。その際、α1>0゜のときには「進み力率」(異常)としてPF1にマイナス符号「−」を付して表示し、同様に、α2>0゜のときには「進み力率」(異常)としてPF2にマイナス符号「−」を付して表示する。   In the present invention, PF1 and PF2 are displayed on the display unit 16 as connection confirmation information. At that time, when α1> 0 °, “PF power factor” (abnormal) is displayed by adding a minus sign “−” to PF1. Similarly, when α2> 0 °, “advance power factor” (abnormal) is displayed. PF2 is displayed with a minus sign “−”.

ここで、先の図8,図9(a)で説明した誤結線の場合を本発明に当てはめて説明する。上記従来例では、誤結線の場合、本来NG(エラー)と判定されるべきところ、θ1=20゜,θ2=140゜となり、いずれもI−Uの位相差判定において上記判定基準内であるため、OK判定とされたが、本発明の場合には、
α1=20゜+30゜=50゜
α2=140゜−90゜=50゜
となり、α1,α2>0゜なので、マイナス符号「−」が付けられて、
PF1=cos(α1)=cos50゜=−0.64
PF2=cos(α2)=cos50゜=−0.64
として表示部16に表示される。
Here, the case of the erroneous connection described with reference to FIGS. 8 and 9A will be described by applying to the present invention. In the above conventional example, in the case of incorrect connection, NG (error) should be determined originally, but θ1 = 20 ° and θ2 = 140 °, both of which are within the above-described determination criteria in the I-U phase difference determination. In the case of the present invention,
α1 = 20 ° + 30 ° = 50 ° α2 = 140 ° −90 ° = 50 °, α1, α2> 0 °, so a minus sign “-” is added,
PF1 = cos (α1) = cos50 ° = −0.64
PF2 = cos (α2) = cos50 ° = −0.64
Is displayed on the display unit 16.

これにより、例えばモータ負荷の場合、「進み」になることはあり得ないので、ユーザーに対して、結線に問題ありと注意を促すことができる。なお、これに代えて、ブザーや表示ランプを駆動して結線に異常があることを報知してもよい。   As a result, for example, in the case of a motor load, there is no possibility of “advance”, so the user can be alerted that there is a problem with the connection. Alternatively, a buzzer or a display lamp may be driven to notify that there is an abnormality in the connection.

次に、先の図9(b)で説明した結線が図6のように正しい場合を本発明に当てはめて説明する。結線が正しい場合には、θ1=−100゜,θ2=20゜となり、いずれもI−Uの位相差判定において上記判定基準から外れるため、NG判定とされた。なお、このNG判定は、電圧に対する電流の位相遅れが70゜と大きく力率が悪いことによる。   Next, the case where the connection described with reference to FIG. 9B is correct as shown in FIG. 6 will be described by applying to the present invention. When the connection was correct, θ1 = −100 ° and θ2 = 20 °, and both were judged as NG because they deviated from the above criteria in the I-U phase difference determination. This NG determination is due to the fact that the phase delay of the current with respect to the voltage is as large as 70 ° and the power factor is poor.

すなわち、θ1=−100゜である場合、α1=−100゜+30゜=−70゜で、PF1=cos−70゜=0.34となる。また、θ2=20゜である場合、α2=20゜−90゜=−70゜で、同じくPF2=cos−70゜=0.34となる。   That is, when θ1 = −100 °, α1 = −100 ° + 30 ° = −70 ° and PF1 = cos−70 ° = 0.34. When θ2 = 20 °, α2 = 20 ° −90 ° = −70 °, and PF2 = cos−70 ° = 0.34.

この場合、α1,α2<0゜なので、PF1,PF2には異常を表す「−」符号は付けられないが、PF1,PF2に対して電源品質の良否判定基準としての閾値(例えば、0.5)を設定し、PF1,PF2が閾値以下の場合に異常を報知することにより、ユーザーに力率に問題があることを知らせることができる。   In this case, since α1 and α2 <0 °, PF1 and PF2 are not attached with a “−” sign indicating an abnormality, but a threshold value (for example, 0.5) as a criterion for determining the quality of power supply with respect to PF1 and PF2. ) And informing the user that there is a problem with the power factor by notifying the abnormality when PF1 and PF2 are equal to or less than the threshold.

なお、異常報知手段としては、表示部16の表示画面上でPF1,PF2の値をハイライト表示してもよいし、ブザーや表示ランプを駆動してもよい。   As the abnormality notification means, the values of PF1 and PF2 may be highlighted on the display screen of the display unit 16, or a buzzer or a display lamp may be driven.

図5に本発明の表示部16の表示画面例を示す。本発明によれば、まず表示部16の表示画面に、2電力計法により選択された2相,この例では、相電流I1のR相と、相電流I2のT相の力率がそれぞれ表示されるが、好ましくは、図5の左上に示されているように、2電力計法による線間電圧U1,U2を相電圧u1,u2に変換して、相電圧u1,u2と相電流I1,I2の位相関係を示すベクトル表示を行うことにより、電圧,電流の位相関係をより適確に把握することができる。なお、線間電圧から相電圧の変換は、線間電圧を30゜遅らせればよい。   FIG. 5 shows a display screen example of the display unit 16 of the present invention. According to the present invention, first, the power factor of the two phases selected by the two-watt meter method, in this example, the R phase of the phase current I1 and the T phase of the phase current I2 is displayed on the display screen of the display unit 16. However, preferably, as shown in the upper left of FIG. 5, the line voltages U1 and U2 by the two-watt meter method are converted into the phase voltages u1 and u2, and the phase voltages u1 and u2 and the phase current I1 are converted. , I2 can be used to display a vector indicating the phase relationship of voltage I2, so that the phase relationship between voltage and current can be grasped more accurately. The conversion from the line voltage to the phase voltage may be performed by delaying the line voltage by 30 °.

本発明が備える電力測定器の構成を示すブロック図。The block diagram which shows the structure of the electric power measuring device with which this invention is provided. 本発明の動作説明用のフローチャート。The flowchart for operation | movement description of this invention. 電圧,電流の位相関係を示すベクトル図。The vector diagram which shows the phase relationship of a voltage and an electric current. 本発明において相電圧基準の電流位相差の求め方を示すベクトル図。The vector diagram which shows how to obtain | require the current phase difference of a phase voltage reference in this invention. 本発明の表示画面の表示例を示す模式図。The schematic diagram which shows the example of a display of the display screen of this invention. 2電力計法による結線状態を示す模式図。The schematic diagram which shows the connection state by the 2 wattmeter method. 2電力計法による線間電圧と相電流の位相関係を示すベクトル図。The vector diagram which shows the phase relationship of the line voltage and phase current by 2 wattmeter method. 2電力計法での誤結線状態を示す模式図。The schematic diagram which shows the misconnection state in the 2 wattmeter method. (a)誤結線時における線間電圧と相電流の位相関係を示すベクトル図、(b)正常結線時における線間電圧と相電流の位相関係を示すベクトル図。(A) A vector diagram showing a phase relationship between a line voltage and a phase current at the time of erroneous connection, (b) a vector diagram showing a phase relationship between a line voltage and a phase current at a normal connection.

符号の説明Explanation of symbols

11 電力入力部
12 電流入力部
13 波形取込部
14 CPU
15 記憶部
16 表示部
11 Power Input Unit 12 Current Input Unit 13 Waveform Capture Unit 14 CPU
15 Storage unit 16 Display unit

Claims (2)

三相3線の電力ラインの電力を2電力計法にて測定する電力測定器における結線状態検出方法において、
上記2電力計法にて上記電力ラインの第一相と第二相の線間電圧U1,第二相と第三相の線間電圧U2,上記第一相の相電流I1および上記第三相の相電流I2をそれぞれ測定して、少なくとも一方の上記線間電圧U1を基準として、上記線間電圧U1と上記第一相の相電流I1との位相差θ1と、上記線間電圧U1と上記第三相の相電流I2との位相差θ2を求めたのち、
上記第一相の相電圧u1に対する上記第一相の相電流I1の位相差をα1,上記第三相の相電圧u2に対する上記第三相の相電流I2の位相差をα2,上記第一相の力率をPF1,上記第三相の力率をPF2として、上記第一相および上記第三相の力率PF1,PF2を、
α1=θ1+30゜としてPF1=cos(α1)
α2=θ2−90゜としてPF2=cos(α2)
よりそれぞれ求めるとともに、上記2電力計法による線間電圧U1,U2を上記相電圧u1,u2に変換し、所定の表示手段に上記PF1,PF2の値とともに、上記相電圧u1,u2と相電流I1,I2の位相関係をベクトル表示し、α1>0゜および/またはα2>0゜のときには、誤結線有りとして所定の手段により異常報知することを特徴とする電力測定器における結線状態検出方法。
In a connection state detection method in a power meter that measures the power of a three-phase three-wire power line by a two-watt meter method,
In the two-watt meter method, the first-phase and second-phase line voltage U1, the second-phase and third-phase line voltage U2, the first-phase phase current I1 and the third-phase phase of the power line. The phase current I2 is measured, and the phase difference θ1 between the line voltage U1 and the phase current I1 of the first phase, the line voltage U1, and the line voltage U1 are measured with respect to at least one line voltage U1. After obtaining the phase difference θ2 from the phase current I2 of the third phase,
The phase difference of the first phase phase current I1 with respect to the first phase phase voltage u1 is α1, the phase difference of the third phase phase current I2 with respect to the third phase phase voltage u2 is α2, and the first phase. The power factor of PF1, the power factor of the third phase as PF2, and the power factor PF1, PF2 of the first phase and the third phase as
α1 = θ1 + 30 ° and PF1 = cos (α1)
α2 = θ2−90 ° and PF2 = cos (α2)
With obtaining more respectively, the line voltage U1, U2 by the second power meter method and converting into the phase voltages u1, u2, together with the values of the PF1, PF2 on a predetermined display unit, the phase voltages u1, u2 and the phase current A method of detecting a connection state in a power meter, characterized in that the phase relationship between I1 and I2 is displayed as a vector, and when α1> 0 ° and / or α2> 0 °, an abnormal notification is made by a predetermined means that there is an incorrect connection .
α1>0゜のときには上記PF1を負の値とし、α2>0゜のときには上記PF2を負の値として上記表示手段上で異常報知することを特徴とする請求項1に記載の電力測定器における結線状態検出方法。   2. The power measuring device according to claim 1, wherein when 留 1> 0 °, the PF1 is set to a negative value, and when 留 2> 0 °, the PF2 is set to a negative value to notify the abnormality on the display means. Connection state detection method.
JP2008230844A 2008-09-09 2008-09-09 Wiring state detection method for power meter Active JP5238419B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008230844A JP5238419B2 (en) 2008-09-09 2008-09-09 Wiring state detection method for power meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008230844A JP5238419B2 (en) 2008-09-09 2008-09-09 Wiring state detection method for power meter

Publications (2)

Publication Number Publication Date
JP2010066055A JP2010066055A (en) 2010-03-25
JP5238419B2 true JP5238419B2 (en) 2013-07-17

Family

ID=42191769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008230844A Active JP5238419B2 (en) 2008-09-09 2008-09-09 Wiring state detection method for power meter

Country Status (1)

Country Link
JP (1) JP5238419B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105022022A (en) * 2015-07-08 2015-11-04 国网上海市电力公司 Intelligent electric meter fault grabbing test device and applications thereof

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011118187A1 (en) 2010-03-23 2011-09-29 パナソニック株式会社 Charging control apparatus, charging system, and charging control method
CN102236086B (en) * 2010-04-29 2013-07-03 杭州市电力局 Method and device for inspecting electric energy meter
CN201955421U (en) * 2011-01-20 2011-08-31 安徽省电力公司蚌埠供电公司 Wiring detector for multifunctional electric energy metering device
US20140253091A1 (en) * 2011-10-28 2014-09-11 Mitsubishi Electric Corporation Determination device, determination method, and non-transitory recording medium
JPWO2013061475A1 (en) * 2011-10-28 2015-04-02 三菱電機株式会社 Determination device, determination method, and program
JP2013124915A (en) * 2011-12-14 2013-06-24 Yokogawa Electric Corp Power meter
CN102608561A (en) * 2012-04-01 2012-07-25 贵州电力试验研究院 Electricity meter power consumption tester
CN104316822B (en) * 2014-11-05 2017-06-13 国家电网公司 A kind of method for quick and precisely judging metering device false wiring
CN104569726B (en) * 2015-01-16 2016-09-07 国家电网公司 The intelligence sensor of wiring state detection in electric energy meter calibration
CN106443313B (en) * 2016-09-29 2018-10-12 国网四川省电力公司电力科学研究院 High pressure three-phase-three-wire energy measurement device false wiring rapid detection method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0545913B2 (en) * 1988-04-15 1993-07-12 Hioki Electric Works
JP2002286769A (en) * 2001-03-23 2002-10-03 Mitsubishi Electric Corp Power measuring instrument
JP4073902B2 (en) * 2004-09-15 2008-04-09 岡野バルブ製造株式会社 Abnormality and deterioration diagnosis method and apparatus for motor-operated valve device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105022022A (en) * 2015-07-08 2015-11-04 国网上海市电力公司 Intelligent electric meter fault grabbing test device and applications thereof

Also Published As

Publication number Publication date
JP2010066055A (en) 2010-03-25

Similar Documents

Publication Publication Date Title
JP5238419B2 (en) Wiring state detection method for power meter
US20150073734A1 (en) Method and Device for Measuring Electrical Quantities
US8587244B2 (en) Method and system for determining deterioration of permanent magnets of electric apparatus
EP2211437B1 (en) Earth leakage tester, earth leakage circuit breaker equipped with the same, circuit breaker, and insulation monitor
WO2013155844A1 (en) Three-phase ac phase-sequence detection method and device
EP2611013B1 (en) Apparatus and method for detecting failure of switching device in inverter
JP2000258484A (en) Connection state detector in power meter
CN102004193A (en) Three-phase alternating-current phase sequence detecting method and device thereof
DK2366112T3 (en) METHOD AND APPARATUS FOR OFF-LINE TEST OF MULTIPLE-PH AC
JP4564863B2 (en) Power line measuring device
KR101830308B1 (en) Remote meter system for fault diagnosis and electric power fluctuation measurement
JP5332994B2 (en) Electricity / electricity meter
JP4545081B2 (en) measuring device
JP2006025550A (en) Frequency detection device and distributed power supply device
JP5449895B2 (en) Leakage current measuring device
JP2009008580A (en) Handy electric power meter and three-phase electric power measurement method
US8918301B2 (en) Motor condition inspection method and motor characteristic inspecting device
JP5183035B2 (en) Insulation monitoring device
JP2002286769A (en) Power measuring instrument
CN110554313B (en) Current fault detection method and device
JP3988932B2 (en) Earth leakage detector
JP5101334B2 (en) Leakage current measuring device
CN201589820U (en) Simple and easy detection equipment for measuring three-phase alternating current phase sequence
JP2017020913A (en) Insulation monitoring device and inverter device
JP4442352B2 (en) Current calculation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130306

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130401

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160405

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250