JP5235727B2 - Fluorescent temperature sensor - Google Patents

Fluorescent temperature sensor Download PDF

Info

Publication number
JP5235727B2
JP5235727B2 JP2009053378A JP2009053378A JP5235727B2 JP 5235727 B2 JP5235727 B2 JP 5235727B2 JP 2009053378 A JP2009053378 A JP 2009053378A JP 2009053378 A JP2009053378 A JP 2009053378A JP 5235727 B2 JP5235727 B2 JP 5235727B2
Authority
JP
Grant status
Grant
Patent type
Prior art keywords
surface
measured
roughness
temperature sensor
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009053378A
Other languages
Japanese (ja)
Other versions
JP2010210248A (en )
Inventor
静一郎 衣笠
Original Assignee
アズビル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Images

Description

この発明は、温度により蛍光特性が変化する蛍光体を用いて温度を測定する蛍光温度センサに関するものである。 The present invention relates to a fluorescent temperature sensor for measuring the temperature using a phosphor fluorescence characteristics change with temperature.

温度センサとして、蛍光体を用いた蛍光温度センサが広く利用されている。 As a temperature sensor, a fluorescent temperature sensor have been widely using phosphor. この蛍光温度センサは、温度により蛍光特性が変化する蛍光体を用いることにより温度を測定する。 The fluorescent temperature sensor measures the temperature by using a phosphor fluorescence characteristics change with temperature. 具体的には、光源からの励起光を蛍光体に照射して、蛍光体で発生した蛍光を検出する。 Specifically, by irradiating the excitation light from the light source to the phosphor, to detect the fluorescence generated by the phosphor. そして、検出された蛍光の蛍光寿命などの蛍光特性の変化によって、温度を測定する。 Then, the change in fluorescence properties, such as fluorescence detected fluorescence lifetime, to measure the temperature.

接触式の蛍光温度センサのセンサプローブでは、被測定面との熱伝達をよくするために、機械的に被測定面にセンサプローブ先端を押し付ける構造を有している。 The sensor probe of fluorescence contact type temperature sensor, in order to improve the heat transfer between the surface to be measured has a structure to press the sensor probe tip mechanically surface to be measured. これにより、被測定面における温度変化に応じた熱伝達が迅速に行われ、センサとしての応答性を改善できる効果がある。 Thus, heat transfer in response to temperature changes in the measurement surface is made quickly, an effect which can improve the responsiveness of the sensor.

また、さらに応答性を改善するために、蛍光温度センサのセンサプローブ先端の被測定面への押し付けに応じてセンサプローブ先端面が機械的に変形するように、ダイアフラムを備えた方法が提案されている(例えば、特許文献1参照)。 Further, in order to further improve the response, such that the sensor probe tip face in response to pressing of the measurement surface of the sensor probe tip of the fluorescent temperature sensor is mechanically deformed, been proposed a method which includes a diaphragm are (e.g., see Patent Document 1). このセンサプローブ先端に備えられるダイアフラムを被測定面に押し付け、変形させることにより、蛍光温度センサのセンサプローブ先端面と被測定面との接触面積が増し、熱伝達がスムーズに行われる。 Pressing a diaphragm provided in the sensor probe tip surface to be measured, by deforming, the contact area between the sensor probe tip surface and the measurement surface of the fluorescent temperature sensor increases, the heat transfer can be performed smoothly.

米国特開第4752141号明細書 U.S. Patent No. 4752141 specification

しかしながら、特許文献1に開示された蛍光温度センサのセンサプローブでは、被測定面の温度測定の際、センサプローブの被測定面への押し付けによって、先端に備えられたダイアフラムが変形するため、その押し付け量に応じて、センサプローブ先端面と被測定面との接触面積が広がり、ダイアフラムの形状が一定になるまでの時間がかかるため、被測定面とセンサプローブ先端との温度が熱平衡状態になるまでに時間がかかり、センサとしての応答性が悪くなるという課題があった。 However, the sensor probe of the fluorescence temperature sensor disclosed in Patent Document 1, when the temperature measurement of the surface to be measured, by the pressing of the measurement surface of the sensor probe, for deforming the diaphragm provided in the distal end, pressing the depending on the amount, the contact area between the sensor probe tip surface and the measurement surface is spread, since it takes time until the shape of the diaphragm is constant until the temperature of the surface to be measured and the sensor probe tip is in thermal equilibrium takes time, the response of the sensor is a problem that deteriorates.

この発明は、上記のような課題を解決するためになされたもので、接触式の蛍光温度センサにおいて、センサプローブ先端の形状を変形させずに、高速応答で温度測定を行うことができる蛍光温度センサを提供することを目的としている。 The present invention has been made to solve the above problems, in a fluorescence contact type temperature sensor, without deforming the shape of the sensor probe tip, fluorescent temperature capable of performing temperature measurements with fast response and its object is to provide a sensor.

この発明に係る蛍光温度センサは、 温度に基づいた蛍光を発する蛍光体と、前記蛍光体を保護するカバーとを有するセンサプローブと、前記センサプローブに対して投受光を行う投受光部と、前記投受光部が受光する受光量に基づき被測定面の温度を算出する処理部とを備えた蛍光温度センサにおいて、前記カバーの前記被測定面と接触する面には凹凸が形成され、前記接触する面の表面粗さは、予め測定された前記被測定面の表面形状データから導出される表面粗さと一致するものである。 Fluorescent temperature sensor according to the present invention includes a sensor probe having a phosphor that emits fluorescence based on temperature, and a cover for protecting the phosphor, the light emitting and receiving unit which performs light emission and reception with respect to the sensor probe, wherein in fluorescence temperature sensor and a processing unit for calculating the temperature of the surface to be measured based on the amount of received light emitting and receiving portion is received, irregularities are formed on the surface in contact with the surface to be measured of the cover and the contact the surface roughness of the surface is consistent with the surface roughness derived from the surface shape data of the previously measured the surface to be measured.

この発明によれば、上記のように構成したので、蛍光温度センサのセンサプローブ先端と被測定面との接触面積を増やし、熱伝達を良好にすることで、応答性を改善することができる。 According to the present invention, since the structure described above, increasing the contact area between the sensor probe tip and the surface to be measured of the fluorescence temperature sensor, by improving the heat transfer, it is possible to improve the response property.

この発明の実施の形態1に係る蛍光温度センサの構造を示す図である。 It is a diagram showing a structure of a fluorescent temperature sensor according to the first embodiment of the present invention. この発明の実施の形態1におけるセンサプローブの表面形状決定処理を示すフローチャートである。 It is a flowchart showing a surface shape determination processing of the sensor probe in the first embodiment of the present invention. この発明の実施の形態1に係る蛍光温度センサが測定する被測定面の表面粗さを導出する例を示す図である。 Is a diagram showing an example of deriving the surface roughness of the surface to be measured fluorescence temperature sensor according to the first embodiment of the present invention is measured. この発明の実施の形態1に係る蛍光温度センサが測定する被測定面の表面粗さを導出する他の例を示す図である。 It is a diagram showing another example of deriving the surface roughness of the surface to be measured fluorescence temperature sensor measures according to the first embodiment of the present invention. この発明の実施の形態1に係る蛍光温度センサが測定する被測定面の表面粗さを導出するさらに他の例を示す図である。 Is a diagram showing still another example deriving a fluorescent temperature sensor surface roughness of the surface to be measured to measure according to the first embodiment of the present invention. この発明の実施の形態1におけるセンサプローブと被測定面との接触面積の関係を示す図である。 Is a diagram showing the relationship between the contact area between the sensor probe and the measurement surface in the first embodiment of the present invention.

以下、この発明の実施の形態について図面を参照しながら詳細に説明する。 It will be described in detail with reference to the drawings showing a preferred embodiment of the present invention.
実施の形態1. The first embodiment.
図1はこの発明の実施の形態1に係る蛍光温度センサ1の構造を示す図である。 Figure 1 is a diagram showing the structure of a fluorescent temperature sensor 1 according to the first embodiment of the present invention.
図1に示すように、蛍光温度センサ1は、被測定面に接触させ、温度に応じた蛍光を発光するためのセンサプローブ2と、センサプローブ2に励起光を投光し、センサプローブ2からの蛍光を受光し、その受光量から被測定面の温度測定を行うためのセンサモジュール3とにより構成される。 As shown in FIG. 1, a fluorescent temperature sensor 1 is brought into contact with the surface to be measured, the sensor probe 2 for emitting fluorescence as a function of temperature, and projecting excitation light to the sensor probe 2, a sensor probe 2 It receives the fluorescence, and a sensor module 3 for performing temperature measurement of the surface to be measured from the amount of light received.

センサプローブ2は、図1に示すように、センサモジュール3より投光される励起光により蛍光を発光する蛍光体4と、センサモジュール3により投光される励起光を蛍光体4に導光し、蛍光体4が発する蛍光をセンサモジュール3に導光するため、センサモジュール3と蛍光体4間に接続される光ファイバ5と、センサプローブ2の先端に設けられ、蛍光体4を覆い、表面に凹凸が形成されるカバー6と、光ファイバ5に傷が付かないように保護するための保護管7とにより構成される。 Sensor probe 2, as shown in FIG. 1, the phosphor 4 emits fluorescence by excitation light is projected from the sensor module 3, and guides the excitation light is projected by the sensor module 3 to the phosphor 4 , for guiding the fluorescence phosphor 4 emits the sensor module 3, the optical fiber 5 is connected between the sensor module 3 and the phosphor 4, provided at the tip of the sensor probe 2, covering the phosphor 4, the surface constituted by a cover 6 which unevenness is formed, the optical fiber 5 and the protective tube 7 for protecting to prevent scratches on.

センサモジュール3は、図1に示すように、駆動部8により、センサプローブ2に設けられる蛍光体4に励起光を投光するための投光部9と、センサプローブ2に設けられる蛍光体4が発する蛍光を受光するための受光部10と、受光部10が受光した受光量に基づいて、被測定面の温度を算出するための処理部11とにより構成される。 The sensor module 3, as shown in FIG. 1, the driving unit 8, a light projecting unit 9 for projecting excitation light to the phosphor 4, which is provided in the sensor probe 2, a phosphor 4 provided in the sensor probe 2 a light receiving portion 10 for receiving the fluorescence emitted, based on the amount of received light receiving unit 10 has received, constituted by a processing unit 11 for calculating the temperature of the surface to be measured.

次に、上記のように構成される蛍光温度センサ1の動作について説明する。 Next, the operation of the constructed fluorescence temperature sensor 1, as described above.
まず、蛍光温度センサ1のセンサプローブ2先端に設けられる蛍光体4が収納されるカバー6表面を被測定面に接触させる。 First, contacting the cover 6 surface a phosphor 4 provided in the sensor probe 2 tip fluorescent temperature sensor 1 is housed in the measurement surface. 次いで、投光部9から励起光が蛍光体4に投光される。 Then, the excitation light is projected to the phosphor 4 from the light projecting unit 9. この投光部9から投光された励起光により蛍光体4は蛍光を発光する。 Phosphor 4 by the excitation light projected from the light projecting unit 9 emits fluorescence. 受光部10はこの蛍光体4が発光する蛍光を受光している。 The light receiving unit 10 has received the fluorescence phosphor 4 emits light. このときの受光部10が受光する受光量は、処理部11により逐一計測されている。 Received light amount of the light receiving unit 10 at this time is received is minutely measured by the processing unit 11. 次いで、投光部9は、蛍光体4への励起光の投光を停止する。 Then, the light projecting unit 9 stops the light projection of the excitation light to the phosphor 4. これにより、蛍光体4は消光する。 Thus, the phosphor 4 is quenched. この蛍光体4の消光速度は温度が高くなるほど速くなる。 Quenching rate of the phosphor 4 is faster as the temperature increases. この蛍光体4の消光速度を処理部11が計測することにより、被測定面の温度を計測する。 By processing unit 11 the quenching rate of the phosphor 4 is measured, measuring the temperature of the surface to be measured.

次に、蛍光温度センサ1のセンサプローブ2先端に設けられるカバー6の表面形状の決定方法について説明する。 Next, a method determining the surface shape of the cover 6 which is provided in the sensor probe 2 tip fluorescent temperature sensor 1.
図2はこの発明の実施の形態1におけるセンサプローブ2の表面形状決定処理を示すフローチャートである。 Figure 2 is a flowchart showing a surface shape determination processing of the sensor probe 2 in the first embodiment of the present invention.

センサプローブ2先端に設けられるカバー6の表面形状決定処理では、図2に示すように、まず、被測定面の表面形状を測定する(ステップST1)。 In the surface shape determination process of the cover 6 which is provided in the sensor probe 2 tip, as shown in FIG. 2, first, to measure the surface shape of the surface to be measured (step ST1). すなわち、蛍光温度センサ1により温度測定を行う被測定面の表面形状を測定する。 That is, to measure the surface shape of the surface to be measured to perform temperature measured by a fluorescent temperature sensor 1. この被測定面の表面形状測定では、触針式粗さ計、レーザによる表面散乱等の方法により測定を行う。 In the surface shape measurement of the surface to be measured is performed stylus roughness meter, the measurement by a method such as surface scattering by a laser.

次いで、被測定面の表面粗さを導出する(ステップST2)。 Then, to derive the surface roughness of the surface to be measured (step ST2). すなわち、ステップST1において測定された表面形状の測定データから、被測定面の表面粗さを導出する。 In other words, from the measurement data of the measured surface profile in step ST1, to derive the surface roughness of the surface to be measured. このステップST2における、被測定面の表面粗さの導出の詳細については後述する。 In step ST2, the will be described later in detail derivation of the surface roughness of the surface to be measured.

次いで、センサプローブ2の表面形状を決定する(ステップST3)。 Then, to determine the surface shape of the sensor probe 2 (step ST3). すなわち、ステップST2において導出された被測定面の表面粗さと一致するように、センサプローブ2先端に設けられるカバー6の表面形状を決定する。 That is, to match the surface roughness of the surface to be measured, which is derived in step ST2, the determining the surface shape of the cover 6 which is provided in the sensor probe 2 tip.

次いで、センサプローブ2の表面加工方法を決定する(ステップST4)。 Then, to determine the method of processing the surface of the sensor probe 2 (step ST4). すなわち、ステップST3において決定されたセンサプローブ2先端に設けられるカバー6の表面形状から、この表面形状に加工するための道具、加工条件等を決定する。 That is, the surface shape of the cover 6 which is provided in the sensor probe 2 tip determined in step ST3, the tool for processing into the surface shape to determine the processing conditions. このカバー6の表面形状の加工方法として、回転研磨による加工方法、ブレード等の冶具を用いた切削による加工方法等が挙げられる。 As a processing method for the surface shape of the cover 6, a processing method by rotating polishing processing method, and the like by cutting using a jig such as a blade.
以上の工程によりセンサプローブ2先端に設けられるカバー6の表面形状を決定することができる。 It is possible to determine the surface shape of the cover 6 which is provided in the sensor probe 2 tip Through the above steps.

次に、図2のステップST2における被測定面の表面粗さの導出について説明する。 It will now be described derivation of the surface roughness of the surface to be measured in step ST2 of FIG.
図3〜図5はこの発明の実施の形態1に係る蛍光温度センサ1が測定する被測定面の表面粗さを導出する例を示す図である。 3 to 5 are views showing an example of deriving the surface roughness of the surface to be measured fluorescence temperature sensor 1 according to the first embodiment of the present invention is measured.

図3は被測定面の表面粗さを中心線平均粗さRaにより導出する方法について示したものであり、図2のステップST1において得られる被測定面の表面形状データから、ある測定長さLでの粗さ曲線f(x)を導出し、図3に示すように、この粗さ曲線f(x)を基準線で折り返し、この粗さ曲線f(x)と基準線とで挟まれる面積の合計を測定長さLで割った値である中心線平均粗さRaを被測定面の表面粗さとして導出する。 FIG. 3 shows a method for deriving a center line average roughness Ra of the surface roughness of the surface to be measured, the surface shape data of the surface to be measured obtained in step ST1 in FIG. 2, there measuring length L the roughness curve f (x) is derived in the area sandwiched by 3, folding the roughness curve f (x) at the reference line, and the roughness curve f (x) and the reference line the total is divided by the measured length L centerline average roughness Ra of deriving as the surface roughness of the surface to be measured.

図4は被測定面の表面粗さを最大高さRmaxにより導出する方法について示したものであり、図2のステップST1において得られる被測定面の表面形状データから、ある測定長さLでの粗さ曲線f(x)を導出し、図4に示すように、この粗さ曲線f(x)の、基準線に対する、山の最大高さ及び谷の最大深さとの和である最大高さRmaxを被測定面の表面粗さとして導出する。 Figure 4, is shown how to derive the maximum height Rmax of the surface roughness of the surface to be measured, the surface shape data of the surface to be measured obtained in step ST1 in FIG. 2, at a certain measurement length L to derive the roughness curve f (x), as shown in FIG. 4, the maximum height this roughness curve f (x), with respect to the reference line, the sum of the maximum height and the maximum depth of the valley of the mountain the Rmax is derived as the surface roughness of the surface to be measured.

図5は被測定面の表面粗さを十点平均高さRzにより導出する方法について示したものであり、図2のステップST1において得られる被測定面の表面形状データから、ある測定長さLでの粗さ曲線f(x)を導出し、図5に示すように、基準線に対して、山の高い順に5番目までの山と基準線との差の平均値(R +R +R +R +R )/5と、谷の深い順に5番目までの谷と基準線との差の平均値(R +R +R +R +R 10 )/5との差分値である十点平均高さRzを被測定面の表面粗さとして導出する。 FIG. 5 shows a method for deriving the surface roughness of the surface to be measured by the ten-point average height Rz, the surface shape data of the surface to be measured obtained in step ST1 in FIG. 2, there measuring length L the roughness curve f (x) derived in, as shown in FIG. 5, with respect to the reference line, the average value of the difference between the mountain and the reference line to the fifth to the high mountain order (R 1 + R 3 + R 5 + and R 7 + R 9) / 5 , the average value of the difference between the valley and the reference line to the fifth valley deep forward (ten-point is a difference value between the R 2 + R 4 + R 6 + R 8 + R 10) / 5 deriving an average height Rz as the surface roughness of the surface to be measured.

また、被測定面の表面粗さを空間周波数kにより導出する方法では、図2のステップST1において得られる被測定面の表面形状データをフーリエ変換することにより得られる表面形状の空間周波数kを被測定面の表面粗さとして導出する。 In the method of deriving the spatial frequency k of the surface roughness of the surface to be measured, the spatial frequency k of the surface shape obtained by Fourier transform of the surface shape data of the surface to be measured obtained in step ST1 in FIG. 2 derived as the surface roughness of the measurement surface.

次に、蛍光温度センサ1のセンサプローブ2先端の表面粗さと被測定面の表面粗さによる接触面積の関係について説明する。 Next, a description will be given of the relationship of the contact area due to surface roughness of the surface roughness and the surface to be measured of the sensor probe 2 tip fluorescent temperature sensor 1.
図6はこの発明の実施の形態1におけるセンサプローブ2と被測定面との接触面積の関係を示す図である。 6 is a diagram showing the relationship between the contact area between the sensor probe 2 and the surface to be measured in the first embodiment of the present invention. この図6では、表面粗さとして空間周波数を用いた際のカバー6の表面粗さと被測定面の表面粗さによる接触面積の関係を示す。 In FIG. 6 shows a relationship between the contact area due to surface roughness and the measured surface roughness of the cover 6 at the time of using the spatial frequency as the surface roughness.

図6に示すように、蛍光温度センサ1のセンサプローブ2先端に設けられるカバー6の粗面形状をAsin(Ωz)とし、被測定面の粗面形状をBsin(kz)とする。 As shown in FIG. 6, a rough surface shape of the cover 6 which is provided in the sensor probe 2 tip fluorescent temperature sensor 1 and Asin (? Z), the rough surface profile of the measurement surface and Bsin (kz). ここで、Aはカバー6の粗面形状の深さであり、Bは被測定面の粗面形状の深さであり、Ωはカバー6の粗面形状の空間周波数であり、kは被測定面の粗面形状の空間周波数である。 Here, A is the depth of the roughened surface shape of the cover 6, B is the depth of the roughened surface shape of the surface to be measured, Omega is the spatial frequency of the rough surface shape of the cover 6, k is to be measured the spatial frequency of the rough surface shape of the surface. また、以下説明の簡略化のため、カバー6の粗面形状の深さAと被測定面の粗面形状の深さBとは一致しているものとする(A=B)。 Moreover, following for simplification of description, the depth B of the rough surface shape of the depth A and the measured surface of the rough surface shape of the cover 6 and a match (A = B).

図6(a)に示すように、センサプローブ2先端に設けられるカバー6の表面粗さをなくし、Ω≒0とした場合、センサプローブ2に設けられるカバー6は被測定面の凹凸に入り込むことはできず、被測定面とは点接触をしている状態となり、センサプローブ2に設けられるカバー6の表面と被測定面との接触面積が少ないため、熱伝達が悪く、センサとしての応答性は悪くなる。 As shown in FIG. 6 (a), it eliminates the surface roughness of the cover 6 which is provided in the sensor probe 2 tip, when the Omega ≒ 0, a cover 6 provided in the sensor probe 2 from entering the unevenness of the surface to be measured can not, a state where the surface to be measured has a point contact, because there is less contact area between the surface and the measurement target surface of the cover 6 provided on the sensor probe 2, the heat transfer is poor, the response of the sensor It becomes worse.

次に、図6(b)に示すように、センサプローブ2先端に設けられるカバー6の表面粗さを、被測定面の表面粗さに近づけていくと、センサプローブ2に設けられるカバー6と被測定面の接触面積が増大し、熱伝達が良好となり、センサとしての応答性がよくなる。 Next, as shown in FIG. 6 (b), the surface roughness of the cover 6 which is provided in the sensor probe 2 tip, when brought closer to the surface roughness of the surface to be measured, a cover 6 provided on the sensor probe 2 the contact area of ​​the surface to be measured is increased, the heat transfer is improved, the response of the sensor is improved.

さらにセンサプローブ2先端に設けられるカバー6の表面粗さを、被測定面の表面粗さに近づけて、一致させると、図6(c)に示すように、センサプローブ2に設けられるカバー6と被測定面との凹凸が噛み合うことで、接触面積が増大し、熱伝達が良好となり、センサとしての応答性がよくなる。 Furthermore the surface roughness of the cover 6 which is provided in the sensor probe 2 tip close to the surface roughness of the surface to be measured, the match, as shown in FIG. 6 (c), a cover 6 provided on the sensor probe 2 by unevenness of the surface to be measured is engaged, the contact area increases, the heat transfer is improved, the response of the sensor is improved.

一方、センサプローブ2先端に設けられるカバー6の表面粗さを、被測定面の表面粗さに対して大きくすると、図6(d)に示すように、センサプローブ2に設けられるカバー6と被測定面との凹凸の噛み合わせが悪くなり、接触面積が小さくなるので、熱伝達が悪化し、センサとしての応答性が悪くなる。 On the other hand, the surface roughness of the cover 6 which is provided in the sensor probe 2 tip, the larger relative surface roughness of the surface to be measured, as shown in FIG. 6 (d), a cover 6 provided on the sensor probe 2 to be engagement becomes poor unevenness of the measurement surface, the contact area is reduced, the heat transfer is deteriorated, response of the sensor is deteriorated.

このように、蛍光温度センサ1のセンサプローブ2先端に設けられるカバー6に凹凸を形成し、カバー6の表面粗さと被測定面の表面粗さとを一致させることにより、センサプローブ2先端に設けられるカバー6の表面と被測定面との接触面積が増大し、熱伝達が良くなることで、良好な温度測定を行うことができる。 Thus, the irregularities formed in the cover 6 provided in the sensor probe 2 tip fluorescent temperature sensor 1, by matching the surface roughness of the surface roughness and the surface to be measured of the cover 6 is provided in the sensor probe 2 tip contact area increases between the surface and the measurement target surface of the cover 6, that the heat transfer is improved, it is possible to perform good temperature measurement.

以上のように、この実施の形態1によれば、蛍光温度センサ1のセンサプローブ2先端に設けられるカバー6に凹凸を形成して、カバー6の表面粗さを、温度測定を行う被測定面の表面粗さと一致するように構成したので、センサプローブ2の先端に設けられるカバー6と被測定面との接触面積が増え、熱伝達がよくなるので、センサとしての応答性を改善することができる。 As described above, according to the first embodiment, by forming irregularities on the cover 6 provided in the sensor probe 2 tip fluorescent temperature sensor 1, the surface roughness of the cover 6, the surface to be measured to perform temperature measurement and then, is the surface roughness of the match, increasing the contact area between the surface to be measured and a cover 6 provided on the tip of the sensor probe 2, the heat transfer is improved, thereby improving the responsiveness of the sensor .

1 蛍光温度センサ2 センサプローブ3 センサモジュール4 蛍光体5 光ファイバ6 カバー7 保護管8 駆動部9 投光部10 受光部11 処理部 1 fluorescent temperature sensor 2 sensor probe 3 sensor module 4 phosphor 5 optical fiber 6 cover 7 protective tube 8 driver 9 the light projecting unit 10 receiving unit 11 processing unit

Claims (5)

  1. 温度に基づいた蛍光を発する蛍光体と、前記蛍光体を保護するカバーとを有するセンサプローブと、 A phosphor emitting fluorescence based on temperature, a sensor probe having a cover for protecting the phosphor,
    前記センサプローブに対して投受光を行う投受光部と、 A light emitting and receiving unit which performs light emission and reception with respect to the sensor probe,
    前記投受光部が受光する受光量に基づき被測定面の温度を算出する処理部とを備えた蛍光温度センサにおいて、 In fluorescence temperature sensor and a processing unit for the light emitting and receiving unit calculates the temperature of the surface to be measured based on the amount of received light received,
    前記カバーの前記被測定面と接触する面には凹凸が形成され、前記接触する面の表面粗さは、予め測定された前記被測定面の表面形状データから導出される表面粗さと一致することを特徴とする蛍光温度センサ。 Wherein the said surface in contact with the measurement surface of the cover are irregularities formed, the surface roughness of the surface of the contact is to match the surface roughness derived from the surface shape data of the previously measured the surface to be measured fluorescent temperature sensor according to claim.
  2. 前記被測定面の表面粗さは、前記被測定面の表面形状データから所定の測定長さでの粗さ曲線を導出し、当該粗さ曲線と基準線とで挟まれる面積の合計を前記所定の測定長さで割ることにより導出される中心線平均粗さRaであることを特徴とする請求項記載の蛍光温度センサ。 The surface roughness of the surface to be measured, said from the surface shape data of the surface to be measured to derive the roughness curve at a given measurement length, the sum of the area sandwiched between the the roughness curve and the reference line given fluorescent temperature sensor according to claim 1, characterized in that the center line average roughness Ra, which is derived by dividing by the measurement length.
  3. 前記被測定面の表面粗さは、前記被測定面の表面形状データから所定の測定長さでの粗さ曲線を導出し、当該粗さ曲線の、基準線に対する、山の最大高さ及び谷の最大深さとの和により導出される最大高さRmaxであることを特徴とする請求項記載の蛍光温度センサ。 The surface roughness of the surface to be measured, said derives the roughness curve at a given measurement length from the surface shape data of the surface to be measured, the roughness curve, relative to the reference line, mountain maximum height and valleys fluorescent temperature sensor according to claim 1, characterized in that the maximum height Rmax which is derived by the sum of the maximum depth of.
  4. 前記被測定面の表面粗さは、前記被測定面の表面形状データから所定の測定長さでの粗さ曲線を導出し、当該粗さ曲線において、山の高い順に5番目までの山と基準線との差の平均値と、谷の深い順に5番目までの谷と基準線との差の平均値との差により導出される十点平均高さRzであることを特徴とする請求項記載の蛍光温度センサ。 The surface roughness of the surface to be measured, said derives the roughness curve at a given measurement length from the surface shape data of the surface to be measured, the in roughness curve, mountains and the reference to the 5th high mountain order claim wherein the average value of the difference between the line, that is the difference ten-point average height Rz derived by the average value of the difference between the valley and the reference line to the fifth valley deep order 1 fluorescent temperature sensor according.
  5. 前記被測定面の表面粗さは、前記被測定面の表面形状データをフーリエ変換することにより導出される空間周波数であることを特徴とする請求項記載の蛍光温度センサ。 The surface roughness of the surface to be measured, the fluorescent temperature sensor according to claim 1, wherein the the spatial frequency derived by Fourier transform of the surface shape data of the surface to be measured.
JP2009053378A 2009-03-06 2009-03-06 Fluorescent temperature sensor Active JP5235727B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009053378A JP5235727B2 (en) 2009-03-06 2009-03-06 Fluorescent temperature sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009053378A JP5235727B2 (en) 2009-03-06 2009-03-06 Fluorescent temperature sensor

Publications (2)

Publication Number Publication Date
JP2010210248A true JP2010210248A (en) 2010-09-24
JP5235727B2 true JP5235727B2 (en) 2013-07-10

Family

ID=42970597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009053378A Active JP5235727B2 (en) 2009-03-06 2009-03-06 Fluorescent temperature sensor

Country Status (1)

Country Link
JP (1) JP5235727B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016139703A1 (en) * 2015-03-04 2016-09-09 株式会社芝浦電子 Heating cooker

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07159248A (en) * 1993-12-07 1995-06-23 Nireco Corp Contact type temperature detector
JPH11211580A (en) * 1998-01-20 1999-08-06 Takaoka Electric Mfg Co Ltd Optical fiber type fluorescence thermometer
JP4600170B2 (en) * 2004-09-15 2010-12-15 セイコーエプソン株式会社 An electronic device having a thermometer, and a thermometer

Also Published As

Publication number Publication date Type
JP2010210248A (en) 2010-09-24 application

Similar Documents

Publication Publication Date Title
US7336346B2 (en) Distance measuring device and method thereof
US6668645B1 (en) Optical fuel level sensor
US20020031164A1 (en) Method and apparatus for photothermal analysis of a layer of material, especially for thickness measurement thereof
US7446881B2 (en) System, apparatus, and method for determining temperature/thickness of an object using light interference measurements
US20100128756A1 (en) Dual source auto-correction in distributed temperature systems
US6333502B1 (en) Radiation detector, radiation measurement system and radiation measurement method
US5208645A (en) Method and apparatus for optically measuring the thickness of a coating
EP1615011A1 (en) Method and system for obtaining physical data by means of a distributed fiber optical sensing cable
US7990522B2 (en) Dynamic compensation of chromatic point sensor intensity profile data selection
JP2006030135A (en) Optical characteristic measuring device
US20070229816A1 (en) Apparatus and Methods for Distributed Temperature Sensing
US20080130707A1 (en) Temperature Measuring Device and Temperature Measurement Method
US20030060984A1 (en) Automobile oil deterioration diagnosing apparatus
US20100312512A1 (en) Single light source automatic calibration in distributed temperature sensing
JPH10141922A (en) Multipoint strain and temperature sensor
JP2005084019A (en) Temperature measuring method of substrate
EP1054251A1 (en) Method and device for oil deterioration diagnosis
US20130222815A1 (en) Chromatic range sensor including measurement reliability characterization
US7769252B2 (en) Location marker for distributed temperature sensing systems
JP2010107279A (en) Temperature measuring method
JP2005188999A (en) Particular component concentration measuring apparatus and particular component concentration measuring method
US20040227955A1 (en) Method and apparatus for measuring thicknesses of layers of multilayer thin film
US20130301037A1 (en) Distributed Optical Fibre Sensing
US7313067B2 (en) Recording-medium identification device and method using light sensor to detect recording medium type
US20090059996A1 (en) Optical Fiber Temperature Distribution Measuring Apparatus, Method for Measuring Optical Fiber Temperature Distribution, and Optical Fiber Temperature Distribution Measuring System

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121205

A131 Notification of reasons for refusal

Effective date: 20130108

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20130207

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130326

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20160405