JP5234578B2 - Water cooling duct - Google Patents

Water cooling duct Download PDF

Info

Publication number
JP5234578B2
JP5234578B2 JP2007258446A JP2007258446A JP5234578B2 JP 5234578 B2 JP5234578 B2 JP 5234578B2 JP 2007258446 A JP2007258446 A JP 2007258446A JP 2007258446 A JP2007258446 A JP 2007258446A JP 5234578 B2 JP5234578 B2 JP 5234578B2
Authority
JP
Japan
Prior art keywords
water
cooling
port
cooling water
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007258446A
Other languages
Japanese (ja)
Other versions
JP2009085548A (en
JP2009085548A5 (en
Inventor
敬介 山本
幸司 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Spindle Manufacturing Co Ltd
Original Assignee
Nihon Spindle Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Spindle Manufacturing Co Ltd filed Critical Nihon Spindle Manufacturing Co Ltd
Priority to JP2007258446A priority Critical patent/JP5234578B2/en
Publication of JP2009085548A publication Critical patent/JP2009085548A/en
Publication of JP2009085548A5 publication Critical patent/JP2009085548A5/ja
Application granted granted Critical
Publication of JP5234578B2 publication Critical patent/JP5234578B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Description

本発明は、水冷ダクトに関し、例えば、電気炉等から排出される排ガスを直接吸引し、集塵機で浄化処理するシステムの配管経路に用いられる水冷ダクトの改良に関するものである。   The present invention relates to a water cooling duct, for example, to an improvement in a water cooling duct used in a piping path of a system that directly sucks exhaust gas discharged from an electric furnace or the like and purifies it with a dust collector.

従来、電気炉等から排出される塵埃等を含む高温の排ガスを直接吸引し、所定温度の範囲に冷却し、集塵機で浄化処理するシステムにおいては、図4に示すように、電気炉1から排出される1400〜1500℃程度の排ガスを通す燃焼塔2や水冷ダクト3を含む配管ダクトに二重構造(図4において、破線で示す。)を採用し、二重構造の間隙に冷却装置6(例えば、クーリングタワー等)によって調整された冷却水を循環させることによって、排ガスを、400℃(好ましくは250℃)以下に冷却した状態で、配管4を介して集塵機5に導入するようにしている。
そして、このような高温の排ガスを所定温度の範囲に冷却するための水冷ダクト3として、図5〜図6に示す水冷ダクトが提案され、実用化されている。
この水冷ダクト3は、円筒状の配管である内筒31と外筒32との二重構造として、その間隙に冷却水を流し、内筒31内を通過する排ガスを冷却するものである。
Conventionally, in a system in which high temperature exhaust gas including dust discharged from an electric furnace or the like is directly sucked, cooled to a predetermined temperature range, and purified by a dust collector, it is discharged from the electric furnace 1 as shown in FIG. A double structure (indicated by a broken line in FIG. 4) is adopted for the piping duct including the combustion tower 2 and the water cooling duct 3 through which the exhaust gas of about 1400 to 1500 ° C. is passed, and the cooling device 6 ( For example, the exhaust gas is cooled to 400 ° C. (preferably 250 ° C.) or less and is introduced into the dust collector 5 through the pipe 4 by circulating cooling water adjusted by a cooling tower or the like.
And the water cooling duct shown in FIGS. 5-6 is proposed as the water cooling duct 3 for cooling such high temperature waste gas to the range of predetermined temperature, and is utilized.
The water cooling duct 3 has a double structure of an inner cylinder 31 and an outer cylinder 32 which are cylindrical pipes, and cools exhaust gas passing through the inner cylinder 31 by flowing cooling water through the gap.

この場合、内筒31と外筒32の間隙に、給水口3aから排水口3bに亘って冷却水を周回しながら流通させる流路を形成する流水ガイド33を配設し、内筒31の内表面から伝わる排ガスの熱を冷却水側に放熱させ、排ガスによって加熱された内筒31を、その外表面から冷却するようにしている。
流水ガイド33は、図6の展開図に示すように、給水口3aから供給される冷却水を、図示下側から上側に流れるように(組み立てられた水冷ダクト3においては、流路Rは、排水口3b側から見て時計回りに旋回するように、例えば、8度周回するように構成され、以下、1周回毎に流路Rを流路a〜流路hに分割して説明する)配設し、左上の流路aから左下の流路aに、次いで、bからbに、・・・、gからgに流れ、最後に、右上のhから、右下のhと、Uターンして流れる冷却水に分かれ、排水口3bを介して水槽Wに返還される。
In this case, a water flow guide 33 is provided in the gap between the inner cylinder 31 and the outer cylinder 32 to form a flow path for circulating cooling water from the water supply port 3a to the drain port 3b. The heat of the exhaust gas transmitted from the surface is radiated to the cooling water side, and the inner cylinder 31 heated by the exhaust gas is cooled from the outer surface.
As shown in the development view of FIG. 6, the running water guide 33 flows the cooling water supplied from the water supply port 3 a from the lower side to the upper side in the drawing (in the assembled water cooling duct 3, the flow path R is (For example, it is configured to circulate 8 degrees so as to turn clockwise as viewed from the drain port 3b side. Hereinafter, the flow path R is divided into the flow paths a to h for each turn) And flow from upper left channel a to lower left channel a, then from b to b, ..., g to g, and finally from upper right h to lower right h and U-turn Then, it is divided into flowing cooling water and returned to the water tank W through the drainage port 3b.

ところで、水冷ダクト3の内筒31と外筒32との間隙に形成する流路Rには、給水ヘッダPと連通する給水口3aと、水槽Wに繋がる排水口3bとが両端に開口しているだけで、水冷ダクト3内に送られる排ガス温度が異常に高温の場合、給水口3aから供給された冷却水が、排水口3bに至るまでに蒸気化してしまい、流路内で冷却水が不足し、十分な冷却効率を維持できなくなるとともに、排水口3b付近となる下流側の内筒31が蒸気化した冷却水によって破損することがあるという問題があった。   By the way, in the flow path R formed in the gap between the inner cylinder 31 and the outer cylinder 32 of the water cooling duct 3, a water supply port 3a communicating with the water supply header P and a drain port 3b connected to the water tank W are opened at both ends. If the temperature of the exhaust gas sent into the water cooling duct 3 is abnormally high, the cooling water supplied from the water supply port 3a is vaporized to reach the drain port 3b, and the cooling water is generated in the flow path. Insufficient cooling efficiency cannot be maintained, and the downstream inner cylinder 31 near the drain port 3b may be damaged by the vaporized cooling water.

本発明は、上記従来の水冷ダクトの有する問題点に鑑み、高温な排ガスの場合であっても、一定の冷却効率を保持するとともに、蒸気化した冷却水による内筒の破損を防止することのできる水冷ダクトを提供することを目的とする。   In view of the problems of the conventional water cooling duct, the present invention maintains a constant cooling efficiency even in the case of high-temperature exhaust gas, and prevents damage to the inner cylinder due to vaporized cooling water. An object is to provide a water-cooled duct that can be used.

上記目的を達成するため、本発明の水冷ダクトは、内筒と外筒とからなり、両筒間の間隙に、給水口から排水口間に亘って、給水ヘッダから送出される冷却水を周回しながら流通させる流路を形成する流水ガイドを配設した水冷ダクトにおいて、流路内に系外に冷却水を分岐させる分岐口と、給水口とは別に給水ヘッダから冷却水の供給を受ける補助給水口と備えたことを特徴とする。 In order to achieve the above object, the water cooling duct of the present invention comprises an inner cylinder and an outer cylinder, and circulates the cooling water sent from the water supply header in the gap between both cylinders from the water supply port to the drainage port. In a water-cooled duct provided with running water guides that form a flow channel that circulates while flowing, a branch port for branching the cooling water outside the system into the flow channel, and an auxiliary receiving the supply of cooling water from the water supply header separately from the water supply port characterized in that a water inlet.

この場合において、分岐口から分岐した冷却水の温度を測定する温度測定器と、該温度測定器の値に応じて補助給水口への給水量を制御する制御機構や分岐口から分岐させる冷却水の量を制御する制御機構とを備えることができる。 In this case, a temperature measuring device for measuring the temperature of the cooling water branched from the branch port, a control mechanism for controlling the amount of water supplied to the auxiliary water supply port according to the value of the temperature measuring device, and the cooling water branched from the branch port. And a control mechanism for controlling the amount of.

本発明の水冷ダクトによれば水冷ダクト内を通過する排ガス温度が異常に高温の場合でも、流路を周回する冷却水は、補助給水口より補充され、十分な冷却水量を確保し、一定の冷却効率を保持することができるとともに、蒸気化した冷却水による内筒の破損を防止することのできる水冷ダクトを提供することができる。 According to the water cooling duct of the present invention, even when the exhaust gas temperature passing through the water cooling duct is abnormally high, the cooling water circulating around the flow path is replenished from the auxiliary water supply port, ensuring a sufficient amount of cooling water, and constant It is possible to provide a water cooling duct that can maintain the cooling efficiency of the inner cylinder and can prevent the inner cylinder from being damaged by the vaporized cooling water.

また、制御機構によって、十分な冷却水量を確保し、一定の冷却効率を保持したり、冷却水が蒸気化している場合に、蒸気化した冷却水を水冷ダクトの排水口まで送出することなく、分岐口から系外に排出し、内筒の破損を有効に防止することができる。 In addition, the control mechanism ensures a sufficient amount of cooling water, maintains a constant cooling efficiency, and when the cooling water is vaporized, without sending the vaporized cooling water to the drain of the water cooling duct, It is discharged out of the system from the branch port, and damage to the inner cylinder can be effectively prevented.

以下、本発明の水冷ダクトの実施の形態を、図面に基づいて説明する。なお、従来装置と同様の構造については同一の符号、一連の符号を付し説明を省略する。   Embodiments of a water cooling duct according to the present invention will be described below with reference to the drawings. In addition, about the structure similar to a conventional apparatus, the same code | symbol and a series of code | symbol are attached | subjected, and description is abbreviate | omitted.

図1〜図3に、本発明の水冷ダクトの一実施例を示す。
この水冷ダクト3は、従来例と同様、電気炉1から排出される1400〜1500℃程度の排ガスを400℃(好ましくは250℃)以下に冷却するためのもので、冷却された排ガスは集塵機5で処理された後、清浄空気として排出管5aを通過し外部に放出される。
1 to 3 show an embodiment of the water-cooled duct of the present invention.
This water-cooled duct 3 is for cooling the exhaust gas of about 1400 to 1500 ° C. discharged from the electric furnace 1 to 400 ° C. (preferably 250 ° C.) or less, as in the conventional example. After being processed by the above, it passes through the discharge pipe 5a as clean air and is discharged to the outside.

水冷ダクト3に送られる冷却水は、水槽Wから冷却装置6(例えば、クーリングタワー)によって冷却され、循環ポンプからなる給水ヘッダPから給水口3aを介して内筒31と外筒32との間隙内に形成された流路Rに送水され、内筒31の内側を通過する排ガスとの間で熱交換を行った後、排水口3bを介して水槽Wに返還される。   The cooling water sent to the water cooling duct 3 is cooled from the water tank W by a cooling device 6 (for example, a cooling tower), and is fed into a gap between the inner cylinder 31 and the outer cylinder 32 from a water supply header P formed of a circulation pump through a water supply port 3a. The water is sent to the flow path R formed in the above, and after exchanging heat with the exhaust gas passing through the inside of the inner cylinder 31, it is returned to the water tank W through the drain port 3b.

水冷ダクト3の内筒31の外周面には、従来例と同様のピッチで給水口3aから排水口3b間に亘って冷却水を周回しながら流通させる流路Rを形成する流水ガイド33を配設する。
そして、流路R内には、系外に冷却水を分岐させる分岐口34と、給水口3aとは別に給水ヘッダPから冷却水の供給を受ける補助給水口35と、分岐口34から分岐した冷却水の温度を測定する温度測定器36と、該温度測定器の値に応じて補助給水口35への給水量を制御する制御機構37とを配設するようにしている。
On the outer peripheral surface of the inner cylinder 31 of the water cooling duct 3, a running water guide 33 that forms a flow path R that circulates while circulating the cooling water from the water supply port 3 a to the drain port 3 b at the same pitch as in the conventional example is arranged. Set up.
And in the flow path R, it branched from the branch port 34 which branches the cooling water outside the system, the auxiliary water supply port 35 which receives supply of cooling water from the water supply header P separately from the water supply port 3a, and A temperature measuring device 36 for measuring the temperature of the cooling water and a control mechanism 37 for controlling the amount of water supplied to the auxiliary water supply port 35 according to the value of the temperature measuring device are arranged.

分岐口34は、分岐管38に連通され、排水口3bと合流して水槽Wに送られる。
また、分岐口34の配設数は、特に限定されず、給水口3aから比較的近い位置に複数配設することが好ましく、本実施例では4個所に配設した例を示す。
The branch port 34 communicates with the branch pipe 38, joins the drain port 3 b, and is sent to the water tank W.
The number of the branch ports 34 is not particularly limited, and a plurality of branch ports 34 are preferably disposed at positions relatively close to the water supply port 3a. In this embodiment, an example in which four branch ports 34 are disposed is shown.

補助給水口35は、制御機構37によって開閉を制御されるバルブV2を介して給水ヘッダPと連結されている。
補助給水口35の配設数も、特に限定されず、分岐口34よりも若干下流側に複数配設することが好ましく、本実施例では分岐口34と同数の4個所に配設した例を示す。
The auxiliary water supply port 35 is connected to the water supply header P through a valve V <b> 2 whose opening and closing is controlled by the control mechanism 37.
The number of auxiliary water supply ports 35 is not particularly limited, and a plurality of auxiliary water supply ports 35 are preferably disposed slightly downstream of the branch port 34. In this embodiment, the number of the auxiliary water supply ports 35 is the same as the four branch ports 34. Show.

分岐口34が連通する分岐管38には、分岐口34から分岐された冷却水の温度を測定するため熱電対等からなる温度測定器36を配設し、図例4個所から分岐させた冷却水の温度を測定し、測定値を制御機構37に送信するようにしている。
そして、冷却水の温度が所定温度の範囲を超える場合には、バルブV2の開度調整を行い、補助給水口35から冷却水を水冷ダクト3の流路R内に追加して供給することによって流路R内の冷却水の温度を低下させて、温度測定器36で測定した冷却水の温度が所定温度の範囲内に低下したときにバルブV2を閉鎖するようにしている。
また、図2に示すように、給水口3aと給水ヘッダPとの間に制御機構37によって開度調整可能なバルブV4を配設することもできる。
この場合、水冷ダクト3内を通過する排ガス温度が低く、熱負荷が小さい場合には、制御機構37によって水冷ダクト3内に供給する冷却水量を抑えることができる。
A branch pipe 38 through which the branch port 34 communicates is provided with a temperature measuring device 36 composed of a thermocouple or the like for measuring the temperature of the cooling water branched from the branch port 34, and the cooling water branched from four locations in the figure. The temperature is measured and the measured value is transmitted to the control mechanism 37.
When the temperature of the cooling water exceeds the predetermined temperature range, the opening degree of the valve V2 is adjusted, and cooling water is additionally supplied into the flow path R of the water cooling duct 3 from the auxiliary water supply port 35. The temperature of the cooling water in the flow path R is lowered, and the valve V2 is closed when the temperature of the cooling water measured by the temperature measuring device 36 falls within a predetermined temperature range.
Further, as shown in FIG. 2, a valve V <b> 4 whose opening degree can be adjusted by the control mechanism 37 can be disposed between the water supply port 3 a and the water supply header P.
In this case, when the exhaust gas temperature passing through the water cooling duct 3 is low and the heat load is small, the amount of cooling water supplied into the water cooling duct 3 by the control mechanism 37 can be suppressed.

分岐管38は、閉鎖状態のバルブV1と並列に配管したバイパスラインLに配設したバルブV3によって流量調整された少量の冷却水を流路Rから分岐し、排水口3bから排出される冷却水と合流して水槽Wに排出しながら、温度測定器36によって分岐した冷却水の温度を測定するようにしている。
なお、分岐管38は、バルブV1、V3及びバイパスラインLを設けることなく、分岐口34から分岐させた冷却水の温度を温度測定器36によって測定するだけの役割とし、端部を閉鎖するようにしても構わない。
The branch pipe 38 branches a small amount of cooling water whose flow rate is adjusted by a valve V3 disposed in a bypass line L piped in parallel with the closed valve V1 from the flow path R, and is discharged from the drain port 3b. And the temperature of the cooling water branched by the temperature measuring device 36 is measured while being discharged to the water tank W.
The branch pipe 38 serves only to measure the temperature of the cooling water branched from the branch port 34 without using the valves V1 and V3 and the bypass line L, and closes the end. It doesn't matter.

そして、制御機構37によって、温度測定器36の値に応じてバルブV1の開度調整を行い、分岐口34から分岐させる冷却水の量を制御することができる。
これによって、温度測定器36によって測定された冷却水の温度が100℃近辺となっており、分岐口34から分岐された冷却水が蒸気化しているとき、つまり、流路R内の冷却水も蒸気化していると考えられるときは、流路R内から分岐した冷却水をバイパスラインLからの排出に加え、バルブV1を開放することによって大量かつ迅速に水槽Wに排出して、内筒31の破損を防止することができる。
この場合、バルブV2も全開状態とし、補助給水口35から流路R内に冷却水を補充して排ガスを冷却するようにしている。
The control mechanism 37 can adjust the opening degree of the valve V <b> 1 according to the value of the temperature measuring device 36 to control the amount of cooling water branched from the branch port 34.
As a result, the temperature of the cooling water measured by the temperature measuring device 36 is close to 100 ° C., and the cooling water branched from the branch port 34 is vaporized, that is, the cooling water in the flow path R is also When it is considered to be vaporized, the cooling water branched from the flow path R is added to the discharge from the bypass line L, and the valve V1 is opened to quickly and rapidly discharge the water into the water tank W. Can be prevented from being damaged.
In this case, the valve V2 is also fully opened, and cooling water is replenished into the flow path R from the auxiliary water supply port 35 to cool the exhaust gas.

分岐口34及び補助給水口35の配設個所は、図3の展開図に示すように、従来例と同様、例えば、流路Rが水冷ダクト3内を8周回(流路a〜流路h)する場合、分岐口34は、1周回目〜4周回目の排水口3bと同じ軸線上に配設し、補助給水口35は、分岐口34とラップするように3周回目〜6周回目の給水口3aと同じ軸線上(分岐口34と180°ずれた位置)に配設する。
これによって、流路Rの上流側となる分岐口34から蒸気化した冷却水を水槽Wに強制的に排出するときでも、流路R内で冷却水が流通しない個所を極力減らすことができるとともに、流路R内での冷却水不足を補うことができる。
As shown in the developed view of FIG. 3, the arrangement location of the branch port 34 and the auxiliary water supply port 35 is, for example, eight times around the water cooling duct 3 (the flow channel a to the flow channel h) as in the conventional example. ), The branch port 34 is disposed on the same axis as the drainage port 3b of the first to fourth rounds, and the auxiliary water supply port 35 is wrapped around the branch port 34 for the third to sixth rounds. On the same axis as the water supply port 3a (position shifted from the branch port 34 by 180 °).
As a result, even when the cooling water vaporized from the branch port 34 on the upstream side of the flow path R is forcibly discharged to the water tank W, locations where the cooling water does not flow in the flow path R can be reduced as much as possible. Insufficient cooling water in the flow path R can be compensated.

この水冷ダクトにおいて、電気炉1から排出される排ガスは、水冷ダクト3を通過する際、内筒31の内表面から外表面に熱が伝達し、従来例と同様に、流水ガイド33から放熱し、冷却される。
そして、流路R内に給水ヘッダPから給水口3aを介して供給される冷却水は、分岐口34から系外に分岐され、温度測定器36によってその温度が測定される。
測定された温度が所定温度の範囲内にあるときは、冷却水の供給は給水口3aのみから供給を続けるとともに、バイパスラインLに配設したバルブV3によって通過流量を少量に絞られた状態で分岐口34から冷却水の分岐、排出を続ける。
In this water-cooled duct, when the exhaust gas discharged from the electric furnace 1 passes through the water-cooled duct 3, heat is transferred from the inner surface to the outer surface of the inner cylinder 31, and heat is radiated from the flowing water guide 33 as in the conventional example. Cooled down.
Then, the cooling water supplied from the water supply header P to the flow path R through the water supply port 3 a is branched out of the system from the branch port 34, and the temperature is measured by the temperature measuring device 36.
When the measured temperature is within the predetermined temperature range, the cooling water is supplied only from the water supply port 3a and the passing flow rate is reduced to a small amount by the valve V3 arranged in the bypass line L. Continue to branch and discharge the cooling water from the branch port 34.

温度測定器36によって計測された冷却水の温度が所定温度の範囲を超えたとき、制御機構37によって、バルブV2の開度調整を行い、補助給水口35から冷却水を流路R内に追加的に供給し冷却水の温度を低下させる。   When the temperature of the cooling water measured by the temperature measuring device 36 exceeds the predetermined temperature range, the opening degree of the valve V2 is adjusted by the control mechanism 37, and the cooling water is added into the flow path R from the auxiliary water supply port 35. To reduce the temperature of the cooling water.

また、温度測定器36によって計測された冷却水の温度が100℃近辺の冷却水が蒸気化する温度を計測したときには、制御機構37によって、バルブV1の開度調整を行い蒸気化した冷却水を積極的に系外の水槽Wに排出し、内筒31の破損を防止することができる。   Further, when the temperature of the cooling water measured by the temperature measuring device 36 is measured at a temperature at which the cooling water near 100 ° C. is vaporized, the control mechanism 37 adjusts the opening degree of the valve V1 and the vaporized cooling water is supplied. It is possible to positively discharge the water tank W outside the system and prevent the inner cylinder 31 from being damaged.

以上、本発明の水冷ダクトについて、その実施例に基づいて説明したが、本発明は上記実施例に記載した構成に限定されるものではなく、その趣旨を逸脱しない範囲において適宜その構成を変更することができるものである。   As mentioned above, although the water-cooled duct of this invention was demonstrated based on the Example, this invention is not limited to the structure described in the said Example, The structure is suitably changed in the range which does not deviate from the meaning. It is something that can be done.

本発明の水冷ダクトは、冷却水の流路内に、冷却水の温度の測定と蒸気化した冷却水の排出のための分岐口と、不足する冷却水の補助給水口とを配設し、蒸気化した冷却水による内筒の破損を防止することができるという特性を有していることから、新規の電気炉集塵システムに用いることができるほか、既設の電気炉集塵システムにおける水冷ダクトの代替の用途にも用いることができる。   The water cooling duct of the present invention is arranged in the cooling water flow path with a branch port for measuring the temperature of the cooling water and discharging the vaporized cooling water, and an auxiliary water supply port for the insufficient cooling water, Since it has the property of preventing damage to the inner cylinder due to vaporized cooling water, it can be used for a new electric furnace dust collection system, as well as a water cooling duct in an existing electric furnace dust collection system. It can also be used for alternative applications.

本発明の水冷ダクトを使用する、電気炉集塵システムの全体図である。It is a general view of an electric furnace dust collection system using the water cooling duct of the present invention. 同水冷ダクトの一実施例を示す平面図である。It is a top view which shows one Example of the water cooling duct. 同水冷ダクトの流路を説明する展開図である。It is an expanded view explaining the flow path of the water cooling duct. 従来の水冷ダクトを使用する、電気炉集塵システムの全体図である。It is a general view of an electric furnace dust collection system using a conventional water cooling duct. 従来の水冷ダクトの平面図である。It is a top view of the conventional water cooling duct. 従来の水冷ダクトの流路を説明する展開図である。It is an expanded view explaining the flow path of the conventional water cooling duct.

符号の説明Explanation of symbols

3 水冷ダクト
31 内筒
32 外筒
33 流水ガイド
34 分岐口
35 補助給水口
36 温度測定器
37 制御機構
P 給水ヘッダ
R 流路
3 Water cooling duct 31 Inner cylinder 32 Outer cylinder 33 Flowing guide 34 Branch port 35 Auxiliary water supply port 36 Temperature measuring device 37 Control mechanism P Water supply header R Flow path

Claims (3)

内筒と外筒とからなり、両筒間の間隙に、給水口から排水口間に亘って、給水ヘッダから送出される冷却水を周回しながら流通させる流路を形成する流水ガイドを配設した水冷ダクトにおいて、流路内に系外に冷却水を分岐させる分岐口と、給水口とは別に給水ヘッダから冷却水の供給を受ける補助給水口と備えたことを特徴とする水冷ダクト。 A running water guide that forms a flow path that circulates while circulating the cooling water sent from the feed header from the feed port to the drain port is arranged in the gap between the two tubes. water cooling duct in a water-cooled duct, and a branch port for branching the cooling water outside the system in the flow path, characterized in that the water supply port and a separate auxiliary water inlet for receiving a supply of cooling water from the water supply header. 分岐口から分岐した冷却水の温度を測定する温度測定器と、該温度測定器の値に応じて補助給水口への給水量を制御する制御機構とを備えたことを特徴とする請求項1記載の水冷ダクト。2. A temperature measuring device for measuring the temperature of the cooling water branched from the branch port, and a control mechanism for controlling the amount of water supplied to the auxiliary water supply port according to the value of the temperature measuring device. The water cooling duct described. 分岐口から分岐した冷却水の温度を測定する温度測定器と、該温度測定器の値に応じて分岐口から分岐させる冷却水の量を制御する制御機構とを備えたことを特徴とする請求項1記載の水冷ダクト。 A temperature measuring device for measuring the temperature of the cooling water branched from the branch port, and a control mechanism for controlling the amount of the cooling water branched from the branch port according to the value of the temperature measuring device. Item 2. A water-cooled duct according to Item 1.
JP2007258446A 2007-10-02 2007-10-02 Water cooling duct Active JP5234578B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007258446A JP5234578B2 (en) 2007-10-02 2007-10-02 Water cooling duct

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007258446A JP5234578B2 (en) 2007-10-02 2007-10-02 Water cooling duct

Publications (3)

Publication Number Publication Date
JP2009085548A JP2009085548A (en) 2009-04-23
JP2009085548A5 JP2009085548A5 (en) 2010-11-11
JP5234578B2 true JP5234578B2 (en) 2013-07-10

Family

ID=40659203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007258446A Active JP5234578B2 (en) 2007-10-02 2007-10-02 Water cooling duct

Country Status (1)

Country Link
JP (1) JP5234578B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5802993B2 (en) * 2012-03-29 2015-11-04 日本スピンドル製造株式会社 Exhaust duct structure

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0173700U (en) * 1987-11-04 1989-05-18
JPH053864Y2 (en) * 1988-07-22 1993-01-29

Also Published As

Publication number Publication date
JP2009085548A (en) 2009-04-23

Similar Documents

Publication Publication Date Title
CN102150003B (en) Tubular heat exchanger for controlling a wide performance range
JP6053839B2 (en) Boiler water supply system, boiler equipped with the same, and control method for boiler water supply system
JP2010169326A (en) Shell-and-tube exchanger
JP2009262925A (en) Ship, and thermal energy recovery method in ship
WO2015122244A1 (en) Heat exchanger
KR101584418B1 (en) Boiler plant
CN103842624B (en) Gasification reactor
JP2014020345A (en) Egr system
JP5234578B2 (en) Water cooling duct
KR20160034420A (en) Engine exhaust heat recovery system
JP2019149352A (en) Fuel cell system with cooling mechanism
JP5549804B2 (en) Vapor quality monitoring device
JP2010144999A (en) Multitubular heat exchanger
JP2007248017A (en) Temperature controller for fuel economizer of reheat boiler
CN113790623A (en) Regenerative heat exchanger structure with wide-range working power and control method
KR101662474B1 (en) Condensate preheater for a waste-heat steam generator
JP2008075967A (en) Water-cooled duct
JP5829640B2 (en) Ship boiler feed water temperature control system
JP6691385B2 (en) Drain outlet temperature control system and boiler system
KR20120009290A (en) Heat supply system for fresh water generator of a ship
KR101575267B1 (en) Heat exchanger for exhaust heat withdrawal of vehicle
JP5596216B1 (en) Waste treatment facility
JP2014009835A (en) Exhaust gas treatment apparatus
JP5918810B2 (en) Waste treatment facility and heat retention method for dust collector
CN209840237U (en) Heat exchanger heating system

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100929

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130319

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5234578

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160405

Year of fee payment: 3