JP5229935B2 - 梃 Crank chain mechanism group type mechanical seismic isolation device - Google Patents

梃 Crank chain mechanism group type mechanical seismic isolation device Download PDF

Info

Publication number
JP5229935B2
JP5229935B2 JP2007228293A JP2007228293A JP5229935B2 JP 5229935 B2 JP5229935 B2 JP 5229935B2 JP 2007228293 A JP2007228293 A JP 2007228293A JP 2007228293 A JP2007228293 A JP 2007228293A JP 5229935 B2 JP5229935 B2 JP 5229935B2
Authority
JP
Japan
Prior art keywords
swivel
cone
turning
chain mechanism
column
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007228293A
Other languages
Japanese (ja)
Other versions
JP2009041352A (en
Inventor
稔 紙屋
Original Assignee
稔 紙屋
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 稔 紙屋 filed Critical 稔 紙屋
Priority to JP2007228293A priority Critical patent/JP5229935B2/en
Publication of JP2009041352A publication Critical patent/JP2009041352A/en
Application granted granted Critical
Publication of JP5229935B2 publication Critical patent/JP5229935B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

機建築構造物の機械式免震構造装置に関する。   The present invention relates to a mechanical seismic isolation device for a building structure.

地震による建造物の免震構造装置は多種多様ある。柱の根元部が浮上してなるブランコ式免震装置でも地面が揺れれば腰掛部の上下の高低差が生じるが、高低差の全く生じない平面移動だけの免震構造は[特願2006−357484]のスライダクランク式がある。柱の根元に架かる衝撃的重力荷重が1万トン以上に耐える強固な鋼鉄製で100年以上の耐久性のある建造物の横揺れを防止する免震構造は不明である。 There are many types of seismic isolation devices for buildings due to earthquakes. Even in the swing type seismic isolation device with the base of the column rising, if the ground shakes, the vertical difference of the seating part will occur. 357484 ]. The seismic isolation structure that prevents the rolling of a durable building made of strong steel that can withstand a gravitational load of more than 10,000 tons at the base of the column for more than 100 years is unknown.

関東大震災級の大地震で、地面の揺れが仮に1秒間で直径3mを往復瞬間移動したとしても、設計段階で3mでも4mでも希望の数値設定により強固な免震構造の機械作製を可能とし、鋼鉄製部材で建造物の柱の根元部に架かる衝撃的重力荷重が仮に1万トン以上であっても強度的に耐え得る構造能力があって、100年以上の耐久性もあり、地面が揺れても柱の揺れを完全に防止する機械式免震構造装置を備えた建造物の建造を課題とする。特願2006−357484の追加的事項である。ブランコやスケートボード、シーソー、ジェットコースターなど重力や反重力を応用した構造は遊具や振り子時計、家具、産業、機械などに昔から多く使用され地球に重力がある限り様々な開発が続く。更に折りたたみ机やテーブルなど、梃クランク構造によって屈伸、屈折、旋回可能な連結方法により台形形状をなす脚立方式の構造や梃クレーン、ミシンなど柱や筋交い、梁、などを使用した構造物で、昔からある4節(両梃)連鎖機構も広く古くから公知の構造である。
そこで4節連鎖機構構造の原理を応用して、電源もコンピュターも使用しない自然重量だけを利用した免震構造で建造物の柱(そ)は地上より吊り上がって、リニアモーターカーのごとく浮き上がった状態のまま激震で地面が東西南北どの方向に揺れ動き、斜めに傾斜移動を反復しようとも柱は元の空間のそのままの位置で揺れない不動の位置を維持するにはどのような手段を用いて実現するか、を課題とし、綱渡りの軽業師が水平棒1本手に取り1本のロープを綱渡りしているときの軽業師の足元の揺れ(縦横斜め)を体感(実感)する装置の実現であり、或いは遊具の綱渡りする糸巻き円錐駒の鉄心のごとく、建造物の柱の根元(た、ち、0の位置)そのものが綱渡りしているがごとく空中のロープ(せ、部)(Rの位置)から、はずれない、落下しない、0点の位置より不動な免震構造装置を備えた建造物の建造を課題とし、人為的な手法での重力対策が課題である。
Even in the case of a major earthquake in the Great Kanto Earthquake, even if the ground shakes reciprocally move 3 m in diameter in 1 second, it is possible to make a machine with a strong seismic isolation structure by setting the desired numerical value at 3 m or 4 m at the design stage. It has a structural ability to withstand strength even if the impact gravity load on the base of the pillar of the building is 10,000 tons or more, and it has a durability of more than 100 years, and the ground shakes. However, the construction of a building equipped with a mechanical seismic isolation device that completely prevents the shaking of the column is an issue. This is an additional matter of Japanese Patent Application No. 2006-357484. Structures that apply gravity and anti-gravity, such as swings, skateboards, seesaws, and roller coasters, have been used for a long time in playground equipment, pendulum clocks, furniture, industry, machinery, etc., and various developments will continue as long as the earth has gravity. Furthermore, it is a structure using a stepladder type structure that has a trapezoidal shape by a connecting method that can be bent, stretched, bent, and swiveled, such as a folding desk and table, and a structure that uses columns, braces, beams, etc. The four-branch (bilateral) chain mechanism is also a known structure for a long time.
Therefore, by applying the principle of the four-bar chain mechanism structure, the pillars of the building were lifted from the ground with a seismic isolation structure that uses only the natural weight without using a power supply or a computer, and floated like a linear motor car. In any direction, the ground shakes in the direction of the east, west, south, and north due to a strong earthquake, and the column is realized using any means to maintain a fixed position that does not shake in the original space even if it is tilted repeatedly It is the realization of a device that can experience (actually) the shaking (longitudinal and horizontal) of the feet of a light laborer when the light laborer on a tightrope takes a horizontal bar and takes a rope on a tightrope. Or from the rope in the air (position) (R position) as if the base of the building's pillar (the position of 0) itself is a tightrope, like the iron core of a thread-cylinder that goes to the tightrope of a playground equipment, Off There does not fall, the construction of buildings with a immobile seismic isolation device from the position of 0 point to an object, the gravitational measures challenge in artificial techniques.

前記の課題を解決するために、本発明は、建造物の柱を建てる地面基礎上へ円周帯状または多角形の区画面帯状に土台を設置し、該土台の上部に円周帯状の中央部へ傾斜面となった旋回用溝付の台座を1区画に1台ずつ設置し、各々の傾斜台座上へ梃クランク連鎖機構体を搭載した旋回盤を設置し、前記旋回盤は旋回中心軸を中心にして旋回自在に台座に固定されており、前記梃クランク連鎖機構体は旋回盤上に対向して設けた台形形状の主柱と支柱並びに天井型梁を回動自在に連結して梃クランク連鎖機構を構成し、該梃クランク連鎖機構体を区画面帯状に配置し中央部に逆鍔付直円錐体を搭載して鍔部を多点で梃クランク連鎖機構体の天井型梁に旋回自在に連結支持して前記円錐体の自在な傾きにも対応可能とし、円錐体の頂点部において建物の柱の底板根元部を球面軸受けで回転自在に支持してなる梃クランク連鎖機構体群を構成し、地震発生により地面が横方向に揺れ動くと梃クランク連鎖機構体の梃クランク機構の働きにより前記円錐体は前記球面軸受けを支点として揺動するに伴って鍔部が地面の動く方向に傾斜し、円錐体の頂点部と一体としてなる建造物の柱は空間に吊られた状態で停止し、建造物は揺れない梃クランク連鎖機構体群を備えた免震装置とする。 In order to solve the above problems, the present invention provides a base in the form of a circular belt or polygonal section on the ground foundation on which a pillar of a building is built, and the central part of the circular belt on the top of the base. to set up one by one inclined face and became pedestal with swirling groove in one section, set up a swirling board mounted with lever crank linkage mechanism on each of the inclined base, said swivel plate is pivot axis The saddle crank chain mechanism is pivotally connected to a pedestal with a trapezoidal main pillar, a column, and a ceiling beam that are provided opposite to each other on the swivel. Consists of a chain mechanism, the saddle crank chain mechanism is arranged in the form of a section screen, and a straight cone with a reverse saddle is mounted at the center so that the saddle can be pivoted to the ceiling beam of the saddle crank chain mechanism at multiple points. To support the free inclination of the cone, and at the apex of the cone The bottom plate root portion of the pillar of the building constitutes a lever crank linkage mechanism group formed by rotatably supporting a spherical bearing, by the action of the lever crank mechanism of lever crank linkage mechanism the ground by the earthquake swing laterally As the cone swings about the spherical bearing as a fulcrum, the collar part inclines in the direction of movement of the ground, and the pillar of the building integrated with the apex of the cone stops in a suspended state in space. The building will be a seismic isolation device with a crank chain mechanism group that does not shake.

前記の課題を解決するために、本発明は、前記梃クランク連鎖機構体群を備えた免震装置において、前記旋回盤の旋回中心軸(S)を主柱下軸(A)と支柱下軸(C)の中心よりも坂下の主柱下軸(A)側寄りに設けることにより、地震発生により地面が横方向に揺れ動くと揺れの方向と略同じ方向に対向して設けた梃クランク連鎖機構体の鍔部が地面の動く方向に傾斜すると共に前記以外の梃クランク連鎖機構体の旋回中心軸(S)が揺れの方向に動き、前記旋回中心軸(S)よりも円周帯状の中央部寄りに位置する上方の天井型梁とフランジとの連結部は前記旋回中心軸(S)よりもやや遅れて動くために旋回盤の旋回中心軸(S)よりも坂下側寄りには揺れの方向と反対方向の力が働き旋回中心軸(S)を中心に旋回盤を旋回する偶力のモーメントが発生し旋回盤は旋回を始め、旋回盤上の主柱と支柱は前傾斜、直立の動作を機敏に作動し、地震終了後は台座上の傾斜旋回盤は復元力で自然に原形に戻ることを特徴とする前記の梃クランク連鎖機構体群を備えた免震装置とすることが好ましい。 In order to solve the above-described problems, the present invention provides a seismic isolation device including the saddle crank chain mechanism group, wherein the swivel center axis (S) is a main column lower shaft (A) and a column lower shaft. (C) A saddle crank chain mechanism which is provided closer to the main column lower shaft (A) side of the hill than the center of the center so as to face substantially the same direction as the swaying direction when the ground swings laterally due to the occurrence of an earthquake. The center part of the body tilts in the direction in which the ground moves, and the turning center axis (S) of the other part of the saddle crank chain mechanism moves in the direction of shaking, and the center part of the circumferential band shape than the turning center axis (S) Since the connecting part between the upper ceiling beam and the flange located closer to the center moves slightly behind the turning center axis (S), the direction of the swing is closer to the hill side than the turning center axis (S) of the turntable. force couple opposing force to pivot the pivot plate pivot axis (S) to the central function as Moment is generated, the swivel starts turning, the main pillar and support on the swivel are tilted forward and agile, and the tilted swivel on the pedestal is restored to its original shape with restoring force after the earthquake. Preferably, the seismic isolation device is provided with the above-described saddle crank chain mechanism group.

建造物の柱を建てる地面基礎上(あ)に円周帯状または多角形区画面帯状(図1)に土台(い)を設置し、該土台上部(1〜2)に中央部へ傾斜面となった旋回用溝(き)付の台座(う、1〜11)を東西南北、多区画面帯状(5〜8箇所)設置する。図1は、8区画面帯状の台座(う)はすべて傾斜角度∠θで緩い傾斜面としてなり、該台座(溝付き)上面には円形又は半円形状で底面には旋回用溝(く)付の回転盤(え、12〜21)を各1区画面には1基搭載し、8区各面には8基(I〜VIII)搭載設置してなる構造を示す全体概略平面図ずある。説明都合上これ以後、台座(う)と旋回盤(え)とを8セット、8角形区画面帯状に設置した場合として説明することとする。
該台座上面(3〜10)と接面している旋回盤の底面(15〜21、12)には、転がりコロ受け用で旋回用溝(く)とローラー車輪(円錐コロ、お)とを設置して重荷重に耐える構造とし、旋回盤の旋回中心軸(S、キングピン)は旋回盤の円形の中心点(N)から主柱軸(A)側で坂下の(S1)の位置とし、また傾斜台座面上の旋回盤搭載の中心軸も台座の坂下側の(S2)の位置として(S1)の同一軸位置とする。旋回盤の回転周速度形態は不等速楕円運動する旋回構造としてなっていて傾斜台座上で傾斜旋回盤が機敏に滑らかに反旋回振り子運動を反復する構造である。図1は旋回盤を8基搭載する場合で1号基から8号基 まで同じ相似形をなす対称な配置形状を示す全体側面図である。説明都合上、時計回りに1号基から8号基まで8角形区画帯状に配置する。I号基は北、II号基は北東、III号基は東、IV号基は南東、V号基は南、VI号基は南西、XII号基は西、VIII号基は北西・・・・の順である。
On the ground foundation (a) on which the pillars of the building are to be built, a base (i) is installed on the circumferential belt shape or the polygonal screen screen belt shape (Fig. 1), and the upper surface (1-2) is inclined to the center. The pedestal with the groove for turning (ki, 1-11) is installed in the form of multi-zone screen strips (5-8 locations). In FIG. 1, the pedestal (U) in the 8th section has a slanted surface with an inclination angle ∠θ, and the pedestal (with groove) has a circular or semi-circular shape on the top surface and a turning groove on the bottom surface. There is an overall schematic plan view showing a structure in which an attached rotating disk (e.g., 12 to 21) is mounted on each 1 section screen, and 8 (I to VIII) are mounted on each side of the 8 sections. . For convenience of explanation, the description will be made assuming that eight sets of pedestals (U) and swivel boards (E) are installed in the shape of an octagonal area screen strip.
On the bottom surface (15-21, 12) of the swivel which is in contact with the pedestal top surface (3-10), a swivel groove (roller) and a roller wheel (conical roller, oh) are provided for rolling roller receiving. Installed and constructed to withstand heavy loads, the turning center axis (S, kingpin) of the swivel is located at the position of (S1) below the hill on the main column axis (A) side from the circular center point (N) of the swivel, Further, the center axis of the swivel mounted on the inclined pedestal surface is also set to the same axial position (S1) as the position (S2) on the hill side of the pedestal. The rotating peripheral speed form of the swivel is a swivel structure in which an inconstant elliptical motion is made, and the slant swivel repeats the anti-turning pendulum motion smoothly and smoothly on the tilt pedestal. FIG. 1 is an overall side view showing a symmetrical arrangement shape having the same similar shape from No. 1 to No. 8 when eight swivel boards are mounted. For convenience of explanation, they are arranged in an octagonal zone from No. 1 to No. 8 in the clockwise direction. Group I is north, Group II is northeast, Group III is east, Group IV is southeast, Group V is south, Group VI is southwest, Group XII is west, Group VIII is northwest ...・ The order.

台座上に旋回盤を8基搭載した場合で東側のIII号基を例にとって図3により説明する。傾斜旋回盤上(IIIえ)には主柱(け)、天井型梁(さ)、支柱(こ)からなる(てこ)クランク連鎖機構を搭載して該各部の連結部軸(A、B、C、D、E、F)軸のボスピン装置は外部コロ軸受け(図6の円内)等のボス、ピンとにより連結しすべての連結部は重荷重に耐える耐力性連結構造としてなっている。図5は旋回盤上の梃クランク連鎖機構正面部の主柱(け)と背面部の支柱(こ)は厚鋼板のIビーム形鋼や、コラム、H形鋼などの部材によって台形をなす同じ形状の柱(図5)として建て、鉛直方向に1万トン以上の衝撃的重力荷重に耐える強度と地面が秒速3mの往復瞬間移動にも耐え得る強度を保持する堅牢な構造としてなる。   FIG. 3 will be described with reference to FIG. On the inclined swivel board (III), a crank chain mechanism consisting of a main column (ke), a ceiling beam (sa), and a column (ko) is mounted, and the connecting shafts (A, B, The C, D, E, and F) bosspin devices are connected by bosses and pins such as external roller bearings (in the circle in FIG. 6), and all the connecting portions have a load-bearing connection structure that can withstand heavy loads. Fig. 5 shows the same structure, with the main column at the front of the vertical crank chain mechanism on the swivel and the column at the back forming a trapezoid with members such as I-beam shaped steel, columns, and H-shaped steel. It is built as a pillar of shape (Fig. 5), and it has a robust structure that can withstand the impact gravity load of 10,000 tons or more in the vertical direction and that the ground can withstand the reciprocating momentary movement of 3 meters per second.

8角形区画面の傾斜台座上では8基の傾斜旋回盤と該8基の各々の旋回盤上に搭載の梃クランク連鎖機構(4てこ連鎖機構)とでなっている機構を梃クランク連鎖機構体と仮称し、8基の4節連鎖機構体を8角形区画帯状に配置し中央部に逆鍔付直円錐体をかぶせる形状で搭載して該鍔付直円錐体頂点部(せ)によって、柱(そ)の底板根元部(た)を支持する形状の機構を梃クランク連鎖機構体群と仮称する。またこれ以後、該、逆鍔付直円錐体を略して円錐体と仮称する。   On the inclined pedestal of the octagonal section screen, a mechanism consisting of eight inclined swivel machines and a saddle crank chain mechanism (four lever chain mechanism) mounted on each of the eight swivel machines is a saddle crank chain mechanism. The four-joint chain mechanism is arranged in the shape of an octagonal section, and is mounted in such a shape that a straight cone with a reverse barb is placed at the center, and a column is formed by the apex of the barbed right cone. A mechanism that supports the base of the bottom plate (t) is referred to as a saddle crank chain mechanism group. Further, hereinafter, the reverse-clawed straight cone is abbreviated as a cone.

逆鍔付直円錐体(略して円錐体)の構造は8角形区画帯状に8箇所配置設置した旋回盤と該各々の上部に設置した4節連鎖機構体の中央部へ円錐体を逆さに挿してかぶせる形状(とんがり帽子形状)で搭載して、該円錐体の鍔部(し)を天井型梁の上面(24〜25)で支持してボスピン(F)により連結軸とし旋回軸作用も兼ねる軸である。更に該旋回軸の下部にクロスジョイント装置(E)を装着して一体部品(図5の円内部分)とし、円錐体の自在な傾きにも対応する支持軸兼旋回軸としてなる。円錐体の該支持軸兼旋回軸(E,F)に架かる重力荷重は主柱上軸(B)支柱上軸(D)に分担して架かり、主柱上軸(B)の鉛直線(BG)と旋回盤の旋回中心軸(S)の鉛直線(SS’)との距離(SG〜SS’)は主柱(け)の最も直立した状態で最も縮んだ最短距離(図4)でも距離(SG〜SS’)=Tの間隔でありTは旋回盤の旋回モーメントの腕の長さの割合をなして旋回盤の旋回作動する力の発生原因となる構造である。
図2のBG線とBH線とBI線の各3鉛直線は平行線であって3線に交わる主柱軸線(AB)と水平線(LM)とのなす角∠BALは主柱(け)の全傾斜と直立運動の作動する力は地面の揺れる力に比例して∠α、∠β、∠γも変化する。∠αは主柱(け)の直立状態の∠ABGであり直立ストップ角度である。また、∠RBAはキャスター角となって旋回盤の旋回作動に作用して働き、更に∠RBAは傾斜台座上の旋回盤そのものを傾斜台座坂上へ押し上げ滑り上げる作用が働いている。ゆえに地震で傾斜旋回盤の旋回中心軸(S)が主柱軸(A)と支柱軸(C)の中間点よりも坂下側にある為地震発生により旋回盤は主柱傾斜角度∠BAL、支柱傾斜角度∠DCL(δ)に相応して旋回中心軸(S)を中心に偶力モーメントが発生してキャスター効果作用により瞬時に不等速楕円運動形態の旋回作動をはじめる。旋回盤が傾斜状態で自在に半旋回し梃クランク連鎖機構も機敏に前傾直立を反復作動する構造装置としてなる。
地震終了後は該キャスター効果作用により主柱と支柱と旋回盤は元の位置に、元の形(図1)に戻ろうとする復元力が働く。また傾斜台座の傾斜角度(∠θ)はキャンバー角に相当し、円錐体の支持軸兼旋回軸(E、F)はトーイン(トーアウト)に相当して似ており自動車のトーイン、キャンバー、キャスター等のホイールアライメント装置によく似た働きをする構造である。円錐体頂点部(せ、R)は球面クロス軸受装置を設置して柱の根元部と一体構造としてなっていて、柱は底上げ状態、吊上げ状態で浮動しながら鉛直水平面移動を可能とする手段により柱は揺れない構造を特徴としてなる免震構造装置である。
The structure of a straight cone with a reverse hook (abbreviated as a cone) is the inverted cone inserted into the center of a swivel board arranged at eight locations in an octagonal zone and the four-bar chain mechanism installed at the top of each. It is mounted in a shape to be covered (pointed hat shape), and the ridge part (shi) of the cone is supported by the upper surface (24-25) of the ceiling-type beam, and it serves as a connecting shaft by the boss pin (F), which also serves as a turning axis. Is the axis. Further, a cross joint device (E) is attached to the lower part of the swivel shaft to form an integral part (inside of the circle in FIG. 5), which also serves as a support shaft and swivel shaft corresponding to the free inclination of the cone. Gravity load over the support and swivel axes (E, F) of the cone is divided between the main column upper shaft (B) and the column upper shaft (D), and the vertical line of the main column upper shaft (B) The distance (SG to SS ') between (BG) and the vertical line (SS') of the turning center axis (S) of the swivel is the shortest distance that is the most contracted in the most upright state of the main column (Fig. 4). However, the distance (SG to SS ′) = T is an interval, and T is a structure that causes generation of a force for turning the swivel by forming a ratio of the arm length of the turning moment of the swivel.
Each of the three vertical lines BG, BH, and BI in FIG. 2 is a parallel line, and the angle ∠BAL formed by the main column axis (AB) and the horizontal line (LM) that intersects the three lines is the main column (ke). The force at which the full inclination and the upright motion are activated changes ∠α, ∠β, and ∠γ in proportion to the ground shaking force. ∠α is ∠ABG in the upright state of the main pillar (ke), and is an upright stop angle. Further, ∠RBA acts as a caster angle to act on the turning operation of the swivel, and further, ∠RBA acts to push up and slide the swivel itself on the inclined pedestal up to the inclined pedestal slope. Therefore, because of the earthquake, the turning center axis (S) of the tilting swivel is on the hill side below the midpoint between the main column axis (A) and the column axis (C). A couple moment is generated about the turning center axis (S) corresponding to the inclination angle ∠DCL (δ), and the turning operation of the inconstant elliptical motion form is instantly started by the caster effect. The swivel is half-turned freely in an inclined state, and the saddle crank chain mechanism is a structural device that can be repeatedly actuated with forward leaning upright.
After the earthquake, the main column, the column and the swivel are restored to their original positions due to the caster effect, and a restoring force to return to the original shape (FIG. 1) works. The inclination angle of the pedestal () θ) corresponds to the camber angle, and the cone support shafts and turning axes (E, F) are similar to the toe-in (toe-out). This is a structure that works very much like the wheel alignment device. The top of the cone (R) has a spherical cross bearing device and is integrated with the base of the column. The column can be moved in the vertical horizontal plane while floating in the raised state and the suspended state. The pillar is a seismic isolation device characterized by a structure that does not shake.

図5は逆鍔(縁)付直円錐体(し、す、せ)(コーン、麦藁帽子やとんがり帽子形状で内部は空洞型)の斜視図である。該円錐体は厚鋼板の素材を用いた堅牢な構造としてなり鍔部は(し)であり、母線部は(す)、頂点部は(せ)、天井型梁は(さ)である。図2は旋回盤上の主柱下軸(A)と支柱下軸(C)の軸間距離ACを主柱上軸(B)と支柱上軸(D)の距離BDと同じ長さに設定した場合、天井型梁の傾斜角度および主柱と支柱の傾斜角度の比較を表した平行クランク機構形式の概略側面図である。図3は旋回盤上の主柱下軸(A)と支柱下軸(C)の軸間距離ACを主柱上軸(B)と支柱上軸(D)の距離BDよりも長く距離を取り天井型梁が側面視で水平で鍔部と平行を維持するように設定した場合の梃クランク連鎖機構形式の概略側面図である。地震のない平常時では天井型梁の上面(22,23)と鍔部(し、24,25)は水平で平行を維持する設定が望ましい。天井型梁上部のロールクロスジョイント装置(E)を省略して、天井型梁と鍔部とを平衡状態とするため軸間距離(AC)の適時な設定が望ましい。 FIG. 5 is a perspective view of a straight cone with a reverse ridge (edge) (in the shape of a cone, a straw hat or a pointed hat with a hollow interior). The cone has a robust structure using a material of thick steel plate, the collar portion is (shi), the bus bar portion is (su), the apex portion is (se), and the ceiling beam is (sa). 2 shows that the distance AC between the main column lower shaft (A) and the column lower shaft (C) on the swivel is set to the same length as the distance BD between the main column upper shaft (B) and the column upper shaft (D). FIG. 6 is a schematic side view of a parallel crank mechanism type showing a comparison of an inclination angle of a ceiling beam and an inclination angle of a main column and a column . FIG. 3 shows that the distance AC between the main column lower shaft (A) and the column lower shaft (C) is longer than the distance BD between the main column upper shaft (B) and the column upper shaft (D). FIG. 5 is a schematic side view of a saddle crank chain mechanism when the ceiling beam is set so as to be horizontal and parallel to the saddle portion in a side view. In normal times without earthquakes, it is desirable that the top surfaces (22, 23) and the buttocks (24, 25) of the ceiling-type beam be kept horizontal and parallel. It is desirable to set the interaxial distance (AC) in a timely manner so that the roll cross joint device (E) at the top of the ceiling beam is omitted and the ceiling beam and the heel portion are in an equilibrium state.

地震発生により地面が揺れ動く力が、該免震装置全体に作用する力の伝達移動する順序は、まず地面の揺れと同時に台座(う)が揺れ動き、同時に旋回盤(え)が不等速楕円運動の旋回力となり半旋回を反復し、力は旋回盤上の梃クランク連鎖機構の主柱と支柱とに分離分担して主柱(け)、支柱(こ)は直立や前傾斜を繰り返す力に変化する。主柱(け)が立ち上がり直立すればする程、円錐体側面(す)は主柱(け)に近付いて柱に架かる重力荷重は主柱(け)側に、立ち上がり角度の割合に応じて架かり、直立角度では全重力荷重の角度に応じた分担荷重が架かることとなる。∠ABGが直立90°の手前で直立ストップ角度(または主柱の直立残余角度∠β)によって主柱(け)を押し戻す作用が働き、また、主柱に架かる重力加重が重い程押し返す力が強く作用する。
横揺れの力を主柱(け)が直立する運動によって上へ持ち上げる力に変化させると言う理論である。ゆえに柱に架かる重力荷重は地震の横から来る力を利用して主柱(け)の直立という運動により柱に架かる重力をその重力自身の重力によって横揺れの衝撃重力を緩衝し地震の横揺れを無力化する構造になっている手段により建造物は揺れない。また更に力は天井型梁へ伝わり、円錐体鍔部を持ち上げたり引き下げたりして、地震の横揺れの力は次第に分散し消耗して、円錐体鍔部の傾斜や揺れ移動する力に変化し、地震の力は益々減量し減衰しながら、円錐体母線である円錐体側面を伝わって、最後に円錐体頂点部で柱の底板根元部に及ぶ時点では力は全く無くなる。ゆえに柱は揺れない構造としてなっている。
地震終了後、旋回盤は旋回は元に戻って均衡しバランスを保って中央部の正面方向を向いて止まり、自然重力(f)により復元力が働いて旋回盤上の梃クランク連鎖機構体前部の主柱(け)は旋回盤と共に傾斜台座坂下部(S)方向に自然に旋回しながら止まり、円周帯状に配置した8基の主柱、支柱も同様に互いに円周の中央部方向へ向き合う形態で中心方向へ互いに倒れようとする力(主柱の直立残余角度∠ABGより生ずる)が働き、8基とも互いに8角形の中心で持たれ合い釣り合っている状態の元形状に自然に戻る構造となっている。
The order in which the force that causes the ground to shake due to the occurrence of an earthquake transmits the force acting on the entire seismic isolation device is as follows: First, the pedestal moves simultaneously with the shaking of the ground, and at the same time, the swivel board moves at an inconstant elliptical motion. The revolving force is repeated half a turn, and the force is separated and shared between the main column and the column of the saddle crank chain mechanism on the swivel board, and the main column (ke) and the column (this) repeat the upright and forward inclination. Change. As the main column rises and stands upright, the side of the cone moves closer to the main column and the gravity load on the column is placed on the main column according to the rate of the rising angle. In the upright angle, a shared load corresponding to the angle of the total gravity load is applied.作用 ABG works to push back the main column by the upright stop angle (or the upright residual angle of the main column 前 β) before 90 ° upright, and the force to push back is stronger as the gravity load on the main column is heavier Works.
It is a theory that the rolling force is changed to a force that lifts up by the movement of the main pillar. Therefore, the gravity load on the column uses the force coming from the side of the earthquake, and the gravity on the column is buffered by the gravity of the gravity itself by the movement of the main column (upright) standing upright, and the roll of the earthquake is swayed. The structure is not shaken by means of a structure that neutralizes the power. Furthermore, the force is transmitted to the ceiling beam, and the roll force of the earthquake is gradually dispersed and consumed by lifting and lowering the cone buttocks, changing to the inclination and shaking movement force of the cone buttocks. The force of the earthquake is gradually reduced and attenuated, and is transmitted through the side surface of the cone, which is the cone bus, and finally the force disappears at the point of reaching the base of the bottom plate of the column at the top of the cone. Therefore, the pillar has a structure that does not shake.
After the earthquake, the swivel returns to its original position, balances and balances, stops facing the front of the center, and the natural gravity (f) exerts a restoring force so that the swivel on the swivel is in front of the crank chain mechanism. The main pillar of the part stops together with the swivel while naturally turning in the direction of the sloped pedestal slope (S), and the eight main pillars and columns arranged in a circumferential belt shape are also in the direction of the center of the circumference. Forces that cause each other to fall toward each other in the center direction (resulting from the upright residual angle ∠ABG of the main column) work, and all eight units are held at the center of the octagon and are naturally balanced in the original shape. It has a back structure.

図2では柱の底板根元部(た)に架かる鉛直の重力荷重は、構造上、円錐体頂点部に架かってなっている形態であり梃クランク連鎖機構の主柱(け、AB)の高さ(AB)と比較して、円錐体の高さ(F〜R)[底面から頂点までの深さ(h)]が高いほど柱の根本部は安定性があり柱の重力荷重が重いほど安定性がある。更に円錐体頂点部は重荷重に耐える耐力性構造の連結軸装置としてボールジョイント球面軸受け(ち)等の設置によって柱の底板根元部(た)と一体となって柱に架かる重荷重を支持して、柱の根元部を吊上げ状態で、浮き上げている状態により一定の高さ(Q〜R)で浮きながら地面の水平面移動(水平押出し、水平引き込み作用)に対して柱は同じ地点の鉛直線上の位置に停止可能な構造としてなっている。大地震で地面基礎が秒速3mの往復瞬間移動という大揺れであっても、梃クランク連鎖機構体群の働きによる緩衝作用で、或いは、柱は地面の水平面移動に対処する構造によって柱の鉛直線移動を維持し建造物は揺れない。 In FIG. 2, the vertical gravity load over the base of the bottom plate of the column (t) is in the form of the top of the cone on the top of the cone. Compared to (AB), the higher the cone height (F to R) [depth from bottom to top (h)], the more stable the base of the column and the heavier the gravity load of the column, the more stable There is sex. In addition, the apex of the cone supports the heavy load that is built on the base of the bottom plate of the column by installing a ball joint spherical bearing (chi) as a connecting shaft device with a load-bearing structure that can withstand heavy loads. The column is vertical at the same point with respect to the horizontal movement of the ground (horizontal extrusion, horizontal pull-in action) while floating at a certain height (Q to R) depending on the floating state with the base of the column lifted It has a structure that can stop at a position on the line . Even if the ground foundation is shaken by a reciprocating momentary movement of 3 m / s due to a large earthquake, the vertical line of the column can be affected by the buffering action of the saddle crank chain mechanism group or by the structure that copes with the horizontal plane movement of the ground. The movement is maintained and the building does not shake.

図3梃クランク連鎖機構体群の地震のない平常時の側面概略図である。III号基(東)の円錐体の頂点部(せ、R)の鉛直線と地面基礎(あ)との交点をQとする。該円錐体の鍔の付け根部(し)を支持する主柱(け)の連結軸(B)の鉛直線と地面基礎(あ)との平常時の交点を(H)とし、地震によって、主柱が直立した時点の連結軸(B)の鉛直線と地面基礎(あ)との交点を(G)とする。また主柱が傾斜した時点の連結軸(B)の鉛直線と地面基礎(あ)との交点を(I)とする。(G)から(I)までの距離(半径)を2mとした場合(G〜H)間は1mで、(H〜I)間も1mとする。相対するVII号基(西)も同様に半径を2mとした場合直径4mである。関東大震災での最大振幅(距離)、(往復瞬間移動距離、揺れの直径)が例えば2mであったとすれば地面の揺動に対応可能となる。地震のない平常時では主柱(AB)の傾斜角度(中立状態)を仮に∠60°とし(G〜H)が1mとして設定すれば、天井型梁の軸間距離(BD)の長さと、主柱(け)の長さ(AB)の設定数値は決まる。主柱の中立状態の希望する傾斜角度と長さにより希望する最大振幅数値(揺れの直径)が決まる。 FIG. 3 is a schematic side view of the saddle crank chain mechanism group in a normal state without an earthquake. Let Q be the intersection of the vertical line (set, R) of the cone of Group III (East) cone and the ground foundation (A). The normal point of intersection between the vertical axis of the connection axis (B) of the main column (ke) that supports the base of the cone of the cone and the ground foundation (A) is (H). Let (G) be the intersection of the vertical line of the connecting shaft (B) and the ground foundation (A) when the column is upright. Also, let (I) be the intersection of the vertical line of the connecting axis (B) and the ground foundation (A) when the main column is tilted. When the distance (radius) from (G) to (I) is 2 m, the distance from (G to H) is 1 m, and the distance from (H to I) is also 1 m. Similarly, the opposite VII group (west) has a diameter of 4 m when the radius is 2 m. If the maximum amplitude (distance) and (reciprocal instantaneous travel distance, diameter of shaking) in the Great Kanto Earthquake are, for example, 2 m, it is possible to cope with ground shaking. In normal times without earthquakes, if the inclination angle (neutral state) of the main column (AB) is set to 60 ° and (GH) is set to 1 m, the length of the interaxial distance (BD) of the ceiling beam is The set numerical value of the length (AB) of the main pillar is determined. The desired maximum amplitude value (sway diameter) is determined by the desired inclination angle and length of the neutral state of the main column.

図4は地震発生によって地面基礎(あ)が西に揺れ動いた場合のIII号基(東)とVII号基(西)の全体側面概略図である。地面基礎が東西南北、どの方向に揺れ動いても、梃クランク連鎖機構体群の梃クランク機構の働きによって、柱(そ)と円錐体頂点部(せ)は地面基礎(あ)が揺れ動いた方向の反対側に瞬時に反作用をして元の位置に留まろうとする慣性の法則による力が働き、空間の同じ地点(せ、R点)の鉛直線上の位置で停止し留まっている。同時に梃クランク連鎖機構体群が作動する梃クランク機構の働きによって東側III号基の主柱、支柱は東へ直立する力が働き、西側VII号基の主柱、支柱は東へ倒れ掛かる状態となって、円錐体底面と鍔部(し)は東上がりの傾きとなり、西下がりの状態となる。また北側I号基と南側V号基の円錐体の鍔部は旋回盤の旋回作用に伴って東に揺れ移動しながら東上がり西下がりに傾き始めることとなる。円錐体の鍔部の運動形態は遊具の糸巻き円錐駒の回転運動に似ていて、回転する円錐駒の鉄心を不動の中心点とし、円錐体の母線(す)の長さを半径として円錐体の底面と鍔部がフラフープ運動する運動形態に似ている。また或いは1本の棒の端で空中での皿回しをする皿の運動形態にも似ている。 FIG. 4 is an overall side schematic view of Group III (East) and Group VII (West) when the ground foundation (A) swings west due to the occurrence of an earthquake. Regardless of the direction in which the ground foundation oscillates from east to west, north and south, the column and the apex of the cone (se) are moved in the direction in which the ground foundation swayed due to the function of the heel crank mechanism of the heel crank chain mechanism group. The force by the law of inertia that tries to react to the opposite side instantaneously and stay at the original position works, and stops at the position on the vertical line at the same point in the space (the point R). At the same time, the main pillars and pillars of the east side III group work by the action of the 梃 crank chain mechanism group that activates the 梃 crank chain mechanism group, and the main pillars and pillars of the west side VII group fall to the east. As a result, the bottom of the cone and the buttocks are tilted eastward and westward. In addition, the ridges of the cones of the North I group and the South V group begin to incline east and west while swaying and moving east along with the turning action of the turntable. The shape of movement of the heel of the cone is similar to the rotational movement of the bobbin cone of the play equipment, with the iron core of the rotating cone as the center point of immobilization, and the length of the cone's generatrix as the radius. It resembles the form of movement where the buttocks are hula hoops. Alternatively, it is similar to the movement mode of a dish that rotates in the air at the end of one bar.

地震で地面が西に揺れた場合では傾斜旋回盤は、偶力のモーメントの発生により瞬時に旋回作用が働き、VII号基の主柱(けVII)は東に前傾斜しIII号基(東)の主柱(けIII)は立ち上がり直立状態となる。更に、I(北)、V(南)の主柱(けI、けV)は正面を向いていた方向から東方向へ旋回盤と共に旋回し、台座の傾斜角度(∠θ)に相応して主柱、支柱は傾斜状態から立ち上がり直立に向かいながら側方に傾斜(台座の傾斜角と同じ∠θが側方傾斜の限界)する状態となる。この時点で旋回盤の偶力のモーメントは消滅し旋回は停止する。主柱と支柱は台形形状(立ち上がり傾斜角度∠θで台座の傾斜と同じ、将棋の駒形)となっているので安定的である。例えば円錐体鍔部を支持する天井型梁上の連結軸兼旋回軸は正8角形で等間隔に配置してなっているので3号基の(III F)と4号基の(IV F)の地点間の定まった距離により旋回盤のこれ以上の旋回も、主柱の直立運動もブレーキがかかりストップする限界位置点とする構造である。旋回盤の東へ、西へ旋回最大限角度は∠40°(計∠80°)、位の設定が限界であり主柱、支柱の直立限界角度も∠70°〜∠80°程度の設定むが望ましい。自動車のステアリング装置でトーイン、キャンバー、キャスターの関係に相当して似た構造で、ハンドルを右いっぱいに回した時点で押し返される、反転する力を受ける機能に相当して似た構造としてなっている。   When the ground sways in the west due to the earthquake, the tilting swivel works instantaneously due to the generation of the moment of the couple, and the main pillar of the VII group (the VII) tilts forward to the east and the III group (east ) Main pillar (Kee III) rises upright. Furthermore, the main pillars (I and V) of I (north) and V (south) turn with the swivel from the direction facing the front to the east, and correspond to the inclination angle (∠θ) of the pedestal. The main column and the support column rise from the inclined state and are inclined to the side while being inclined to the side (the same angle θ as the inclination angle of the pedestal is the limit of the side inclination). At this point, the moment of the couple on the swivel vanishes and the turn stops. The main column and the column are stable because they have a trapezoidal shape (the same as the inclination of the pedestal at the rising inclination angle ∠θ). For example, the connecting and swiveling shafts on the ceiling beam that supports the conical ridges are regular octagons and are arranged at equal intervals, so that No. 3 (III F) and No. 4 (IV F) Due to the fixed distance between these points, the turning of the swivel board and the upright movement of the main pillar are both set as the limit position points where braking is applied and stopped. The maximum turning angle to the east and the west of the swivel is ∠40 ° (total ∠80 °), the setting of the position is the limit, and the upright limit angle of the main pillar and column is also set to ∠70 ° to ∠80 ° Is desirable. It has a structure that is similar to the relationship between toe-in, camber, and caster in an automobile steering system, and that has a structure that is similar to the function that receives the reversal force that is pushed back when the steering wheel is turned all the way to the right. Yes.

円錐体の頂点部で鉛直に建つ柱は、柱の根元底板部(た)に架かる重力荷重が重い程、或いは円錐体内部で該底面部(M)から頂点部(せ、R) までの高さh(深さ)が高い程、(または重心が低い程)傾斜している円錐体底面の鍔部を水平に戻そうとする復元力が働き、鍔の付け根部(N)に強力な力が働く。海洋を航行する貨物船が荒波に揺れながら航行しているときは重心が低い程復元力が働き船を鉛直に戻そうとする力が働くのと同じである。図3に於いて、頂点部(せ、R)と柱は鉛直に建とうとする力と共に鍔部(し)は元の水平な位置に戻ろうとする力が働き円錐体の母線部で側面は、直立(∠
β>∠≒20°)に近い主柱の傾斜角度(∠BAL<∠≒80°)(残余角度∠β)によって前方へ押し返されて押し出される作用が働く。綱渡りの軽業師が水平棒1本手に取り1本のロープ上を綱渡りしている時の軽業師の足元のふらつき、揺れ(縦横斜め)に反応して体感(実感)しながら対応する構造装置としてなり、逆さ麦藁帽子、とんがり帽子の鍔部がフラフープ踊りを舞っていても、とんがり帽子の頂点部が不動である形態や、または遊具で綱渡り糸巻き円錐駒の鉄心に似ている免震構造装置である。
A column that stands vertically at the apex of the cone has a higher gravity load on the bottom base plate (t) of the column, or the height from the bottom (M) to the apex (set, R) within the cone. The higher the depth h (depth) (or the lower the center of gravity), the stronger the restoring force that tries to return the tilted bottom of the cone to the horizontal, and the stronger the force at the base (N) of the collar Work. When a cargo ship navigating the ocean is navigating in rough waves, the lower the center of gravity, the more the restoring force works and the same force that works to return the ship vertically. In FIG. 3, the apex (se, R) and the column are forced to build vertically, and the buttocks (shi) are forced to return to the original horizontal position, and the side of the side of the cone is the generatrix. Upright (∠
The main pillar is pushed back and pushed out by an inclination angle (∠BAL <∠≈80 °) (residual angle ∠β) close to β> ∠≈20 °. Tightrope lighter picks up a horizontal bar and works on a single rope as a structural device that responds to the lighter's foot wobbling and shaking (vertically and horizontally) while experiencing (actually feeling) This is a seismic isolation device that resembles the iron core of a tightrope winding conical piece in a form in which the apex of the pointed hat does not move even if the hips of the inverted straw hat and the pointed hat perform a hula hoop dance.

例えば仮に地面が1秒速で直径3mを往復瞬間移動したとしても、或いは、柱に1万トン以上の衝撃的重力加重の大きな負荷が架かったとしても免震装置を鉄鋼製として構造上強度的に対応可能として、地面の振幅値が3mでも4mでも希望の数値設定により免震装置の製作が可能である。100年以上の耐久性、耐力性にも対応する構造であって、特願2006−357484で記述した上下動の免震構造装置を同時に設定する構造とすれば関東大震災級以上のどのような激震にも対応可能である。「建造物の柱が地面基礎に、しがみついて建っている」という発想を転換して、別の視点で新幹線がリニアモーターカーであった場合にはな脱線はかっただろうという柔軟な発想による免震装置であって人口集中型建造物の免震装置として地下階へ設置する埋設構造とするならば目立たず安全で大きな効果がある。大地震が100年に1度の確率であるならば装置の耐久性や耐用年数が100年以上維持されなければ製造費用がおおきくなって費用対効果は小さい事となり、本四架橋等の耐久、耐用性課題も200年以上であれば効果は大きい事となる。頑丈で錆びない、劣化しにくい部材を用いて製作するならば耐用性課題は解決し効果は計り知れない。 For example, even if the ground moves at a speed of 3 m at a speed of 1 second at a speed of 1 second, or if a heavy load with an impact gravity load of 10,000 tons or more is placed on a pillar, the seismic isolation device is made of steel and is structurally strong. It is possible to manufacture a seismic isolation device by setting a desired numerical value regardless of whether the ground amplitude value is 3 m or 4 m. What kind of severe earthquakes above the Great Kanto Earthquake level if the structure is compatible with the durability and proof strength of more than 100 years, and the structure that simultaneously sets the vertical motion isolation device described in Japanese Patent Application No. 2006-357484 Can also be supported. Seismic isolation based on a flexible idea that if the Shinkansen was a linear motor car from another perspective, the idea that “the pillars of the building were clinging to the ground foundation” was changed. If the device is a buried structure that is installed on the basement floor as a seismic isolation device for a population-intensive building, it is inconspicuous and has a significant and safe effect. If the earthquake is once in 100 years, if the durability and service life of the equipment is not maintained for more than 100 years, the manufacturing cost will increase and the cost effectiveness will be small. If the durability problem is 200 years or more, the effect will be great. If it is manufactured using a material that is sturdy, does not rust, and does not easily deteriorate, the durability problem is solved and the effect is immeasurable.

8角形区画面体状の土台と旋回盤の全体概略上面図。8 is an overall schematic top view of an octagonal area screen base and swivel. 梃クランク連鎖機構体群の平行クランク機構型 全体概略側面図。FIG. 3 is an overall schematic side view of a parallel crank mechanism type of a saddle crank chain mechanism group. 梃クランク連鎖機構体群の平常時の均衡型 全体概略側面図。FIG. 3 is a general schematic side view of a balanced type of normal crank chain mechanism group. 地面が揺れた場合の梃クランク連鎖機構体群の作動を現す全体側面図。The whole side view showing the operation of the saddle crank chain mechanism group when the ground shakes. 梃クランクの部品分解図と逆鍔付直円錐体の全体斜視図。The parts exploded view of a saddle crank, and the whole perspective view of a reverse cone-attached right cone. 梃クランクの主柱(け)、支柱(こ)の部品斜視図。The parts perspective view of the main pillar (ke) and support | pillar (this) of a heel crank. 天井型梁(さ)とロールクロスジョイント装置の部品斜視図。The component perspective view of a ceiling type beam (sa) and a roll cross joint apparatus. ロールクロスジョイントの部品斜視図。The component perspective view of a roll cross joint. ボールジョイント(ち)の部品斜視図。The component perspective view of a ball joint (chi).

あ:地面基礎 い:土台(I〜VIII) う:台座(1〜11)(I〜VIII)え:旋回盤(12〜21)(I〜VIII) お:円錐コロ
か:旋回盤旋回中心軸(キングピン) き:台座旋回用溝 く:旋回盤旋回用溝
け:主柱I〜VIII こ:支柱I〜VIII さ:天井型梁I〜VIII
し:円錐体の鍔部 す:円錐体の母線部 せ:円錐体の頂点部
そ:建造物の柱 た:建造物の底板、根元部 ち:ボールジョイント球面軸受け或いは図8のロールクロスジョイント つ:建造物の床用梁
A:主柱下軸(I〜VIII) B:主柱上軸(I〜VIII)
C:支柱下軸(I〜VIII) D:支柱上軸(I〜VIII)
E:重荷重用ロールクロスジョイント(I〜VIII)
F:旋回軸ボス、ピン(I〜VIII)
G:主柱上軸Bの鉛直線と地面(あ)と交点(直立状態時点)I〜VIII、BG
H:主柱上軸Bの鉛直線と地面(あ)と交点(平常時の時点)I〜VIII、BH
I:主柱上軸Bの鉛直線と地面(あ)と交点(傾斜状態時点)I〜VIII、BI
LM:主柱下軸A(I〜VIII)の水平線
A: Ground foundation I: Base (I-VIII) U: Pedestal (1-11) (I-VIII) E: Swivel (12-21) (I-VIII) O: Conical roller: Swivel center axis (Kingpin) Ki: Pedestal turning groove Ku: Turning board turning groove: Main pillars I to VIII Ko: Posts I to VIII Sa: Ceiling beams I to VIII
:: Cone ridge 円 錐: Cone busbar section :: Cone apex そ: Building pillar :: Building bottom plate, base ち: Ball joint spherical bearing or roll cross joint shown in Fig. 8 : Beam for floor of building A: main pillar lower axis (I-VIII) B: main pillar upper axis (I-VIII)
C: Support lower shaft (I to VIII) D: Support upper shaft (I to VIII)
E: Roll cross joint for heavy loads (I-VIII)
F: Rotating shaft boss, pin (I to VIII)
G: Vertical line of the upper axis B of the main column , the ground (A), and the intersection (at the time of the upright state) I to VIII, BG
H: Vertical line of the main column upper axis B, the ground (A), and the intersection (at the normal time) I to VIII, BH
I: Vertical line of main column upper axis B , ground (A), and intersections (when tilted) I to VIII, BI
LM: horizontal line of main column lower axis A (I to VIII)

Claims (2)

建造物の柱を建てる地面基礎上へ円周帯状または多角形の区画面帯状に土台を設置し、該土台の上部に円周帯状の中央部へ傾斜面となった旋回用溝付の台座を1区画に1台ずつ設置し、各々の傾斜台座上へ梃クランク連鎖機構体を搭載した旋回盤を設置し、前記旋回盤は旋回中心軸を中心にして旋回自在に台座に固定されており、前記梃クランク連鎖機構体は旋回盤上に対向して設けた台形形状の主柱と支柱並びに天井型梁を回動自在に連結して梃クランク連鎖機構を構成し、該梃クランク連鎖機構体を区画面帯状に配置し中央部に逆鍔付直円錐体を搭載して鍔部を多点で梃クランク連鎖機構体の天井型梁に旋回自在に連結支持して前記円錐体の自在な傾きにも対応可能とし、円錐体の頂点部において建物の柱の底板根元部を球面軸受けで回転自在に支持してなる梃クランク連鎖機構体群を構成し、地震発生により地面が横方向に揺れ動くと梃クランク連鎖機構体の梃クランク機構の働きにより前記円錐体は前記球面軸受けを支点として揺動するに伴って鍔部が地面の動く方向に傾斜し、円錐体の頂点部と一体としてなる建造物の柱は空間に吊られた状態で停止し、建造物は揺れない梃クランク連鎖機構体群を備えた免震装置。 A base is installed on the ground foundation on which the pillars of the building are built, in the form of a circumferential belt or polygonal section screen, and a base with a groove for turning that is inclined to the center of the circumferential belt on the top of the foundation. One set is installed in each section, and a swivel with a saddle crank chain mechanism is installed on each inclined pedestal. The swivel is fixed to the pedestal so as to be pivotable about the swivel center axis. The saddle crank chain mechanism comprises a trapezoidal main column, a support column and a ceiling beam which are provided opposite to each other on a swivel so as to freely rotate to constitute a saddle crank chain mechanism. A straight cone with reverse rods is installed at the center of the screen, and the ribs are pivotally connected to the ceiling beam of the rod chain linkage mechanism at multiple points so that the cones can be tilted freely. Rotate the base of the bottom of the pillar of the building with a spherical bearing at the apex of the cone. Configure the lever crank linkage mechanism group formed by rotatably supported, works by the cone of lever crank mechanism of lever crank linkage mechanism the ground swing laterally by earthquake oscillating the spherical bearing as a fulcrum As the heel part inclines in the direction of movement of the ground, the pillar of the building that is integrated with the apex of the cone stops in a suspended state in the space , and the building does not shake. Seismic isolation device with 前記梃クランク連鎖機構体群を備えた免震装置において、前記旋回盤の旋回中心軸(S)を主柱下軸(A)と支柱下軸(C)の中心よりも坂下の主柱下軸(A)側寄りに設けることにより、地震発生により地面が横方向に揺れ動くと揺れの方向と略同じ方向に対向して設けた梃クランク連鎖機構体の鍔部が地面の動く方向に傾斜すると共に前記以外の梃クランク連鎖機構体の旋回中心軸(S)が揺れの方向に動き、前記旋回中心軸(S)よりも円周帯状の中央部寄りに位置する上方の天井型梁とフランジとの連結部は前記旋回中心軸(S)よりもやや遅れて動くために旋回盤の旋回中心軸(S)よりも坂下側寄りには揺れの方向と反対方向の力が働き旋回中心軸(S)を中心に旋回盤を旋回する偶力のモーメントが発生し旋回盤は旋回を始め、旋回盤上の主柱と支柱は前傾斜、直立の動作を機敏に作動し、地震終了後は台座上の傾斜旋回盤は復元力で自然に原形に戻ることを特徴とする請求項1記載の梃クランク連鎖機構体群を備えた免震装置。 In the seismic isolation device including the saddle crank chain mechanism group, the pivot center axis (S) of the swivel is set below the main column lower axis (S) below the center of the main column lower axis (A) and the column lower axis (C). (A) By being provided closer to the side, when the ground swings laterally due to the occurrence of an earthquake, the saddle portion of the saddle crank chain mechanism provided facing the substantially same direction as the swing direction is inclined in the direction in which the ground moves. The center axis (S) of the other crank chain mechanism other than the above moves in the direction of shaking, and the upper ceiling-type beam and the flange located closer to the center of the circumferential band than the center axis (S). Since the connecting portion moves slightly behind the turning center axis (S), a force in the direction opposite to the swaying direction acts on the lower side of the turning center axis (S) of the turntable and the turning center axis (S). moment of the couple to be turning occurs turning board the turning machine in the center of the beginning of the turning 2. The main pillar and the support on the swivel are actuated forwardly and abruptly, and the tilted swivel on the pedestal returns to its original shape with restoring force after the earthquake.震 Seismic isolation device with a crank chain mechanism group.
JP2007228293A 2007-08-08 2007-08-08 梃 Crank chain mechanism group type mechanical seismic isolation device Expired - Fee Related JP5229935B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007228293A JP5229935B2 (en) 2007-08-08 2007-08-08 梃 Crank chain mechanism group type mechanical seismic isolation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007228293A JP5229935B2 (en) 2007-08-08 2007-08-08 梃 Crank chain mechanism group type mechanical seismic isolation device

Publications (2)

Publication Number Publication Date
JP2009041352A JP2009041352A (en) 2009-02-26
JP5229935B2 true JP5229935B2 (en) 2013-07-03

Family

ID=40442370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007228293A Expired - Fee Related JP5229935B2 (en) 2007-08-08 2007-08-08 梃 Crank chain mechanism group type mechanical seismic isolation device

Country Status (1)

Country Link
JP (1) JP5229935B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111877587A (en) * 2020-08-08 2020-11-03 河南盛鼎建设集团有限公司 Small building safety device that moves away to avoid possible earthquakes

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19734993A1 (en) * 1997-08-13 1999-03-11 Friedhelm Bierwirth Earthquake protection through vibration-decoupled storage of buildings and objects via virtual pendulums with a long period
US6112581A (en) * 1997-09-10 2000-09-05 National Metal Refining Company Vibratory viscometer
JP4440746B2 (en) * 2004-01-27 2010-03-24 文隆 藤原 Seismic device for structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111877587A (en) * 2020-08-08 2020-11-03 河南盛鼎建设集团有限公司 Small building safety device that moves away to avoid possible earthquakes
CN111877587B (en) * 2020-08-08 2021-07-16 河南盛鼎建设集团有限公司 Small building safety device that moves away to avoid possible earthquakes

Also Published As

Publication number Publication date
JP2009041352A (en) 2009-02-26

Similar Documents

Publication Publication Date Title
CZ2000515A3 (en) Method of protecting buildings and objects from dynamic forces caused by acceleration foundation plate, for instance due to earthquake and apparatus for making the same
TWI609114B (en) A Controllable Stiffness Isolation Bearing Using Gravity Negative Stiffness
CN102265081A (en) Base Assembly for Supporting and Transporting a Free Standing Structure
CN101744477A (en) Children&#39;s development device with multiple-axis motion
KR20160016761A (en) Inverted motion base with suspended seating
JP5229935B2 (en) 梃 Crank chain mechanism group type mechanical seismic isolation device
JP5229932B2 (en) Mechanical seismic isolation device
WO2012023167A1 (en) Play equipment
JP2007297895A (en) Mechanical base isolation device
CN102596343B (en) Rotating amusement apparatus
JP2010185211A (en) Framed scaffolding
CN205850203U (en) A kind of entertainment for children equipment that can increase safety and realize multi-direction rotation
CN207342189U (en) Multi-functional seesaw
KR100882792B1 (en) Swing with connection moving
IE44310B1 (en) Improvements relating to off-shore platforms
KR100888767B1 (en) Rotary Worktable for Installation of Structure of Building
WO2018095959A1 (en) Observation tower assembly
JP5542858B2 (en) Gravity balance type seismic isolation device
CN209114948U (en) A kind of tower body for bright and beautiful performance
JP4105568B2 (en) Play equipment
KR101750719B1 (en) Seesaw with Precession Movement
JP2006037546A (en) Seismically isolated structure of building
JP3058309U (en) Seismic moving wall structure
JP3719959B2 (en) Building with rotating game equipment
IE46211B1 (en) Improvements relating to off-shore platforms

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120724

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120921

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130315

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160329

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees