JP5228381B2 - 半導体装置の製造方法 - Google Patents

半導体装置の製造方法 Download PDF

Info

Publication number
JP5228381B2
JP5228381B2 JP2007166597A JP2007166597A JP5228381B2 JP 5228381 B2 JP5228381 B2 JP 5228381B2 JP 2007166597 A JP2007166597 A JP 2007166597A JP 2007166597 A JP2007166597 A JP 2007166597A JP 5228381 B2 JP5228381 B2 JP 5228381B2
Authority
JP
Japan
Prior art keywords
via hole
silicon carbide
semiconductor device
gas
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007166597A
Other languages
English (en)
Other versions
JP2009004703A (ja
Inventor
武郎 白濱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2007166597A priority Critical patent/JP5228381B2/ja
Priority to US11/935,494 priority patent/US7544611B2/en
Publication of JP2009004703A publication Critical patent/JP2009004703A/ja
Application granted granted Critical
Publication of JP5228381B2 publication Critical patent/JP5228381B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76898Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics formed through a semiconductor substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/481Internal lead connections, e.g. via connections, feedthrough structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S438/00Semiconductor device manufacturing: process
    • Y10S438/931Silicon carbide semiconductor

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Description

本発明は、炭化ケイ素基板の表面にIII−V族窒化物半導体層を形成し、両者を貫通するバイアホールを形成する半導体装置の製造方法に関し、特に表面側に形成される素子を微細化し、バイアホール加工を高速化することができる半導体装置の製造方法に関するものである。
化合物半導体を用いた高周波用トランジスタやMMIC(Microwave Monolithic Integrated Circuit)が用いられている(例えば、特許文献1参照)。これらの半導体装置の特性はバイアホール形成工程に大きく左右される。
従来のバイアホール形成工程について説明する。まず、炭化ケイ素基板の表面にIII−V族窒化物半導体層を形成し、表面の素子を形成する。次に、ウェハの表面側をサファイア等の支持基板に貼り付け、研削によりウェハを薄板化する。その後、裏面側から炭化ケイ素基板及びIII−V族窒化物半導体層をドライエッチングすることで、両者を貫通するバイアホールを一度に形成する。
特開2001−77128号公報
しかし、従来の方法では、表面側に形成される素子を微細化するためにバイアホールの径を小さくすると、アスペクト比(被エッチング部の径とエッチング深さの比)が大きくなる。そして、炭化ケイ素は難エッチング材であり、ドライエッチングで加工する際のエッチングレートが低いため、アスペクト比が大きいとバイアホール加工に長時間を要する。一方、アスペクト比を小さくするためにバイアホールの径を大きくすると、表面側に形成される素子を大きくせざるを得ない。
本発明は、上述のような課題を解決するためになされたもので、その目的は、表面側に形成される素子を微細化し、バイアホール加工を高速化することができる半導体装置の製造方法を得るものである。
本発明に係る半導体装置の製造方法は、炭化ケイ素基板の表面にIII−V族窒化物半導体層を形成する工程と、第1のガスを用いて表面側からIII−V族窒化物半導体層を選択的にドライエッチングして貫通させた後に、第2のガスを用いて表面側から前記炭化ケイ素基板の途中までドライエッチングすることで表面バイアホールを形成する工程と、第2のガスを用いて、裏面側から炭化ケイ素基板を選択的にドライエッチングすることで、表面バイアホールに繋がる裏面バイアホールを形成する工程とを有する。本発明のその他の特徴は以下に明らかにする。
本発明により、表面側に形成される素子を微細化し、バイアホール加工を高速化することができる。
実施の形態1.
以下、本発明の実施の形態1に係る半導体装置の製造方法について図面を用いて説明する。
まず、図1に示すように、数10μm〜数100μm厚の炭化ケイ素基板11の表面に、数μm厚のアルミ窒化ガリウム/窒化ガリウム層12(III−V族窒化物半導体層)を形成する。そして、アルミ窒化ガリウム/窒化ガリウム層12上にレジスト13を形成し、レジスト13をパターニングする。
このレジスト13をマスクとして、三塩化ホウ素、四塩化ケイ素、塩素ガスなどの塩素系ガス(第1のガス)を用いて表面側からアルミ窒化ガリウム/窒化ガリウム層12をドライエッチングして貫通させることで表面バイアホール14を形成する。その後、レジスト13を除去する。
ここで、塩素系ガスは炭化ケイ素のエッチャントではないため、塩素系エッチャントによりアルミ窒化ガリウム/窒化ガリウム層12は炭化ケイ素基板11に対して選択的にエッチングされる。本実施の形態では、例えば、炭化ケイ素基板11に対するアルミ窒化ガリウム/窒化ガリウム層12のエッチング選択比が5以上となるように塩素系ガスの組成等のエッチング条件を設定する。ただし、炭化ケイ素基板11に対してアルミ窒化ガリウム/窒化ガリウム層12を選択的にエッチングできるものであれば、塩素系ガスに限らずどのようなガスを用いてもよい。また、塩素系ガスとして側壁保護効果を有するものを用いることにより、側壁に反応生成物を付着させ、サイドエッチングを防ぐことができる。
次に、図2に示すように、表面バイアホール14を、例えばチタン及び金を含む多層膜からなる金属層15で被覆する。そして、表面側のアルミ窒化ガリウム/窒化ガリウム層12に、例えばHEMT(High Electron Mobility Transistor)構造を有する素子(不図示)を形成する。
次に、図3に示すように、表面におよそ10μm厚のレジスト及び半導体用ワックス17を塗布してサファイア支持基板16に貼り付ける。
次に、図4に示すように、炭化ケイ素基板11の裏面に対して研削及びポリッシングを行い、炭化ケイ素基板11を薄板化する。素子の特性に応じて炭化ケイ素基板11の厚みを数10μm〜100μmとする。
次に、図5に示すように、炭化ケイ素基板11の裏面にニッケル層17を蒸着、スパッタリング又はメッキ法により形成し、ニッケル層17をパターニングする。ここで、エッチングガスとして六フッ化硫黄及び酸素の混合ガスを使用した場合に、ニッケルは炭化ケイ素に対して選択比がおよそ30以上あるため、エッチングマスクとして適している。
このニッケル層17をマスクとして、弗素系ガス(第2のガス)を用いて裏面側から炭化ケイ素基板11をドライエッチングして貫通させることで、表面バイアホール14に繋がる裏面バイアホール18を形成する。ここで、弗素系ガスはIII−V族窒化物半導体のエッチャントではないため、弗素系エッチャントにより炭化ケイ素基板11はアルミ窒化ガリウム/窒化ガリウム層12に対して選択的にエッチングされる。本実施の形態では、例えば、アルミ窒化ガリウム/窒化ガリウム層12に対する炭化ケイ素基板11のエッチング選択比が5以上となるように弗素系ガスの組成等のエッチング条件を設定する。ただし、アルミ窒化ガリウム/窒化ガリウム層12に対して炭化ケイ素基板11を選択的にエッチングできるものであれば、弗素系ガスに限らずどのようなガスを用いてもよい。また、裏面バイアホール18を形成する前に表面バイアホール14を金属層15で被覆しているため、この金属層15で炭化ケイ素基板11のエッチングが停止する。その後、ニッケル層17を酸によって除去する。
次に、図6に示すように、裏面バイアホール18内にチタン/金層(不図示)を蒸着し、その上を金メッキ層/ニッケルメッキ層からなる金属層19で被覆する。このようにニッケルメッキ層で被覆することで、その後のアセンブリ工程において金−スズ合金からなる半田によってダイボンドする際に、ニッケルとスズが合金を形成し、接合強度を高めることができる。以上の工程により本実施の形態に係る半導体装置が製造される。
炭化ケイ素基板11と比べてアルミ窒化ガリウム/窒化ガリウム層12は薄いため、表面バイアホール14の径を小さくしてもアスペクト比が小さく、比較的容易にエッチングできる。従って、表面側に形成される素子を微細化することができる。また、表面側に形成される素子のサイズは、裏面バイアホール18の加工時には既に固定されているため、裏面バイアホール18の加工条件に依存することなく制御することができる。
また、エッチングを容易とするために裏面バイアホール18の径を表面バイアホール14の径よりも大きくしてアスペクト比を小さくしても、表面側に形成される素子のサイズは既に固定されており影響を受けない。従って、バイアホール加工を高速化することができる。
また、従来のように裏面から一度に炭化ケイ素基板とIII−V族窒化物半導体層を貫通させると、炭化ケイ素のバイアホールの側壁に塩素系の反応生成物が不可避的に付着してしまう。このため、ウェットエッチング等で反応生成物を除去する必要がある。そして、除去が不充分であると、バイアホールを被覆した金属膜が剥がれる等の問題が生じる可能性がある。一方、本実施の形態では、炭化ケイ素のバイアホールの側壁は塩素系ガスによるプラズマに暴露されないため、このような問題は生じない。
また、炭化ケイ素のバイアホールの側壁は、裏面バイアホール加工時に、弗素系ガスによるプラズマに暴露される。しかし、炭化ケイ素のサイドエッチングを考慮する必要が無いため、側壁保護効果を有さない弗素系ガスを使用することができる。これにより、炭化ケイ素のバイアホールの側壁に付着する反応生成物を減らすことができる。
実施の形態2.
以下、本発明の実施の形態2に係る半導体装置の製造方法について図面を用いて説明する。
本実施の形態では、図7に示すように、表面バイアホール14を形成する工程において、塩素系ガスを用いて表面側からアルミ窒化ガリウム/窒化ガリウム層12をドライエッチングして貫通させた後に、弗素系ガス(第2のガス)に切り替えて表面側から炭化ケイ素基板11の途中までドライエッチングする。そして、実施の形態1と同様に、表面バイアホール14を金属層15で被覆し、サファイア支持基板16に貼り付け、炭化ケイ素基板11を薄板化する。
次に、図8に示すように、ニッケル層17をマスクとして、弗素系ガスを用いて裏面側から炭化ケイ素基板11をドライエッチングして貫通させることで、表面バイアホール14に繋がる裏面バイアホール18を形成する。
次に、図9に示すように、裏面バイアホール18内にチタン/金層(不図示)を蒸着し、その上を金メッキ層/ニッケルメッキ層からなる金属層19で被覆する。その他の工程は実施の形態1と同様である。
本実施の形態によれば、実施の形態1と同様の効果を奏する他、裏面バイアホール18の加工時にエッチングする炭化ケイ素基板11の厚みが減るため、アスペクト比を小さくでき、バイアホール加工を更に高速化することができる。
本発明の実施の形態1に係る半導体装置の製造方法を説明するための断面図である。 本発明の実施の形態1に係る半導体装置の製造方法を説明するための断面図である。 本発明の実施の形態1に係る半導体装置の製造方法を説明するための断面図である。 本発明の実施の形態1に係る半導体装置の製造方法を説明するための断面図である。 本発明の実施の形態1に係る半導体装置の製造方法を説明するための断面図である。 本発明の実施の形態1に係る半導体装置の製造方法を説明するための断面図である。 本発明の実施の形態2に係る半導体装置の製造方法を説明するための断面図である。 本発明の実施の形態2に係る半導体装置の製造方法を説明するための断面図である。 本発明の実施の形態2に係る半導体装置の製造方法を説明するための断面図である。
符号の説明
11 炭化ケイ素基板
12 アルミ窒化ガリウム/窒化ガリウム層(III−V族窒化物半導体層)
14 表面バイアホール
15 金属層
18 裏面バイアホール



Claims (5)

  1. 炭化ケイ素基板の表面にIII−V族窒化物半導体層を形成する工程と、
    第1のガスを用いて表面側から前記III−V族窒化物半導体層を選択的にドライエッチングして貫通させた後に、第2のガスを用いて表面側から前記炭化ケイ素基板の途中までドライエッチングすることで表面バイアホールを形成する工程と、
    前記第2のガスを用いて、裏面側から前記炭化ケイ素基板を選択的にドライエッチングすることで、前記表面バイアホールに繋がる裏面バイアホールを形成する工程とを有することを特徴とする半導体装置の製造方法。
  2. 前記裏面バイアホールを形成する前に、前記表面バイアホールを金属層で被覆する工程を更に有することを特徴とする請求項1に記載の半導体装置の製造方法。
  3. 前記裏面バイアホールの径を前記表面バイアホールの径よりも大きくすることを特徴とする請求項1又は2に記載の半導体装置の製造方法。
  4. 前記第1のガス、前記第2のガスは、それぞれ塩素系ガス、弗素系ガスであることを特徴とする請求項1〜3の何れか1項に記載の半導体装置の製造方法。
  5. 前記弗素系ガスとして側壁保護効果を有さないものを用いることを特徴とする請求項4に記載の半導体装置の製造方法。
JP2007166597A 2007-06-25 2007-06-25 半導体装置の製造方法 Active JP5228381B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007166597A JP5228381B2 (ja) 2007-06-25 2007-06-25 半導体装置の製造方法
US11/935,494 US7544611B2 (en) 2007-06-25 2007-11-06 Method of manufacturing III-V nitride semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007166597A JP5228381B2 (ja) 2007-06-25 2007-06-25 半導体装置の製造方法

Publications (2)

Publication Number Publication Date
JP2009004703A JP2009004703A (ja) 2009-01-08
JP5228381B2 true JP5228381B2 (ja) 2013-07-03

Family

ID=40136940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007166597A Active JP5228381B2 (ja) 2007-06-25 2007-06-25 半導体装置の製造方法

Country Status (2)

Country Link
US (1) US7544611B2 (ja)
JP (1) JP5228381B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5228381B2 (ja) * 2007-06-25 2013-07-03 三菱電機株式会社 半導体装置の製造方法
JP5298559B2 (ja) * 2007-06-29 2013-09-25 富士通株式会社 半導体装置及びその製造方法
WO2016210315A1 (en) 2015-06-25 2016-12-29 Accelerated Ag Technologies, Llc Seed production
CN108288605A (zh) * 2018-02-28 2018-07-17 中国电子科技集团公司第十三研究所 Si基GaN器件的通孔制备方法
US11362024B2 (en) * 2018-05-30 2022-06-14 Sumitomo Electric Device Innovations, Inc. Semiconductor device and method of manufacturing the same
JP7070848B2 (ja) * 2018-07-26 2022-05-18 住友電工デバイス・イノベーション株式会社 半導体装置の製造方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60161651A (ja) 1984-02-02 1985-08-23 Mitsubishi Electric Corp 半導体装置の製造方法
JPH07161690A (ja) * 1993-12-09 1995-06-23 Toshiba Corp 炭化珪素体のエッチング方法
JP4264992B2 (ja) 1997-05-28 2009-05-20 ソニー株式会社 半導体装置の製造方法
US6239033B1 (en) 1998-05-28 2001-05-29 Sony Corporation Manufacturing method of semiconductor device
JP2001077128A (ja) 1999-09-07 2001-03-23 Hitachi Ltd 高周波モジュール
US6657237B2 (en) * 2000-12-18 2003-12-02 Samsung Electro-Mechanics Co., Ltd. GaN based group III-V nitride semiconductor light-emitting diode and method for fabricating the same
FR2859312B1 (fr) * 2003-09-02 2006-02-17 Soitec Silicon On Insulator Scellement metallique multifonction
US7161188B2 (en) * 2004-06-28 2007-01-09 Matsushita Electric Industrial Co., Ltd. Semiconductor light emitting element, semiconductor light emitting device, and method for fabricating semiconductor light emitting element
JP2006237056A (ja) * 2005-02-22 2006-09-07 Mitsubishi Electric Corp 半導体装置の製造方法
DE102005042074A1 (de) * 2005-08-31 2007-03-08 Forschungsverbund Berlin E.V. Verfahren zur Erzeugung von Durchkontaktierungen in Halbleiterwafern
JP2007128994A (ja) * 2005-11-02 2007-05-24 New Japan Radio Co Ltd 半導体装置
EP1972008B1 (en) * 2006-01-10 2020-05-13 Cree, Inc. Silicon carbide dimpled substrate
JP5091445B2 (ja) * 2006-09-15 2012-12-05 株式会社東芝 半導体装置およびその製造方法
JP5228381B2 (ja) * 2007-06-25 2013-07-03 三菱電機株式会社 半導体装置の製造方法

Also Published As

Publication number Publication date
US7544611B2 (en) 2009-06-09
JP2009004703A (ja) 2009-01-08
US20080318422A1 (en) 2008-12-25

Similar Documents

Publication Publication Date Title
JP5228381B2 (ja) 半導体装置の製造方法
US8586474B2 (en) Method to form a via
US9093385B2 (en) Method for processing a semiconductor workpiece with metallization
WO2009154173A1 (ja) 多段型基板の製造方法
JP2007109758A (ja) 化合物半導体素子の製造方法
US9455192B2 (en) Kerf preparation for backside metallization
JP2007234912A (ja) 半導体装置およびその製造方法
US6974721B2 (en) Method for manufacturing thin semiconductor chip
JP2007157806A (ja) 半導体装置の製造方法
US9613904B2 (en) Semiconductor structure and manufacturing method thereof
JP6444805B2 (ja) 半導体チップの製造方法
JP2012033721A (ja) 半導体装置の製造方法
KR101503535B1 (ko) 반도체 장치의 제조 방법
TWI757431B (zh) 安裝於基板上之半導體裝置之形成方法
TW201934810A (zh) 半導體裝置之形成方法
JP2017017072A (ja) 半導体チップの製造方法
US8617997B2 (en) Selective wet etching of gold-tin based solder
US11393685B2 (en) Semiconductor structure and fabrication method thereof
JP5075815B2 (ja) 半導体ダイの分離方法
US10998231B2 (en) Method for increasing semiconductor device wafer strength
TWI241651B (en) Semiconductor etch speed modification
JP2002004034A (ja) 蒸着用マスクおよびその製造方法
JPH10312980A (ja) 半導体装置の製造方法
TWI843839B (zh) 電子器件之製造方法
KR20120071488A (ko) 반도체 기판의 후면 비아홀 형성 방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130304

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160329

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5228381

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250