JP5218596B2 - Rotary compressor - Google Patents

Rotary compressor Download PDF

Info

Publication number
JP5218596B2
JP5218596B2 JP2011107323A JP2011107323A JP5218596B2 JP 5218596 B2 JP5218596 B2 JP 5218596B2 JP 2011107323 A JP2011107323 A JP 2011107323A JP 2011107323 A JP2011107323 A JP 2011107323A JP 5218596 B2 JP5218596 B2 JP 5218596B2
Authority
JP
Japan
Prior art keywords
compression
pressure
refrigerant
oil
supplied
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011107323A
Other languages
Japanese (ja)
Other versions
JP2011149442A (en
Inventor
哲英 横山
利秀 幸田
慎 関屋
昌之 角田
圭 佐々木
一 吉安
英人 中尾
英明 前山
直隆 服部
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2011107323A priority Critical patent/JP5218596B2/en
Publication of JP2011149442A publication Critical patent/JP2011149442A/en
Application granted granted Critical
Publication of JP5218596B2 publication Critical patent/JP5218596B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、第1及び第2の圧縮部を備え、第1の圧縮部で圧縮された冷媒を第2の圧縮部で圧縮する二段ロータリ圧縮機に関する。   The present invention relates to a two-stage rotary compressor that includes first and second compression units and compresses a refrigerant compressed by the first compression unit by a second compression unit.
ロータリ圧縮機は、小型化が可能なこと、また、構造が簡単であることから、冷凍冷蔵庫、空調機、ヒートポンプ式給湯機等に広く用いられている(非特許文献1参照)。また、地球温暖化防止を図る観点から、オゾン層破壊係数がゼロで地球温暖化係数の小さな自然冷媒のうちで特に毒性及び不燃性の炭酸ガス(CO2冷媒)が、フロンに代わる新たな冷媒として注目を集めている。   Rotary compressors are widely used in refrigerators, air conditioners, heat pump water heaters, and the like because they can be miniaturized and have a simple structure (see Non-Patent Document 1). In addition, from the viewpoint of preventing global warming, toxic and incombustible carbon dioxide (CO2 refrigerant) is a new refrigerant that replaces Freon, among natural refrigerants that have a zero ozone depletion coefficient and a small global warming coefficient. It attracts attention.
ところが、図17の表1(a)及び表1(b)に示すように、フロン冷媒を用いたロータリ圧縮機(単段ロータリ圧縮機)に比べて、CO2冷媒を用いたロータリ圧縮機(単段ロータリ圧縮機)は、吐出圧力(Pd)と吸入圧力(Ps)の圧縮比(Pd/Ps)が小さくなるものの、吐出圧力と吸入圧力の差圧(Pd−Ps)が大きくなる。そのため、シリンダ内部で偏心回転するローラに圧接してシリンダ内を吸入室(低圧)と圧縮室(低圧から高圧)に仕切っているベーンをローラに押しつける圧力が大きくなり、その結果、ローラに接触しているベーン先端が過度に摩耗するという問題がある。また、ベーンとこれが摺動するシリンダ面との隙間から冷媒が漏れるという問題がある。   However, as shown in Table 1 (a) and Table 1 (b) in FIG. 17, a rotary compressor (single-stage rotary compressor) using a CO2 refrigerant is used as compared with a rotary compressor (single-stage rotary compressor) using a fluorocarbon refrigerant. In the stage rotary compressor, although the compression ratio (Pd / Ps) between the discharge pressure (Pd) and the suction pressure (Ps) decreases, the differential pressure (Pd−Ps) between the discharge pressure and the suction pressure increases. For this reason, the pressure that presses against the roller that presses against the roller that rotates eccentrically inside the cylinder and divides the inside of the cylinder into a suction chamber (low pressure) and a compression chamber (low pressure to high pressure) increases. As a result, the roller contacts the roller. There is a problem that the vane tip is worn excessively. Further, there is a problem that the refrigerant leaks from a gap between the vane and the cylinder surface on which the vane slides.
表1の「フロン冷媒とCO2冷媒を用いたロータリ圧縮機の運転条件比較表」は、Ashrae基準(凝縮温度(CT)/蒸発温度(ET)=54.4/7.2[℃]、アブクール/スーパ−ヒート=8.3/27.8[K]から圧縮機吸入温度(Ts)=35℃、膨張弁前温度(Texp)=46.1℃の条件で、高圧型単段ロータリ圧縮機を運転したときの、圧縮機効率と圧力・温度条件を求めたものである。また、図13はフロン冷媒を用いた基本冷凍サイクルのp-h線図(モリエル線図)、図14はCO2冷媒を用いた基本冷凍サイクルのp-h線図(モリエル線図)である。   Table 1 “Comparison of operating conditions for rotary compressors using chlorofluorocarbon and CO2 refrigerant” is the Ashrae standard (condensation temperature (CT) / evaporation temperature (ET) = 54.4 / 7.2 [° C], Abcool) / Super-heat = 8.3 / 27.8 [K] to compressor intake temperature (Ts) = 35 ° C, pre-expansion valve temperature (Texp) = 46.1 ° C, high-pressure single-stage rotary compressor Fig. 13 shows the ph diagram (Mollier diagram) of the basic refrigeration cycle using a chlorofluorocarbon refrigerant, and Fig. 14 shows the CO2 emissions. It is a ph diagram (Mollier diagram) of a basic refrigeration cycle using a refrigerant.
上述した単段ロータリ圧縮機と同様に、高圧シェル型の二段ロータリ圧縮機の場合も、低段側ベーンに着目すると、後段側ベーン背圧(高圧)とシリンダ内圧力(低圧から中間圧)の差圧が大きいことから低段側ベーン先端荷重(ベーンがローラに接触する圧力)が大きく、ベーンの摩耗及び冷媒の漏れが著しいという問題がある。   Similarly to the single-stage rotary compressor described above, in the case of the high-pressure shell type two-stage rotary compressor, focusing on the low-stage vane, the rear-stage vane back pressure (high pressure) and the in-cylinder pressure (low pressure to intermediate pressure) Therefore, there is a problem that the load on the tip of the low-stage vane (pressure at which the vane contacts the roller) is large, and the vane wears and the refrigerant leaks significantly.
そこで、本発明は、ベーン先端に加わる荷重を低下させること、ベーンの周りに好適なシール性と潤滑を形成することを目的とする。   Therefore, an object of the present invention is to reduce the load applied to the tip of the vane and to form a suitable sealing property and lubrication around the vane.
このような目的を達成するため、高圧シェル型密閉容器内に、電動機と、上記電動機によって駆動される第1及び第2の圧縮部を備え、上記第1の圧縮部で圧縮された冷媒を上記第2の圧縮部で圧縮するロータリ圧縮機において、上記第1及び第2の圧縮部はそれぞれ、シリンダと、上記シリンダ内を偏心回転するローラと、上記ローラに当接して上記シリンダと上記ローラとの間に形成された空間を吸入室と圧縮室に仕切るベーンを備えており、上記第1の圧縮部は上記ベーンの背後に形成された背圧室を備えており、上記ロータリ圧縮機は、上記第2の圧縮部で圧縮され油が混入した冷媒を冷却し中間圧に膨張減圧する冷却要素および膨張減圧部と、当該膨張減圧された中間圧の冷媒とこれに混入した油の一部を第1の圧縮部の背圧室および第2の圧縮部の吸入室に分配する分配器を備えている。   In order to achieve such an object, a high-pressure shell-type airtight container includes an electric motor and first and second compression units driven by the electric motor, and the refrigerant compressed by the first compression unit is In the rotary compressor that compresses by the second compression unit, each of the first and second compression units includes a cylinder, a roller that rotates eccentrically in the cylinder, and the cylinder and the roller in contact with the roller. Including a vane that partitions a space formed between the suction chamber and the compression chamber, the first compression unit includes a back pressure chamber formed behind the vane, and the rotary compressor includes: A cooling element and an expansion / decompression unit that cools a refrigerant compressed by the second compression unit and mixed with oil and expands and depressurizes to an intermediate pressure, an intermediate-pressure refrigerant that is expanded and depressurized, and part of the oil mixed therein Back pressure chamber of the first compression section Beauty and a distributor for distributing the suction chamber of the second compression unit.
このような構成を備えたロータリ圧縮機によれば、ベーン背圧とシリンダ内圧の差圧を小さくしてベーン先端荷重を低下させ、その摩耗を減少させることができる。また、ベーンの周囲に好適なシール性と潤滑が形成される。   According to the rotary compressor having such a configuration, it is possible to reduce the vane tip load by reducing the differential pressure between the vane back pressure and the cylinder internal pressure, and to reduce the wear. Also, suitable sealing properties and lubrication are formed around the vanes.
実施の形態1に係る高圧シェル型二段ロータリ圧縮機の縦断面図。1 is a longitudinal sectional view of a high-pressure shell type two-stage rotary compressor according to Embodiment 1. FIG. 図1に示す圧縮機の圧縮部を模式的に表した横断面図。The cross-sectional view which represented typically the compression part of the compressor shown in FIG. 実施の形態1に係る圧縮機の冷媒輸送回路図。2 is a refrigerant transport circuit diagram of the compressor according to Embodiment 1. FIG. 図1に示す圧縮機の変形例1を示す圧縮機の部分断面図。The fragmentary sectional view of the compressor which shows the modification 1 of the compressor shown in FIG. 図4(a)に示す金網の正面図。The front view of the wire mesh shown to Fig.4 (a). 図1に示す圧縮機の変形例2を示す圧縮機の部分断面図。The fragmentary sectional view of the compressor which shows the modification 2 of the compressor shown in FIG. 実施の形態1に係る圧縮機の変形例4の冷媒輸送回路図。FIG. 6 is a refrigerant transport circuit diagram of Modification 4 of the compressor according to Embodiment 1. 実施の形態1に係る圧縮機の変形例5の冷媒輸送回路図。FIG. 9 is a refrigerant transport circuit diagram of Modification 5 of the compressor according to Embodiment 1. 実施の形態2に係る中間圧シェル型二段ロータリ圧縮機の縦断面図。FIG. 4 is a longitudinal sectional view of an intermediate pressure shell type two-stage rotary compressor according to a second embodiment. 図8に示す圧縮機の冷媒輸送回路図。FIG. 9 is a refrigerant transport circuit diagram of the compressor shown in FIG. 8. 実施の形態2に係る圧縮機の変形例の冷媒輸送回路図。FIG. 9 is a refrigerant transport circuit diagram of a modified example of the compressor according to Embodiment 2. 実施の形態3に係る中間圧シェル型二段ロータリ圧縮機の縦断面図。FIG. 5 is a longitudinal sectional view of an intermediate pressure shell type two-stage rotary compressor according to a third embodiment. 図8に示す圧縮機の冷媒輸送回路図。FIG. 9 is a refrigerant transport circuit diagram of the compressor shown in FIG. 8. フロン冷媒を用いたロータリ圧縮機(単段ロータリ圧縮機)のp-h線図。The ph diagram of the rotary compressor (single stage rotary compressor) using a CFC refrigerant. CO2冷媒を用いたロータリ圧縮機(単段ロータリ圧縮機)のp-h線図。The ph diagram of the rotary compressor (single stage rotary compressor) using CO2 refrigerant | coolant. 中間冷却部の無い二段ロータリ圧縮機のp-h線図。Ph diagram of a two-stage rotary compressor without an intermediate cooling section. 中間冷却部のある二段ロータリ圧縮機のp-h線図。Ph diagram of a two-stage rotary compressor with an intermediate cooling section. フロン冷媒とCO2冷媒の運転条件比較表(表1(a))とCO2二段圧縮機の運転条件比較表(表1(b))を示す図。The figure which shows the operation condition comparison table (Table 1 (a)) of a CFC refrigerant and a CO2 refrigerant, and the operation condition comparison table (Table 1 (b)) of a CO2 two-stage compressor. 高圧シェル型CO2二段圧縮機の低段側ベーン背圧室への中間圧導入の比較表を示す図。The figure which shows the comparison table of the intermediate pressure introduction | transduction to the low stage side vane back pressure chamber of a high pressure shell type CO2 two-stage compressor. 高圧シェル型CO2二段圧縮機のベーン背圧室への中間圧導入の比較結果表を示す図。The figure which shows the comparison result table | surface of the intermediate pressure introduction | transduction to the vane back pressure chamber of a high pressure shell type CO2 two-stage compressor. 中間圧型CO2二段圧縮機のベーン背圧室への中間圧導入の比較表を示す図。The figure which shows the comparison table of the intermediate pressure introduction | transduction to the vane back pressure chamber of an intermediate pressure type CO2 two-stage compressor.
以下、添付図面を参照して本発明に係る二段ロータリ圧縮機の複数の形態を説明する。なお、以下の説明では、「低圧」、「中間圧」、「高圧」の用語を用いるが、これらは圧力の相対的な大きさの程度を表したものであって、絶対的な値を示すものではない。また、二段圧縮機は、密閉容器内の圧力レベルによって大きく三種類に分類される。密閉容器内が蒸発器圧力、または、第1の圧縮部の吸入圧力に等しい場合は「低圧シェル型」、第1の圧縮部の吐出圧力、または、第2の圧縮部の吸入圧力に等しい場合は「中間圧シェル型」、ガスクーラ(超臨界以下で用いる場合はフロン冷媒と同様の凝縮器)圧力、または、第2の圧縮部の吐出圧力に等しい場合は「高圧シェル型」である。
実施の形態1.
Hereinafter, a plurality of forms of a two-stage rotary compressor according to the present invention will be described with reference to the accompanying drawings. In the following description, the terms “low pressure”, “intermediate pressure”, and “high pressure” are used, and these represent the degree of relative magnitude of pressure and indicate absolute values. It is not a thing. Two-stage compressors are roughly classified into three types according to the pressure level in the sealed container. When the inside of the sealed container is equal to the evaporator pressure or the suction pressure of the first compression section, “low pressure shell type”, when the discharge pressure of the first compression section or the suction pressure of the second compression section is equal Is an “intermediate pressure shell type”, a gas cooler (condenser similar to a chlorofluorocarbon refrigerant when used below supercritical) pressure, or a “high pressure shell type” when equal to the discharge pressure of the second compression section.
Embodiment 1 FIG.
〔1.概略構成〕図1は、本発明の実施の形態1に係る高圧シェル型二段ロータリ圧縮機の縦断面を示す。図示する圧縮機10は、略縦型円筒形の縦型密閉容器12を有する。密閉容器12はその内側に縦型円筒形の内部空間14を有し、該内部空間14の上部と下部にそれぞれ電動機20と回転圧縮要素22を収容し、底部に油(潤滑油)21を貯蔵している。 [1. FIG. 1 shows a longitudinal section of a high-pressure shell type two-stage rotary compressor according to Embodiment 1 of the present invention. The illustrated compressor 10 includes a vertical sealed container 12 having a substantially vertical cylindrical shape. The hermetic container 12 has a vertical cylindrical inner space 14 inside thereof, and stores an electric motor 20 and a rotary compression element 22 at the upper and lower portions of the inner space 14, respectively, and stores oil (lubricating oil) 21 at the bottom. doing.
〔2.電動機〕電動機20は、内部空間14の中心軸(鉛直中心線)24を中心に配置された環状のステータ(固定子)26と、ステータ26の内側に配置されたロータ(回転子)28を有する。ステータ26は、密閉容器12に固定されており、ロータ28は中心軸24を中心に回転可能に支持されている。周知のように、ステータ26は、環状(ドーナッツ状)の電磁鋼板を積層した積層体と、積層体に形成されている複数の歯部(図示せず)に巻回されたコイルを有する。また、ロータ28は、中心軸24に沿って配置された回転軸30と、該回転軸30に固定された電磁鋼板の積層体と、該積層体に保持された複数の永久磁石からなる。 [2. Electric motor] The electric motor 20 has an annular stator (stator) 26 disposed around a central axis (vertical center line) 24 of the internal space 14 and a rotor (rotor) 28 disposed inside the stator 26. . The stator 26 is fixed to the hermetic container 12, and the rotor 28 is supported so as to be rotatable about the central shaft 24. As is well known, the stator 26 has a laminated body in which annular (doughnut-shaped) electromagnetic steel plates are laminated, and a coil wound around a plurality of teeth (not shown) formed in the laminated body. The rotor 28 includes a rotating shaft 30 disposed along the central axis 24, a laminate of electromagnetic steel plates fixed to the rotating shaft 30, and a plurality of permanent magnets held by the laminate.
〔3.回転圧縮要素〕回転圧縮要素22は、低圧の冷媒ガスを加圧して中間圧の冷媒ガスを得る第1の圧縮部(低段側圧縮部)32と、中間圧の冷媒ガスを加圧して高圧の冷媒ガスを得る第2の圧縮部(高段側圧縮部)34を有する。 [3. Rotational compression element] The rotary compression element 22 includes a first compression unit (low-stage compression unit) 32 that pressurizes a low-pressure refrigerant gas to obtain an intermediate-pressure refrigerant gas, and a high-pressure by compressing the intermediate-pressure refrigerant gas. 2nd compression part (higher stage compression part) 34 which obtains this refrigerant gas.
圧縮部の構成を模式的に表した図2を参照して説明すると、第1の圧縮部32は、中心軸24を中心とする環状の板からなるシリンダ36と、シリンダ36に囲まれた円筒空間40内において回転軸30を半径方向外側に膨出して形成された円形の偏心部44と、円筒空間40内で偏心部44の周囲に配置された環状のローラ48を有する。偏心部44は、中心軸24に対して所定の偏心量eだけ所定の方向(図2のX方向)に偏心している。従って、偏心部44に外装されたローラ48も同一の偏心量eだけ中心軸24からX方向に偏心している。偏心部44とローラ48の径は、図2に示すように、偏心したローラ48の外周面が回転軸30の回転と共にシリンダ36の内面に接触して該接触部をシールするように決められている。   Referring to FIG. 2 schematically showing the configuration of the compression unit, the first compression unit 32 includes a cylinder 36 formed of an annular plate with the central axis 24 as the center, and a cylinder surrounded by the cylinder 36. A circular eccentric portion 44 formed by bulging the rotation shaft 30 radially outward in the space 40 and an annular roller 48 disposed around the eccentric portion 44 in the cylindrical space 40 are provided. The eccentric portion 44 is eccentric in a predetermined direction (X direction in FIG. 2) by a predetermined eccentric amount e with respect to the central axis 24. Accordingly, the roller 48 mounted on the eccentric portion 44 is also eccentric in the X direction from the central shaft 24 by the same eccentric amount e. As shown in FIG. 2, the diameters of the eccentric portion 44 and the roller 48 are determined so that the outer peripheral surface of the eccentric roller 48 contacts the inner surface of the cylinder 36 along with the rotation of the rotating shaft 30 to seal the contact portion. Yes.
シリンダ36には、該シリンダ36の内周面から外周面に向かって半径方向に伸びると共に外周面の手前に終端部を有するベーン溝52が形成されており、このベーン溝52にベーン56がローラ48に向かって進退自在に収容されている。中心軸24から半径方向外側に離れたベーン溝52の奥側(底部)には、ベーン56の背後に位置する背圧室60が形成されている。背圧室60にはばね64が配置されており、このばね64の付勢力によってベーン52の先端(中心軸側の端部)がローラ48の外周面に圧接し、シリンダ内周面とローラ外周面の間に形成されている空間を2つに分離している。実施の形態において、回転軸30の回転方向(図2の反時計回り方向)に関してベーン52の下流側に吸入室(低圧室)68、上流側に圧縮室(高圧室)72が形成されている。   The cylinder 36 is formed with a vane groove 52 extending in the radial direction from the inner peripheral surface of the cylinder 36 toward the outer peripheral surface and having a terminal portion in front of the outer peripheral surface. The vane 56 is a roller in the vane groove 52. It is accommodated so that it can move forward and backward toward 48. A back pressure chamber 60 located behind the vane 56 is formed on the back side (bottom) of the vane groove 52 that is radially outward from the central shaft 24. A spring 64 is disposed in the back pressure chamber 60, and the tip of the vane 52 (end on the center axis side) is pressed against the outer peripheral surface of the roller 48 by the biasing force of the spring 64, and the cylinder inner peripheral surface and the roller outer peripheral surface are pressed. The space formed between the surfaces is separated into two. In the embodiment, a suction chamber (low pressure chamber) 68 is formed on the downstream side of the vane 52 with respect to the rotation direction of the rotary shaft 30 (counterclockwise direction in FIG. 2), and a compression chamber (high pressure chamber) 72 is formed on the upstream side. .
圧縮前の冷媒ガスを吸入室68に供給し、圧縮後の冷媒ガスを圧縮室72から排出するために、シリンダ36にはベーン近傍の下流側と上流側にそれぞれ吸入路76と吐出路80が形成されている(図1参照)。また、吐出路80には吐出弁(逆止弁)84が設けてあり、圧縮室72から吐出された圧縮後の冷媒ガスが圧縮室72に戻らないようにしてある。   In order to supply the refrigerant gas before compression to the suction chamber 68 and discharge the refrigerant gas after compression from the compression chamber 72, the cylinder 36 has a suction passage 76 and a discharge passage 80 on the downstream side and the upstream side near the vane, respectively. It is formed (see FIG. 1). A discharge valve (check valve) 84 is provided in the discharge path 80 so that the compressed refrigerant gas discharged from the compression chamber 72 does not return to the compression chamber 72.
第2の圧縮部34も第1の圧縮部32に類似の構成を有する。したがって、第1の圧縮部32の構成を示している図2において、第1の圧縮部32の構成部分に対応する第2の圧縮部34の構成部分の符号を、第1の圧縮部32の構成部分を示す符号の後の括弧内に表している。第2の圧縮部34が第1の圧縮部32と異なる部分は、偏心部46の偏心方向が第1の圧縮部32における偏心部44の偏心方向(矢印X方向)とは逆の方向(矢印X’方向)である点である。したがって、第2の圧縮部34におけるベーン58、吸入路78、吐出路82、吐出弁86は、第1の圧縮部32におけるそれらの反対側(中心軸24に対して対称)に配置されている。   The second compression unit 34 has a configuration similar to that of the first compression unit 32. Therefore, in FIG. 2 showing the configuration of the first compression unit 32, the reference numerals of the components of the second compression unit 34 corresponding to the components of the first compression unit 32 are the same as those of the first compression unit 32. The constituent parts are shown in parentheses after the reference numerals. The second compression section 34 is different from the first compression section 32 in that the eccentric direction of the eccentric section 46 is opposite to the eccentric direction (arrow X direction) of the eccentric section 44 in the first compression section 32 (arrow arrow). X ′ direction). Therefore, the vane 58, the suction path 78, the discharge path 82, and the discharge valve 86 in the second compression section 34 are arranged on the opposite side (symmetric with respect to the central axis 24) in the first compression section 32. .
図1に戻り、第1の圧縮部32と第2の圧縮部34の間には中間仕切板90が配置されており、これにより第1の圧縮部32のシリンダ36内に形成された空間(吸入室68、圧縮室72)の上部と第2の圧縮部34のシリンダ38内に形成された空間(吸入室70、圧縮室74)の下部が閉鎖されている。第1の圧縮部32のシリンダ36の下には下部支持部材92が固定され、これによりシリンダ36内の空間の下部が閉鎖されており、第2の圧縮部34のシリンダ38の上には上部支持部材94が固定され、これによりシリンダ38内の空間の上部が閉鎖されている。下部支持部材92の下には下部カバープレート96が固定され、上部支持部材94の上には上部カバープレート98が固定されている。また、下部カバープレート96に対向する下部支持部材92の下面には低段側消音室100が形成されており、この低段側消音室100が吐出口102を介して後述する冷媒循環回路120に接続されている。上部カバープレート98に対向する上部支持部材94の上面には高段側消音室104が形成されており、この高段側消音室104が吐出口106を介して内部空間14に接続されている。   Returning to FIG. 1, an intermediate partition plate 90 is disposed between the first compression portion 32 and the second compression portion 34, and thereby a space (in the cylinder 36 of the first compression portion 32 ( The upper portion of the suction chamber 68 and the compression chamber 72) and the lower portion of the space (the suction chamber 70 and the compression chamber 74) formed in the cylinder 38 of the second compression portion 34 are closed. A lower support member 92 is fixed below the cylinder 36 of the first compression portion 32, thereby closing a lower portion of the space in the cylinder 36, and an upper portion above the cylinder 38 of the second compression portion 34. The support member 94 is fixed, and the upper part of the space in the cylinder 38 is closed. A lower cover plate 96 is fixed below the lower support member 92, and an upper cover plate 98 is fixed on the upper support member 94. In addition, a low-stage muffler chamber 100 is formed on the lower surface of the lower support member 92 facing the lower cover plate 96, and the low-stage muffler chamber 100 is connected to a refrigerant circulation circuit 120 described later via the discharge port 102. It is connected. A high stage silencing chamber 104 is formed on the upper surface of the upper support member 94 facing the upper cover plate 98, and the high stage silencing chamber 104 is connected to the internal space 14 through the discharge port 106.
〔4.冷媒循環回路〕油(潤滑油)21は、第2の圧縮部34が油に漬かる状態で蓄えられており、第2の圧縮部34のベーン58に直接供給される。具体的に、油21は、回転軸30の下端部に取り付けられた油ポンプ23で吸い上げられ、回転軸30の軸芯穴を通って、各回転圧縮要素のシリンダ内に供給される。第1の圧縮部32に供給された油は、シリンダ内圧縮室で冷媒に混入し、この冷媒と一緒に輸送配管30で輸送される。大部分の油は、油分離器または密閉容器を通過するときに冷媒と分離されて密閉容器内の底部に戻るが、分離されない油は冷媒といっしょに輸送配管120を循環する。図3と図1を参照すると、冷媒循環回路120は、輸送配管(主経路)122を有する。この輸送配管122は、密閉容器12の内部空間14から密閉容器12の外部空間に引き出された後、再び密閉容器12内に入って第1の圧縮部32の吸入路76に接続されており、その経路途中には凝集器124、膨張弁126、蒸発器128が順番に配置されている。 [4. Refrigerant circulation circuit] Oil (lubricating oil) 21 is stored in a state where the second compression section 34 is immersed in the oil, and is directly supplied to the vane 58 of the second compression section 34. Specifically, the oil 21 is sucked up by an oil pump 23 attached to the lower end portion of the rotary shaft 30, passes through the shaft hole of the rotary shaft 30, and is supplied into the cylinder of each rotary compression element. The oil supplied to the first compression unit 32 is mixed into the refrigerant in the in-cylinder compression chamber, and is transported by the transport pipe 30 together with the refrigerant. Most of the oil is separated from the refrigerant as it passes through the oil separator or sealed container and returns to the bottom of the sealed container, but the unseparated oil circulates along the transport line 120 with the refrigerant. Referring to FIGS. 3 and 1, the refrigerant circulation circuit 120 has a transport pipe (main path) 122. The transport pipe 122 is drawn from the inner space 14 of the sealed container 12 to the outer space of the sealed container 12, and then enters the sealed container 12 again and is connected to the suction path 76 of the first compression section 32. In the middle of the path, an aggregator 124, an expansion valve 126, and an evaporator 128 are sequentially arranged.
冷媒循環回路120はまた、密閉容器12の外部に配置された輸送配管(第1の輸送配管)130を有し、この輸送配管130が第1の圧縮部32における吐出口102と第2の圧縮部34における吸入路78を接続しており、冷却器(中間冷却器)132と分配器(分配要素)134を備えている。冷却器132は、第1の圧縮部32で圧縮された冷媒ガスと油を冷却するものである。分配器134は、第1の圧縮部32から第2の圧縮部34に輸送される冷媒ガスの流れに関して冷却器132の下流側に配置されている。また、分配器134は、分配経路136を介して第1の圧縮部32の背圧室60に接続されており、第1の輸送配管130に沿って輸送される冷媒ガスと油の一部が分配経路(第2の輸送配管)136に設けた絞り調整弁138を介して第1の圧縮部32の背圧室60に供給されるようにしてある。分配器132は、これが接続されている背圧室60の上方に配置することが好ましい。   The refrigerant circulation circuit 120 also includes a transport pipe (first transport pipe) 130 disposed outside the sealed container 12, and the transport pipe 130 is connected to the discharge port 102 and the second compression in the first compression unit 32. A suction path 78 in the section 34 is connected, and a cooler (intermediate cooler) 132 and a distributor (distribution element) 134 are provided. The cooler 132 cools the refrigerant gas and oil compressed by the first compression unit 32. The distributor 134 is disposed downstream of the cooler 132 with respect to the flow of the refrigerant gas transported from the first compression unit 32 to the second compression unit 34. In addition, the distributor 134 is connected to the back pressure chamber 60 of the first compression unit 32 via the distribution path 136, and a part of the refrigerant gas and oil transported along the first transport pipe 130 is used. The pressure is supplied to the back pressure chamber 60 of the first compression section 32 via a throttle adjusting valve 138 provided in the distribution path (second transport pipe) 136. The distributor 132 is preferably disposed above the back pressure chamber 60 to which it is connected.
分配器134には、冷媒ガスに含まれる油(潤滑油)を分離する油分離機能を備えた分配器(油分離器)と、油分離機能を備えていない分配器のいずれも利用できる。油分離機能付の分配器を用いる場合、分配器134で回収された油は分配経路136を通じて背圧室60に供給される。一方、油分離機能の無い分配器の場合も、背圧室60には油を含む冷媒ガスが背圧室60に供給される。   As the distributor 134, any of a distributor (oil separator) having an oil separation function for separating oil (lubricating oil) contained in the refrigerant gas and a distributor having no oil separation function can be used. When a distributor with an oil separation function is used, the oil recovered by the distributor 134 is supplied to the back pressure chamber 60 through the distribution path 136. On the other hand, in the case of a distributor having no oil separation function, the back pressure chamber 60 is supplied with refrigerant gas containing oil.
〔5.動作〕以上のように構成された高圧シェル型二段圧縮機10において、電動機20に所定の駆動電力が供給されると、ロータ28が回転する。その結果、図2に示すように、第1及び第2の圧縮部34では、ローラ48,50が図示する反時計回り方向に回転する。したがって、第1の圧縮部32では、吸入路76から吸入室68に供給された低圧の冷媒(例えば、CO2冷媒)がローラ48の回転に基づいて圧縮される。所定の圧力(中間圧)まで圧縮された冷媒ガスは吐出路80から吐出され、低段側消音室100から吐出口102を介して輸送配管130に供給される。輸送配管130を流れる中間圧の冷媒ガスは、冷却部132でほぼ外気温度近くまで冷却された後、分配器134に供給される。分配器134が油分離機能付の分配器の場合、分配器134に供給された中間圧冷媒ガスは、分配器134によって油が分離される。分離された油は、分配器134によって分配された一部の冷媒ガスと共に分配経路136を輸送される。分配経路136を輸送される中間圧冷媒ガスは、絞り調整弁138で流量調整された後、第1の圧縮部32の背圧室60に供給される。特に、分配器134が背圧室60の上方に配置される場合、重力作用によって背圧室60に油が効率的に供給される。分配器134が油分離機能を備えていない場合でも、分配された一部の冷媒ガスには油が含まれており、この油が第1の圧縮部32の背圧室60に供給される。 [5. Operation] In the high-pressure shell-type two-stage compressor 10 configured as described above, when a predetermined drive power is supplied to the electric motor 20, the rotor 28 rotates. As a result, as shown in FIG. 2, in the first and second compression sections 34, the rollers 48 and 50 rotate in the counterclockwise direction shown in the drawing. Therefore, in the first compression section 32, the low-pressure refrigerant (for example, CO 2 refrigerant) supplied from the suction passage 76 to the suction chamber 68 is compressed based on the rotation of the roller 48. The refrigerant gas compressed to a predetermined pressure (intermediate pressure) is discharged from the discharge path 80 and supplied from the low-stage side muffler chamber 100 to the transport pipe 130 through the discharge port 102. The intermediate-pressure refrigerant gas flowing through the transport pipe 130 is cooled to near the outside air temperature by the cooling unit 132 and then supplied to the distributor 134. When the distributor 134 is a distributor with an oil separation function, the intermediate pressure refrigerant gas supplied to the distributor 134 is separated from the oil by the distributor 134. The separated oil is transported along the distribution path 136 together with a part of the refrigerant gas distributed by the distributor 134. The intermediate pressure refrigerant gas transported through the distribution path 136 is supplied to the back pressure chamber 60 of the first compression unit 32 after the flow rate is adjusted by the throttle adjusting valve 138. In particular, when the distributor 134 is disposed above the back pressure chamber 60, oil is efficiently supplied to the back pressure chamber 60 by the action of gravity. Even when the distributor 134 does not have an oil separation function, the distributed refrigerant gas contains oil, and this oil is supplied to the back pressure chamber 60 of the first compression unit 32.
背圧室60に供給された中間圧の冷媒ガスはベーン56の背面に作用し、ばね64の付勢力と共に、ベーン56をローラ48に圧接する。その結果、ローラ48とこれに接するベーン先端部との間には良好なシールが形成される。分配器134が油分離機能を有するか否かに拘わらず、背圧室60に供給される冷媒ガスには油が含まれており、この油がベーン側面とこれに対向するベーン溝側壁との隙間に入り、両者の間を潤滑すると共にシールする。当然、油分離機能付き分配器を用いた場合、背圧室60に供給される油の量が多く、そのために更に良好な潤滑とシールが達成できる。また、冷却部132で冷却された低温の冷媒ガスが背圧室60に供給されるため、ベーン側面とベーン溝側壁との間に高いシール性が確保できる。   The intermediate-pressure refrigerant gas supplied to the back pressure chamber 60 acts on the back surface of the vane 56 and presses the vane 56 against the roller 48 together with the biasing force of the spring 64. As a result, a good seal is formed between the roller 48 and the vane tip in contact therewith. Regardless of whether or not the distributor 134 has an oil separation function, the refrigerant gas supplied to the back pressure chamber 60 contains oil, and this oil is formed between the vane side surface and the vane groove side wall facing the vane side surface. Enter the gap and lubricate and seal between the two. Naturally, when a distributor with an oil separation function is used, the amount of oil supplied to the back pressure chamber 60 is large, so that better lubrication and sealing can be achieved. In addition, since the low-temperature refrigerant gas cooled by the cooling unit 132 is supplied to the back pressure chamber 60, high sealing performance can be ensured between the vane side surface and the vane groove side wall.
分配器134によって分配された他の中間圧冷媒ガスは、第1の輸送配管130を通じて再び密閉容器12の内部に送り込まれた後、第2の圧縮部34の吸入路78から吸入室70に供給される。第2の圧縮部34の吸入室70に供給された中間圧冷媒ガスは、ローラ50の回転によって更に圧縮されて高圧冷媒ガスとなる。所定の圧力(高圧)まで圧縮された冷媒ガスは、吐出路82から吐出され、高段消音室104から吐出口106を介して、密閉容器12の内部空間14に吐出されて貯蔵される。   The other intermediate-pressure refrigerant gas distributed by the distributor 134 is sent again into the sealed container 12 through the first transport pipe 130 and then supplied from the suction passage 78 of the second compression section 34 to the suction chamber 70. Is done. The intermediate-pressure refrigerant gas supplied to the suction chamber 70 of the second compression unit 34 is further compressed by the rotation of the roller 50 and becomes high-pressure refrigerant gas. The refrigerant gas compressed to a predetermined pressure (high pressure) is discharged from the discharge path 82 and discharged from the high-stage muffler chamber 104 through the discharge port 106 and stored in the internal space 14 of the sealed container 12.
密閉容器12の内部空間14に貯蔵された高温の高圧冷媒ガスは、吐出パイプ123を介して輸送配管(主経路)122を通じてガスクーラ124に供給され、そこで凝縮されて液体になる。次に、液体となった冷媒は、膨張弁126を通過する際に膨張し、低温の低圧冷媒ガスになる。この低温・低圧冷媒ガスは蒸発器128に送られ、そこで被冷却媒体から熱を奪った後、密閉容器12の内部に送り戻され、第1の圧縮部32の吸入室68に供給される。   The high-temperature high-pressure refrigerant gas stored in the internal space 14 of the sealed container 12 is supplied to the gas cooler 124 through the transport pipe (main path) 122 via the discharge pipe 123 and is condensed therein to become a liquid. Next, the refrigerant that has become liquid expands when passing through the expansion valve 126 and becomes low-temperature low-pressure refrigerant gas. The low-temperature / low-pressure refrigerant gas is sent to the evaporator 128, where heat is taken from the medium to be cooled, and then sent back into the sealed container 12 and supplied to the suction chamber 68 of the first compression unit 32.
図16は、上述した冷凍サイクルを表したp−h線図(モリエル線図)である。   FIG. 16 is a ph diagram (Mollier diagram) showing the refrigeration cycle described above.
〔6.油分離機能付の分配器〕油分離機能付の分配器(油分離機能付の分配器)として、現在種々の形態のものが提供されており、例えば、形式と構造の観点から見た場合、遠心分離式(立形円筒内に旋回板を設け、ガスを旋回運動させて油滴を遠心力で分離する方式)、多孔板(バッフル)式(立形円筒内部に、小孔がある多数の複数の多孔板を斜めに設け、ガスが小孔を通過する際に油滴を分離する方式)、金網式(容器内に金網が円筒状に配置されており、ガスが金網を通過する際に、この金網によって油滴を分離する方式)、デミスタ式(ガス中の油滴をデミスタ内の線条で捕らえて分離する方式)がある。本発明に係るロータリ圧縮機には上述したすべての形態の分配器(油分離器)が適用可能である。例えば、デミスタ式油分離器を用いた場合、99%以上の油を分離回収することが可能であることから、十分に油を含む冷媒ガスを背圧室に送ることができ、高いシール効果及び潤滑作用が期待できる。 [6. [Distributor with oil separation function] Distributors with oil separation function (distributors with oil separation function) are currently offered in various forms. For example, from the viewpoint of type and structure, Centrifugal separation type (with a swirl plate in a vertical cylinder, gas is swirled to separate oil droplets by centrifugal force), perforated plate (baffle) type (a large number of small holes inside the vertical cylinder) Multiple perforated plates are provided at an angle, and oil droplets are separated when gas passes through the small holes), wire mesh type (the wire mesh is arranged in a cylindrical shape in the container, and when the gas passes through the wire mesh) , A method of separating oil droplets by this wire net), and a demister type (a method of capturing oil droplets in gas by a filament in the demister and separating them). The above-described distributors (oil separators) can be applied to the rotary compressor according to the present invention. For example, when a demister-type oil separator is used, it is possible to separate and recover 99% or more of the oil, so that a refrigerant gas sufficiently containing oil can be sent to the back pressure chamber, and a high sealing effect and Lubricating action can be expected.
〔7.変形例1〕実施の形態1では分配器134を密閉容器12の外部に設けたが、分配機能と油分離機能を設ける場所は限定的事項ではない。例えば、図4(a)に示す変形例は、油分離機能付分配器140を回転圧縮要素22に設けている。具体的に、分配器140において、第1の圧縮部32の背圧室60と第2の圧縮部34の吸入路78を繋ぐ上下方向の冷媒ガス輸送路(バイパス)142が形成されている。また、輸送配管142の入口(上端部)近傍の吸入路部分には、油分離(回収)手段の金網144(図4(b)参照)が複数枚重ねて配置されている。図示するように、金網144は、これに回収された油が液滴状で冷媒ガス輸送路142に落下し易いように、上下方向に又は斜めに向けて配置し、その下端部を輸送配管142の入口に位置させることが好ましい。 [7. Modification 1] In the first embodiment, the distributor 134 is provided outside the sealed container 12, but the place where the distribution function and the oil separation function are provided is not limited. For example, in the modification shown in FIG. 4A, the distributor 140 with an oil separation function is provided in the rotary compression element 22. Specifically, in the distributor 140, a refrigerant gas transport path (bypass) 142 in the vertical direction that connects the back pressure chamber 60 of the first compression section 32 and the suction path 78 of the second compression section 34 is formed. In addition, a plurality of metal meshes 144 (see FIG. 4B) of oil separating (collecting) means are stacked on the suction passage portion near the inlet (upper end) of the transport pipe 142. As shown in the figure, the wire mesh 144 is disposed vertically or obliquely so that the oil recovered in the metal mesh 144 can easily fall into the refrigerant gas transport path 142 in the form of droplets, and the lower end thereof is transported pipe 142. It is preferable to be located at the entrance of the
このような構成を備えたロータリ圧縮機によれば、第2の圧縮部34に供給される中間圧冷媒ガスの一部が吸入路78から輸送配管142を介して第1の圧縮部32の背圧室60に落下供給される。また、冷媒ガス、特に冷媒ガスに含まれる油が、背圧室60にその上方から落下供給されるため、背圧室60はオイルリッチな状態に保たれる。しかも、背圧室60に供給される冷媒ガス及び油は、油分離手段の上流側で中間冷却部132によって冷却されている。そのため、ベーン側面とベーン溝側壁との間に更に高いシール性が確保できる。   According to the rotary compressor having such a configuration, a part of the intermediate pressure refrigerant gas supplied to the second compression unit 34 is drawn from the suction passage 78 through the transport pipe 142 to the back of the first compression unit 32. Dropped into the pressure chamber 60. Further, since the refrigerant gas, particularly the oil contained in the refrigerant gas, is dropped and supplied from above to the back pressure chamber 60, the back pressure chamber 60 is kept in an oil-rich state. Moreover, the refrigerant gas and oil supplied to the back pressure chamber 60 are cooled by the intermediate cooling unit 132 on the upstream side of the oil separation means. Therefore, it is possible to secure a higher sealing performance between the vane side surface and the vane groove side wall.
〔8.変形例2〕図5は実施の形態1の変形例2を示す。変形例2は、変形例1のロータリ圧縮機から油分離用の金網を除いたものである。したがって、変形例2のロータリ圧縮機によれば、第2の圧縮部34の吸入路78に供給された中間圧冷媒ガスが該冷媒ガスに含まれる油と共にその一部が輸送配管142を通じて第1の圧縮部32の背圧室60に落下供給される。その結果、変形例1と同様に、背圧室60にその上方から油を含む冷媒ガスが落下供給されるため、背圧室60はオイルリッチな状態に保たれる。また、背圧室60に供給される冷媒ガス及び油は、油分離手段の上流側で中間冷却部によって冷却されているため、ベーン側面とベーン溝側壁との間に更に高いシール性が確保できる。 [8. Second Modification] FIG. 5 shows a second modification of the first embodiment. The second modification is obtained by removing the oil separation wire mesh from the rotary compressor of the first modification. Therefore, according to the rotary compressor of the second modified example, the intermediate pressure refrigerant gas supplied to the suction passage 78 of the second compression unit 34 and the oil contained in the refrigerant gas are partially fed through the transport pipe 142 to the first. The pressure is supplied to the back pressure chamber 60 of the compression section 32 of the compressor. As a result, similar to the first modification, the back pressure chamber 60 is kept in an oil-rich state because refrigerant gas containing oil is dropped and supplied to the back pressure chamber 60 from above. In addition, since the refrigerant gas and oil supplied to the back pressure chamber 60 are cooled by the intermediate cooling unit on the upstream side of the oil separating means, a higher sealing performance can be ensured between the vane side surface and the vane groove side wall. .
〔9.比較検討〕以下に示す複数の形態の二段ロータリ圧縮機の性能を解析した。解析の対象としてロータリ圧縮機は以下の通りである。 [9. Comparative study] The performance of the following two-stage rotary compressors was analyzed. The rotary compressors are as follows for analysis.
比較例1(背圧高圧型):第2の圧縮部から吐出されて密閉容器に蓄積された高圧冷媒ガスを第1の圧縮部の背圧室に供給する二段ロータリ圧縮機。第1の圧縮部の背圧室に供給される高圧冷媒ガスの輸送配管は、中間冷却部、分配器のいずれも備えていない。 Comparative Example 1 (back pressure high pressure type): A two-stage rotary compressor that supplies high-pressure refrigerant gas discharged from the second compression section and accumulated in a sealed container to the back pressure chamber of the first compression section. The high-pressure refrigerant gas transport pipe supplied to the back pressure chamber of the first compression section is provided with neither an intermediate cooling section nor a distributor.
比較例2(背圧中間圧型):第1の圧縮部から吐出された中間圧冷媒ガスを第1の圧縮部の背圧室に供給する二段ロータリ圧縮機。ただし、背圧室に通じる冷媒ガス輸送路は該背圧室の底部に接続されており、背圧室にその下方から冷媒ガスが供給される(特開2004−27970号公報に表されている二段ロータリ圧縮機)。第1の圧縮部の背圧室に供給される中間圧冷媒ガスの輸送配管は、中間冷却部、分配器のいずれも備えていない。 Comparative example 2 (back pressure intermediate pressure type): A two-stage rotary compressor that supplies the intermediate pressure refrigerant gas discharged from the first compression section to the back pressure chamber of the first compression section. However, the refrigerant gas transport path leading to the back pressure chamber is connected to the bottom of the back pressure chamber, and refrigerant gas is supplied to the back pressure chamber from below (shown in JP-A-2004-27970). Two-stage rotary compressor). The transport pipe for the intermediate pressure refrigerant gas supplied to the back pressure chamber of the first compression section includes neither the intermediate cooling section nor the distributor.
実施例1(中間冷却型〔油分離器あり〕):実施の形態1で説明したように、第1の圧縮部から吐出された中間圧冷媒ガスを中間冷却器で冷却した後、油分離機能付の分配器で分離回収した油を含むオイルリッチな中間圧冷媒ガスを第1の圧縮部の背圧室に輸送する二段ロータリ圧縮機(図1参照)。 Example 1 (intermediate cooling type [with oil separator]): As described in the first embodiment, after the intermediate pressure refrigerant gas discharged from the first compression section is cooled by the intermediate cooler, the oil separation function A two-stage rotary compressor that transports oil-rich intermediate-pressure refrigerant gas containing oil separated and recovered by the attached distributor to the back pressure chamber of the first compression section (see FIG. 1).
実施例2(中間冷却型〔油分離器なし〕):油分離機能の無い分配器を用い、第1の圧縮部から吐出された中間圧冷媒ガスを中間冷却器で冷却した中間圧冷媒ガスを分配器から第1の圧縮部の背圧室に輸送する二段ロータリ圧縮機(図1参照)。 Example 2 (intermediate cooling type [no oil separator]): An intermediate pressure refrigerant gas obtained by cooling an intermediate pressure refrigerant gas discharged from the first compression section with an intermediate cooler using a distributor having no oil separation function. A two-stage rotary compressor that transports from the distributor to the back pressure chamber of the first compressor (see FIG. 1).
実施例3(変形例1:油分離器(金網)あり):変形例1の二段ロータリ圧縮機(図4参照)。 Example 3 (Modification 1: With oil separator (wire net)): Two-stage rotary compressor of Modification 1 (see FIG. 4).
実施例4(変形例2:油分離器(金網)なし):変形例2の二段ロータリ圧縮機(図5参照)。 Example 4 (Modification 2: No oil separator (wire mesh)): Two-stage rotary compressor of Modification 2 (see FIG. 5).
〔解析結果〕解析結果を表2:高圧シェル型CO2二段ロータリ圧縮機の低段側ベーン背圧室への中間圧導入の比較(Ashrea基準、中間冷却あり)に示す。表2及び以下に説明する別の表中、「ベーン動作環境」欄において、「ベーン背面とシリンダ内の差圧」欄の「大」は4Pa以上、「中」は2〜4MPa、「小」は2MPa以下を意味し、「ベーン背面温度」欄の「超高温」は100℃以上、「高温」は50〜100℃、「常温」は20〜50℃、「低温」は20℃以下を意味し、「ベーン背面室油濃度」欄の「超濃」は90%以上、「濃」は60〜90%、「中」は30〜60%、「淡」は10〜30%、「希薄」は10%以下を意味する。「改善効果」欄において、「圧縮機効率」は理論断熱圧縮動力/圧縮機入力で定義され、「ベーン摩擦損失」と「ベーン隙間漏れによる損失」は、実験と理論式から推定した値である。推定方法は、例えば「幸田ら、“ロータリ圧縮機の性能解析”、空気調和・冷凍連合講演会講演論文集(’89)による。「ベーン摺動部の耐摩耗性、シール性」は、以上の推定値と試験結果(耐久性評価)からベーン摺動部の耐摩耗性、シール性を総合的に相対評価したもので、それぞれ「×」は不良、「△」は普通、「○」は良好、「◎」は極めて良好を意味する。 [Analysis Results] The analysis results are shown in Table 2: Comparison of introduction of intermediate pressure into the low-stage vane back pressure chamber of the high-pressure shell type CO2 two-stage rotary compressor (Ashrea standard, with intermediate cooling). In Table 2 and another table described below, in the “Vane operating environment” column, “Large” in the “Differential pressure between vane back surface and cylinder” column is 4 Pa or more, “Medium” is 2-4 MPa, “Small” Means 2 MPa or less, “super high temperature” in the “vane back surface temperature” column is 100 ° C. or more, “high temperature” means 50 to 100 ° C., “normal temperature” means 20 to 50 ° C., and “low temperature” means 20 ° C. or less. In the “Vane rear chamber oil concentration” column, “super dark” is 90% or more, “dark” is 60 to 90%, “medium” is 30 to 60%, “light” is 10 to 30%, “dilute” Means 10% or less. In the “improvement effect” column, “compressor efficiency” is defined as theoretical adiabatic compression power / compressor input, and “vane friction loss” and “loss due to vane gap leakage” are values estimated from experiments and theoretical formulas. . The estimation method is based on, for example, “Koda et al.,“ Performance Analysis of Rotary Compressors ”, Proceedings of the Air Conditioning and Refrigeration Joint Lecture ('89). From the estimated values and test results (durability evaluation), the wear resistance and sealability of the vane sliding part were comprehensively evaluated relative to each other. “X” is bad, “△” is normal, “○” is Good, “◎” means very good.
〔検討〕表18から明らかなように、比較例1の場合、第1の圧縮部のベーン背面には密閉容器内に蓄えられている油が潤沢に供給されるが、背圧室に供給される冷媒は高温高圧であるため、ベーン先端の受ける荷重が大きく、また良好な潤滑状態も得られない。比較例2の場合、第1の圧縮部のベーン背面には中間圧の冷媒が供給されるが、背圧室にその下方から冷媒を供給しているため、背圧室に十分な油が供給されず、潤滑やシール性が悪い。これに対し、本発明の実施形態に係る実施例1では、中間圧で低温の油が背圧室に潤沢に供給されるので、良好な潤滑とシール性が得られる。圧縮機効率に着目した場合、実施例1はもとより、他の実施例2〜4においても、比較例1,2よりも高い圧縮機効率を得られることが理解できる。 [Study] As is apparent from Table 18, in the case of Comparative Example 1, the oil stored in the hermetic container is supplied to the back surface of the vane of the first compression portion, but is supplied to the back pressure chamber. Since the refrigerant is high temperature and pressure, the load applied to the tip of the vane is large, and a good lubrication state cannot be obtained. In the case of the comparative example 2, the intermediate pressure refrigerant is supplied to the back surface of the vane of the first compression unit. However, since the refrigerant is supplied to the back pressure chamber from below, sufficient oil is supplied to the back pressure chamber. No lubrication or sealing performance. On the other hand, in Example 1 which concerns on embodiment of this invention, since a low temperature oil with an intermediate pressure is supplied abundantly to a back pressure chamber, favorable lubrication and sealing performance are obtained. When attention is paid to the compressor efficiency, it can be understood that the compressor efficiency higher than those of Comparative Examples 1 and 2 can be obtained not only in Example 1 but also in other Examples 2 to 4.
〔10.変形例3〕実施の形態1では、第1の圧縮部32から吐出された中間圧冷媒を環境温度(大気温度)まで放熱させる熱交換器を中間冷却器として利用している。しかし、二段圧縮冷凍サイクルで用いられる中間冷却要素としては、フラッシュ式、液冷却式、直接膨張式の冷却器が知られており、これらを実施の形態1の中間冷却器として利用することができる。なお、フラッシュ式冷却器を用いた場合、第1の圧縮部から吐出した高温・中間圧の冷媒は、ガスクーラから供給される冷媒と気液分離器機能付容器内で混合され、そのうちの飽和ガスが第2の圧縮部の吸入室に送り込まれる。そして、このような形態の中間冷却器を用いた二段ロータリ圧縮機は、上述した実施の形態1のロータリ圧縮機と同様の作用効果(潤滑とシール性の向上)が得られる。 [10. Modification 3] In the first embodiment, a heat exchanger that radiates the intermediate pressure refrigerant discharged from the first compression section 32 to the ambient temperature (atmospheric temperature) is used as an intermediate cooler. However, as an intercooling element used in the two-stage compression refrigeration cycle, flash type, liquid cooling type, and direct expansion type coolers are known, and these can be used as the intercooler of the first embodiment. it can. When a flash type cooler is used, the high-temperature / intermediate-pressure refrigerant discharged from the first compression unit is mixed with the refrigerant supplied from the gas cooler in the gas-liquid separator function-equipped container, and the saturated gas therein Is fed into the suction chamber of the second compression section. And the two-stage rotary compressor using the intermediate cooler of such a form can obtain the same effect (improvement of lubrication and sealability) as the rotary compressor of the first embodiment described above.
〔11.変形例4〕図6は、変形例4に係るインジェクション式の高圧シェル型ロータリ圧縮機の冷媒循環回路150を示す。このロータリ圧縮機において、第2の圧縮部34の圧縮室から吐出された冷媒を第1の圧縮部32の吸入室に案内する輸送配管(主経路)152には、上流側から下流側に向かって順番に、ガスクーラ154、膨張用キャピラリチューブ156、液タンク158、膨張用キャピラリチューブ160、冷蔵用蒸発器162、及び冷凍用蒸発器164が設けてある。液タンク158と第2の圧縮部34の吸入室は別の輸送配管(第1のバイパス)166を通じて流体的に接続されており、この冷媒輸送回路(第1のバイパス)166に分配器168が設けてある。分配器168は第1の圧縮部32の背圧室60と輸送配管(第2のバイパス)170を通じて流体的に接続されており、この輸送配管(第2のバイパス)170に絞り調整弁172が設けてある。分配器168は、背圧室60の上方に配置することが好ましい。輸送配管(第1のバイパス)166は液タンク158と分配器168の間にある分岐部174において分岐しており、その分岐路(輸送配管、第3のバイパス)176が冷蔵用蒸発器162と冷凍用蒸発器164の間で輸送配管(主経路)152に接続されている。 [11. [Modification 4] FIG. 6 shows a refrigerant circulation circuit 150 of an injection type high pressure shell type rotary compressor according to a modification 4. In this rotary compressor, the transport pipe (main path) 152 that guides the refrigerant discharged from the compression chamber of the second compression section 34 to the suction chamber of the first compression section 32 is directed from the upstream side to the downstream side. In turn, a gas cooler 154, an expansion capillary tube 156, a liquid tank 158, an expansion capillary tube 160, a refrigeration evaporator 162, and a freezing evaporator 164 are provided. The liquid tank 158 and the suction chamber of the second compression section 34 are fluidly connected through another transport pipe (first bypass) 166, and a distributor 168 is connected to the refrigerant transport circuit (first bypass) 166. It is provided. The distributor 168 is fluidly connected to the back pressure chamber 60 of the first compression section 32 through a transport pipe (second bypass) 170, and a throttle adjusting valve 172 is connected to the transport pipe (second bypass) 170. It is provided. The distributor 168 is preferably disposed above the back pressure chamber 60. The transport pipe (first bypass) 166 branches at a branch 174 between the liquid tank 158 and the distributor 168, and the branch path (transport pipe, third bypass) 176 is connected to the refrigeration evaporator 162. The refrigerating evaporator 164 is connected to a transport pipe (main path) 152.
このように構成されたインジェクション式のロータリ圧縮機によれば、第2の圧縮部34から輸送配管(主経路)152に吐出された高圧冷媒は、ガスクーラ154で冷却された後、膨張用キャピラリチューブ156で膨張減圧して低温の中間圧冷媒となる。冷却された中間圧冷媒は液タンク158に貯蔵される。液タンク158に貯蔵された中間圧冷媒は、その大部分がキャピラリチューブ160で膨張し低圧冷媒となり、冷蔵用蒸発器162、冷凍用蒸発器164で被冷却媒体から熱を奪って後、第1の圧縮部32の吸入室に供給される。一方、液タンク158に貯蔵されている中間圧冷媒の一部は、輸送配管(第1のバイパス)166に供給され、一部が輸送配管(第3のバイパス)176を介して蒸発器162,164の間で輸送配管(主経路)152に戻され、その他は分配器168に供給されてそこで2つに分配される。分配された一方の中間圧冷媒は第2の圧縮部34の吸入室に供給され、分配された他の中間圧冷媒は絞り調整弁172を介して第1の圧縮部32の背圧室60に供給される。このとき、図4及び図5を参照して説明したように、背圧室60にはその上方から供給することが好ましい。これにより、上述したロータリ圧縮機と同様に、第1の圧縮部32の背圧室60はオイルリッチな状態に保たれ、ベーン側面とベーン溝側壁との間に高いシール性と潤滑が確保できる。なお、上述のように、分配器168は油分離機能付の分配器(油分離器)であってもよいし、油分離機能の無い分配器であってもよい。ただし、分配器168に油分離機能の無い分配器を使用する場合、分配器168から背圧室60までの経路のいずれかに油分離器を設けてもよい。   According to the injection-type rotary compressor configured as described above, the high-pressure refrigerant discharged from the second compression section 34 to the transport pipe (main path) 152 is cooled by the gas cooler 154 and then expanded capillary tube. At 156, the pressure is expanded and reduced to a low-temperature intermediate pressure refrigerant. The cooled intermediate pressure refrigerant is stored in the liquid tank 158. Most of the intermediate-pressure refrigerant stored in the liquid tank 158 expands in the capillary tube 160 to become a low-pressure refrigerant, takes heat from the medium to be cooled by the refrigeration evaporator 162 and the refrigeration evaporator 164, Is supplied to the suction chamber of the compressor 32. On the other hand, a part of the intermediate pressure refrigerant stored in the liquid tank 158 is supplied to the transport pipe (first bypass) 166, and a part thereof is connected to the evaporator 162 through the transport pipe (third bypass) 176. 164 is returned to the transport piping (main path) 152 and the others are fed to the distributor 168 where they are distributed in two. One of the distributed intermediate pressure refrigerant is supplied to the suction chamber of the second compression unit 34, and the other distributed intermediate pressure refrigerant is supplied to the back pressure chamber 60 of the first compression unit 32 via the throttle adjustment valve 172. Supplied. At this time, as described with reference to FIGS. 4 and 5, the back pressure chamber 60 is preferably supplied from above. Thereby, like the rotary compressor mentioned above, the back pressure chamber 60 of the 1st compression part 32 is maintained in an oil rich state, and a high sealing performance and lubrication can be ensured between the vane side surface and the vane groove side wall. . As described above, distributor 168 may be a distributor with an oil separation function (oil separator) or a distributor without an oil separation function. However, when a distributor without an oil separation function is used as the distributor 168, an oil separator may be provided in any of the paths from the distributor 168 to the back pressure chamber 60.
〔12.変形例5〕図7は変形例5に係るロータリ圧縮機の冷媒循環回路180、図15はこのロータリ圧縮機の冷凍サイクル(p−h線図)を示し、上述した実施の形態が備えている中間冷却部を省略されている点に特徴を有する。このロータリ圧縮機によれば、第1の圧縮部32の圧縮室から吐出した冷媒は、密閉容器12の外部に伸びている第1の輸送配管130を輸送され、分配器134で分配される。分配された一方の冷媒は再び密閉容器12の内部に戻されて第2の圧縮部34の吸入室に供給され、他の冷媒は絞り調整弁138で流量調整されて第1の圧縮部32の背圧室60に供給される。このとき、図1〜図6を参照して説明したように、背圧室60にはその上方から供給することが好ましい。これにより、上述したロータリ圧縮機と同様に、第1の圧縮部32の背圧室60はオイルリッチな状態に保たれ、ベーン側面とベーン溝側壁との間に高いシール性と潤滑が確保できる。 [12. Modification 5] FIG. 7 shows a refrigerant circulation circuit 180 of a rotary compressor according to Modification 5, and FIG. 15 shows a refrigeration cycle (ph diagram) of this rotary compressor, which is provided in the above-described embodiment. It is characterized in that the intermediate cooling part is omitted. According to this rotary compressor, the refrigerant discharged from the compression chamber of the first compression unit 32 is transported through the first transport pipe 130 extending to the outside of the sealed container 12 and is distributed by the distributor 134. One of the distributed refrigerants is returned to the inside of the sealed container 12 and supplied to the suction chamber of the second compression unit 34, and the flow rate of the other refrigerant is adjusted by the throttle adjustment valve 138, so that the first compression unit 32 It is supplied to the back pressure chamber 60. At this time, as described with reference to FIGS. 1 to 6, the back pressure chamber 60 is preferably supplied from above. Thereby, like the rotary compressor mentioned above, the back pressure chamber 60 of the 1st compression part 32 is maintained in an oil rich state, and a high sealing performance and lubrication can be ensured between the vane side surface and the vane groove side wall. .
〔比較検討〕変形例5に係る二段ロータリ圧縮機(中間冷却部の無い高圧シェル型CO2二段ロータリ圧縮機)と、上述した比較例1,2で用いたロータリ圧縮機と同型式のロータリ圧縮機(中間冷却部の無い高圧シェル型CO2二段ロータリ圧縮機)〔比較例3,4〕について性能を比較した。比較方法は、実施の形態1で説明したとおりである。結果を、図19の表3に示す。この表に示すように、比較例3では第1の圧縮部のベーン背面に油が冷媒と共に潤沢に供給されるが、この冷媒と油は高温高圧であるためにベーン先端荷重が大きく、潤滑も良くない。また、比較例4では、第1の圧縮部の背圧室に中間圧中温の冷媒が供給されるが、油の濃度が薄く、そのために潤滑とシール性が良くない。これに対し、変形例5では、第1の圧縮部の背圧室に中間圧常温の油が冷媒と共に潤沢に供給されるので、良好な潤滑とシール性が得られる。具体的に、変形例5では、比較例3,4に比べて圧縮機効率が約3%向上した。
実施の形態2.
[Comparison Study] A two-stage rotary compressor (a high-pressure shell type CO2 two-stage rotary compressor without an intermediate cooling section) according to Modification 5 and a rotary of the same type as the rotary compressor used in Comparative Examples 1 and 2 described above The performance of the compressor (high pressure shell type CO2 two-stage rotary compressor without intermediate cooling section) [Comparative Examples 3 and 4] was compared. The comparison method is as described in the first embodiment. The results are shown in Table 3 in FIG. As shown in this table, in Comparative Example 3, oil is supplied to the back surface of the vane of the first compression unit in a rich manner together with the refrigerant. However, since the refrigerant and oil are high temperature and high pressure, the vane tip load is large and lubrication is also performed. Not good. In Comparative Example 4, the intermediate pressure refrigerant is supplied to the back pressure chamber of the first compression unit, but the oil concentration is low, and therefore the lubrication and sealing properties are not good. On the other hand, in the modified example 5, since the oil at the medium pressure and normal temperature is supplied together with the refrigerant to the back pressure chamber of the first compression section, good lubrication and sealing performance can be obtained. Specifically, in Modification 5, the compressor efficiency was improved by about 3% compared to Comparative Examples 3 and 4.
Embodiment 2. FIG.
実施の形態2に係るロータリ圧縮機は、中間圧シェル型の二段ロータリ圧縮機で、その構成と冷媒循環回路をそれぞれ図8と図9に示す。この中間圧シェル型二段ロータリ圧縮機10Bの基本的な構成は、上述した高圧シェル型二段ロータリ圧縮機10に類似している。したがって、同一又は類似の構成部分には同一の符号を付し、両者の相違点のみを以下に説明する。具体的に、中間圧シェル型二段ロータリ圧縮機10Bは、第1の圧縮部32から吐出した中間圧冷媒(例えば、CO2冷媒)を密閉容器12の内部空間14に貯蔵するために、第1の圧縮部32の吐出口102が輸送配管192を介して密閉容器12の内部空間14に接続されている。また、密閉容器12の内部空間14に貯蔵されている中間圧冷媒を第2の圧縮部34の吸入室70に供給するために、これら内部空間14と吸入室70が別の輸送配管194を介して接続されている。第2の圧縮部34から吐出される高圧冷媒を輸送する別の輸送配管(主経路)196は、ガスクーラ124、膨張弁126、蒸発器128を介して第1の圧縮部32の吸入室68に接続されている。この輸送配管196は、ガスクーラ124と膨張弁126の間に、第2の圧縮部34の背圧室62の上方に配置された分配器198を備えており、この分配器198と第2の圧縮部34の背圧室62が別の輸送配管(バイパス)200を介して接続されており、この輸送配管200に絞り調整弁202が設けてある。上述のように、分配器198は、背圧室62の上方に設けることが好ましい。   The rotary compressor according to the second embodiment is an intermediate pressure shell type two-stage rotary compressor, and its configuration and refrigerant circulation circuit are shown in FIGS. 8 and 9, respectively. The basic configuration of the intermediate-pressure shell-type two-stage rotary compressor 10B is similar to the high-pressure shell-type two-stage rotary compressor 10 described above. Accordingly, the same or similar components are denoted by the same reference numerals, and only the differences between them will be described below. Specifically, the intermediate-pressure shell type two-stage rotary compressor 10B is configured to store the intermediate-pressure refrigerant (for example, CO 2 refrigerant) discharged from the first compression unit 32 in the internal space 14 of the sealed container 12 in the first The discharge port 102 of the compression unit 32 is connected to the internal space 14 of the sealed container 12 via the transport pipe 192. Further, in order to supply the intermediate pressure refrigerant stored in the internal space 14 of the sealed container 12 to the suction chamber 70 of the second compression section 34, the internal space 14 and the suction chamber 70 are connected via another transport pipe 194. Connected. Another transport pipe (main path) 196 that transports the high-pressure refrigerant discharged from the second compression unit 34 is connected to the suction chamber 68 of the first compression unit 32 via the gas cooler 124, the expansion valve 126, and the evaporator 128. It is connected. The transport pipe 196 includes a distributor 198 disposed between the gas cooler 124 and the expansion valve 126 above the back pressure chamber 62 of the second compression section 34, and the distributor 198 and the second compression section 196. The back pressure chamber 62 of the part 34 is connected via another transport pipe (bypass) 200, and a throttle adjusting valve 202 is provided in the transport pipe 200. As described above, the distributor 198 is preferably provided above the back pressure chamber 62.
このように構成された中間圧シェル型二段ロータリ圧縮機10Bによれば、第1の圧縮部32は吸入した低圧冷媒を圧縮して中間圧冷媒を生成する。生成された中間圧冷媒は、輸送配管192を介して密閉容器12の内部空間14に供給される。密閉容器12内の中間圧冷媒は、別の輸送配管194を介して第2の圧縮部34に供給され、そこで圧縮されて高圧冷媒が生成される。生成された高圧冷媒は、輸送配管(主経路)196を輸送され、ガスクーラ124で凝縮された後、膨張弁126で膨張され、低温の低圧冷媒ガスになる。この低温・低圧冷媒ガスは蒸発器128に送られ、そこで被冷却媒体から熱を奪った後、再び密閉容器12の内部に送り戻され、第1の圧縮部32に供給される。一方、ガスクーラ124を通過した低温高圧冷媒の一部は分配器198から輸送配管(バイパス)200に供給され、絞り調整弁202で流量調整された後、第2の圧縮部34の背圧室62にその上方から供給される。したがって、背圧室62に供給された中間圧の冷媒ガスはベーン58の背面に作用し、ばね66の付勢力と共に、ベーン58をローラ50に圧接する。その結果、ローラ50とこれに接するベーン先端部との間には良好なシールが形成される。また、分配器198が油分離機能を有するか否かに拘わらず、背圧室62に供給される冷媒ガスには油が含まれており、この油がベーン側面とこれに対向するベーン溝側壁との隙間に入り、両者の間を潤滑すると共にシールする。当然、油分離機能付き分配器を用いた場合、背圧室62に供給される油の量が多く、そのために更に良好な潤滑とシールが達成できる。また、ガスクーラ124で冷却された低温の高圧冷媒が背圧室62に供給されるため、ベーン側面とベーン溝側壁との間に高いシール性が確保できる。   According to the intermediate pressure shell type two-stage rotary compressor 10B configured as described above, the first compression unit 32 compresses the sucked low pressure refrigerant to generate intermediate pressure refrigerant. The generated intermediate pressure refrigerant is supplied to the internal space 14 of the sealed container 12 via the transport pipe 192. The intermediate pressure refrigerant in the sealed container 12 is supplied to the second compression unit 34 via another transport pipe 194 and is compressed there to generate a high-pressure refrigerant. The generated high-pressure refrigerant is transported through a transport pipe (main path) 196, condensed by the gas cooler 124, and then expanded by the expansion valve 126 to become a low-temperature low-pressure refrigerant gas. The low-temperature and low-pressure refrigerant gas is sent to the evaporator 128, where heat is taken from the medium to be cooled, and then sent back into the sealed container 12 and supplied to the first compression unit 32. On the other hand, a part of the low-temperature and high-pressure refrigerant that has passed through the gas cooler 124 is supplied from the distributor 198 to the transport pipe (bypass) 200 and the flow rate is adjusted by the throttle adjusting valve 202, and then the back pressure chamber 62 of the second compression unit 34. From above. Therefore, the intermediate-pressure refrigerant gas supplied to the back pressure chamber 62 acts on the back surface of the vane 58 and presses the vane 58 against the roller 50 together with the urging force of the spring 66. As a result, a good seal is formed between the roller 50 and the vane tip in contact therewith. Regardless of whether or not the distributor 198 has an oil separation function, the refrigerant gas supplied to the back pressure chamber 62 contains oil, and the oil is on the side surface of the vane and the side wall of the vane groove facing the vane. Between them and lubricate and seal between them. Naturally, when a distributor with an oil separation function is used, the amount of oil supplied to the back pressure chamber 62 is large, so that better lubrication and sealing can be achieved. Further, since the low-temperature high-pressure refrigerant cooled by the gas cooler 124 is supplied to the back pressure chamber 62, high sealing performance can be ensured between the vane side surface and the vane groove side wall.
〔変形例〕図10は、実施の形態2に係る中間圧シェル型二段ロータリ圧縮機10Bの変形例を示す。この変形例は、輸送配管196においてガスクーラ124の上流側に油分離機能付の分配器198又は油分離機能の無い分配器198が設けられている点で異なる。この変形例に係る中間圧シェル型二段ロータリ圧縮機でも、上述した実施の形態2の圧縮機と同様に、第2の圧縮部34の背圧室には低温のオイルリッチな高圧冷媒が供給されるため、ベーン側面とベーン溝側壁との間に高いシール性と潤滑が確保できる。 [Modification] FIG. 10 shows a modification of the intermediate pressure shell type two-stage rotary compressor 10B according to the second embodiment. This modification is different in that a distributor 198 with an oil separation function or a distributor 198 without an oil separation function is provided on the upstream side of the gas cooler 124 in the transport pipe 196. Also in the intermediate pressure shell type two-stage rotary compressor according to this modified example, a low-temperature oil-rich high-pressure refrigerant is supplied to the back pressure chamber of the second compression unit 34 as in the compressor of the second embodiment described above. Therefore, high sealing performance and lubrication can be ensured between the vane side surface and the vane groove side wall.
〔比較検討〕実施の形態2に係る二段ロータリ圧縮機(図9と図10に示す中間圧シェル型CO2二段ロータリ圧縮機)と、高温高圧の冷媒を第2の圧縮部の背圧室に供給する中間圧シェル型CO2二段ロータリ圧縮機(比較例5)について性能を比較した。比較方法は、実施の形態1で説明したとおりである。結果を、図20の表4に示す。この表に示すように、比較例3では第2の圧縮部のベーン背面に高圧の冷媒が供給されるものの、油の濃度が薄くて高温であるため、適当な潤滑とシール性が得られない。これに対し、実施の形態2では、第2の圧縮部の背圧室に十分な濃度の油が供給されるため、必要な潤滑とシール性が確保できる。
実施の形態3.
[Comparison Study] The two-stage rotary compressor according to the second embodiment (intermediate pressure shell type CO2 two-stage rotary compressor shown in FIGS. 9 and 10) and the high-pressure and high-pressure refrigerant are supplied to the back pressure chamber of the second compression section. The performance of the intermediate-pressure shell-type CO2 two-stage rotary compressor (Comparative Example 5) supplied to is compared. The comparison method is as described in the first embodiment. The results are shown in Table 4 in FIG. As shown in this table, in Comparative Example 3, although the high-pressure refrigerant is supplied to the back surface of the vane of the second compression unit, the oil concentration is low and the temperature is high, so that appropriate lubrication and sealing performance cannot be obtained. . On the other hand, in Embodiment 2, since sufficient concentration of oil is supplied to the back pressure chamber of the second compression section, necessary lubrication and sealing performance can be ensured.
Embodiment 3 FIG.
実施の形態3に係るロータリ圧縮機は、低圧シェル型の二段ロータリ圧縮機で、その構成と冷媒循環回路をそれぞれ図11と図12に示す。この低圧シェル型二段ロータリ圧縮機1Bの基本的な構成は、上述した高圧シェル型二段ロータリ圧縮機10と中間圧シェル型二段ロータリ圧縮機10Aに類似している。したがって、同一又は類似の構成部分には同一の符号を付し、両者の相違点のみを以下に説明する。具体的に、低圧シェル型二段ロータリ圧縮機10Bでは、第1の圧縮部32の吐出口102が輸送配管202を介して第2の圧縮部34の吸入路78に接続されており、第1の圧縮部32から吐出される中間圧冷媒(例えば、CO2冷媒)が第2の圧縮部34に供給されるようにしてある。また、密閉容器12の内部空間14が別の輸送配管204を介して第1の圧縮部32の吸入路76に接続されており、密閉容器12内に貯蔵されている低圧冷媒が第1の圧縮部32に供給されるようにしてある。さらに、第2の圧縮部34から吐出される高圧冷媒を輸送する別の輸送配管(主経路)206は、ガスクーラ208、膨張弁210、蒸発器212を介して密閉容器12の内部空間14に接続されている。この輸送配管206は、ガスクーラ208と膨張弁210の間に、第1及び2の圧縮部32,34の背圧室60,62の上方に配置された分配器214を備えており、分配器214が第1の圧縮部32の背圧室60及び第2の圧縮部34の背圧室62と輸送配管(第1のバイパス)216と別の輸送配管(第2のバイパス)218を介してそれぞれ接続されており、これら背圧室60,62に低温の高圧媒体を供給するようにしてある。また、輸送配管(第1のバイパス)216と別の輸送配管(第2のバイパス)218に絞り調整弁220,222がそれぞれ設けてある。   The rotary compressor according to the third embodiment is a low-pressure shell type two-stage rotary compressor, and its configuration and refrigerant circulation circuit are shown in FIGS. 11 and 12, respectively. The basic configuration of the low-pressure shell-type two-stage rotary compressor 1B is similar to the above-described high-pressure shell-type two-stage rotary compressor 10 and the intermediate-pressure shell-type two-stage rotary compressor 10A. Accordingly, the same or similar components are denoted by the same reference numerals, and only the differences between them will be described below. Specifically, in the low-pressure shell type two-stage rotary compressor 10B, the discharge port 102 of the first compression unit 32 is connected to the suction path 78 of the second compression unit 34 via the transport pipe 202, and the first The intermediate pressure refrigerant (for example, CO 2 refrigerant) discharged from the compressor 32 is supplied to the second compressor 34. Further, the internal space 14 of the sealed container 12 is connected to the suction path 76 of the first compression unit 32 via another transport pipe 204, and the low-pressure refrigerant stored in the sealed container 12 is subjected to the first compression. Is supplied to the unit 32. Furthermore, another transport pipe (main path) 206 for transporting the high-pressure refrigerant discharged from the second compression unit 34 is connected to the internal space 14 of the sealed container 12 via the gas cooler 208, the expansion valve 210, and the evaporator 212. Has been. The transport pipe 206 includes a distributor 214 disposed between the gas cooler 208 and the expansion valve 210 above the back pressure chambers 60 and 62 of the first and second compression sections 32 and 34. Through the back pressure chamber 60 of the first compression section 32, the back pressure chamber 62 of the second compression section 34, the transport pipe (first bypass) 216, and another transport pipe (second bypass) 218, respectively. The back pressure chambers 60 and 62 are connected to supply a low-temperature high-pressure medium. Further, throttle adjusting valves 220 and 222 are provided in the transport pipe (first bypass) 216 and another transport pipe (second bypass) 218, respectively.
このように構成された低圧シェル型二段ロータリ圧縮機10Bによれば、第1の圧縮部32は密閉容器12内に貯蔵されている低圧冷媒を圧縮して中間圧冷媒を生成する。生成された中間圧冷媒は、輸送配管202を介して第2の圧縮部34に供給され、そこで圧縮されて高圧冷媒が生成される。生成された高圧冷媒は、輸送配管(主経路)206を輸送され、ガスクーラ208で凝縮された後、膨張弁210で膨張され、低温の低圧冷媒ガスになる。この低温・低圧冷媒ガスは蒸発器212に送られ、そこで被冷却媒体から熱を奪った後、再び密閉容器12の内部に送り戻され、第1の圧縮部32に供給される。一方、ガスクーラ208を通過した低温高圧冷媒は、分配器214から輸送配管216、218に供給され、絞り調整弁220,222で流量調整された後、第1及び第2の圧縮部32,34の背圧室60,62にそれぞれ上方から供給される。したがって、背圧室60,62に供給された冷媒はベーン56,58の背面に作用し、ばね64,66の付勢力と共に、ベーン56,58をローラ48,50に圧接する。その結果、ローラ48,50とこれに接するベーン先端部との間には良好なシールが形成される。また、分配器214が油分離機能を有するか否かに拘わらず、背圧室60,62に供給される冷媒には油が含まれており、この油がベーン側面とこれに対向するベーン溝側壁との隙間に入り、両者の間を潤滑すると共にシールする。当然、油分離機能付き分配器を用いた場合、背圧室60,62に供給される油の量が多く、そのために更に良好な潤滑とシールが達成できる。また、ガスクーラで冷却された低温の高圧冷媒が背圧室に供給されるため、ベーン側面とベーン溝側壁との間に高いシール性が確保できる。   According to the low-pressure shell type two-stage rotary compressor 10B configured as described above, the first compression unit 32 compresses the low-pressure refrigerant stored in the sealed container 12 to generate an intermediate-pressure refrigerant. The generated intermediate pressure refrigerant is supplied to the second compression unit 34 via the transport pipe 202 and is compressed there to generate a high pressure refrigerant. The generated high-pressure refrigerant is transported through a transport pipe (main path) 206, condensed by a gas cooler 208, and then expanded by an expansion valve 210 to become a low-temperature low-pressure refrigerant gas. The low-temperature and low-pressure refrigerant gas is sent to the evaporator 212, where heat is taken from the medium to be cooled, and then sent back into the sealed container 12 and supplied to the first compression unit 32. On the other hand, the low-temperature and high-pressure refrigerant that has passed through the gas cooler 208 is supplied from the distributor 214 to the transport pipes 216 and 218, the flow rate of which is adjusted by the throttle adjusting valves 220 and 222, and then the first and second compression units 32 and 34. The back pressure chambers 60 and 62 are respectively supplied from above. Therefore, the refrigerant supplied to the back pressure chambers 60 and 62 acts on the back surfaces of the vanes 56 and 58, and presses the vanes 56 and 58 against the rollers 48 and 50 together with the urging force of the springs 64 and 66. As a result, a good seal is formed between the rollers 48 and 50 and the vane tip contacting the rollers 48 and 50. Regardless of whether the distributor 214 has an oil separation function or not, the refrigerant supplied to the back pressure chambers 60 and 62 contains oil, and this oil is disposed on the side surface of the vane and the vane groove facing the vane. Enters the gap with the side wall, lubricates and seals between the two. Naturally, when a distributor with an oil separation function is used, the amount of oil supplied to the back pressure chambers 60 and 62 is large, and therefore better lubrication and sealing can be achieved. In addition, since the low-temperature high-pressure refrigerant cooled by the gas cooler is supplied to the back pressure chamber, high sealing performance can be ensured between the vane side surface and the vane groove side wall.
なお、本実施の形態については従来例との比較は示さないが、上述した実施の形態1,2と同様に、本実施形態3についても適当な潤滑とシール性が得られる。   Although the present embodiment does not show a comparison with the conventional example, appropriate lubrication and sealability can be obtained for the third embodiment as in the first and second embodiments.
また、本発明の二段ロータリ圧縮機で取り扱う冷媒にはCO2冷媒、フロン冷媒などの種々の冷媒を用いることができるが、CO2冷媒を用いた圧縮機ではガスクーラ(高圧)側が超臨界域で10MPa程度に達してベーン背圧とシリンダ内圧の差圧がフロン冷媒を用いたときよりも大きくなるため、本発明の効果がより顕著に表れる。   Various refrigerants such as CO2 refrigerant and chlorofluorocarbon refrigerant can be used as the refrigerant handled by the two-stage rotary compressor of the present invention. In the compressor using the CO2 refrigerant, the gas cooler (high pressure) side is 10 MPa in the supercritical region. Since the pressure difference between the vane back pressure and the cylinder internal pressure becomes higher than that when using the chlorofluorocarbon refrigerant, the effect of the present invention appears more remarkably.
10:二段ロータリ圧縮機、12:密閉容器、14:円筒空間、16:上部空間、18:下部空間、20:電動機、22:回転圧縮要素、24:中心軸、26:ステータ、28:ロータ、30:回転軸、32:第1の圧縮部、34:第2の圧縮部、36、38:シリンダ、40,42:円筒空間、44,46:偏心部、48,50:ローラ、52,54:ベーン溝、56,58:ベーン、60,62:背圧室、64,66:ばね、68,70:吸入室(低圧室)、72,74:圧縮室(高圧室)、76,78:吸入路、80,82:吐出路、84,86:吐出弁、90:中間仕切板、92:下部支持部材、94:上部支持部材、96:下部カバープレート、98:上部カバープレート、100:低段消音室、120:冷媒循環回路、124:凝縮器、126:膨張弁、128:蒸発器、130:第1の輸送配管、132:冷却部(中間冷却部)、134:分配器、136:分配経路(第2の輸送配管)、138:絞り調整弁。 10: Two-stage rotary compressor, 12: Sealed container, 14: Cylindrical space, 16: Upper space, 18: Lower space, 20: Electric motor, 22: Rotary compression element, 24: Central shaft, 26: Stator, 28: Rotor , 30: rotating shaft, 32: first compression section, 34: second compression section, 36, 38: cylinder, 40, 42: cylindrical space, 44, 46: eccentric section, 48, 50: roller, 52, 54: Vane groove, 56, 58: Vane, 60, 62: Back pressure chamber, 64, 66: Spring, 68, 70: Suction chamber (low pressure chamber), 72, 74: Compression chamber (high pressure chamber), 76, 78 : Suction path, 80, 82: discharge path, 84, 86: discharge valve, 90: intermediate partition plate, 92: lower support member, 94: upper support member, 96: lower cover plate, 98: upper cover plate, 100: Low stage silencer chamber, 120: refrigerant circulation circuit, 124: Compressor, 126: expansion valve, 128: evaporator, 130: first transport pipe, 132: cooling section (intermediate cooling section), 134: distributor, 136: distribution path (second transport pipe), 138: Throttle adjustment valve.

Claims (10)

  1. 高圧シェル型密閉容器内に、電動機と、上記電動機によって駆動される第1及び第2の圧縮部を備え、上記第1の圧縮部で圧縮された冷媒を上記第2の圧縮部で圧縮するロータリ圧縮機において、
    上記第1及び第2の圧縮部はそれぞれ、シリンダと、上記シリンダ内を偏心回転するローラと、上記ローラに当接して上記シリンダと上記ローラとの間に形成された空間を吸入室と圧縮室に仕切るベーンを備えており、
    上記第1の圧縮部は上記ベーンの背後に形成された背圧室を備えており、
    上記ロータリ圧縮機は、上記第2の圧縮部で圧縮され油が混入した冷媒を冷却し中間圧に膨張減圧する冷却要素および膨張減圧部と、
    当該膨張減圧された中間圧の冷媒とこれに混入した油の一部を第1の圧縮部の背圧室および第2の圧縮部の吸入室に分配する分配器を備えていることを特徴とするロータリ圧縮機。
    A rotary that includes an electric motor and first and second compression units driven by the electric motor in a high-pressure shell-type airtight container, and compresses the refrigerant compressed by the first compression unit by the second compression unit. In the compressor,
    Each of the first and second compression parts includes a cylinder, a roller that rotates eccentrically in the cylinder, and a space formed between the cylinder and the roller in contact with the roller, and a suction chamber and a compression chamber. It has vanes that divide into
    The first compression section includes a back pressure chamber formed behind the vane;
    The rotary compressor includes a cooling element that cools the refrigerant compressed by the second compression unit and mixed with oil, and expands and depressurizes to an intermediate pressure, and an expansion and decompression unit;
    A distributor is provided that distributes the refrigerant of intermediate pressure that has been decompressed and decompressed and a part of oil mixed therein to the back pressure chamber of the first compression section and the suction chamber of the second compression section. Rotary compressor.
  2. 上記膨張減圧部は、直列接続された少なくとも二つの第1および第2の膨張減圧部の第1の膨張減圧部であり、それら第1および第2の膨張減圧部間の冷媒が上記中間圧の冷媒及び油として上記分配器に供給されることを特徴とする請求項1に記載のロータリ圧縮機。   The expansion decompression unit is a first expansion decompression unit of at least two first and second expansion decompression units connected in series, and the refrigerant between the first and second expansion decompression units has the intermediate pressure. The rotary compressor according to claim 1, wherein the rotary compressor is supplied to the distributor as refrigerant and oil.
  3. 上記膨張減圧された中間圧の冷媒とこれに混入した油は、液タンクに貯蔵され、上記分配器および該液タンクの下流の上記第2の膨張減圧部に分配されることを特徴とする請求項2に記載のロータリ圧縮機。   The expansion-reduced intermediate-pressure refrigerant and oil mixed therein are stored in a liquid tank and distributed to the distributor and the second expansion-reduction unit downstream of the liquid tank. Item 3. The rotary compressor according to Item 2.
  4. 上記分配器は油分離機能を備え、該分配器で油分離された油が上記第1の圧縮部の背圧室に供給されると共に、当該油分離後の冷媒が上記第2の圧縮部の吸入室に供給されることを特徴とする請求項1〜3のいずれか1項に記載のロータリ圧縮機。   The distributor has an oil separation function, and the oil separated by the distributor is supplied to the back pressure chamber of the first compression unit, and the refrigerant after the oil separation is supplied to the second compression unit. The rotary compressor according to claim 1, wherein the rotary compressor is supplied to a suction chamber.
  5. 高圧シェル型密閉容器内に、電動機と、上記電動機によって駆動される第1及び第2の圧縮部を備え、上記第1の圧縮部で圧縮された冷媒を上記第2の圧縮部で圧縮するロータリ圧縮機において、
    上記第1及び第2の圧縮部はそれぞれ、シリンダと、上記シリンダ内を偏心回転するローラと、上記ローラに当接して上記シリンダと上記ローラとの間に形成された空間を吸入室と圧縮室に仕切るベーンを備えており、
    上記第1の圧縮部は上記ベーンの背後に形成された背圧室を備えており、
    上記ロータリ圧縮機は、上記第2の圧縮部で圧縮され油が混入した冷媒を冷却する冷却要素、当該冷却要素にて冷却された上記油が混入した冷媒を膨張減圧する第1の膨張減圧部、当該第1の膨張減圧部にて膨張減圧された冷媒及び油を中間圧冷媒として貯蔵する液タンク、当該液タンクに貯蔵された中間圧冷媒の一部が供給され当該供給された中間圧冷媒を第1の圧縮部の背圧室および第2の圧縮部の吸入室に分配する分配器、上記液タンクに貯蔵された中間圧冷媒の一部が供給され当該供給された中間圧冷媒を膨張減圧する第2の膨張減圧部、および当該第2の膨張減圧部にて中間圧冷媒を膨張減圧してなる低圧冷媒が供給される蒸発器を備え、
    上記蒸発器で被冷却媒体から熱を奪った冷媒が第1の圧縮部の吸入室に供給されることを特徴とするロータリ圧縮機。
    A rotary that includes an electric motor and first and second compression units driven by the electric motor in a high-pressure shell-type airtight container, and compresses the refrigerant compressed by the first compression unit by the second compression unit. In the compressor,
    Each of the first and second compression parts includes a cylinder, a roller that rotates eccentrically in the cylinder, and a space formed between the cylinder and the roller in contact with the roller, and a suction chamber and a compression chamber. It has vanes that divide into
    The first compression section includes a back pressure chamber formed behind the vane;
    The rotary compressor has a cooling element that cools the refrigerant compressed by the second compression unit and mixed with oil, and a first expansion / decompression unit that expands and depressurizes the refrigerant mixed with the oil cooled by the cooling element. A liquid tank that stores the refrigerant and oil expanded and depressurized by the first expansion and depressurization unit as an intermediate pressure refrigerant, and the intermediate pressure refrigerant that is supplied with a part of the intermediate pressure refrigerant stored in the liquid tank Is distributed to the back pressure chamber of the first compression section and the suction chamber of the second compression section, and a part of the intermediate pressure refrigerant stored in the liquid tank is supplied to expand the supplied intermediate pressure refrigerant. A second expansion / decompression unit that depressurizes, and an evaporator that is supplied with a low-pressure refrigerant obtained by expanding and depressurizing the intermediate-pressure refrigerant in the second expansion / decompression unit,
    A rotary compressor characterized in that the refrigerant that has taken heat from the medium to be cooled by the evaporator is supplied to the suction chamber of the first compression section.
  6. 上記分配器は油分離機能を備え、該分配器で油分離された油が上記第1の圧縮部の背圧室に供給されると共に、当該油分離後の冷媒が上記第2の圧縮部の吸入室に供給されることを特徴とする請求項5に記載のロータリ圧縮機。   The distributor has an oil separation function, and the oil separated by the distributor is supplied to the back pressure chamber of the first compression unit, and the refrigerant after the oil separation is supplied to the second compression unit. The rotary compressor according to claim 5, wherein the rotary compressor is supplied to a suction chamber.
  7. 上記蒸発器は直列接続された第1及び第2の蒸発器を備え、
    上記液タンクに貯蔵されている中間圧冷媒の一部を、上記分配器および上記第1の蒸発器を介さずに上記第1の蒸発器と上記第2の蒸発器との間の輸送配管に供給する別の輸送配管を備えたことを特徴とする請求項5又は6に記載のロータリ圧縮機。
    The evaporator includes first and second evaporators connected in series,
    Part of the intermediate pressure refrigerant stored in the liquid tank is transferred to a transport pipe between the first evaporator and the second evaporator without passing through the distributor and the first evaporator. The rotary compressor according to claim 5 or 6, further comprising another transportation pipe to be supplied.
  8. 上記油分離要素が上記背圧室の上方に配置されていることを特徴とする請求項1〜7のいずれかに記載のロータリ圧縮機。   The rotary compressor according to claim 1, wherein the oil separation element is disposed above the back pressure chamber.
  9. 上記冷媒が炭酸ガスであることを特徴とする請求項1〜8のいずれか一に記載のロータリ圧縮機。   The rotary compressor according to any one of claims 1 to 8, wherein the refrigerant is carbon dioxide gas.
  10. 高圧シェル型密閉容器内に、電動機と、上記電動機によって駆動される第1及び第2の圧縮部を備え、上記第1の圧縮部で圧縮された冷媒を上記第2の圧縮部で圧縮するロータリ圧縮機において、
    上記第1及び第2の圧縮部はそれぞれ、シリンダと、上記シリンダ内を偏心回転するローラと、上記ローラに当接して上記シリンダと上記ローラとの間に形成された空間を吸入室と圧縮室に仕切るベーンを備えており、
    上記第1の圧縮部は上記ベーンの背後に形成された中間圧の背圧室を備えており、
    上記ロータリ圧縮機は、上記第1の圧縮部で圧縮された冷媒とこれに混入した油を上記第2の圧縮部に輸送する輸送配管と、
    上記第1の圧縮部で圧縮された冷媒と油の一部を分配して上記第1の圧縮部の背圧室に輸送するための分配器及び分配経路とを備え、
    上記第1の圧縮部と上記第2の圧縮部の間に中間仕切板が配置され、
    上記分配経路は、上記中間仕切板を貫通して、上記第1の圧縮部の背圧室と上記第2の圧縮部の吸入路を繋ぐ上下方向の冷媒ガス輸送路であり、上記冷却要素により冷却された冷媒と油の一部を上記第1の圧縮部の背圧室に上方から供給することを特徴とするロータリ圧縮機。
    A rotary that includes an electric motor and first and second compression units driven by the electric motor in a high-pressure shell-type airtight container, and compresses the refrigerant compressed by the first compression unit by the second compression unit. In the compressor,
    Each of the first and second compression parts includes a cylinder, a roller that rotates eccentrically in the cylinder, and a space formed between the cylinder and the roller in contact with the roller, and a suction chamber and a compression chamber. It has vanes that divide into
    The first compression section includes an intermediate pressure back pressure chamber formed behind the vane;
    The rotary compressor has a transport pipe for transporting the refrigerant compressed in the first compression section and the oil mixed therein to the second compression section,
    A distributor and a distribution path for distributing a part of the refrigerant and oil compressed in the first compression section and transporting them to the back pressure chamber of the first compression section;
    An intermediate partition plate is disposed between the first compression unit and the second compression unit,
    The distribution path is an upward and downward refrigerant gas transport path that penetrates the intermediate partition plate and connects the back pressure chamber of the first compression section and the suction path of the second compression section, and is provided by the cooling element. A rotary compressor characterized in that a part of the cooled refrigerant and oil is supplied to the back pressure chamber of the first compression section from above.
JP2011107323A 2011-05-12 2011-05-12 Rotary compressor Expired - Fee Related JP5218596B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011107323A JP5218596B2 (en) 2011-05-12 2011-05-12 Rotary compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011107323A JP5218596B2 (en) 2011-05-12 2011-05-12 Rotary compressor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005015491A Division JP4815808B2 (en) 2005-01-24 2005-01-24 Rotary compressor

Publications (2)

Publication Number Publication Date
JP2011149442A JP2011149442A (en) 2011-08-04
JP5218596B2 true JP5218596B2 (en) 2013-06-26

Family

ID=44536607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011107323A Expired - Fee Related JP5218596B2 (en) 2011-05-12 2011-05-12 Rotary compressor

Country Status (1)

Country Link
JP (1) JP5218596B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109882413B (en) * 2019-04-01 2021-06-08 安徽美芝精密制造有限公司 Rotary compressor and refrigerating system with same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2699724B2 (en) * 1991-11-12 1998-01-19 松下電器産業株式会社 Two-stage gas compressor
JP4258132B2 (en) * 2001-04-09 2009-04-30 パナソニック株式会社 Rotary multistage compressor
JP2002317784A (en) * 2001-04-19 2002-10-31 Matsushita Electric Ind Co Ltd Rotary two-stage compressor
JP2004027970A (en) * 2002-06-26 2004-01-29 Sanyo Electric Co Ltd Multistage compression type rotary compressor
JP3857967B2 (en) * 2002-08-29 2006-12-13 三洋電機株式会社 Multi-stage rotary compressor

Also Published As

Publication number Publication date
JP2011149442A (en) 2011-08-04

Similar Documents

Publication Publication Date Title
AU2009323588B2 (en) Refrigerating apparatus
JP2008163894A (en) Multiple stage compressor
JP5502459B2 (en) Refrigeration equipment
AU2008222268C1 (en) Refrigeration system
JP5484890B2 (en) Refrigeration equipment
JP4949817B2 (en) Multistage compressor and refrigeration cycle using the same
JP2011214753A (en) Refrigerating device
KR20070046967A (en) Refrigerating apparatus
JP4815808B2 (en) Rotary compressor
JP5484889B2 (en) Refrigeration equipment
JP2011133210A (en) Refrigerating apparatus
JP5269192B2 (en) Two-stage compressor and refrigeration air conditioner
JP2011137557A (en) Refrigerating apparatus
JP2011133206A (en) Refrigerating apparatus
US6385995B1 (en) Apparatus having a refrigeration circuit
JP5218596B2 (en) Rotary compressor
JP2007093017A (en) Refrigerating apparatus
JP2012127565A (en) Refrigeration cycle device
CN103339449A (en) System to perform a vapor compression refrigeration cycle using water as the refrigerant
KR20210109594A (en) High performance compressors and vapor compression systems
Kohsokabe et al. Basic operating characteristics of CO2 refrigeration cycles with expander-compressor unit
JP2011133208A (en) Refrigerating apparatus
JP2014159950A (en) Freezer
JP2013096621A (en) Tank for refrigeration cycle device and refrigeration cycle device including the same
JP6655534B2 (en) Compressor with oil separator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130218

R151 Written notification of patent or utility model registration

Ref document number: 5218596

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160315

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160315

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees