JP5206579B2 - Object detection device - Google Patents

Object detection device Download PDF

Info

Publication number
JP5206579B2
JP5206579B2 JP2009115520A JP2009115520A JP5206579B2 JP 5206579 B2 JP5206579 B2 JP 5206579B2 JP 2009115520 A JP2009115520 A JP 2009115520A JP 2009115520 A JP2009115520 A JP 2009115520A JP 5206579 B2 JP5206579 B2 JP 5206579B2
Authority
JP
Japan
Prior art keywords
segment
reflection
representative point
point
cycle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009115520A
Other languages
Japanese (ja)
Other versions
JP2010266225A (en
Inventor
浩二 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2009115520A priority Critical patent/JP5206579B2/en
Publication of JP2010266225A publication Critical patent/JP2010266225A/en
Application granted granted Critical
Publication of JP5206579B2 publication Critical patent/JP5206579B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、物体検出装置に関する。   The present invention relates to an object detection device.

近年、衝突防止装置、車間距離制御装置などの運転支援装置が開発されている。このような運転支援装置では、自車両の周辺の物体(例えば、他車両、歩行者)を検出することが重要となる。物体検出装置には、ミリ波レーダなどのレーダで検出した多数の反射点(検出点)のうち所定の条件を満たす反射点を同じ物体で反射した反射点として同じセグメントにグルーピングし、そのグルーピングした各セグメントの反射点のデータから物体の情報を求める。特許文献1に記載の装置では、自車両の前左側方を検知範囲とするレーダと前右側方を検知範囲とするレーダを備え、自車両の前側方の物体を検出する。   In recent years, driving support devices such as collision prevention devices and inter-vehicle distance control devices have been developed. In such a driving support device, it is important to detect an object (for example, another vehicle, a pedestrian) around the host vehicle. In the object detection device, reflection points satisfying a predetermined condition among a number of reflection points (detection points) detected by a radar such as a millimeter wave radar are grouped into the same segment as reflection points reflected by the same object, and the grouping is performed. Object information is obtained from the reflection point data of each segment. The apparatus described in Patent Document 1 includes a radar having a detection range on the front left side of the host vehicle and a radar having a detection range on the front right side, and detects an object on the front side of the host vehicle.

特開2008−152389号公報JP 2008-152389 A 特開2004−132734号公報JP 2004-132734 A 特開2003−57339号公報JP 2003-57339 A 特開平8−240660号公報JP-A-8-240660

車間距離制御装置のように前方の他車両の情報を必要とする場合、自車両の前方をレーダ検知範囲とするために、レーダはその中心軸が自車両の進行方向に一致するように取り付けられている。この場合、例えば、自車両の前方を走行している他車両に対するレーダ反射面は、その他車両の後面となり、走行中殆ど変化しない。そのため、サイクル時間毎にレーダで検出される複数の反射点は他車両の後面の略同じ場所でそれぞれ反射するので、常時グルーピングを行っている場合にはそれらの各サイクルでの反射点を同一の物体で反射した反射点として時系列で同じセグメントとしてグルーピングすることが容易にできる。その結果、同一の物体を安定して検出でき、各セグメントの反射点のデータから求められる物理情報(奥行き方向の相対距離、横方向の相対距離、相対速度など)も安定した情報となる。   When information on other vehicles ahead is required as in the inter-vehicle distance control device, the radar is attached so that its center axis coincides with the traveling direction of the own vehicle in order to make the radar detection range in front of the own vehicle. ing. In this case, for example, the radar reflecting surface for the other vehicle traveling in front of the host vehicle becomes the rear surface of the other vehicle, and hardly changes during traveling. Therefore, the multiple reflection points detected by the radar at each cycle time are reflected at substantially the same location on the rear surface of the other vehicle. Therefore, when grouping is always performed, the reflection points in each cycle are the same. The reflection points reflected by the object can be easily grouped as the same segment in time series. As a result, the same object can be detected stably, and physical information (relative distance in the depth direction, relative distance in the horizontal direction, relative velocity, etc.) obtained from the reflection point data of each segment is also stable information.

出会い頭事故防止装置のように前側方の他車両の情報を必要とする場合、自車両の前側方をレーダ検知範囲とするために、レーダはその中心軸が自車両の進行方向と異なるように取り付けられている。この場合、例えば、自車両が走行している道路に交差する道路を走行している他車両に対するレーダ反射面は、その他車両の側面及び前面あるいは後面となり、走行中に各面に対する角度が変化し、複雑な形状となる。そのため、サイクル時間毎にレーダで検出される複数の反射点は他車両の各面の異なる場所でそれぞれ反射するので、常時グルーピングを行っている場合にはそれらの各サイクルでの反射点を同一の物体で反射した反射点として時系列で同じセグメントとしてグルーピングすることは容易でない。例えば、サイクル時間毎の同一の物体に対する複数の反射点でも、あるサイクルでは同じセグメントとしてグルーピングされるが、次のサイクルでは異なる複数のセグメントにグルーピングされる場合がある。その結果、同一の物体を安定して検出することができず、各セグメントの反射点のデータから求められる物理情報(奥行き方向の相対距離、横方向の相対距離、相対速度など)も安定せず、後段のシステム精度や応答性などが低下する。   When information on other vehicles on the front side is required, such as an accident prevention device, the radar is attached so that its center axis is different from the traveling direction of the own vehicle in order to set the front side of the own vehicle as the radar detection range. It has been. In this case, for example, the radar reflecting surface for the other vehicle traveling on the road intersecting the road on which the host vehicle is traveling is the side surface, front surface or rear surface of the other vehicle, and the angle with respect to each surface changes during traveling. It becomes a complicated shape. For this reason, a plurality of reflection points detected by the radar at each cycle time are reflected at different locations on each surface of the other vehicle. Therefore, when the grouping is always performed, the reflection points in each cycle are the same. It is not easy to group reflection points reflected by an object as the same segment in time series. For example, a plurality of reflection points for the same object at each cycle time may be grouped as the same segment in one cycle, but may be grouped into a plurality of different segments in the next cycle. As a result, the same object cannot be detected stably, and physical information (relative distance in the depth direction, relative distance in the horizontal direction, relative speed, etc.) obtained from the reflection point data of each segment is not stable. As a result, the system accuracy and responsiveness of the latter stage are lowered.

そこで、本発明は、時系列でのレーダの反射データが不安定な場合でも物体を高精度に検出することができる物体検出装置を提供することを課題とする。   Therefore, an object of the present invention is to provide an object detection apparatus that can detect an object with high accuracy even when time-series radar reflection data is unstable.

本発明に係る物体検出装置は、レーダ検出手段で検出された反射データをセグメントにグルーピングし、セグメント毎の反射データに基づいて物体を検出する物体検出装置であって、所定の条件に基づいて反射データをセグメントにグルーピングするグルーピング手段と、各反射データについて過去に属したセグメントの識別情報を特定するセグメント履歴特定手段と、今回グルーピングされたセグメントに属する反射データの過去のセグメントの識別情報に基づいて、今回グルーピングされたセグメントと過去にグルーピングされたセグメントとの同一性を判別するセグメント識別手段とを備えることを特徴とする。   An object detection apparatus according to the present invention is an object detection apparatus that groups reflection data detected by a radar detection unit into segments and detects an object based on the reflection data for each segment, and reflects the reflection based on a predetermined condition. Based on grouping means for grouping data into segments, segment history specifying means for specifying identification information of segments belonging to the past for each reflection data, and identification information of past segments of reflection data belonging to the segment grouped this time And a segment identifying means for discriminating the identity between the segment grouped this time and the segment grouped in the past.

レーダ検出手段では、所定のサイクル時間毎に検出を行っており、各サイクルで検出した反射データを出力している。物体検出装置では、各サイクルでレーダ検出手段で反射データが検出されると、グルーピング手段によりその反射データを所定の条件に基づいてセグメントにそれぞれグルーピングする。そして、物体検出手段では、セグメント履歴特定手段により各反射データが過去(前回サイクル、前々回サイクルなど)に属していたセグメントの識別情報をそれぞれ特定する。さらに、物体検出装置では、セグメント識別手段により今回グルーピングされたセグメントに属する反射データの過去のセグメントの識別情報に基づいて今回グルーピングされたセグメントと過去にグルーピングされたセグメントとの同一性を判別し、今回のセグメントに対して同一と判別された過去のセグメントの識別情報を与える。そして、物体検出装置では、セグメント毎の反射データに基づいて物体を検出する。このように、物体検出装置では、セグメントに属する反射データが過去に属していたセグメントの識別番号に基づいてセグメントの時系列での同一性を判断することにより、時系列で同一の物体に対する反射データを同じ識別情報を有する同一のセグメントとすることができ、時系列でレーダによる反射データが不安定な場合でも物体を高精度に検出することができる。   The radar detection means performs detection every predetermined cycle time, and outputs reflection data detected in each cycle. In the object detection apparatus, when the reflection data is detected by the radar detection means in each cycle, the reflection data is grouped into segments based on a predetermined condition by the grouping means. In the object detection means, the segment history specifying means specifies the identification information of the segment in which each reflection data belonged to the past (previous cycle, previous cycle, etc.). Furthermore, in the object detection device, the identity of the segment grouped this time and the segment grouped in the past based on the identification information of the past segment of the reflection data belonging to the segment grouped this time by the segment identification means, The identification information of the past segment determined to be the same as the current segment is given. And in an object detection apparatus, an object is detected based on the reflection data for every segment. In this way, in the object detection device, the reflection data for the same object in time series is determined by determining the identity of the segments in time series based on the identification numbers of the segments to which the reflection data belonging to the segments belonged in the past. Can be the same segment having the same identification information, and the object can be detected with high accuracy even when the reflection data from the radar in time series is unstable.

本発明の上記物体検出装置では、グルーピング手段は、所定の条件に基づいて反射データの中から代表点を決定し、当該代表点の位置に基づいて設定されるセグメント範囲内に位置する反射データをメンバとして抽出し、代表点とメンバとを同一のセグメントとしてグルーピングする構成としてもよい。   In the object detection device of the present invention, the grouping unit determines a representative point from the reflection data based on a predetermined condition, and the reflection data located within the segment range set based on the position of the representative point is determined. A configuration may be adopted in which the representative points and members are grouped as the same segment by extracting them as members.

この物体検出装置のグルーピング手段では、所定の条件に基づいて反射データの中から代表点を決定し、その代表点の位置を基準としてセグメント範囲を設定する。さらに、グルーピング手段では、反射データの中からそのセグメント範囲内に含まれる反射データを探索し、セグメント範囲に含まれる反射データをメンバとして代表点と同一のセグメントとしてグルーピングする。このように、物体検出装置では、代表点とメンバからなるセグメント(但し、代表点だけのセグメントの場合もある)にグルーピングすることができる。   The grouping means of this object detection apparatus determines a representative point from the reflection data based on a predetermined condition, and sets a segment range based on the position of the representative point. Further, the grouping means searches the reflection data included in the segment range from the reflection data, and groups the reflection data included in the segment range as a member and the same segment as the representative point. As described above, the object detection apparatus can perform grouping into a segment including a representative point and a member (however, a segment including only a representative point may be included).

本発明の上記物体検出装置では、セグメント履歴特定手段は、各反射データが過去に代表点かあるいはメンバかの状態を特定し、セグメント識別手段は、今回グルーピングされたセグメントに属する各反射データの過去の代表点かあるいはメンバかの状態と各反射データが過去に属していたセグメントの継続状態に応じて、いずれのセグメントの識別情報を引き継ぐかを決定すると好適である。   In the object detection apparatus of the present invention, the segment history specifying means specifies the state of each reflection data in the past as a representative point or a member, and the segment identification means is the past of each reflection data belonging to the currently grouped segment. It is preferable to determine which segment identification information is to be taken over in accordance with the state of the representative point or member and the continuation state of the segment to which each reflection data belonged in the past.

この物体検出装置では、セグメント履歴特定手段により各反射データが過去に属していたセグメントにおいて代表点かあるいはメンバかの状態を特定する。そして、物体検出装置では、セグメント識別手段により今回グルーピングされたセグメントに属する各反射データが過去に属していたセグメントにおいて代表点/メンバの状態と各反射データが過去に属していたセグメントの同一性の継続状態に応じて、今回グルーピングされたセグメントに属する各反射データが過去に属していたセグメントの識別情報の中でいずれの識別情報を引き継ぐかを決定する。このように、物体検出装置では、今回グルーピングされたセグメントに属する各反射データについての過去の代表点/メンバの状態と過去に属していたセグメントの継続状態に基づいていずれの識別情報を引き継ぐかを判断することにより、時系列で同一の物体に対する反射データが属するセグメントに対して同じ識別情報を高精度に引き継がせることができる。   In this object detection device, the state of whether each reflection data belongs to the past or the representative point or member is specified by the segment history specifying means. In the object detection device, the state of the representative point / member and the identity of the segment to which each reflection data belonged in the past in the segment to which each reflection data belonging to the segment grouped this time by the segment identification means belonged in the past. In accordance with the continuation state, each piece of reflection data belonging to the currently grouped segment is determined which identification information is to be taken over among the identification information of the segment to which it belongs in the past. As described above, the object detection device determines which identification information is to be taken over based on the past representative point / member state of each reflection data belonging to the segment grouped this time and the continuation state of the segment belonging to the past. By determining, the same identification information can be inherited with high accuracy for the segment to which the reflection data for the same object belongs in time series.

本発明の上記物体検出装置では、レーダ検出手段が搭載される車両の走行環境を検出する走行環境検出手段と、走行環境に応じてセグメント範囲を変更するセグメント変更手段とを備えると好適である。   The object detection apparatus according to the present invention preferably includes a travel environment detection unit that detects a travel environment of a vehicle on which the radar detection unit is mounted, and a segment change unit that changes a segment range according to the travel environment.

この物体検出装置では、走行環境検出手段により車両の走行環境(例えば、車両周辺の環境、車両の走行状態)を検出する。そして、物体検出装置では、セグメント変更手段によりその走行環境に応じてセグメント範囲(形状、大きさなど)を変更する。このように、物体検出装置では、レーダ検出手段を搭載する車両の走行環境に応じてセグメント範囲を変更することにより、状況に応じた適切なセグメント範囲を設定でき、そのセグメント範囲を用いてよりより高精度なグルーピングができる。   In this object detection device, the traveling environment detection means detects the traveling environment of the vehicle (for example, the environment around the vehicle, the traveling state of the vehicle). In the object detection device, the segment range (shape, size, etc.) is changed by the segment changing means according to the traveling environment. As described above, in the object detection device, by changing the segment range according to the traveling environment of the vehicle on which the radar detection means is mounted, an appropriate segment range can be set according to the situation. High precision grouping is possible.

本発明の上記物体検出装置では、セグメントに属する各反射データの物理量に基づいてセグメントの物理量を算出する物理量算出手段と、各反射データの今回及び過去の代表点かあるいはメンバかの状態に応じて、物理量算出手段でのセグメントの物理量算出における各反射データの重みを決定する重み決定手段とを備えると好適である。   In the object detection apparatus according to the present invention, the physical quantity calculation means for calculating the physical quantity of the segment based on the physical quantity of each reflection data belonging to the segment, and depending on the current and past representative points or members of each reflection data It is preferable to include weight determination means for determining the weight of each reflection data in the calculation of the physical quantity of the segment in the physical quantity calculation means.

この物体検出装置では、重み決定手段によりセグメントに属する各反射データについて今回及び過去の代表点/メンバの状態に応じて重みを決定する。そして、物体検出装置では、物理量算出手段によりセグメントに属する各反射データの物理量と重みに基づいてセグメントの物理量(例えば、レーダ検出手段との相対的な距離、横位置、速度)を算出する。このように、物体検出装置では、セグメントに属する各反射データについてセグメントとしての物理量算出に寄与する重みをそれぞれ設定することにより、検出される物体の物理量を高精度に算出することができる。   In this object detection apparatus, the weight determination means determines the weight for each reflection data belonging to the segment according to the current and past representative point / member states. In the object detection device, the physical quantity calculation means calculates the physical quantity of the segment (for example, the relative distance, lateral position, and speed with respect to the radar detection means) based on the physical quantity and weight of each reflection data belonging to the segment. As described above, in the object detection device, the physical quantity of the detected object can be calculated with high accuracy by setting the weights that contribute to the calculation of the physical quantity as the segment for each reflection data belonging to the segment.

本発明の上記物体検出装置では、重み決定手段は、レーダ検出手段と代表点との距離に応じてメンバである反射データの重みを変更すると好適である。このように、物体検出装置では、レーダ検出手段と代表点との距離に応じてメンバの重み(ひいては、代表点の重み)を変更することにより、検出される物体の物理量をより高精度に算出することができる。   In the object detection apparatus of the present invention, it is preferable that the weight determination unit changes the weight of the reflection data as a member in accordance with the distance between the radar detection unit and the representative point. As described above, the object detection apparatus calculates the physical quantity of the detected object with higher accuracy by changing the weight of the member (and thus the weight of the representative point) according to the distance between the radar detection means and the representative point. can do.

本発明によれば、セグメントに属する反射データが過去に属していたセグメントの識別番号に基づいてセグメントの時系列での同一性を判断することにより、時系列で同一の物体に対する反射データを同じ識別情報を有する同一のセグメントとすることができ、時系列でレーダによる反射データが不安定な場合でも物体を高精度に検出することができる。   According to the present invention, it is possible to identify the same reflection data for the same object in time series by determining the identity of the segments in time series based on the identification numbers of the segments to which the reflection data belonging to the past belonged. The same segment having information can be used, and an object can be detected with high accuracy even when the reflection data by the radar is unstable in time series.

本実施の形態に係る物体検出装置の構成図である。It is a block diagram of the object detection apparatus which concerns on this Embodiment. ミリ波レーダで検出された反射点に対する仮グルーピングの一例である。It is an example of temporary grouping with respect to the reflective point detected with the millimeter wave radar. セグメントの識別番号を確定するためのパターンの一覧表である。It is a list of patterns for determining segment identification numbers. 前回サイクルと今回サイクルでそれぞれグルーピングされたセグメントの一例である。It is an example of the segment grouped by the last cycle and this cycle, respectively. ウエイト比算出に用いる代表点の距離に対する距離係数を示すマップである。It is a map which shows the distance coefficient with respect to the distance of the representative point used for weight ratio calculation. 前回サイクルと今回サイクルでそれぞれグルーピングされたセグメントの他例である。This is another example of segments grouped in the previous cycle and the current cycle.

以下、図面を参照して、本発明に係る物体検出装置の実施の形態を説明する。なお、各図において同一又は相当する要素については同一の符号を付し、重複する説明を省略する。   Hereinafter, an embodiment of an object detection device according to the present invention will be described with reference to the drawings. In addition, the same code | symbol is attached | subjected about the element which is the same or it corresponds in each figure, and the overlapping description is abbreviate | omitted.

本実施の形態では、本発明に係る物体検出装置を、車両に搭載される物体検出装置に適用する。本実施の形態に係る物体検出装置は、自車両周辺(特に、前方、前側方)に存在する物体(例えば、他車両、歩行者)を検出し、検出した物体の情報をACC[Adaptive Cruise Control](渋滞追従、障害物警報(体感ブレーキ、シートベルトによる警報を含む))システム、PBA[Pre-crashBreak Assist]システム、PSB[Pre-crash SeatBelt]システム、介入ブレーキシステムなどの運転支援装置に提供する。   In the present embodiment, the object detection device according to the present invention is applied to an object detection device mounted on a vehicle. The object detection device according to the present embodiment detects an object (for example, another vehicle or a pedestrian) existing around the host vehicle (in particular, forward or front side), and uses the ACC [Adaptive Cruise Control ] Provided to driving support devices such as traffic jam tracking, obstacle warning (including sensory brakes and seat belt warnings) system, PBA [Pre-crashBreak Assist] system, PSB [Pre-crash SeatBelt] system, intervention brake system, etc. To do.

図1〜図6を参照して、本実施の形態に係る物体検出装置1について説明する。   With reference to FIGS. 1-6, the object detection apparatus 1 which concerns on this Embodiment is demonstrated.

物体検出装置1は、ミリ波レーダで検出した多数の反射点を所定の条件に基づいて各セグメントにグルーピングする。そして、物体検出装置1では、そのグルーピングしたセグメント毎に、セグメントに属する各反射点が過去に属していたセグメントでの情報に基づいてセグメントの識別番号を確定する。さらに、物体検出装置1では、識別番号が確定したセグメント毎に、セグメントに含まれる反射点の物理量に基づいてセグメント(検出される物体)としての物理量(距離、横位置、相対速度など)を演算する。そのために、物体検出装置1は、ミリ波レーダ10、ECU[Electronic Control Unit]20を備えており、ECU20に信号処理部21、仮グルーピング部22、セグメント識別番号確定部23、物理量演算部24が構成される。   The object detection device 1 groups a large number of reflection points detected by the millimeter wave radar into segments based on a predetermined condition. Then, in the object detection device 1, for each grouped segment, the segment identification number is determined based on information on the segment to which each reflection point belonging to the segment previously belongs. Further, the object detection device 1 calculates a physical quantity (distance, lateral position, relative speed, etc.) as a segment (detected object) based on the physical quantity of the reflection point included in the segment for each segment for which the identification number is determined. To do. For this purpose, the object detection apparatus 1 includes a millimeter wave radar 10 and an ECU [Electronic Control Unit] 20, and the ECU 20 includes a signal processing unit 21, a temporary grouping unit 22, a segment identification number determination unit 23, and a physical quantity calculation unit 24. Composed.

なお、本実施の形態では、ミリ波レーダ10が特許請求の範囲に記載するレーダ検出手段に相当し、仮グルーピング部22が特許請求の範囲に記載するグルーピング手段に相当し、セグメント識別番号確定部23が特許請求の範囲に記載するセグメント履歴特定手段とセグメント識別手段に相当し、物理量演算部24が特許請求の範囲に記載する物理量算出手段と重み決定手段に相当する。   In the present embodiment, the millimeter wave radar 10 corresponds to the radar detection means described in the claims, the temporary grouping section 22 corresponds to the grouping means described in the claims, and the segment identification number determination section. Reference numeral 23 corresponds to the segment history specifying means and segment identification means described in the claims, and the physical quantity calculation unit 24 corresponds to the physical quantity calculation means and weight determination means described in the claims.

ミリ波レーダ10は、ミリ波を利用したFMCW[FrequencyModulated Continuous Wave]方式のレーダである。ミリ波レーダ10は、自車両の前端部の中央、右端、左端にそれぞれ設けられる。中央に設けられたミリ波レーダ10は、レーダの中心軸(検知中心方向)が自車両の進行方向と一致し、その中心軸を中心として自車両の前方に所定の角度範囲の検知エリアを有している。右端に設けられたミリ波レーダ10は、レーダの中心軸が自車両の進行方向と異なり、その中心軸を中心として自車両の右斜め前方に所定の角度範囲の検知エリアを有している。左端に設けられたミリ波レーダ10は、レーダの中心軸が自車両の進行方向と異なり、その中心軸を中心として自車両の左斜め前方に所定の角度範囲の検知エリアを有している。   The millimeter wave radar 10 is an FMCW [Frequency Modulated Continuous Wave] type radar using millimeter waves. The millimeter wave radar 10 is provided at the center, right end, and left end of the front end of the host vehicle. The millimeter wave radar 10 provided at the center has a radar center axis (detection center direction) that coincides with the traveling direction of the host vehicle, and has a detection area with a predetermined angle range in front of the host vehicle centering on the center axis. doing. The millimeter wave radar 10 provided at the right end has a center area of the radar different from the traveling direction of the host vehicle, and has a detection area in a predetermined angle range diagonally right forward of the host vehicle with the center axis as a center. The millimeter wave radar 10 provided at the left end is different from the traveling direction of the own vehicle in the center axis of the radar, and has a detection area in a predetermined angle range on the left front side of the own vehicle with the center axis as a center.

ミリ波レーダ10では、一定のサイクル時間毎に、ミリ波を左右方向の一定角度毎に発信し、反射してきたミリ波を受信する。この際、ミリ波レーダ10では、発信するミリ波を周波数変調し、ミリ波の周波数を連続的かつ直線的に増加/減少させて発信する。この発信されたミリ波が物体で反射すると、反射してきたミリ波はミリ波レーダ10と物体との距離Rの2倍の距離2R分の時間遅れで受信される。ミリ波レーダ10では、この発信波と受信波をミキシングしたビート信号をECU20に送信する。   The millimeter wave radar 10 transmits a millimeter wave at every constant angle in the left-right direction and receives a reflected millimeter wave at every constant cycle time. At this time, the millimeter wave radar 10 modulates the frequency of the millimeter wave to be transmitted, and transmits the millimeter wave by increasing / decreasing the frequency of the millimeter wave continuously and linearly. When the transmitted millimeter wave is reflected by the object, the reflected millimeter wave is received with a time delay of 2R, which is twice the distance R between the millimeter wave radar 10 and the object. The millimeter wave radar 10 transmits a beat signal obtained by mixing the transmission wave and the reception wave to the ECU 20.

ECU20は、CPU[CentralProcessing Unit]、ROM[Read Only Memory]、RAM[Random Access Memory]などからなる電子制御ユニットであり、物体検出装置1を統括制御する。ECU20では、ROMに記憶されているアプリケーションをRAMにロードしてCPUで実行することにより、信号処理部21、仮グルーピング部22、セグメント識別番号確定部23、物理量演算部24が構成される。ECU20では、ミリ波レーダ10のサイクル時間毎に、3個のミリ波レーダ10からビート信号をそれぞれ受信する。そして、ECU20では、受信した各ビート信号に対してそれぞれ、各部21,22,23,24での処理を行い、物体を検出できた場合にはその物体の情報を運転支援装置に送信する。   The ECU 20 is an electronic control unit including a CPU [Central Processing Unit], a ROM [Read Only Memory], a RAM [Random Access Memory], and the like, and comprehensively controls the object detection device 1. In the ECU 20, the signal processing unit 21, the temporary grouping unit 22, the segment identification number determination unit 23, and the physical quantity calculation unit 24 are configured by loading an application stored in the ROM into the RAM and executing it by the CPU. The ECU 20 receives beat signals from the three millimeter wave radars 10 for each cycle time of the millimeter wave radar 10. Then, the ECU 20 performs processing in each of the units 21, 22, 23, and 24 for each received beat signal, and when an object can be detected, transmits information on the object to the driving support device.

信号処理部21では、ミリ波レーダ10でのサイクル毎に、受信したビート信号をFFT[Fast Fourier Transform]解析し、ピーク検出によって周波数の増加区間でのビート周波数と周波数の減少区間でのビート周波数を抽出する。このピーク検出では、反射率の高い物体(例えば、車両)を検出ための通常閾値と反射率の低い物体(例えば、歩行者)を検出するための低閾値(<通常閾値)を用いている。   The signal processing unit 21 performs FFT [Fast Fourier Transform] analysis on the received beat signal for each cycle in the millimeter wave radar 10, and the beat frequency in the frequency increasing section and the beat frequency in the frequency decreasing section by peak detection. To extract. In this peak detection, a normal threshold for detecting an object with high reflectance (for example, a vehicle) and a low threshold for detecting an object with low reflectance (for example, a pedestrian) (<normal threshold) are used.

信号処理部21では、増加区間でのビート周波数と減少区間でのビート周波数とを組み合わせる(ペアリングする)。このペアリングでは、自車両(ミリ波レーダ10)と検出対象の物体との相対速度が0でない場合には反射してきたミリ波がドップラ効果により周波数がシフトするので、増加区間でのビート周波数と減少区間でのビート周波数との組み合わせを行うときにはこの周波数シフトを考慮する。そして、信号処理部21では、ペアリングできたペア毎に、増加区間でのビート周波数と減少区間のビート周波数に基づいて、自車両(ミリ波レーダ10)からの奥行き方向の距離と相対速度を演算する。また、信号処理部21では、ペア毎に、ミリ波を発信したときのレーダ中心軸に対する角度に基づいてレーダ中心軸からの距離(横位置)を演算する。   The signal processing unit 21 combines (pairs) the beat frequency in the increasing section and the beat frequency in the decreasing section. In this pairing, when the relative speed between the host vehicle (millimeter wave radar 10) and the object to be detected is not 0, the reflected millimeter wave shifts the frequency due to the Doppler effect. This frequency shift is taken into account when combining with the beat frequency in the decreasing section. The signal processing unit 21 calculates the distance and relative speed in the depth direction from the own vehicle (millimeter wave radar 10) based on the beat frequency in the increasing section and the beat frequency in the decreasing section for each pair that can be paired. Calculate. The signal processing unit 21 calculates the distance (lateral position) from the radar center axis for each pair based on the angle with respect to the radar center axis when the millimeter wave is transmitted.

信号処理部21では、ミリ波レーダ10でのサイクル毎に上記処理を行う。そして、信号処理部21では、各ペアの反射点について数サイクル連続して検出されているか否かを判定し、数サイクル連続して検出されているペアを反射点の確定ペアとする。反射点の確定ペアの情報は、物理量として距離、横位置、相対速度が演算され、フラグ情報として通常閾値フラグ(ON/OFF)、低閾値フラグ(ON/OFF)、移動物フラグ(静止物、接近移動物、離反移動物)が設定される。通常閾値フラグは、ピーク検出において通常閾値で検出された反射点に対してONが設定される。低閾値フラグは、ピーク検出において低閾値で検出された反射点に対してONが設定される。移動物フラグにおける静止物、接近移動物、離反移動物かの判別は、相対速度の時間変化などによって判別される。   The signal processing unit 21 performs the above processing for each cycle in the millimeter wave radar 10. Then, the signal processing unit 21 determines whether or not the reflection points of each pair are detected continuously for several cycles, and the pair detected for several cycles is determined as a confirmed pair of reflection points. As for the information on the confirmed pair of reflection points, distance, lateral position, and relative speed are calculated as physical quantities, and normal threshold flag (ON / OFF), low threshold flag (ON / OFF), moving object flag (stationary object, (Approaching moving object, moving object moving away) is set. The normal threshold flag is set to ON for the reflection point detected with the normal threshold in the peak detection. The low threshold flag is set to ON for a reflection point detected with a low threshold in peak detection. Whether the moving object flag is a stationary object, an approaching moving object, or a separated moving object is determined by a change in relative speed with time.

仮グルーピング部22では、信号処理部21で確定ペアの反射点を検出すると、確定ペアの反射点をグルーピング条件に基づいて各セグメントにグルーピングする。グルーピング条件には、代表点を決定する条件とメンバを決定する条件がある。   When the signal processing unit 21 detects the reflection point of the confirmed pair, the temporary grouping unit 22 groups the reflection point of the confirmed pair into each segment based on the grouping condition. The grouping condition includes a condition for determining a representative point and a condition for determining a member.

代表点を決定する条件は、3つの条件a,b,cがあり、条件aから順に条件判定を行う。条件aは、距離がミリ波レーダ10に対して近い反射点である。条件bは、横位置がレーダ中心軸から近い反射点である。cは、接近移動物で相対速度が大きい反射点である。   There are three conditions a, b, and c for determining the representative point, and the condition determination is performed in order from condition a. Condition a is a reflection point whose distance is close to the millimeter wave radar 10. Condition b is a reflection point whose lateral position is close to the radar central axis. c is a reflection point which is an approaching moving object and has a high relative speed.

メンバを決定する条件は、3つの条件d,e,f,gがあり、この3つの条件d,e,f,gを満たす条件判定を行う。条件dは、代表点を基準として設定されたセグメント範囲に含まれる反射点である。条件eは、相対速度が代表点の相対速度の所定の範囲の反射点である。条件fは、代表点と同じ閾値で検出された反射点である。条件gは、代表点と同じ種別(静止物、接近移動物、離反移動物)の反射点である。   There are three conditions d, e, f, and g for determining members, and a condition determination that satisfies these three conditions d, e, f, and g is performed. The condition d is a reflection point included in the segment range set with the representative point as a reference. The condition e is a reflection point whose relative speed is within a predetermined range of the relative speed of the representative point. The condition f is a reflection point detected with the same threshold as the representative point. The condition g is a reflection point of the same type as the representative point (stationary object, approaching moving object, separation moving object).

具体的には、まず、仮グルーピング部22では、全ての確定ペアの反射点の中から、距離がミリ波レーダ10に対して最も近い反射点を抽出し、最も近い距離に複数の反射点が存在する場合には横位置がレーダ中心軸から近い反射点を抽出し、近い横位置に複数の反射点が存在する場合には接近移動物で相対速度が大きい反射点を抽出し、最終的に抽出された反射点を代表点とする。そして、仮グルーピング部22では、その代表点の位置をセグメント範囲における奥行き方向(距離方向)でミリ波レーダ10に最も近い位置かつ横方向の中心位置として、セグメント範囲を設定する。セグメント範囲は、奥行き方向に代表点から数m、横方向に代表点を中心として±数mの範囲とする矩形状であり、車両の大きさなどに基づいて予め設定されている。さらに、仮グルーピング部22では、全ての確定ペアの反射点からその代表点を除いた反射点の中から、セグメント範囲内の反射点でありかつ相対速度が代表点の相対速度に対して±数km/h以内の反射点でありかつ通常閾値フラグと低閾値フラグに基づいて代表点と同じ閾値で検出された反射点でありかつ移動物フラグに基づいて代表点と同じ種別(静止物、接近移動物、離反移動物)の反射点をメンバとして抽出する。そして、仮グルーピング部22では、その抽出した代表点とメンバからなるセグメントとする。   Specifically, first, the temporary grouping unit 22 extracts the reflection point closest to the millimeter wave radar 10 from the reflection points of all the definite pairs, and a plurality of reflection points are located at the closest distance. If there is a reflection point whose lateral position is close to the radar center axis, and if there are multiple reflection points near its lateral position, extract a reflection point with a large relative velocity in the approaching moving object. Let the extracted reflection point be a representative point. Then, the temporary grouping unit 22 sets the segment range with the position of the representative point as the position closest to the millimeter wave radar 10 in the depth direction (distance direction) in the segment range and the center position in the horizontal direction. The segment range is a rectangular shape having a range of several meters from the representative point in the depth direction and ± m from the representative point in the horizontal direction, and is set in advance based on the size of the vehicle. Further, the temporary grouping unit 22 is a reflection point within the segment range from the reflection points excluding the representative point from the reflection points of all the definite pairs, and the relative speed is ± several than the relative speed of the representative point. It is a reflection point within km / h and is a reflection point detected with the same threshold as the representative point based on the normal threshold flag and the low threshold flag, and the same type as the representative point based on the moving object flag (stationary object, approaching) The reflection points of the moving object and the moving object are extracted as members. Then, the temporary grouping unit 22 sets the segment including the extracted representative points and members.

セグメントがグルーピングされる毎に、仮グルーピング部22では、グルーピングされていない確定ペアの反射点の中から、上記と同様の処理に代表点となる反射点を抽出する。そして、仮グルーピング部22では、その代表点の位置を基準として上記と同様の処理によりセグメント範囲を設定する。さらに、仮グルーピング部22では、グルーピングされていない確定ペアの反射点からその代表点を除いた反射点の中から、上記と同様の処理によりメンバとなる反射点を抽出する。そして、仮グルーピング部22では、その抽出した代表点とメンバからなるセグメントとする。   Each time a segment is grouped, the provisional grouping unit 22 extracts a reflection point that is a representative point in the same processing as described above from the reflection points of a definite pair that is not grouped. Then, the temporary grouping unit 22 sets a segment range by the same process as described above with reference to the position of the representative point. Further, the temporary grouping unit 22 extracts a reflection point to be a member from the reflection points obtained by removing the representative points from the reflection points of the fixed pair that are not grouped by the same processing as described above. Then, the temporary grouping unit 22 sets the segment including the extracted representative points and members.

なお、セグメントの識別番号としては、仮の識別番号が付与されている。また、メンバは抽出されない場合もあるので、その場合には代表点だけからなるセグメントとなる。   A temporary identification number is assigned as the segment identification number. In addition, since members may not be extracted, in this case, the segment is composed only of representative points.

図2には、自車両MVの前左端に設けられたミリ波レーダ10のレーダ中心軸CAを中心として自車両MVの左斜め前方の検知エリア(LS〜RS)で検出された確定ペアの反射点P1,P2,・・・,P9に対するグルーピングの一例を示している。この例では、まず、路側の静止物SO1に対する反射点P1が代表点として抽出され、反射点P1を基準としてセグメント範囲A1が設定され、このセグメント範囲A1内に入る他の反射点が存在しないので、代表点としての反射点P1からなるセグメントがグルーピングされる。次に、他車両OV1に対する反射点P2が代表点として抽出され、反射点P2を基準としてセグメント範囲A2が設定され、このセグメント範囲A2内に入る他車両OV1に対する反射点P3,P4が存在するので、代表点としての反射点P2及びメンバとしての反射点P3,P4からなるセグメントがグルーピングされる。次に、静止物SO2に対する反射点P5が代表点として抽出され、反射点P5を基準としてセグメント範囲A3が設定され、このセグメント範囲A3内に入る静止物SO3に対する反射点P6が存在するので、代表点としての反射点P5及びメンバとしての反射点P6からなるセグメントがグルーピングされる。次に、他車両OV2に対する反射点P7が代表点として抽出され、反射点P7を基準としてセグメント範囲A4が設定され、このセグメント範囲A4内に入る他車両OV2に対する反射点P8が存在するので、代表点としての反射点P7及びメンバとしての反射点P8からなるセグメントがグルーピングされる。最後に、路側の静止物SO4に対する反射点P9が代表点として抽出され、反射点P9を基準としてセグメント範囲A5が設定され、このセグメント範囲A5内に入る他の反射点が存在しないので、代表点としての反射点P9からなるセグメントがグルーピングされる。   FIG. 2 shows the reflection of the confirmed pair detected in the detection area (LS to RS) diagonally to the left of the host vehicle MV around the radar central axis CA of the millimeter wave radar 10 provided at the front left end of the host vehicle MV. An example of grouping for points P1, P2,..., P9 is shown. In this example, first, the reflection point P1 for the roadside stationary object SO1 is extracted as a representative point, the segment range A1 is set with the reflection point P1 as a reference, and there is no other reflection point that falls within this segment range A1. A segment composed of reflection points P1 as representative points is grouped. Next, the reflection point P2 with respect to the other vehicle OV1 is extracted as a representative point, the segment range A2 is set on the basis of the reflection point P2, and there are reflection points P3 and P4 with respect to the other vehicle OV1 that fall within this segment range A2. Then, the segment composed of the reflection point P2 as the representative point and the reflection points P3 and P4 as the members is grouped. Next, the reflection point P5 with respect to the stationary object SO2 is extracted as a representative point, the segment range A3 is set on the basis of the reflection point P5, and there is a reflection point P6 with respect to the stationary object SO3 that falls within this segment range A3. A segment composed of a reflection point P5 as a point and a reflection point P6 as a member is grouped. Next, the reflection point P7 for the other vehicle OV2 is extracted as a representative point, the segment range A4 is set based on the reflection point P7, and there is a reflection point P8 for the other vehicle OV2 that falls within this segment range A4. A segment composed of a reflection point P7 as a point and a reflection point P8 as a member is grouped. Finally, the reflection point P9 for the roadside stationary object SO4 is extracted as a representative point, and the segment range A5 is set based on the reflection point P9, and there is no other reflection point that falls within this segment range A5. As a result, the segment consisting of the reflection point P9 is grouped.

セグメント識別番号確定部23では、ミリ波レーダ10でのサイクル毎の時系列でのセグメントの同一性を判別するために、仮グルーピング部22で各セグメントにグルーピングすると、各セグメントに対して識別番号確定条件に基づいて識別番号を確定する。識別番号確定条件は、5つの条件A,B,C,D,Eがあり、条件Aから順に条件判定を行う。   In the segment identification number determination unit 23, when the segments are grouped by the temporary grouping unit 22 in order to determine the identity of the segments in the time series for each cycle in the millimeter wave radar 10, the identification number is determined for each segment. Determine the identification number based on the conditions. There are five conditions A, B, C, D, and E as identification number determination conditions, and the condition determination is performed in order from condition A.

条件Aは、基本的には、今回のサイクルにおいて通常閾値で検出された反射点からなるセグメントに対して、前回のサイクルで代表点であった反射点が前回のサイクルで属していたセグメントの識別番号を引き継ぐ。特に、セグメントの中に前回のサイクルで代表点であった反射点が複数存在する場合、各反射点に設定されているセグメントカウンタを比較し、セグメントカウンタのカウンタ値が最も大きい反射点が前回のサイクルで属していたセグメントの識別番号を引き継ぐ。さらに、最も大きいカウンタ値の反射点が複数存在する場合、3つの条件X、Y、Zの順で条件判定を行う。条件Xは、距離がミリ波レーダ10に対して近い反射点である。条件Yは、横位置がレーダ中心軸から近い反射点である。条件Zは、接近移動物で相対速度が大きい反射点である。なお、この3つの条件X、Y、Zが完全に一致する複数の反射点が存在する場合、各反射点が前回のサイクルでそれぞれ属してしたセグメントの識別番号のうち識別番号が小さいほうを引き継ぐ。   Condition A basically identifies the segment to which the reflection point that was the representative point in the previous cycle belonged in the previous cycle with respect to the segment consisting of the reflection point detected at the normal threshold in the current cycle. Take over the number. In particular, when there are multiple reflection points that were representative points in the previous cycle in the segment, the segment counters set for each reflection point are compared, and the reflection point with the largest segment counter value is the previous one. Inherit the identification number of the segment that belonged to the cycle. Further, when there are a plurality of reflection points having the largest counter value, the condition determination is performed in the order of the three conditions X, Y, and Z. The condition X is a reflection point whose distance is close to the millimeter wave radar 10. Condition Y is a reflection point whose lateral position is close to the radar central axis. Condition Z is a reflection point that is an approaching moving object and has a large relative speed. In addition, when there are a plurality of reflection points where these three conditions X, Y, and Z completely match, the smaller one of the identification numbers of the segments to which each reflection point belongs in the previous cycle is inherited. .

なお、セグメントカウンタは、確定ペアの反射点毎に設定され、同一の識別番号を有するセグメントに存在し続けているサイクル数をカウントするカウンタである。セグメントカウンタは、メンバがセグメントの識別番号を引き継いだとしてもカウンタ値がリセットされることはなく、識別番号が引き継がれなかったときにカウンタ値がリセットされる。   The segment counter is a counter that is set for each reflection point of the definite pair and counts the number of cycles that continue to exist in the segments having the same identification number. The segment counter is not reset even if the member takes over the identification number of the segment, and the counter value is reset when the identification number is not taken over.

条件Bは、今回のサイクルにおいて通常閾値で検出された反射点からなるセグメントの中で条件Aによって識別番号が引き継がれていないセグメントに対して、前回のサイクルでメンバかつ今回のサイクルで代表点である反射点が前回のサイクルで属していたセグメントの識別番号を引き継ぐか、あるいは、今回のサイクルで新規の反射点が代表点でありかつ新規でないメンバが存在し、その新規でないメンバである反射点が前回のサイクルで属していたセグメントの識別番号を引き継ぐ。特に、セグメントの中に条件Aによって識別番号が引き継がれていない新規でないメンバや代表点が複数存在する場合、各反射点に設定されているセグメントカウンタを比較し、セグメントカウンタのカウンタ値が最も大きい反射点が前回のサイクルで属していたセグメントの識別番号を引き継ぐ。さらに、最も大きいカウンタ値の反射点が複数存在する場合、3つの条件X、Y、Zの順で条件判定を行う。   Condition B is a segment consisting of reflection points detected at the normal threshold in this cycle, and a segment whose identification number has not been inherited by condition A is a member in the previous cycle and a representative point in this cycle. A reflection point that inherits the identification number of a segment to which a reflection point belonged in the previous cycle, or a reflection point that is a new reflection point and is not a new member in this cycle and is a member that is not a new member Takes over the identification number of the segment it belonged to in the previous cycle. In particular, when there are a plurality of non-new members and representative points whose identification numbers are not inherited by the condition A in the segment, the segment counter set at each reflection point is compared, and the counter value of the segment counter is the largest Takes over the identification number of the segment to which the reflection point belonged in the previous cycle. Further, when there are a plurality of reflection points having the largest counter value, the condition determination is performed in the order of the three conditions X, Y, and Z.

条件Cは、今回のサイクルにおいて低閾値で検出された反射点からなるセグメント(すなわち、条件A、Bによって未だ識別番号が引き継がれていないセグメント)に対しての条件であり、低閾値か通常閾値かの条件を除いて条件Aと同じ条件である。   The condition C is a condition for a segment composed of reflection points detected at a low threshold value in this cycle (that is, a segment whose identification number has not yet been inherited by the conditions A and B). Except for these conditions, the conditions are the same as the conditions A.

条件Dは、今回のサイクルにおいて低閾値で検出された反射点からなるセグメントの中で条件Cによって識別番号が引き継がれていないセグメント(すなわち、条件A、B、C、によって識別番号が引き継がれていないセグメント)に対しての条件であり、低閾値か通常閾値かの条件を除いて条件Dと同じ条件である。   Condition D is a segment consisting of reflection points detected at a low threshold in the current cycle, in which the identification number is not inherited by condition C (that is, the identification number is inherited by conditions A, B, and C). This is the same condition as the condition D except for the low threshold value or the normal threshold value.

条件Eは、新規なセグメントに対する条件であり、条件A、B、C、Dによって識別番号が引き継がれていないセグメントあるいは新規の反射点の代表点と新規の反射点のメンバからなるセグメントに対して、新規な識別番号を付与する。   Condition E is a condition for a new segment. For a segment whose identification number is not inherited by conditions A, B, C, and D, or a segment composed of a representative point of a new reflection point and a member of the new reflection point. Give a new identification number.

具体的な処理としては、セグメント識別番号確定部23では、まず、仮グルーピング部22でグルーピングされたセグメントの中で通常閾値でのセグメントに対して条件Aでの判定を行い、条件Aを満たす代表点又はメンバが存在する場合にはその代表点又はメンバが前回のサイクルで属していたセグメントの識別番号を引き継ぎ、セグメントカウンタをその代表点又はメンバのカウンタ値からインクリメントする。   As a specific process, the segment identification number determination unit 23 first performs a determination under the condition A on the segment with the normal threshold among the segments grouped by the temporary grouping unit 22, and a representative that satisfies the condition A If a point or member exists, the identification number of the segment to which the representative point or member belonged in the previous cycle is taken over, and the segment counter is incremented from the counter value of the representative point or member.

次に、セグメント識別番号確定部23では、仮グルーピング部22でグルーピングされたセグメントの中で通常閾値でのセグメントから条件Aによって識別番号が引き継がれたセグメントを除いたセグメントに対して条件Bでの判定を行い、条件Bを満たす代表点又はメンバが存在する場合にはその代表点又はメンバが前回のサイクルで属していたセグメントの識別番号を引き継ぎ、セグメントカウンタをその代表点又はメンバのカウンタ値からインクリメントする。   Next, in the segment identification number determination unit 23, the segment in the condition B is excluded from the segments grouped by the temporary grouping unit 22 except the segment whose identification number is inherited by the condition A from the segment at the normal threshold. If there is a representative point or member that satisfies the condition B, the identification number of the segment to which the representative point or member belonged in the previous cycle is taken over, and the segment counter is counted from the representative point or member counter value. Increment.

次に、セグメント識別番号確定部23では、仮グルーピング部22でグルーピングされたセグメントの中で低閾値でのセグメントに対して条件Cでの判定を行い、条件Cを満たす代表点又はメンバが存在する場合にはその代表点又はメンバが前回のサイクルで属していたセグメントの識別番号を引き継ぎ、セグメントカウンタをその代表点又はメンバのカウンタ値からインクリメントする。   Next, the segment identification number determination unit 23 performs the determination under the condition C for the segment with the low threshold among the segments grouped by the temporary grouping unit 22, and there is a representative point or member that satisfies the condition C. In this case, the identification number of the segment to which the representative point or member belongs in the previous cycle is taken over, and the segment counter is incremented from the counter value of the representative point or member.

次に、セグメント識別番号確定部23では、仮グルーピング部22でグルーピングされたセグメントの中で低閾値でのセグメントから条件Cによって識別番号が引き継がれたセグメントを除いたセグメントに対して条件Dでの判定を行い、条件Dを満たす代表点又はメンバが存在する場合にはその代表点又はメンバが前回のサイクルで属していたセグメントの識別番号を引き継ぎ、セグメントカウンタをその代表点又はメンバのカウンタ値からインクリメントする。   Next, in the segment identification number determination unit 23, the segment in the condition D is excluded from the segments grouped by the temporary grouping unit 22 except the segment whose identification number is inherited by the condition C from the segment at the low threshold. When there is a representative point or member satisfying the condition D, the identification number of the segment to which the representative point or member belongs in the previous cycle is taken over, and the segment counter is determined from the counter value of the representative point or member. Increment.

最後に、セグメント識別番号確定部23では、仮グルーピング部22でグルーピングされたセグメントの中で識別番号が未だ引き継がれていないセグメントに対して、新規な識別番号を付与し、セグメントカウンタを1にする。   Finally, the segment identification number determination unit 23 assigns a new identification number to the segment that has not been inherited among the segments grouped by the temporary grouping unit 22 and sets the segment counter to 1. .

図3を参照して、条件A〜Eに基づいてセグメントの識別番号を確定する主なパターンを説明する。   With reference to FIG. 3, main patterns for determining segment identification numbers based on conditions A to E will be described.

パターン1は、今回のサイクルでの代表点の前回のサイクルでの状態が代表点であり、今回のサイクルでのメンバの中には前回のサイクルでの状態が代表点であったものを含まないセグメントの場合、前回と同じ識別番号(すなわち、今回のサイクルでの代表点が前回所属していたセグメントの識別番号)を引き継ぐ。このパターン1は、通常閾値フラグがONのセグメントの場合には条件Aであり、低閾値フラグがONのセグメントの場合には条件Cである。   In pattern 1, the state in the previous cycle of the representative point in the current cycle is the representative point, and the members in the current cycle do not include those in which the state in the previous cycle was the representative point In the case of a segment, the same identification number as the previous time (that is, the identification number of the segment to which the representative point in the current cycle belonged last time) is taken over. This pattern 1 is condition A when the segment whose normal threshold flag is ON, and condition C when the segment whose low threshold flag is ON.

パターン2は、今回のサイクルでの代表点の前回のサイクルでの状態が代表点であり、今回のサイクルでのメンバの中には前回のサイクルでの状態が代表点であったものを含み、代表点のセグメントカウンタと前回代表点であったメンバのセグメントカウンタとを比較すると代表点のカウンタ値が大きいセグメントの場合、前回と同じ識別番号(すなわち、今回のサイクルでの代表点が前回所属していたセグメントの識別番号)を引き継ぐ。このパターン2は、通常閾値フラグがONのセグメントの場合には条件Aであり、低閾値フラグがONのセグメントの場合には条件Cである。   In pattern 2, the state of the representative point in this cycle in the previous cycle is the representative point, and the members in this cycle include those in which the state in the previous cycle was the representative point, When the segment counter of the representative point is compared with the segment counter of the member that was the previous representative point, if the segment has a large representative point counter value, the same identification number as the previous one (that is, the representative point in this cycle belongs to the previous time). Inherited the identification number of the segment that had been saved). This pattern 2 is condition A when the normal threshold flag is an ON segment, and condition C when the low threshold flag is ON.

パターン3は、今回のサイクルでの代表点の前回のサイクルでの状態が代表点であり、今回のサイクルでのメンバの中には前回のサイクルでの状態が代表点であったものを含み、代表点のセグメントカウンタと前回代表点であったメンバのセグメントカウンタとを比較するとメンバのカウンタ値が大きいセグメントの場合、そのメンバが前回所属していたセグメントの識別番号を引き継ぐ。このパターン3は、通常閾値フラグがONのセグメントの場合には条件Aであり、低閾値フラグがONのセグメントの場合には条件Cである。   In pattern 3, the state in the previous cycle of the representative point in the current cycle is the representative point, and the members in the current cycle include those in which the state in the previous cycle was the representative point, When the segment counter of the representative point is compared with the segment counter of the member that was the previous representative point, if the segment has a large counter value, the identification number of the segment to which the member belonged last time is inherited. This pattern 3 is condition A when the normal threshold flag is an ON segment, and condition C when the low threshold flag is an ON segment.

パターン4は、今回のサイクルでの代表点の前回のサイクルでの状態がメンバであり、今回のサイクルでのメンバの中には前回のサイクルでの状態が代表点であったものを1つ含むセグメントの場合、その前回代表点であったメンバが前回所属していたセグメントの識別番号を引き継ぐ。このパターン4は、通常閾値フラグがONのセグメントの場合には条件Aであり、低閾値フラグがONのセグメントの場合には条件Cである。   In pattern 4, the state of the representative point in the current cycle is the member in the previous cycle, and one member in the current cycle includes one in which the state in the previous cycle was the representative point. In the case of a segment, the identification number of the segment to which the member that was the last representative point belonged is taken over. This pattern 4 is condition A when the segment whose normal threshold flag is ON, and condition C when the segment whose low threshold flag is ON.

パターン5は、今回のサイクルでの代表点の前回のサイクルでの状態がメンバであり、今回のサイクルでのメンバの中には前回のサイクルでの状態が代表点であったものを複数含むセグメントの場合、その前回代表点であった複数のメンバの中でセグメントカウンタのカウンタ値が一番大きいメンバが前回所属していたセグメントの識別番号を引き継ぐ。このパターン5は、通常閾値フラグがONのセグメントの場合には条件Aであり、低閾値フラグがONのセグメントの場合には条件Cである。   Pattern 5 is a member in which the state in the previous cycle of the representative point in the current cycle is a member, and the members in the current cycle include a plurality of members in which the state in the previous cycle was the representative point In the case of the above, the identification number of the segment to which the member with the largest counter value of the segment counter among the plurality of members that were the representative points last time belongs is inherited. This pattern 5 is condition A when the normal threshold flag is an ON segment, and condition C when the low threshold flag is ON.

パターン6は、今回のサイクルでの代表点の前回のサイクルでの状態がメンバであり、今回のサイクルでのメンバの中には前回のサイクルでの状態が代表点であったものを含まず、メンバは新規の反射点でないセグメントであり、今回の代表点及び新規でないメンバの前回所属していたセグメントの識別番号が上記のパターンで既に引き継がれた場合、引き継ぐ識別番号がないので、新規のセグメントの識別番号を付与する。このパターン6は、条件Eである。   In pattern 6, the state in the previous cycle of the representative point in the current cycle is a member, and the member in the current cycle does not include the member in which the state in the previous cycle was the representative point. The member is a segment that is not a new reflection point, and if the identification number of the representative point of this time and the segment that previously belonged to the non-new member has already been inherited in the above pattern, there is no identification number to be inherited. An identification number is assigned. This pattern 6 is condition E.

パターン7は、今回のサイクルでの代表点の前回のサイクルでの状態がメンバであり、今回のサイクルでのメンバの中には前回のサイクルでの状態が代表点であったものを含まず、メンバは新規の反射点でないセグメントであり、今回の代表点及び新規でないメンバの前回所属していたセグメントの識別番号が上記のパターンで未だ引き継がれていないので、代表点のセグメントカウンタと新規でないメンバのセグメントカウンタとを比較すると代表点のカウンタ値が大きいセグメントの場合、その代表点が前回所属していたセグメントの識別番号を引き継ぐ。このパターン7は、通常閾値フラグがONのセグメントの場合には条件Bであり、低閾値フラグがONのセグメントの場合には条件Dである。   In pattern 7, the state in the previous cycle of the representative point in the current cycle is a member, and the member in the current cycle does not include the member in which the state in the previous cycle was the representative point. The member is a segment that is not a new reflection point, and since the identification number of the current representative point and the segment to which the non-new member last belonged has not yet been inherited in the above pattern, the representative point segment counter and the non-new member When the segment counter has a large representative point counter value, the identification number of the segment to which the representative point belongs last time is inherited. This pattern 7 is a condition B when the segment whose normal threshold flag is ON, and a condition D when the segment whose low threshold flag is ON.

パターン8は、今回のサイクルでの代表点の前回のサイクルでの状態がメンバであり、今回のサイクルでのメンバの中には前回のサイクルでの状態が代表点であったものを含まず、メンバは新規の反射点でないセグメントであり、今回の代表点及び新規でないメンバの前回所属していたセグメントの識別番号が上記のパターンで未だ引き継がれていないので、代表点のセグメントカウンタと新規でないメンバのセグメントカウンタとを比較するとメンバのカウンタ値が大きいセグメントの場合、そのメンバが前回所属していたセグメントの識別番号を引き継ぐ。このパターン8は、通常閾値フラグがONのセグメントの場合には条件Bであり、低閾値フラグがONのセグメントの場合には条件Dである。   In pattern 8, the state of the representative point in the current cycle is the member in the previous cycle, and the member in the current cycle does not include the member in which the state in the previous cycle was the representative point. The member is a segment that is not a new reflection point, and since the identification number of the current representative point and the segment to which the non-new member last belonged has not yet been inherited in the above pattern, the representative point segment counter and the non-new member In the case of a segment whose member counter value is large when compared with the segment counter, the identification number of the segment to which the member previously belonged is taken over. This pattern 8 is condition B when the segment whose normal threshold flag is ON, and condition D when the segment whose low threshold flag is ON.

パターン9は、今回のサイクルでの代表点の前回のサイクルでの状態がメンバであり、今回のサイクルでのメンバの中には前回のサイクルでの状態が代表点であったものを含まず、メンバは新規の反射点であるセグメントであり、今回の代表点の前回所属していたセグメントの識別番号が上記のパターンで既に引き継がれた場合、引き継ぐ識別番号がないので、新規のセグメントの識別番号を付与する。このパターン9は、条件Eである。   In pattern 9, the state of the representative point in the current cycle is the member in the previous cycle, and the member in the current cycle does not include the member in which the state in the previous cycle was the representative point. The member is a segment that is a new reflection point, and if the identification number of the segment to which the representative point belonged last time has already been inherited in the above pattern, there is no identification number to inherit, so the identification number of the new segment Is granted. This pattern 9 is condition E.

パターン10は、今回のサイクルでの代表点の前回のサイクルでの状態がメンバであり、今回のサイクルでのメンバの中には前回のサイクルでの状態が代表点であったものを含まず、メンバは新規の反射点であるセグメントであり、今回の代表点の前回所属していたセグメントの識別番号が上記のパターンで未だ引き継がれていないので、その代表点が前回所属していたセメントの識別番号を引き継ぐ。このパターン10は、通常閾値フラグがONのセグメントの場合には条件Bであり、低閾値フラグがONのセグメントの場合には条件Dである。   In pattern 10, the state in the previous cycle of the representative point in the current cycle is a member, and the member in the current cycle does not include the member in which the state in the previous cycle is the representative point. The member is a segment which is a new reflection point, and the identification number of the segment to which the representative point last belonged has not yet been inherited in the above pattern, so the identification of the cement to which the representative point belonged last time Take over the number. This pattern 10 is condition B when the segment whose normal threshold flag is ON, and condition D when the segment whose low threshold flag is ON.

パターン11は、今回のサイクルでの代表点は新規の反射点であり、今回のサイクルでのメンバの中には前回のサイクルでの状態が代表点であったものを含むセグメントの場合、そのメンバが前回所属していたセグメントの識別番号を引き継ぐ。このパターン11は、通常閾値フラグがONのセグメントの場合には条件Aであり、低閾値フラグがONのセグメントの場合には条件Cである。   In the pattern 11, the representative point in the current cycle is a new reflection point, and in the case of a segment including a member in which the state in the previous cycle is a representative point among the members in the current cycle, the member Takes over the identification number of the previous segment. This pattern 11 is condition A when the segment whose normal threshold flag is ON, and condition C when the segment whose low threshold flag is ON.

パターン12は、今回のサイクルでの代表点は新規の反射点であり、今回のサイクルでのメンバの中には前回のサイクルでの状態が代表点であったものを含まないセグメントであり、今回のメンバの前回所属していたセグメントの識別番号が上記のパターンで既に引き継がれた場合、引き継ぐ識別番号がないので、新規のセグメントの識別番号を付与する。このパターン12は、条件Eである。   In Pattern 12, the representative point in this cycle is a new reflection point, and the members in this cycle are segments that do not include those in which the state in the previous cycle was the representative point. If the identification number of the segment to which the previous member belongs has already been inherited in the above pattern, since there is no identification number to be inherited, the identification number of the new segment is assigned. This pattern 12 is condition E.

パターン13は、今回のサイクルでの代表点は新規の反射点であり、今回のサイクルでのメンバの中には前回のサイクルでの状態が代表点であったものを含まないセグメントであり、今回のメンバの前回所属していたセグメントの識別番号が上記のパターンで未だ引き継がれていないので、メンバ内でセグメントカウンタのカウンタ値が最も大きいメンバが前回所属していたセメントの識別番号を引き継ぐ。このパターン13は、通常閾値フラグがONのセグメントの場合には条件Bであり、低閾値フラグがONのセグメントの場合には条件Dである。   In pattern 13, the representative point in the current cycle is a new reflection point, and the members in this cycle do not include the segment whose state in the previous cycle was the representative point. Since the identification number of the segment to which the previous member belongs has not yet been inherited in the above pattern, the member having the largest segment counter value among the members takes over the identification number of the cement to which the previous member belonged. This pattern 13 is condition B when the segment whose normal threshold flag is ON, and condition D when the segment whose low threshold flag is ON.

パターン14は、今回のサイクルでの代表点は新規の反射点であり、今回のサイクルでのメンバは新規の反射点であるセグメントの場合、引き継ぐ識別番号がないので、新規のセグメントの識別番号を付与する。このパターン14は、条件Eである。   In the pattern 14, the representative point in the current cycle is a new reflection point, and in the case of a segment in which the member in the current cycle is a new reflection point, there is no identification number to be inherited. Give. This pattern 14 is condition E.

図4には、セグメントの識別番号を引き継ぐ一例を示している。この例では、前回のサイクルでセグメントTS11とセグメントTS12が存在し、今回のサイクルでセグメントTS2がグルーピングされた場合である。セグメントTS11には代表点の反射点P1が属しており、反射点P1のセグメントカウンタのカウンタ値が10であった。また、セグメントTS12には代表点の反射点P2が属しており、反射点P2のセグメントカウンタのカウンタ値が50であった。セグメントTS2には、代表点の反射点P1とメンバの反射点P2が属している。この場合、上記のパターン3に該当し、今回のサイクルでの代表点P1の前回のサイクルでの状態が代表点であり、今回のサイクルでのメンバP2の前回のサイクルでの状態が代表点であり、代表点P1のセグメントカウンタとメンバP2のセグメントカウンタとを比較するとメンバP2のカウンタ値が大きいので、セグメントTS2ではメンバP2が前回所属していたセグメントTS12の識別番号を引き継ぎ、セグメントカウンタを50からインクリメントして51とする。   FIG. 4 shows an example of taking over the segment identification number. In this example, the segment TS11 and the segment TS12 exist in the previous cycle, and the segment TS2 is grouped in the current cycle. The reflection point P1 as a representative point belongs to the segment TS11, and the counter value of the segment counter at the reflection point P1 is 10. Further, the reflection point P2 as a representative point belongs to the segment TS12, and the counter value of the segment counter at the reflection point P2 is 50. A reflection point P1 as a representative point and a reflection point P2 as a member belong to the segment TS2. In this case, it corresponds to the pattern 3 described above, the state of the representative point P1 in the current cycle in the previous cycle is the representative point, and the state of the member P2 in the current cycle in the previous cycle is the representative point. Yes, when the segment counter of the representative point P1 and the segment counter of the member P2 are compared, the counter value of the member P2 is large. Therefore, in the segment TS2, the identification number of the segment TS12 to which the member P2 previously belonged is taken over, and the segment counter is set to 50. Incremented to 51.

物理量演算部24では、セグメント識別番号確定部23で識別番号が確定したセグメント毎に、セグメントに属している代表点の物理量及び各メンバの物理量に基づいてセグメント(物体)としての物理量(距離、横位置、相対速度など)を演算する。その際、物理量演算部24では、セグメントに属する代表点である反射点の代表カウンタとメンバである反射点の代表カウンタに基づいてウエイト比を求め、そのウエイト比に応じて代表点の物理量とメンバの物理量に基づいて物理量を求める。   In the physical quantity calculation unit 24, for each segment whose identification number is determined by the segment identification number determination unit 23, a physical quantity (distance, horizontal) as a segment (object) based on the physical quantity of the representative point belonging to the segment and the physical quantity of each member. Position, relative speed, etc.). At that time, the physical quantity calculation unit 24 obtains the weight ratio based on the representative counter of the reflection point that is the representative point belonging to the segment and the representative counter of the reflection point that is the member, and the physical quantity and member of the representative point according to the weight ratio. The physical quantity is obtained based on the physical quantity of

なお、代表カウンタは、確定ペアの反射点毎に設定され、代表点になった回数をカウントするカウンタである。代表カウンタは、メンバになった場合でもカウンタ値がリセットされることはなく、その反射点が消滅したときにカウンタ値がリセットされる。   The representative counter is a counter that is set for each reflection point of the definite pair and counts the number of times it has become a representative point. Even if the representative counter becomes a member, the counter value is not reset, and the counter value is reset when the reflection point disappears.

ウエイト比の演算方法を具体的に説明する。ここでは、説明を判り易くするために、図4に示すような代表点P1と1個のメンバP2が属するセグメントTS2を例として、このセグメントTS2の状態が数サイクル続く場合で説明する。ここでは、最初(1サイクル目)にセグメントTS2の状態になったときの代表点である反射点P1の代表カウンタのカウンタ値が10であり、メンバである反射点P2の代表カウンタのカウンタ値が50であったとする。サイクルが更新される毎に、代表点である反射点P1の代表カウンタはインクリメントされるが、メンバである反射点P2の代表カウンタはインクリメントされない。   A method for calculating the weight ratio will be specifically described. Here, in order to make the explanation easy to understand, a case where the segment TS2 to which the representative point P1 and one member P2 belong as shown in FIG. Here, the counter value of the representative counter of the reflection point P1, which is the representative point when the state of the segment TS2 is first (first cycle), is 10, and the counter value of the representative counter of the reflection point P2, which is the member, is Suppose that it was 50. Each time the cycle is updated, the representative counter of the reflection point P1 that is the representative point is incremented, but the representative counter of the reflection point P2 that is the member is not incremented.

上記の例の場合、1サイクル目でのウエイト比(代表点P1のウエイト値:メンバP2のウエイト値)=代表点P1の1サイクル目での代表カウンタのカウンタ値:(メンバP2の1サイクル目での代表カウンタのカウンタ値×距離係数α)であり、2サイクル目でのウエイト比=代表点P1の2サイクル目での代表カウンタのカウンタ値:(メンバP2の1サイクル目でのウエイト値×距離係数α)であり、・・・、nサイクル目ではウエイト比=代表点P1のnサイクル目での代表カウンタのカウンタ値:(メンバP2のn−1サイクル目でのウエイト値×距離係数α)である。なお、前回サイクルから代表点である反射点が変わった場合、このウエイト比の演算は1サイクル目から演算し直す。   In the above example, the weight ratio at the first cycle (weight value of representative point P1: weight value of member P2) = counter value of the representative counter at the first cycle of representative point P1: (first cycle of member P2) Counter value x distance coefficient α) at 2nd cycle, weight ratio at 2nd cycle = counter value of representative counter at 2nd cycle of representative point P1: (weight value at 1st cycle of member P2) (Distance coefficient α), and in the nth cycle, the weight ratio = the counter value of the representative counter at the nth cycle of the representative point P1: (weight value of the member P2 at the (n−1) th cycle × distance coefficient α) ). When the reflection point, which is a representative point, has changed from the previous cycle, the calculation of the weight ratio is performed again from the first cycle.

距離係数αは、代表点がミリ波レーダ10から近いほど、セグメント(物体)としての物理量に対してメンバの影響度を小さく(代表点の影響度を大きく)する係数である。したがって、サイクルが更新されるほど、メンバの影響が次第に少なくなる。図5には、ミリ波レーダ10に対する代表点の距離に応じた距離係数マップの一例を示している。   The distance coefficient α is a coefficient that decreases the influence degree of the member (increases the influence degree of the representative point) on the physical quantity as the segment (object) as the representative point is closer to the millimeter wave radar 10. Therefore, as the cycle is updated, the influence of the members gradually decreases. FIG. 5 shows an example of a distance coefficient map corresponding to the distance of the representative point with respect to the millimeter wave radar 10.

この図5に示す距離係数αを用いて、上記の例のウエイト比を具体的な数値として求めた場合を示す。但し、代表点の距離に応じた距離係数αは、1サイクル目が0.8、2サイクル目が0.7、3サイクル目が0.6、4サイクル目が0.6、5サイクル目が0.4、6サイクル目が0.4、7サイクル目が0.3であったとする。1サイクル目のウエイト比(代表点P1のウエイト値:メンバP2のウエイト値)=10:(50×0.8)=10:40であり、2サイクル目のウエイト比=11:(40×0.7)=11:28であり、3サイクル目のウエイト比=12:(28×0.6)=12:16であり、4サイクル目のウエイト比=13:(16×0.6)=13:9であり、5サイクル目のウエイト比=14:(9×0.4)=14:3であり、6サイクル目のウエイト比=15:(3×0.4)=15:1であり、7サイクル目のウエイト比=16:(1×0.3)=16:0である。ここでは、各ウエイト値は小数点以下を切り捨てている。   The case where the weight ratio in the above example is obtained as a specific numerical value using the distance coefficient α shown in FIG. 5 is shown. However, the distance coefficient α corresponding to the distance between the representative points is 0.8 for the first cycle, 0.7 for the second cycle, 0.6 for the third cycle, 0.6 for the fourth cycle, and 0.6 for the fifth cycle. Assume that the 0.4th and 6th cycles were 0.4 and the 7th cycle was 0.3. Weight ratio of the first cycle (weight value of representative point P1: weight value of member P2) = 10: (50 × 0.8) = 10: 40 and weight ratio of second cycle = 11: (40 × 0 7) = 11: 28, the third cycle weight ratio = 12: (28 × 0.6) = 12: 16, and the fourth cycle weight ratio = 13: (16 × 0.6) = 13: 9, fifth cycle weight ratio = 14: (9 × 0.4) = 14: 3, sixth cycle weight ratio = 15: (3 × 0.4) = 15: 1 Yes, the weight ratio of the seventh cycle = 16: (1 × 0.3) = 16: 0. Here, each weight value is rounded down.

さらに、上記の例でセグメントの物理量として距離を求める場合を示す。1サイクル目において代表点である反射点P1の距離がZ11であり、メンバである反射点P2の距離がZ12であったとすると、セグメントとしての距離Z1S=(Z11×(10/(10+40))+(Z12×(40/(10+40))となる。さらに、2サイクル目において代表点である反射点P1の距離がZ21であり、メンバである反射点P2の距離がZ22であったとすると、セグメントとしての距離Z2S=(Z21×(11/(11+28))+(Z22×(28/(11+28))となる。   Furthermore, the case where a distance is calculated | required as a physical quantity of a segment in said example is shown. Assuming that the distance of the reflection point P1 as the representative point in the first cycle is Z11 and the distance of the reflection point P2 as the member is Z12, the distance Z1S = (Z11 × (10 / (10 + 40)) + as a segment (Z12 × (40 / (10 + 40)) Further, in the second cycle, if the distance of the reflection point P1, which is the representative point, is Z21, and the distance of the reflection point P2, which is the member, is Z22, the segment is The distance Z2S = (Z21 × (11 / (11 + 28)) + (Z22 × (28 / (11 + 28))).

ちなみに、上記の例において、例えば、10サイクル目でメンバであった反射点P2が反射点P1と異なるセグメントとなった場合、10サイクル目で反射点P2が属するセグメントでのウエイト比演算では、反射点P2が代表点の場合には代表カウンタのカウント値51を用いて演算が行われ、反射点P2がメンバの場合には代表カウンタのカウント値50を用いて演算が行われる。   Incidentally, in the above example, for example, when the reflection point P2 that was a member in the 10th cycle is a segment different from the reflection point P1, the weight ratio calculation in the segment to which the reflection point P2 belongs in the 10th cycle When the point P2 is a representative point, the calculation is performed using the count value 51 of the representative counter, and when the reflection point P2 is a member, the calculation is performed using the count value 50 of the representative counter.

さらに、図6に示す例により、ウエイト比の演算方法を具体的に説明する。ここでは、2サイクル目までは代表点P1と1つのメンバP2が属するセグメントTS21及び代表点P3と1つのメンバP4が属するセグメントTS22についてのウエイト比が上記の例のようにそれぞれ演算されていたが、3サイクル目に2サイクル目のセグメントTS21とセグメントTS22とが1つのセグメントTS3となり、代表点P1と3つのメンバP2,P3,P4が属するセグメントTS3となった場合のウエイト比の演算方法を説明する。この場合、メンバである反射点P2は、前回サイクルと代表点が同じなので、ウエイト比演算には2サイクル目のウエイト値を用いる。メンバである反射点P3は、前回サイクルで代表点であったものがメンバになったので、ウエイト比演算では1サイクル目となり、ウエイト比演算には代表カウンタのカウンタ値を用いる。メンバである反射点P4は、前回サイクルと今回サイクルで代表点が異なるが、同じセグメント内に前回サイクルで代表点であった反射点P3を含むので、ウエイト比演算には2サイクル目のウエイト値を用いる。したがって、この3サイクル目でのウエイト比(代表点P1のウエイト値:メンバP2のウエイト値:メンバP3のウエイト値:メンバP4のウエイト値)=代表点P1の代表カウンタのカウンタ値:(メンバP2の2サイクル目でのウエイト値×距離係数α):(メンバP3の代表カウンタのカウンタ値×距離係数α):(メンバP4の2サイクル目でのウエイト値×距離係数α)である。但し、このセグメントTS3に反射点P3が属さなかった場合、メンバである反射点P4は、ウエイト比演算では1サイクル目となり、ウエイト比演算では代表カウンタのカウンタ値を用いる。   Further, the method for calculating the weight ratio will be described specifically with reference to the example shown in FIG. Here, until the second cycle, the weight ratios for the segment TS21 to which the representative point P1 and one member P2 belong and the segment TS22 to which the representative point P3 and one member P4 belong are calculated as in the above example. The method of calculating the weight ratio when the segment TS21 and the segment TS22 in the second cycle become one segment TS3 in the third cycle and become the segment TS3 to which the representative point P1 and the three members P2, P3, P4 belong will be described. To do. In this case, since the reflection point P2 as a member has the same representative point as the previous cycle, the weight value of the second cycle is used for the weight ratio calculation. Since the reflection point P3, which is a member, is a member that was the representative point in the previous cycle, it becomes the first cycle in the weight ratio calculation, and the counter value of the representative counter is used in the weight ratio calculation. The reflection point P4, which is a member, has different representative points in the previous cycle and the current cycle. However, since the reflection point P3 that was the representative point in the previous cycle is included in the same segment, the weight value in the second cycle is included in the weight ratio calculation. Is used. Therefore, the weight ratio in this third cycle (weight value of representative point P1: weight value of member P2: weight value of member P3: weight value of member P4) = counter value of representative counter of representative point P1: (member P2 (Weight value × distance coefficient α) of the second cycle :) (counter value of representative counter of member P3 × distance coefficient α): (weight value of second cycle of member P4 × distance coefficient α). However, when the reflection point P3 does not belong to this segment TS3, the reflection point P4 as a member is in the first cycle in the weight ratio calculation, and the counter value of the representative counter is used in the weight ratio calculation.

図1を参照して、物体検出装置1における動作について説明する。各ミリ波レーダ10では、サイクル時間毎に、ミリ波を左右方向の一定角度毎に発信するとともに反射してきたミリ波を受信し、発信波と受信波をミキシングしたビート信号をECU20に送信する。   With reference to FIG. 1, the operation | movement in the object detection apparatus 1 is demonstrated. Each millimeter wave radar 10 transmits a millimeter wave at a certain angle in the left-right direction and receives a reflected millimeter wave for each cycle time, and transmits a beat signal obtained by mixing the transmitted wave and the received wave to the ECU 20.

各ミリ波レーダ10のビート信号を受信する毎に、ECU20では、ビート信号をFFT解析し、ピーク検出(通常閾値と低閾値)によって周波数の増加区間でのビート周波数と周波数の減少区間でのビート周波数を抽出する。そして、ECU20では、増加区間でのビート周波数と減少区間でのビート周波数とをペアリングし、ペア毎に物理量としてミリ波レーダ10に対する相対的な距離、横位置、相対速度などを演算する。さらに、EUU20では、ペア毎に数サイクル連続して検出されているか否かを判定し、数サイクル連続して検出されているペアを反射点として確定し、その確定ペアの反射点に物理量、通常閾値フラグ、低閾値フラグ、移動物フラグの情報を設定する。   Each time the beat signal of each millimeter wave radar 10 is received, the ECU 20 performs FFT analysis on the beat signal, and beat detection in the frequency increase interval and beat decrease in the frequency decrease interval by peak detection (normal threshold and low threshold). Extract the frequency. Then, the ECU 20 pairs the beat frequency in the increasing section and the beat frequency in the decreasing section, and calculates a relative distance, a lateral position, a relative speed, etc. with respect to the millimeter wave radar 10 as a physical quantity for each pair. Further, the EUU 20 determines whether or not several cycles are continuously detected for each pair, determines a pair detected for several cycles continuously as a reflection point, and sets a physical quantity, Information on threshold flag, low threshold flag, and moving object flag is set.

確定ペアの反射点を検出すると、ECU20では、全ての確定ペアの反射点に対して代表点を決定するための条件a,b,cで順に判定し、全ての確定ペアの反射点の中から代表点を抽出する。そして、ECU20では、その代表点の位置を基準としてセグメント範囲を設定し、全ての確定ペアの反射点のうちその代表点を除いた反射点の中からセグメント範囲内でありかつ相対速度が代表点の相対速度に対して±数km/h以内でありかつ通常閾値フラグと低閾値フラグに基づいて代表点と同じ閾値で検出されかつ移動物フラグに基づいて代表点と同じ種別(静止物、接近移動物、離反移動物)である反射点をメンバとして抽出する。そして、ECU20では、その抽出した代表点とメンバからなるセグメントをグルーピングする。1つのセグメントをグルーピングする毎に、ECU20では、グルーピングされていない確定ペアの反射点に対して代表点を決定するための条件a,b,cで順に判定し、グルーピングされていない確定ペアの反射点の中から代表点を抽出する。そして、ECU20では、その代表点の位置を基準としてセグメント範囲を設定し、グルーピングされていない確定ペアの反射点のうちその代表点を除いた反射点の中からセグメント範囲内でありかつ相対速度が代表点の相対速度に対して±数km/h以内でありかつ通常閾値フラグと低閾値フラグに基づいて代表点と同じ閾値で検出されかつ移動物フラグに基づいて代表点と同じ種別である反射点をメンバとして抽出する。そして、ECU20では、その抽出した代表点とメンバからなるセグメントをグルーピングする。ECU20では、確定ペアの反射点が全てグルーピングされるまで、上記のグルーピングを行う。   When the reflection points of the confirmed pair are detected, the ECU 20 sequentially determines the representative points for the reflection points of all the confirmed pairs according to the conditions a, b, and c, and from among the reflection points of all the confirmed pairs. Extract representative points. Then, the ECU 20 sets a segment range based on the position of the representative point, and is within the segment range from the reflection points excluding the representative point among the reflection points of all defined pairs, and the relative speed is the representative point. The relative speed is within ± several km / h and is detected with the same threshold as the representative point based on the normal threshold flag and the low threshold flag, and the same type as the representative point based on the moving object flag (stationary object, approaching) A reflection point which is a moving object or a moving object is extracted as a member. Then, the ECU 20 groups the segment composed of the extracted representative points and members. Every time one segment is grouped, the ECU 20 sequentially determines the representative points with respect to the reflection points of the definite pair that is not grouped by the conditions a, b, and c, and the reflection of the definite pair that is not grouped. A representative point is extracted from the points. Then, the ECU 20 sets the segment range with reference to the position of the representative point, and is within the segment range from the reflection points excluding the representative point among the reflection points of the definite pair that are not grouped, and the relative speed is Reflection that is within ± several km / h with respect to the relative speed of the representative point, is detected at the same threshold as the representative point based on the normal threshold flag and the low threshold flag, and is of the same type as the representative point based on the moving object flag Extract points as members. Then, the ECU 20 groups the segment composed of the extracted representative points and members. The ECU 20 performs the above grouping until all the reflection points of the confirmed pair are grouped.

確定ペアの反射点に対するグルーピングが終了すると、ECU20では、グルーピングされたセグメントの中で通常閾値でのセグメント毎に、識別番号確定条件Aで判定を行い、この条件Aを満たす代表点又はメンバが存在する場合にはその代表点又はメンバが前回サイクルで属していたセグメントの識別番号を引き継ぐ。次に、ECU20では、グルーピングされたセグメントの中で通常閾値でのセグメントのうち識別番号確定条件Aで識別番号が確定したセグメントを除いたセグメント毎に、識別番号確定条件Bでの判定を行い、この条件Bを満たす代表点又はメンバが存在する場合にはその代表点又はメンバが前回サイクルで属していたセグメントの識別番号を引き継ぐ。次に、ECU20では、グルーピングされたセグメントの中で低閾値でのセグメント毎に、識別番号確定条件Cでの判定を行い、この条件Cを満たす代表点又はメンバが存在する場合にはその代表点又はメンバが前回サイクルで属していたセグメントの識別番号を引き継ぐ。次に、ECU20では、グルーピングされたセグメントの中で低閾値でのセグメントのうち識別番号確定条件Cで識別番号が確定したセグメントを除いたセグメント毎に、識別番号確定条件Dでの判定を行い、この条件Dを満たす代表点又はメンバが存在する場合にはその代表点又はメンバが前回サイクルで属していたセグメントの識別番号を引き継ぐ。最後に、ECU20では、グルーピングされたセグメントのうち識別番号確定条件A、B、C、Dで識別番号が確定したセグメントを除いたセグメント毎に、新規な識別番号を付与する。   When the grouping for the reflection point of the confirmed pair is completed, the ECU 20 makes a determination with the identification number determination condition A for each segment at the normal threshold among the grouped segments, and there is a representative point or member that satisfies the condition A. If so, the identification number of the segment to which the representative point or member belonged in the previous cycle is taken over. Next, the ECU 20 performs the determination under the identification number determination condition B for each segment excluding the segment whose identification number is determined under the identification number determination condition A out of the grouped segments with the normal threshold. If there is a representative point or member that satisfies this condition B, the identification number of the segment to which the representative point or member belonged in the previous cycle is taken over. Next, the ECU 20 performs a determination under the identification number determination condition C for each segment with a low threshold among the grouped segments. If there is a representative point or a member that satisfies the condition C, the representative point is determined. Alternatively, the identification number of the segment to which the member belonged in the previous cycle is taken over. Next, the ECU 20 performs the determination under the identification number determination condition D for each segment excluding the segment whose identification number is determined under the identification number determination condition C out of the grouped segments at the low threshold, If there is a representative point or member that satisfies this condition D, the identification number of the segment to which the representative point or member belonged in the previous cycle is taken over. Finally, the ECU 20 assigns a new identification number to each segment other than the segments whose identification numbers are determined by the identification number determination conditions A, B, C, and D among the grouped segments.

グルーピングされた全てのセグメントの識別番号が確定すると、ECU20では、識別番号が確定したセグメント毎に、セグメントに属する代表点である反射点の代表カウンタとメンバである反射点の代表カウンタ及びミリ波レーダ10からの代表点の距離に応じた距離係数に基づいてウエイト比を演算し、そのウエイト比に応じて代表点の物理量と各メンバの物理量からセグメント(物体)としての物理量(距離、横位置、相対速度など)を演算する。   When the identification numbers of all the grouped segments are determined, the ECU 20 determines, for each segment for which the identification numbers are determined, a reflection point representative counter that is a representative point belonging to the segment, a reflection point representative counter that is a member, and a millimeter wave radar. The weight ratio is calculated based on the distance coefficient corresponding to the distance of the representative point from 10, and the physical quantity (distance, lateral position, Relative speed).

セグメントの物理量を演算すると、ECU20では、その各セグメント(物体)についての情報(物理量など)を運転支援装置に送信する。   When the physical quantity of the segment is calculated, the ECU 20 transmits information (physical quantity and the like) about each segment (object) to the driving support device.

この物体検出装置1によれば、セグメントに属する反射点が前回サイクルで属していたセグメントでの情報に基づいてセグメントの時系列での同一性を判断することにより、時系列で同一の物体に対する反射点を同じ識別番号の同一のセグメントとすることができ、時系列での反射点が不安定な場合でも物体を高精度に検出することができる。特に、自車両の前側方に設けられているミリ波レーダ10にようにレーダ中心軸が自車両に進行方向と異なる場合、他車両などに対するレーダ反射面が複雑な形状となるが、各サイクルでの反射点を同一の物体で反射した反射点としてセグメント単位で判断でき、同一の物体を時系列で安定して検出することができる。   According to this object detection device 1, the reflection point for the same object in time series is determined by determining the time series identity of the segments based on the information in the segments to which the reflection points belonging to the segments belonged in the previous cycle. The point can be the same segment with the same identification number, and the object can be detected with high accuracy even when the reflection point in time series is unstable. In particular, when the radar center axis is different from the traveling direction of the own vehicle as in the millimeter wave radar 10 provided on the front side of the own vehicle, the radar reflecting surface for other vehicles has a complicated shape. Can be determined in segment units as reflection points reflected by the same object, and the same object can be stably detected in time series.

さらに、物体検出装置1によれば、代表点とメンバからなるセグメントとすることにより、識別番号確定処理や物理量演算処理において代表点とメンバを利用して容易にかつ高精度に処理を行うことができる。   Furthermore, according to the object detection apparatus 1, by using a segment composed of a representative point and a member, processing can be performed easily and with high accuracy using the representative point and member in the identification number determination process and the physical quantity calculation process. it can.

特に、物体検出装置1では、今回サイクルでのセグメントに属する各反射点についての前回サイクルでの代表点/メンバの状態とセグメントカウンタによる過去に属していたセグメントの継続状態に基づいていずれの識別番号を引き継ぐかを判断することにより、各サイクルでの同一の物体に対する反射点の属するセグメントに対して同じ識別番号を高精度に引き継がせることができる。この際、前回サイクルで代表点であったことを重視して判断することにより、セグメントの時系列での同一性を高精度に判断できる。また、セグメントの継続回数が多いことを重視して判断することにより、セグメントの時系列での同一性を高精度に判断できる。   In particular, in the object detection apparatus 1, any identification number is determined based on the state of the representative point / member in the previous cycle for each reflection point belonging to the segment in the current cycle and the continuation state of the segment belonging to the past by the segment counter. By determining whether to take over, the same identification number can be taken over with high accuracy for the segment to which the reflection point for the same object in each cycle belongs. At this time, by focusing on the fact that it was a representative point in the previous cycle, the time-series identity of segments can be determined with high accuracy. In addition, it is possible to determine the identity of a segment in time series with high accuracy by making a determination with emphasis on the fact that the number of continuous segments is large.

また、物体検出装置1では、物理量演算処理においてセグメントに属する代表点とメンバとのウエイト比を求めることにより、セグメント(物体)の物理量を高精度に求めることができる。さらに、物体検出装置1では、代表カウンタによる過去に代表点になった回数を重視してウエイト比を求めることにより、ウエイト比を高精度に求めることができる。また、物体検出装置1では、ミリ波レーダ10に対する代表点の距離が短いほどメンバの影響度を小さく(ひいては、代表点の影響度を大きく)してウエイト比を求めることにより、ウエイト比を高精度に求めることができる。   In the object detection device 1, the physical quantity of the segment (object) can be obtained with high accuracy by obtaining the weight ratio between the representative point belonging to the segment and the member in the physical quantity calculation processing. Furthermore, in the object detection device 1, the weight ratio can be obtained with high accuracy by obtaining the weight ratio by placing importance on the number of times the representative point has become a representative point in the past. Further, in the object detection device 1, the weight ratio is increased by obtaining the weight ratio by decreasing the influence degree of the member (and consequently increasing the influence degree of the representative point) as the distance of the representative point to the millimeter wave radar 10 is shorter. The accuracy can be obtained.

以上、本発明に係る実施の形態について説明したが、本発明は上記実施の形態に限定されることなく様々な形態で実施される。   As mentioned above, although embodiment which concerns on this invention was described, this invention is implemented in various forms, without being limited to the said embodiment.

例えば、本実施の形態では車両に搭載される物体検出装置に適用したが、ACCシステム、PBAシステム、PSBシステム、介入ブレーキシステムなどの運転支援装置に組み込まれる物体検出機能としてもよい。また、車両以外の移動体に搭載された物体検出装置に適用してもよいし、車両などの移動体に搭載されない物体検出装置にも適用可能である。   For example, although the present embodiment is applied to an object detection device mounted on a vehicle, an object detection function incorporated in a driving support device such as an ACC system, a PBA system, a PSB system, or an intervention brake system may be used. Further, the present invention may be applied to an object detection device mounted on a moving body other than a vehicle, or may be applied to an object detection device that is not mounted on a moving body such as a vehicle.

また、本実施の形態ではレーダ検出手段としてFMCW方式のミリ波レーダに適用したが、レーザレーダなどの他のレーダにも適用可能であり、あるいは、FMCW方式以外の検出方式でもよい。   In this embodiment, the FMCW millimeter wave radar is applied as the radar detection means. However, the present invention can be applied to other radars such as a laser radar, or a detection method other than the FMCW method may be used.

また、本実施の形態では通常閾値と低閾値を用いて反射点を検出する構成としたが、1つの閾値だけを用いて反射点を検出してもよいし、3つ以上の閾値を用いて反射点を検出してもよい。   In the present embodiment, the reflection point is detected using the normal threshold and the low threshold. However, the reflection point may be detected using only one threshold, or three or more thresholds may be used. A reflection point may be detected.

また、本実施の形態では検出方向を前方及び前側方としたが、側方、後方、後側方などの他の検出方向でも適用可能である。   In the present embodiment, the detection direction is set to the front and front sides, but other detection directions such as side, rear, and rear sides can also be applied.

また、本実施の形態では代表点決定条件やメンバ決定条件を示したが、他の条件で代表点やメンバを決定してもよい。   Further, in this embodiment, the representative point determination condition and the member determination condition are shown, but the representative point and the member may be determined under other conditions.

また、本実施の形態では識別番号確定条件を示したが、他の条件で識別番号を確定してもよい。   Moreover, although the identification number confirmation condition is shown in the present embodiment, the identification number may be confirmed under other conditions.

また、本実施の形態では多数の反射点の中から条件に基づいて代表点を決定し、代表点の位置に基準としてセグメント範囲内に含まれる反射点をメンバとしてグルーピングするグルーピング方法を示したが、他のグルーピング方法でもよい。   Further, in the present embodiment, a grouping method has been described in which representative points are determined from a number of reflection points based on conditions, and the reflection points included in the segment range are grouped as members based on the positions of the representative points. Other grouping methods may be used.

また、本実施の形態ではセグメントに属する代表点とメンバのウエイト比を求め、そのウエイト比に応じてセグメントとして物理量を求める構成としたが、セグメントに属する反射点の物理量から他の方法でセグメントとして物理量を求めてもよい。   In this embodiment, the weight ratio between the representative point and the member belonging to the segment is obtained, and the physical quantity is obtained as the segment according to the weight ratio. However, the physical quantity of the reflection point belonging to the segment is used as a segment by another method. A physical quantity may be obtained.

また、本実施の形態ではセグメント範囲を矩形状の一定の大きさの範囲としたが、レーザ反射面が側面及び前面あるいは後面の他車両を検出するためにセグメント範囲をL字形状や凹形状などの他の形状としてもよいし、あるいは、自車両の周辺環境を認識する手段を用いて自車両の周辺環境(ガードレールなど)を認識し、その周辺環境に応じてセグメント範囲の大きさを変えてもよいし、自車両の走行状態を検出する手段を用いて自車両の走行状態(車速、旋回状態など)を検出し、走行状態に応じてセグメント範囲の大きさを変えてもよい。   Further, in this embodiment, the segment range is a rectangular fixed size range, but the segment range is L-shaped, concave shape, etc. in order to detect other vehicles on the side and front or rear of the laser reflecting surface. Other shapes may be used, or the surrounding environment (guardrail, etc.) of the own vehicle is recognized using means for recognizing the surrounding environment of the own vehicle, and the size of the segment range is changed according to the surrounding environment. Alternatively, the traveling state (vehicle speed, turning state, etc.) of the host vehicle may be detected using means for detecting the traveling state of the host vehicle, and the size of the segment range may be changed according to the traveling state.

1…物体検出装置、10…ミリ波レーダ、20…ECU、21…信号処理部、22…仮グルーピング部、23…セグメント識別番号確定部、24…物理量演算部   DESCRIPTION OF SYMBOLS 1 ... Object detection apparatus, 10 ... Millimeter wave radar, 20 ... ECU, 21 ... Signal processing part, 22 ... Temporary grouping part, 23 ... Segment identification number determination part, 24 ... Physical quantity calculation part

Claims (6)

レーダ検出手段で検出された反射データをセグメントにグルーピングし、セグメント毎の反射データに基づいて物体を検出する物体検出装置であって、
所定の条件に基づいて反射データをセグメントにグルーピングするグルーピング手段と、
各反射データについて過去に属したセグメントの識別情報を特定するセグメント履歴特定手段と、
今回グルーピングされたセグメントに属する反射データの過去のセグメントの識別情報に基づいて、今回グルーピングされたセグメントと過去にグルーピングされたセグメントとの同一性を判別するセグメント識別手段と
を備えることを特徴とする物体検出装置。
An object detection device that groups reflection data detected by a radar detection means into segments and detects an object based on the reflection data for each segment,
Grouping means for grouping reflection data into segments based on a predetermined condition;
A segment history specifying means for specifying identification information of a segment belonging to the past for each reflection data;
Segment identification means for determining the identity of a segment grouped this time and a segment grouped in the past based on identification information of past segments of reflection data belonging to the segment grouped this time Object detection device.
前記グルーピング手段は、所定の条件に基づいて反射データの中から代表点を決定し、当該代表点の位置に基づいて設定されるセグメント範囲内に位置する反射データをメンバとして抽出し、前記代表点と前記メンバとを同一のセグメントとしてグルーピングすることを特徴とする請求項1に記載する物体検出装置。   The grouping means determines a representative point from the reflection data based on a predetermined condition, extracts reflection data located within a segment range set based on the position of the representative point as a member, and the representative point The object detection apparatus according to claim 1, wherein the members and the members are grouped as the same segment. 前記セグメント履歴特定手段は、各反射データが過去に代表点かあるいはメンバかの状態を特定し、
前記セグメント識別手段は、今回グルーピングされたセグメントに属する各反射データの過去の代表点かあるいはメンバかの状態と各反射データが過去に属していたセグメントの継続状態に応じて、いずれのセグメントの識別情報を引き継ぐかを決定することを特徴とする請求項2に記載する物体検出装置。
The segment history specifying means specifies a state in which each reflection data is a representative point or a member in the past,
The segment identification means identifies any segment according to the state of the past representative point or member of each reflection data belonging to the currently grouped segment and the continuation state of the segment to which each reflection data belonged in the past. The object detection apparatus according to claim 2, wherein it is determined whether to take over the information.
レーダ検出手段が搭載される車両の走行環境を検出する走行環境検出手段と、
走行環境に応じてセグメント範囲を変更するセグメント変更手段と
を備えることを特徴とする請求項2又は請求項3に記載する物体検出装置。
Traveling environment detection means for detecting the traveling environment of the vehicle on which the radar detection means is mounted;
The object detection apparatus according to claim 2, further comprising: a segment changing unit that changes a segment range according to a traveling environment.
セグメントに属する各反射データの物理量に基づいてセグメントの物理量を算出する物理量算出手段と、
各反射データの今回及び過去の代表点かあるいはメンバかの状態に応じて、前記物理量算出手段でのセグメントの物理量算出における各反射データの重みを決定する重み決定手段と
を備えることを特徴とする請求項2〜請求項4のいずれか1項に記載する物体検出装置。
Physical quantity calculating means for calculating the physical quantity of the segment based on the physical quantity of each reflection data belonging to the segment;
Weight determination means for determining the weight of each reflection data in the calculation of the physical quantity of the segment in the physical quantity calculation means according to the state of each reflection data at the present and past representative points or members. The object detection apparatus of any one of Claims 2-4.
前記重み決定手段は、前記レーダ検出手段と前記代表点との距離に応じてメンバである反射データの重みを変更することを特徴とする請求項5に記載する物体検出装置。   6. The object detection apparatus according to claim 5, wherein the weight determination unit changes a weight of reflection data as a member according to a distance between the radar detection unit and the representative point.
JP2009115520A 2009-05-12 2009-05-12 Object detection device Expired - Fee Related JP5206579B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009115520A JP5206579B2 (en) 2009-05-12 2009-05-12 Object detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009115520A JP5206579B2 (en) 2009-05-12 2009-05-12 Object detection device

Publications (2)

Publication Number Publication Date
JP2010266225A JP2010266225A (en) 2010-11-25
JP5206579B2 true JP5206579B2 (en) 2013-06-12

Family

ID=43363336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009115520A Expired - Fee Related JP5206579B2 (en) 2009-05-12 2009-05-12 Object detection device

Country Status (1)

Country Link
JP (1) JP5206579B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3032273A1 (en) 2014-12-12 2016-06-15 Panasonic Intellectual Property Management Co., Ltd. On-board radar apparatus and region detection method

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5605395B2 (en) * 2012-06-08 2014-10-15 株式会社デンソー Vehicle determination device and program
JP2014002012A (en) * 2012-06-18 2014-01-09 Denso Corp Radar device and program
JP6084813B2 (en) * 2012-10-29 2017-02-22 古野電気株式会社 Echo signal processing device, radar device, echo signal processing method, and echo signal processing program
JP6571545B2 (en) 2016-01-19 2019-09-04 パナソニック株式会社 Object detection apparatus and object detection method
JP6914090B2 (en) * 2016-06-17 2021-08-04 株式会社デンソーテン Radar device and information transfer method
JP2017227529A (en) 2016-06-22 2017-12-28 パナソニックIpマネジメント株式会社 Radar system and tracking object determination method
JP6699568B2 (en) * 2017-01-20 2020-05-27 株式会社デンソー Vehicle control device
JP6805970B2 (en) * 2017-06-09 2020-12-23 トヨタ自動車株式会社 Target information acquisition device
JP6811914B2 (en) * 2018-11-22 2021-01-13 三菱電機株式会社 Obstacle detector
JPWO2021235251A1 (en) 2020-05-20 2021-11-25

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3723835B2 (en) * 1998-12-03 2005-12-07 国土交通省国土技術政策総合研究所長 Obstacle detection method on the road
JP2000206241A (en) * 1999-01-13 2000-07-28 Honda Motor Co Ltd Radar apparatus
JP4411810B2 (en) * 2001-08-20 2010-02-10 コニカミノルタホールディングス株式会社 Manufacturing method of radiation image conversion panel
JP2008298544A (en) * 2007-05-30 2008-12-11 Toyota Motor Corp Object detection device and control device for vehicle
JP2008302904A (en) * 2007-06-11 2008-12-18 Toyota Motor Corp Collision predictive device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3032273A1 (en) 2014-12-12 2016-06-15 Panasonic Intellectual Property Management Co., Ltd. On-board radar apparatus and region detection method
US10101448B2 (en) 2014-12-12 2018-10-16 Panasonic Intellectual Property Management Co., Ltd. On-board radar apparatus and region detection method

Also Published As

Publication number Publication date
JP2010266225A (en) 2010-11-25

Similar Documents

Publication Publication Date Title
JP5206579B2 (en) Object detection device
JP4740449B2 (en) Vertical axis deviation detection device for automotive radar
JP5852456B2 (en) Peripheral object detection device
JP6788388B2 (en) Radar device and control method of radar device
JP6092596B2 (en) Radar apparatus and signal processing method
JP6970936B2 (en) Object detector, object detection program, and recording medium
US8077075B2 (en) Object verification method for use in radar systems for motor vehicles
JP6003349B2 (en) Vehicle behavior prediction device
JP6181924B2 (en) Radar apparatus and signal processing method
JP6170704B2 (en) Radar apparatus and signal processing method
JP6022983B2 (en) Driving assistance device
CN102439480B (en) Object detecting device
US20190310362A1 (en) Method for the recognition of an object
JP5953716B2 (en) Vehicle control apparatus, specific object determination apparatus, specific object determination method, specific object determination program
US20100286874A1 (en) Collision warning device having guardrail detection
JP5714075B2 (en) On-vehicle radar device and target detection method
JP5926069B2 (en) Obstacle determination device
JP2004012198A (en) Radar
US10473760B2 (en) Radar device and vertical axis-misalignment detecting method
JP2010197133A (en) Object detecting apparatus
JP6717240B2 (en) Target detection device
KR102013224B1 (en) Autonomous Emergencyy Braking System and Controlling Method Thereof
WO2011158081A1 (en) Radar system and detection method
KR20200108464A (en) Method and apparatus for detecting critical transverse movement
KR20200070854A (en) Apparatus and method for identificating short cut-in vehicle and vehicle including the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130204

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160301

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5206579

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160301

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees