JP5205705B2 - Surface emitting laser device, array light source, phase-locked light source - Google Patents

Surface emitting laser device, array light source, phase-locked light source Download PDF

Info

Publication number
JP5205705B2
JP5205705B2 JP2006088922A JP2006088922A JP5205705B2 JP 5205705 B2 JP5205705 B2 JP 5205705B2 JP 2006088922 A JP2006088922 A JP 2006088922A JP 2006088922 A JP2006088922 A JP 2006088922A JP 5205705 B2 JP5205705 B2 JP 5205705B2
Authority
JP
Japan
Prior art keywords
emitting laser
laser device
diffraction grating
light source
surface emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006088922A
Other languages
Japanese (ja)
Other versions
JP2007266279A (en
Inventor
大介 井上
健治 伊藤
徹 加地
伊藤  博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2006088922A priority Critical patent/JP5205705B2/en
Publication of JP2007266279A publication Critical patent/JP2007266279A/en
Application granted granted Critical
Publication of JP5205705B2 publication Critical patent/JP5205705B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、面発光レーザ装置、これを複数集積したアレイ光源および位相同期光源に関する。   The present invention relates to a surface emitting laser device, an array light source in which a plurality of the surface emitting laser devices are integrated, and a phase-locked light source.

半導体レーザ装置として、いわゆる端面型発光レーザ装置がある。当該装置は、基板表面と平行方向に出力光を射出する構成となっている。端面型発光レーザ装置は、高出力化しやすいが、光が強くなると端面破壊を起こしてしまう問題がある。   As a semiconductor laser device, there is a so-called end surface type light emitting laser device. The apparatus is configured to emit output light in a direction parallel to the substrate surface. The end face type light emitting laser device is easy to increase the output, but there is a problem that the end face is destroyed when the light intensity is increased.

これに対して、半導体基板の表面側からレーザ光を射出する面発光半導体レーザ装置が知られている。この種のレーザ装置は、半導体基板の端面からレーザ光を射出する端面発光型レーザ装置に比して、光ファイバとの結合効率が高いことや、2次元的に集積化することが容易であるなどの利点を有している。このようなレーザ装置の一例として、レーザ装置の光導波路内に回折格子を備えた帰還分布型のレーザ装置が知られている(例えば、特許文献1参照)。   On the other hand, a surface emitting semiconductor laser device that emits laser light from the surface side of a semiconductor substrate is known. This type of laser device has higher coupling efficiency with an optical fiber and can be easily integrated two-dimensionally than an edge-emitting laser device that emits laser light from the end surface of a semiconductor substrate. It has the advantages such as. As an example of such a laser apparatus, a feedback distribution type laser apparatus having a diffraction grating in an optical waveguide of the laser apparatus is known (for example, see Patent Document 1).

このレーザ装置は、下部クラッド層と、その下部クラッド層上に積層された活性層と、その活性層上に積層された上部クラッド層を備えている。すなわち、一対のクラッド層間に活性層が形成されている積層構造を備えている。活性層と上部クラッド層との間には回折格子が形成され、回折格子は活性層と平行な面内に形成されている。この積層構造は共振器として機能する。   The laser device includes a lower cladding layer, an active layer stacked on the lower cladding layer, and an upper cladding layer stacked on the active layer. That is, it has a laminated structure in which an active layer is formed between a pair of clad layers. A diffraction grating is formed between the active layer and the upper cladding layer, and the diffraction grating is formed in a plane parallel to the active layer. This laminated structure functions as a resonator.

上記回折格子群は、中心を共通した点対称に形成されているために、回折格子が形成されている面内では利得領域の異方性が存在していない。従って、射出レーザ光の偏波方向が定まらないという問題がある。偏波方向が定まらないと、ビーム品質のよいレーザ光を得られない場合が多い。
特開平10−209554号公報
Since the diffraction grating group is formed point-symmetric with a common center, there is no anisotropy of the gain region in the plane where the diffraction grating is formed. Therefore, there is a problem that the polarization direction of the emitted laser beam is not determined. If the polarization direction is not determined, it is often impossible to obtain laser light with good beam quality.
JP-A-10-209554

本発明は、上記課題を解決することを目的とする。すなわち、本発明は、ビーム品質が良好で、端面破壊といった問題が生じない面発光レーザ装置、これを複数集積したアレイ光源および位相同期光源を提供することを目的とする。   The present invention aims to solve the above problems. That is, an object of the present invention is to provide a surface emitting laser device that has good beam quality and does not cause problems such as end face destruction, an array light source and a phase-locked light source in which a plurality of these are integrated.

上記課題を解決すべく鋭意検討した結果、本発明者らは下記本発明に想到し、当該課題を解決できることを見出した。   As a result of intensive studies to solve the above problems, the present inventors have conceived the following present invention and found that the problems can be solved.

すなわち、本発明は、基板上に、P型半導体とN型半導体との間に光活性層を有する積層構造を有し、前記積層構造の上に設けられ、前記積層構造の積層方向に電流を注入し十字状に利得が得られる電流注入機構を有し、前記積層構造の積層方向における前記基板と前記電流注入機構との間に、前記基板の積層面に対し平行方向、かつ、前記基板の端面に対して傾斜方向に複数の2次回折格子を有することを特徴とする面発光レーザ装置である。 That is, the present invention has a stacked structure having a photoactive layer between a P-type semiconductor and an N-type semiconductor on a substrate, and is provided on the stacked structure, and current is supplied in the stacking direction of the stacked structure. injected have a current injection mechanism gain is obtained in a cross shape, between the substrate and the current injection mechanism in the stacking direction of the laminated structure, direction parallel to the lamination plane of the substrate, and the substrate a surface emitting laser device which is characterized in that have a plurality of secondary diffraction grating inclined direction with respect to the end face.

上記特定構造の2次回折格子を有し、前記基板の中央部に電流を注入し十字状に利得が得られる電流注入機構を有することで、ビーム品質を良好なものとすることができる。また、本発明は面発光レーザ装置であるため、端面破壊といった問題が生じない。 A secondary diffraction grating of the specific structure, before Symbol by having the injected current injection mechanism that gain is obtained in a cross shape a current in the central portion of the substrate, it is possible to make the beam quality favorable . Further, since the present invention is a surface emitting laser device, the problem of end face destruction does not occur.

本発明の面発光レーザ装置は、下記第1〜第3の態様のうち少なくともいずれかの態様を具備することが好ましい。   The surface emitting laser device of the present invention preferably includes at least one of the following first to third aspects.

(1)第1の態様は、前記複数の2次回折格子が形成された領域に回折格子欠陥がある態様である。回折格子欠陥があることで、光強度のプロファイルを調整でき、特に欠陥がλ/4の大きさであるとき、単峰性のビームプロファイルとなり、レーザ光の品質(ビーム品質)をより良好なものとすることができる。 (1) A 1st aspect is an aspect with a diffraction grating defect in the area | region in which the said some 2nd-order diffraction grating was formed. Due to the presence of diffraction grating defects, the light intensity profile can be adjusted. Especially when the defect has a size of λ / 4, the beam profile is unimodal, and the laser beam quality (beam quality) is improved. It can be.

(2)第2の態様は、前記電流注入機構上、又は前記積層構造の積層方向における前記電流注入機構と前記2次回折格子との間に、さらに反射膜を有する態様である。当該反射膜を設けることで、光の取り出し効率が向上するため、品質のよいレーザ光を効率よく得ることができる。 (2) The second mode is a mode in which a reflective film is further provided on the current injection mechanism or between the current injection mechanism and the second-order diffraction grating in the stacking direction of the stacked structure . Since the light extraction efficiency is improved by providing the reflective film, high-quality laser light can be efficiently obtained.

(3)第3の態様は、活性層の一部に光線に対して透明な量子井戸を有している態様である。透明となっていることで、量子井戸による光の吸収を大幅に減らせるため、品質のよいレーザ光を効率よく得ることができる。
(3) A 3rd aspect is an aspect which has a quantum well transparent with respect to a light beam in a part of active layer . Since it is transparent, the absorption of light by the quantum well can be greatly reduced, so that high-quality laser light can be obtained efficiently.

また、本発明は、既述の本発明の面発光レーザ装置を複数個集積化したアレイ光源である。さらに、本発明は、既述の本発明の面発光レーザ装置を複数個集積化した位相同期光源である。これらは、本発明の面発光レーザ装置を複数備えるため、ビーム品質が良好で、端面破壊といった問題が生じないといった効果を発揮する。   Further, the present invention is an array light source in which a plurality of the surface emitting laser devices of the present invention described above are integrated. Furthermore, the present invention is a phase-locked light source in which a plurality of the surface emitting laser devices of the present invention described above are integrated. Since these are provided with a plurality of the surface emitting laser devices of the present invention, the beam quality is good, and the effect that the problem of end face destruction does not occur is exhibited.

本発明によれば、ビーム品質が良好で、端面破壊といった問題が生じない面発光レーザ装置、これを複数集積したアレイ光源および位相同期光源を提供することができる。   According to the present invention, it is possible to provide a surface emitting laser device that has good beam quality and does not cause problems such as end face destruction, an array light source and a phase-locked light source in which a plurality of these are integrated.

本発明の面発光レーザ装置について、図面を参照しながら説明する。なお、以下の図面の説明で、一度説明した符号については、以下の図面で説明を省略することがある。   The surface-emitting laser device of the present invention will be described with reference to the drawings. In the following description of the drawings, the description of the reference numerals once described may be omitted in the following drawings.

本発明の面発光レーザ装置は、図1に例示するように、基板10の一方の面側にN型半導体としてのN型クラッド層12、ガイド層14、活性層16、ガイド層18、P型クラッド層20、P型半導体としてのP型コンタクト層22を有し、さらにその上に電流注入機構としてのP型電極26を有する。また、基板10の他方の面側には、N型電極を有する(不図示)。P型電極26の下方には、基板10の積層面に対し平行方向、かつ、基板10の端面に対して傾斜方向に複数の2次回折格子24が設けられている。そして、利得が基板10の垂直方向に十字状に通過する電流注入機構が設けられている。   As illustrated in FIG. 1, the surface-emitting laser device of the present invention has an N-type clad layer 12, a guide layer 14, an active layer 16, a guide layer 18, and a P-type as an N-type semiconductor on one surface side of a substrate 10. The clad layer 20 has a P-type contact layer 22 as a P-type semiconductor, and further has a P-type electrode 26 as a current injection mechanism thereon. Further, an N-type electrode is provided on the other surface side of the substrate 10 (not shown). A plurality of second-order diffraction gratings 24 are provided below the P-type electrode 26 in a direction parallel to the laminated surface of the substrate 10 and in an inclined direction with respect to the end surface of the substrate 10. A current injection mechanism is provided in which the gain passes in a cross shape in the vertical direction of the substrate 10.

N型電極は、Ti/Auなどで構成される。基板10(例えば、N型基板)およびN型クラッド層12は、硫黄をドープしたInPなどで構成される。ガイド層14,18は、InGaAsPなどで構成され、活性層16は、InGaAsP/InGaAsPなどで構成される。P型クラッド層20は、ZnをドープしたInPあるいはInGaAsなどで構成される。P型コンタクト層22は、高濃度にZnをドープしたInPなどで構成される。そして、P型電極26は、Pt/Ti/Auなどで構成される。   The N-type electrode is made of Ti / Au or the like. The substrate 10 (for example, an N-type substrate) and the N-type clad layer 12 are made of InP doped with sulfur. The guide layers 14 and 18 are made of InGaAsP or the like, and the active layer 16 is made of InGaAsP / InGaAsP or the like. The P-type cladding layer 20 is made of InP or InGaAs doped with Zn. The P-type contact layer 22 is made of InP doped with Zn at a high concentration. The P-type electrode 26 is made of Pt / Ti / Au or the like.

さらに、P型電極26上には、反射膜28が設けられている。反射膜28は、TiO/SiOなどで構成される。   Further, a reflective film 28 is provided on the P-type electrode 26. The reflective film 28 is made of TiO / SiO or the like.

かかる面発光レーザ装置の各層は、公知のMOCVD法により形成することができる。2次回折格子24は、まず、半導体基板上にレジストを塗布し、電子線描画装置などで露光し現像することで、レジストの周期構造を作る。その後に、燐酸、過酸化水素水、水による混合液などで、レジストをマスクとしてエッチングを行い、パターンを半導体基板上に転写することで、作製する。   Each layer of the surface emitting laser device can be formed by a known MOCVD method. The second-order diffraction grating 24 first forms a resist periodic structure by coating a resist on a semiconductor substrate, exposing and developing it with an electron beam drawing apparatus or the like. After that, etching is performed using phosphoric acid, hydrogen peroxide solution, a mixed solution of water or the like using the resist as a mask, and the pattern is transferred onto the semiconductor substrate.

2次回折格子24の傾斜角度は、42〜48°であることが好ましく、45°であることがより好ましい。この2次回折格子24の間隔(図2中の「Λ」)は、Λ=mλ/(2nrsinθ)[λは発振波長、nrは屈折率、θは傾斜角、mは正の整数]で、λ=1550、nr=3.3、θ=45°、m=2とすると、664nm程度で等間隔とすることが好ましく、その深さは150nm程度で形成されることが好ましい。 The inclination angle of the second-order diffraction grating 24 is preferably 42 to 48 °, and more preferably 45 °. The interval between the second-order diffraction gratings 24 (“Λ” in FIG. 2) is Λ = mλ / (2n r sin θ) [λ is the oscillation wavelength, n r is the refractive index, θ is the tilt angle, and m is a positive integer. ], Λ = 1550, n r = 3.3, θ = 45 °, and m = 2, it is preferable that the distance is about 664 nm, and the depth is preferably about 150 nm.

本発明の面発光レーザ装置では、まず、図2に示すように、等間隔にある回折格子24に斜めに光線が入射されると入射角と同じ方向に回折光が強く現れる。ここで、図3に示すように、四隅が基板の端面中央部に近づくようにP型電極26を設置すると、図4に示すように、回折格子24を通過した光線は直進し、回折を受けた光線は直角に折れ曲がる。これらの光線は基板端面にて反射され、再び回折格子によって同じような通過と直角の反射を受けるため、共振モードは十字状に励起される。また、電流注入のない部分は、活性層は光学損失として働く。従って、図5に示すように、回折光のうち電流注入のない部分を通過した光線は損失を受けて減衰する。さらに、端面に光線が直角に入射しない場合、反射率は著しく低減するため、そのような光学モードは存在しない。以上のような理由から、図3に示すような十字状の共振モードのみが励起される単一モードレーザになる。   In the surface emitting laser device of the present invention, first, as shown in FIG. 2, when light rays are obliquely incident on the diffraction grating 24 at equal intervals, diffracted light appears strongly in the same direction as the incident angle. Here, as shown in FIG. 3, when the P-type electrode 26 is installed so that the four corners approach the center of the end face of the substrate, the light beam that has passed through the diffraction grating 24 goes straight and undergoes diffraction as shown in FIG. The light beam bends at a right angle. Since these light rays are reflected at the end face of the substrate and are again reflected by the diffraction grating at a right angle with the same passage, the resonance mode is excited in a cross shape. In the portion where no current is injected, the active layer acts as an optical loss. Therefore, as shown in FIG. 5, the light beam that has passed through the portion of the diffracted light where no current is injected is lost and attenuated. Furthermore, if the light does not enter the end face at a right angle, the reflectivity is significantly reduced, so there is no such optical mode. For the reasons described above, a single mode laser in which only the cross-shaped resonance mode as shown in FIG. 3 is excited is obtained.

次に、図6に示すように、対角線上に2次回折格子24が形成された領域に意図的に回折格子欠陥(単に、「格子欠陥」ともいう)23を設けるとビーム品質が向上する場合がある。これは、欠陥によって、回折格子に意図的な境界条件が与えられ、再現性のある光強度分布が得られるため、と考えられる。例えば、格子欠陥23が1/4Λシフトの場合、光の強度分布は図7に示すように、中央部の光強度が高くなり単峰性となる。格子欠陥23の態様としては、一次回折格子の場合、波長の1/4の長さ、m次回折格子の場合、波長のm/4の長さ(屈折率nを考慮すると、mλ/(4nsinθ):λは発振波長、mは整数、θは傾斜角)とすることが好ましい。   Next, as shown in FIG. 6, when the quality of the beam is improved by intentionally providing a diffraction grating defect (also simply referred to as “grating defect”) 23 in a region where the secondary diffraction grating 24 is formed on a diagonal line, There is. This is considered because the intentional boundary condition is given to the diffraction grating due to the defect, and a reproducible light intensity distribution is obtained. For example, when the lattice defect 23 is ¼ Λ shift, the light intensity distribution becomes unimodal with the light intensity at the center being high, as shown in FIG. As an aspect of the grating defect 23, in the case of the first-order diffraction grating, the length of 1/4 of the wavelength, and in the case of the m-order diffraction grating, the length of m / 4 of the wavelength (considering the refractive index n, mλ / (4 n sin θ ): Λ is preferably an oscillation wavelength, m is an integer, and θ is an inclination angle.

また、2次回折格子24を使用すると図8に示すように、レーザ光を基板に対して垂直に取り出すことができる。また、2次回折格子24を格子欠陥23の周辺に設け、さらに2次回折格子24の周辺に1次回折格子25を設けてもよい。1次回折格子は、面内の向きを変えるのに有効であり、良好な動作性を得られる。   If the second-order diffraction grating 24 is used, the laser beam can be taken out perpendicular to the substrate as shown in FIG. Alternatively, the second-order diffraction grating 24 may be provided around the grating defect 23, and the first-order diffraction grating 25 may be provided around the second-order diffraction grating 24. The first-order diffraction grating is effective for changing the orientation in the plane, and good operability can be obtained.

図9は、P型電極26中央に穴(例えば、φ数μm〜数百μm)を開け、この穴を光の窓としてP型電極26側から光線を取り出す態様を示している。このようにすると、製造プロセスが容易になる。一方、図10は、基板10の裏面のN型電極に穴(例えば、φ数μm〜数百μm)を開け、基板10裏面より光線を取り出す態様を示している。このようにすると、光の分布はガウシアンに近づくため、大型の面発光レーザにも関わらず、ビーム品質を向上させることができる。   FIG. 9 shows a mode in which a hole (for example, φ several μm to several hundred μm) is formed in the center of the P-type electrode 26 and light is extracted from the P-type electrode 26 side using this hole as a light window. This facilitates the manufacturing process. On the other hand, FIG. 10 shows a mode in which holes (for example, φ several μm to several hundred μm) are formed in the N-type electrode on the back surface of the substrate 10 and light rays are extracted from the back surface of the substrate 10. In this case, since the light distribution is close to Gaussian, the beam quality can be improved despite the large surface emitting laser.

図11に示すように、反射膜28をP型電極26の下に形成することで、効率を向上させることができる。2次回折格子は両側に光線が放射されるが、図12に示すように、P型電極26面は散乱面として働くため光を望ましくないほうに出してしまう。これに対し、図11および図13に示すように、適切な位置に反射膜28を形成することで、光の取り出し効率を向上させることができる。「適切な位置」としては、半導体と電極との間といった箇所にすることが好ましい。なお、図13に示すように、活性層16の一部16Aを量子井戸の無秩序化などにより量子井戸透明化をすることによって、光線の吸収率を低減させると、さらなる高出力が得られる。   As shown in FIG. 11, the efficiency can be improved by forming the reflective film 28 under the P-type electrode 26. Light rays are radiated on both sides of the second-order diffraction grating. However, as shown in FIG. 12, the surface of the P-type electrode 26 acts as a scattering surface, and emits light in an undesirable direction. On the other hand, as shown in FIGS. 11 and 13, the light extraction efficiency can be improved by forming the reflective film 28 at an appropriate position. The “appropriate position” is preferably a location such as between the semiconductor and the electrode. As shown in FIG. 13, if the light absorptance is reduced by making a part of the active layer 16 16A transparent by quantum well disordering or the like, a higher output can be obtained.

図14〜図16に示すように、P型電極26の形状にはさまざまな変形例がある。本発明では、図14(A)に示すように、十字状の光線パス(共振モード)ができることが重要であるため、P型電極26の形状は必ずしも図14(B)のような菱形でなくてもよい。図14(B)に示すように、菱形の頂点が端面と一定距離重なるような形状でもよく、図14(C)に示すように、十文字状の形状としてもよい。また、図15(A)のように素子が長方形の場合には、図15(B)に示すように、横に長い菱形としてもよい。さらに、図16に示すように、十字状の共振モードの中心は図16(A)に示すように素子中央でなくてもよい。この場合、P型電極26形状もそれに対応した形状(図16(B)の菱形形状など)とすることができる。また、電極の縁は、直線でなく曲線でもよい。   As shown in FIGS. 14 to 16, the shape of the P-type electrode 26 has various modifications. In the present invention, as shown in FIG. 14A, it is important that a cross-shaped light path (resonance mode) can be formed. Therefore, the shape of the P-type electrode 26 is not necessarily a rhombus as shown in FIG. May be. As shown in FIG. 14 (B), the shape of the rhombus may overlap with the end face by a certain distance, or as shown in FIG. 14 (C), it may have a cross shape. Further, in the case where the element is rectangular as shown in FIG. 15A, as shown in FIG. Furthermore, as shown in FIG. 16, the center of the cross-shaped resonance mode may not be the center of the element as shown in FIG. In this case, the shape of the P-type electrode 26 can also be a shape corresponding to the shape (such as the diamond shape in FIG. 16B). The edge of the electrode may be a curve instead of a straight line.

本発明の面発光レーザ装置は、図17に示すように、2次回折格子24を埋め込み成長で構成してもよい。かかる構成とすることで、P型電極26と2次回折格子24とが合金化して効率低下するのを防止することができる。   In the surface emitting laser device of the present invention, as shown in FIG. 17, the second-order diffraction grating 24 may be formed by embedded growth. By adopting such a configuration, it is possible to prevent the efficiency of the P-type electrode 26 and the second-order diffraction grating 24 from being alloyed to reduce the efficiency.

以上のような本発明の面発光レーザ装置を図18に示すように平面的に複数集積することで、位相同期が可能となり、アレイ光源や位相同期光源などに適用することができる。   As shown in FIG. 18, a plurality of the surface-emitting laser devices of the present invention are integrated in a planar manner as shown in FIG. 18 so that phase synchronization is possible, and it can be applied to an array light source or a phase-synchronized light source.

アレイ光源としては、隣接する素子と独立動作するように素子間隔を十分大きくするか、十字パスが重ならないように配置を工夫するような形態とすることが好ましい。また、位相同期光源としては、結合定数Kと素子の中心間隔Lにおいて、nKL(nは正数)となるように配置する形態とすることが好ましい。   It is preferable that the array light source has a configuration in which the element interval is sufficiently large so that the array light source operates independently of the adjacent elements, or the arrangement is devised so that the cross paths do not overlap. In addition, the phase-synchronized light source is preferably arranged so as to be nKL (n is a positive number) in the coupling constant K and the element center distance L.

本発明の面発光レーザ装置の層構成を示す斜視図である。It is a perspective view which shows the layer structure of the surface emitting laser apparatus of this invention. 2次回折格子により光の回折を説明するための説明図である。It is explanatory drawing for demonstrating the diffraction of light with a secondary diffraction grating. 本発明の面発光レーザ装置の共振モードを説明するための説明図である。It is explanatory drawing for demonstrating the resonance mode of the surface emitting laser apparatus of this invention. 本発明の面発光レーザ装置の共振モードを説明するための説明図である。It is explanatory drawing for demonstrating the resonance mode of the surface emitting laser apparatus of this invention. 本発明の面発光レーザ装置の共振モードを説明するための説明図である。It is explanatory drawing for demonstrating the resonance mode of the surface emitting laser apparatus of this invention. 2次回折格子が形成された領域に回折格子欠陥が設けられた状態を示す模式図である。It is a schematic diagram which shows the state by which the diffraction grating defect was provided in the area | region in which the 2nd-order diffraction grating was formed. 2次回折格子が形成された領域に回折格子欠陥が設けられた状態における共振モードを説明するための説明図である。It is explanatory drawing for demonstrating the resonance mode in the state in which the diffraction grating defect was provided in the area | region in which the secondary diffraction grating was formed. 1次回折格子、2次回折格子、回折格子欠陥が設けられた状態を示す模式図である。It is a schematic diagram which shows the state in which the 1st diffraction grating, the 2nd diffraction grating, and the diffraction grating defect were provided. 上面放射の現象を説明するための説明図である。It is explanatory drawing for demonstrating the phenomenon of top surface radiation. 下面放射の現象を説明するための説明図である。It is explanatory drawing for demonstrating the phenomenon of bottom emission. 反射膜を設けた本発明の面発光レーザ装置の層構成を示す斜視図である。It is a perspective view which shows the layer structure of the surface emitting laser apparatus of this invention which provided the reflecting film. 本発明の面発光レーザ装置の層構成を示す断面図である。It is sectional drawing which shows the layer structure of the surface emitting laser apparatus of this invention. 反射膜を設けた本発明の面発光レーザ装置の層構成を示す断面図である。It is sectional drawing which shows the layer structure of the surface emitting laser apparatus of this invention which provided the reflecting film. 共振モードを説明するための説明図とP型電極の形状を例示する上面図である。It is explanatory drawing for demonstrating a resonance mode, and the top view which illustrates the shape of a P-type electrode. 共振モードを説明するための説明図とP型電極の形状を例示する上面図である。It is explanatory drawing for demonstrating a resonance mode, and the top view which illustrates the shape of a P-type electrode. 共振モードを説明するための説明図とP型電極の形状を例示する上面図である。It is explanatory drawing for demonstrating a resonance mode, and the top view which illustrates the shape of a P-type electrode. 2次回折格子を内層側に設けた本発明の面発光レーザ装置の層構成を示す斜視図である。It is a perspective view which shows the layer structure of the surface emitting laser apparatus of this invention which provided the 2nd-order diffraction grating in the inner layer side. アレイ光源を例示する斜視図である。It is a perspective view which illustrates an array light source.

符号の説明Explanation of symbols

10・・・基板
12・・・N型クラッド層
14・・・ガイド層
16・・・活性層
18・・・ガイド層
20・・・P型クラッド層
22・・・P型コンタクト層
24・・・2次回折格子
26・・・P型電極
28・・・反射膜
DESCRIPTION OF SYMBOLS 10 ... Substrate 12 ... N-type clad layer 14 ... Guide layer 16 ... Active layer 18 ... Guide layer 20 ... P-type clad layer 22 ... P-type contact layer 24 ... Second-order diffraction grating 26 P-type electrode 28 Reflective film

Claims (6)

基板上に、P型半導体とN型半導体との間に光活性層を有する積層構造を有し、
前記積層構造の上に設けられ、前記積層構造の積層方向に電流を注入し十字状に利得が得られる電流注入機構を有し、
前記積層構造の積層方向における前記基板と前記電流注入機構との間に、前記基板の積層面に対し平行方向、かつ、前記基板の端面に対して傾斜方向に複数の2次回折格子を有することを特徴とする面発光レーザ装置。
On the substrate, it has a laminated structure having a photoactive layer between a P-type semiconductor and an N-type semiconductor,
Wherein provided on the stacked structure, it possesses the current injection mechanism gain current is injected in a cross shape in the laminating direction of the multilayer structure is obtained,
Between the substrate and the current injection mechanism in the stacking direction of the laminated structure, direction parallel to the lamination plane of the substrate, and to have a plurality of secondary diffraction grating inclination direction with respect to the end face of the substrate A surface-emitting laser device.
前記複数の2次回折格子が形成された領域に回折格子欠陥があることを特徴とする請求項1に記載の面発光レーザ装置。   2. The surface emitting laser device according to claim 1, wherein there is a diffraction grating defect in a region where the plurality of secondary diffraction gratings are formed. 前記電流注入機構上、又は前記積層構造の積層方向における前記電流注入機構と前記2次回折格子との間に、さらに、反射膜を有することを特徴とする請求項1または2に記載の面発光レーザ装置。 The surface light emission according to claim 1 or 2, further comprising a reflective film on the current injection mechanism or between the current injection mechanism and the second-order diffraction grating in the stacking direction of the stacked structure. Laser device. 前記活性層の一部に光線に対して透明な量子井戸を有することを特徴とする請求項1〜3のいずれか1項に記載の面発光レーザ装置。   The surface emitting laser device according to claim 1, wherein a part of the active layer has a quantum well that is transparent to light. 面発光レーザ装置を複数個集積化したアレイ光源であって、前記面発光レーザ装置が請求項1〜4のいずれか1項に記載の面発光レーザ装置であることを特徴とするアレイ光源。   An array light source in which a plurality of surface emitting laser devices are integrated, wherein the surface emitting laser device is the surface emitting laser device according to any one of claims 1 to 4. 面発光レーザ装置を複数個集積化した位相同期光源であって、前記面発光レーザ装置が請求項1〜4のいずれか1項に記載の面発光レーザ装置であることを特徴とする位相同期光源。   A phase-locked light source in which a plurality of surface-emitting laser devices are integrated, wherein the surface-emitting laser device is the surface-emitting laser device according to any one of claims 1 to 4. .
JP2006088922A 2006-03-28 2006-03-28 Surface emitting laser device, array light source, phase-locked light source Expired - Fee Related JP5205705B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006088922A JP5205705B2 (en) 2006-03-28 2006-03-28 Surface emitting laser device, array light source, phase-locked light source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006088922A JP5205705B2 (en) 2006-03-28 2006-03-28 Surface emitting laser device, array light source, phase-locked light source

Publications (2)

Publication Number Publication Date
JP2007266279A JP2007266279A (en) 2007-10-11
JP5205705B2 true JP5205705B2 (en) 2013-06-05

Family

ID=38638980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006088922A Expired - Fee Related JP5205705B2 (en) 2006-03-28 2006-03-28 Surface emitting laser device, array light source, phase-locked light source

Country Status (1)

Country Link
JP (1) JP5205705B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7052294B2 (en) * 2017-11-01 2022-04-12 ウシオ電機株式会社 Semiconductor light emitting device and manufacturing method of semiconductor light emitting device

Also Published As

Publication number Publication date
JP2007266279A (en) 2007-10-11

Similar Documents

Publication Publication Date Title
JP4533339B2 (en) Surface emitting laser
JP5171318B2 (en) Surface emitting laser array
KR100759603B1 (en) Vertical cavity surface emitting laser device
US7733936B2 (en) Surface emitting laser
JP4709259B2 (en) Surface emitting laser
JP5177285B2 (en) Optical element and manufacturing method thereof
JP4338211B2 (en) Structure with photonic crystal, surface emitting laser
JP5183555B2 (en) Surface emitting laser array
JP5182362B2 (en) Optical element and manufacturing method thereof
JP2003273456A (en) Two-dimensional photonic crystal face emitting laser
JP2008288557A (en) Structure having photonic crystal layer and surface emitting laser including same
JP2007073945A (en) Surface emission laser and manufacturing method of two-dimensional photonic crystal therein
JP2007243072A (en) Semiconductor optical amplifier composite semiconductor laser apparatus
JP5224310B2 (en) Vertical cavity surface emitting laser
JP2008098379A (en) Two dimensional photonic crystalline surface emission laser and its manufacturing method
JP4868437B2 (en) Semiconductor laser
JP5205705B2 (en) Surface emitting laser device, array light source, phase-locked light source
JP4753311B2 (en) Mirror using photonic crystal and surface emitting laser using the same
JP4897946B2 (en) Semiconductor optical device and manufacturing method thereof
CN111448726B (en) Light emitting device and method for manufacturing the same
JP2007234721A (en) Vertical resonator type surface-emitting laser
JPH07231138A (en) Surface light-emitting semiconductor laser
JPH09214047A (en) Surface emitting semiconductor laser
JP5035018B2 (en) Semiconductor laser element
JP2001168448A (en) Semiconductor laser

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120807

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130204

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160301

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5205705

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160301

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees