JP5196332B2 - Heavy metal elution reducing material and method for producing the same - Google Patents

Heavy metal elution reducing material and method for producing the same Download PDF

Info

Publication number
JP5196332B2
JP5196332B2 JP2010021634A JP2010021634A JP5196332B2 JP 5196332 B2 JP5196332 B2 JP 5196332B2 JP 2010021634 A JP2010021634 A JP 2010021634A JP 2010021634 A JP2010021634 A JP 2010021634A JP 5196332 B2 JP5196332 B2 JP 5196332B2
Authority
JP
Japan
Prior art keywords
light
reducing material
heavy metal
weight
elution reducing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010021634A
Other languages
Japanese (ja)
Other versions
JP2011156504A (en
Inventor
健史 國西
定人 菊池
博史 野村
透 松尾
真紀 関廣
純成 山下
秀貴 近藤
尚 井ノ川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Osaka Cement Co Ltd
Original Assignee
Sumitomo Osaka Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Osaka Cement Co Ltd filed Critical Sumitomo Osaka Cement Co Ltd
Priority to JP2010021634A priority Critical patent/JP5196332B2/en
Publication of JP2011156504A publication Critical patent/JP2011156504A/en
Application granted granted Critical
Publication of JP5196332B2 publication Critical patent/JP5196332B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)

Description

本発明は、主として汚染土壌等から有害重金属が溶出することを抑制する重金属溶出低減材とその製造方法に関し、特に、有害化学物質を含んだ汚染土壌に対して好適な重金属溶出低減材とその製造方法に関する。
TECHNICAL FIELD The present invention relates to a heavy metal elution reducing material that suppresses the elution of harmful heavy metals mainly from contaminated soil and the like, and its manufacturing method, and particularly to a heavy metal elution reducing material suitable for contaminated soil containing harmful chemical substances and its production. Regarding the method.

近年、工場跡地における土壌汚染や、産業廃棄物等の不法投棄による土壌汚染が社会問題として指摘されるようになり、このような汚染土壌から化学物質が溶出することを抑制する方法が、種々試みられている。   In recent years, soil contamination at the site of factories and soil contamination due to illegal dumping of industrial waste, etc. have been pointed out as social problems, and various attempts have been made to prevent chemical substances from eluting from such contaminated soil. It has been.

例えば、該汚染土壌中に含まれる重金属に対しては、酸化マグネシウム、軽焼ドロマイト、セメント、ゼオライト、鉄塩、高炉スラグなど用いて溶出低減処理を図ることが提案されている。なかでも、ドロマイトは、栃木県葛生地方など日本国内でも大量に産出する鉱物であるため、比較的安価に入手することができ、該ドロマイトを低温で焼成した軽焼ドロマイトは、溶出低減材としても注目されている(下記特許文献1参照)。   For example, it has been proposed that a heavy metal contained in the contaminated soil be subjected to an elution reduction treatment using magnesium oxide, light burned dolomite, cement, zeolite, iron salt, blast furnace slag, or the like. Among them, dolomite is a mineral that is produced in large quantities in Japan such as the Kuzuu region in Tochigi Prefecture, so it can be obtained relatively inexpensively. It is attracting attention (see Patent Document 1 below).

ところで、この軽焼ドロマイトは、ドロマイトの主成分であるCaCO3やMgCO3に由来するカルシウムイオンやマグネシウムイオンが、ポゾラン反応やゲル化反応を起こすことによって重金属の溶出を抑制するものと言われているが、従来の軽焼ドロマイトにおいては、産出した鉱物であるドロマイトを軽焼して軽焼ドロマイトを調製する際、その調製条件によって得られた軽焼ドロマイトの溶出低減効果が大きく変動する場合があり、調製条件の設定が難しいという問題があった。 By the way, this light-burned dolomite is said to suppress elution of heavy metals by causing calcium ions and magnesium ions derived from CaCO 3 and MgCO 3 which are the main components of dolomite to cause a pozzolanic reaction or a gelling reaction. However, in the conventional light burned dolomite, when lightly burned dolomite is prepared by lightly burning the produced dolomite, the dissolution reduction effect of the light burned dolomite may vary greatly depending on the preparation conditions. There was a problem that it was difficult to set the preparation conditions.

また、従来の軽焼ドロマイトを単独で使用するだけでは重金属等の溶出抑制効果が十分とは言えず、溶出低減効果を高めるために他の溶出低減手段を併用しなければならないという問題があった。   In addition, the use of conventional light burned dolomite alone is not sufficient to suppress elution of heavy metals and the like, and there is a problem that other elution reducing means must be used in combination to enhance the elution reduction effect. .

特開2006−289306号公報JP 2006-289306 A

本発明は、上述の如き従来技術の問題点に鑑み、重金属の溶出抑制作用の優れた溶出低減材を提供すること、及び、重金属の溶出抑制作用の優れた溶出低減材の製造方法を提供することを目的とする。
In view of the above problems of such prior art, to provide an excellent elution reducing material elution suppression effect of heavy metals, and a manufacturing method excellent elution reducing material elution suppression effect of heavy metals The purpose is to provide.

本発明らが鋭意研究を行った結果、ドロマイト等の炭酸マグネシウム含有鉱物を比較的低温で焼成(本発明において、「軽焼」ともいう)してカルシウムとマグネシウムを含む組成物を生成させる際、ある特定の軽焼条件とすることで、溶出抑制作用の優れた溶出低減材を調製しうることを見出し、本発明を想到するに到った。   As a result of diligent research by the present inventors, when a magnesium carbonate-containing mineral such as dolomite is fired at a relatively low temperature (also referred to as “light calcining” in the present invention) to produce a composition containing calcium and magnesium, The inventors have found that an elution reducing material having an excellent elution suppression effect can be prepared by using a specific light baking condition, and have arrived at the present invention.

すなわち、本発明は、CaCO3をCaO換算で9〜40重量%、MgCO3をMgO換算で10〜38重量%含有し、ブレーン値が2000〜3000cm2/gの粒子状である鉱物を、650〜1000℃の条件下で軽焼するとともに、該軽焼による重量減少率が9〜20%となった時点で該軽焼を終了させることで得られた軽焼生成物であって、BET比表面積が5〜10m2/gであり、且つ細孔径分布のピーク半径が10〜20nmの範囲内である軽焼生成物を含有することを特徴とする重金属溶出低減材を提供する
That is, the present invention contains a mineral in the form of particles having a CaCO 3 content of 9 to 40% by weight in terms of CaO, a MgCO 3 content of 10 to 38% by weight in terms of MgO, and a Blaine value of 2000 to 3000 cm 2 / g. A light-burning product obtained by light-burning at a temperature of ˜1000 ° C. and terminating the light-burning when the weight reduction rate due to the light baking reaches 9-20%, Provided is a heavy metal elution reducing material characterized by containing a light-burning product having a surface area of 5 to 10 m 2 / g and a peak radius of pore size distribution within a range of 10 to 20 nm.

また、本発明は、CaCO3をCaO換算で9〜40重量%、MgCO3をMgO換算で10〜38重量%含有する鉱物をブレーン値が2000〜3000cm2/gの粒子状に粉砕して、650〜1000℃の条件下で軽焼するとともに、該軽焼による重量減少率が9〜20%となった時点で該軽焼を終了させて軽焼生成物とし、該軽焼生成物を用いて重金属溶出低減材を調製することを特徴とする重金属溶出低減材の製造方法を提供する。
In the present invention, a mineral containing 9 to 40% by weight of CaCO 3 in terms of CaO and 10 to 38% by weight of MgCO 3 in terms of MgO is pulverized into particles having a brain value of 2000 to 3000 cm 2 / g, Lightly baked under conditions of 650 to 1000 ° C., and when the weight reduction rate due to the light baking reaches 9 to 20%, the light baking is terminated to obtain a lightly burned product, and the light burned product is used. to provide a method of manufacturing a heavy metal elution reducing material, characterized by preparing a heavy metal elution reducing material Te.

本発明に係る重金属溶出低減材は、CaCO3をCaO換算で9〜40重量%、MgCO3をMgO換算で10〜38重量%含有し、ブレーン値が2000〜3000cm2/gの粒子状である鉱物を、650〜1000℃の条件下で軽焼するとともに、該軽焼による重量減少率が9〜20%となった時点で該軽焼を終了させることで得られた軽焼生成物であって、BET比表面積が5〜10m2/gであり、且つ細孔径分布のピーク半径が10〜20nmの範囲内である軽焼生成物を含有するものであるが、斯かる構成の軽焼生成物は、従来の軽焼生成物と比較して、細孔径が小さく且つBET比表面積が大きいものであり、このような軽焼生成物を含有する溶出低減材を用いることで、優れた溶出抑制作用を発揮させることができる。
The heavy metal elution reducing material according to the present invention contains CaCO 3 in an amount of 9 to 40% by weight in terms of CaO, MgCO 3 in an amount of 10 to 38% by weight in terms of MgO, and has a Blaine value of 2000 to 3000 cm 2 / g. Lightly burned product obtained by lightly burning minerals under conditions of 650 to 1000 ° C. and terminating the light burning when the weight reduction rate due to the light burning reaches 9 to 20%. A light burn product having a BET specific surface area of 5 to 10 m 2 / g and a peak radius of the pore size distribution in the range of 10 to 20 nm. The product has a smaller pore size and a larger BET specific surface area compared to conventional light-burning products. By using an elution-reducing material containing such light-burning products, excellent elution suppression is achieved. The effect can be exhibited.

また、本発明に斯かる重金属溶出低減材の製造方法は、CaCO3をCaO換算で9〜40重量%、MgCO3をMgO換算で10〜38重量%含有する鉱物をブレーン値が2000〜3000cm2/gの粒子状に粉砕して、650〜1000℃の条件下で軽焼するとともに、該軽焼による重量減少率が9〜20%となった時点で該軽焼を終了することにより、従来の軽焼生成物と比較して細孔径が小さく、しかもBET比表面積の大きな軽焼生成物を得ることが可能となる。したがって、斯かる工程を経て得られた軽焼生成物を用いて溶出低減材を調製することにより、優れた溶出抑制作用を発揮しうる溶出低減材を製造することができる。
Moreover, the manufacturing method of the heavy metal elution reducing material according to the present invention has a Blaine value of 2000 to 3000 cm 2 of a mineral containing 9 to 40% by weight of CaCO 3 in terms of CaO and 10 to 38% by weight of MgCO 3 in terms of MgO. / G is pulverized into particles and lightly baked under conditions of 650 to 1000 ° C., and when the weight reduction rate due to the light baking reaches 9 to 20%, It is possible to obtain a light-burning product having a small pore diameter and a large BET specific surface area as compared with the light-burning product. Therefore, the elution reducing material which can exhibit the outstanding elution inhibitory effect can be manufactured by preparing the elution reducing material using the light-burning product obtained through such a process.

以上のように、本発明によれば、重金属の溶出抑制作用の優れた溶出低減材を提供することが可能となり、また、重金属の溶出抑制作用の優れた溶出低減材の製造方法を提供することが可能となる。 As described above, according to the present invention, it is possible to provide an excellent elution reducing material elution suppression effect of heavy metals, also provides a method for producing superior elution reducing material elution suppression effect of heavy metals It becomes possible to do.

実施例および比較例の溶出低減材について、軽焼時間(分)とBET比表面積(m2/g)及びブレーン値(cm2/g)の関係をプロットしたグラフ。The graph which plotted the relationship between light baking time (min), a BET specific surface area (m < 2 > / g), and a brain value (cm < 2 > / g) about the elution reduction material of an Example and a comparative example. 実施例および比較例の溶出低減材について測定された細孔径分布を示したグラフ。The graph which showed the pore size distribution measured about the elution reduction material of an Example and a comparative example. 実施例および比較例の溶出低減材について測定された軽焼時間(分)と重量減少率(%)の関係をプロットしたグラフ。The graph which plotted the relationship between the light baking time (min) and the weight reduction rate (%) measured about the elution reduction material of the Example and the comparative example.

以下、本発明に係る溶出低減材とその製造方法について具体的に説明するが、先ず、溶出低減材の製造方法について説明することとする。   Hereinafter, the elution reducing material and the manufacturing method thereof according to the present invention will be specifically described. First, the manufacturing method of the elution reducing material will be described.

本発明に係る溶出低減材の製造方法は、上述の如く、炭酸マグネシウムを主成分として含む鉱物を650〜1000℃の条件下で軽焼するとともに、該軽焼による重量減少率が9〜20%となった時点で該軽焼を終了させて軽焼生成物とし、該軽焼生成物を用いて溶出低減材を調製することを特徴とするものである。   In the method for producing an elution reducing material according to the present invention, as described above, a mineral containing magnesium carbonate as a main component is lightly burned under a condition of 650 to 1000 ° C., and the weight reduction rate due to the light firing is 9 to 20%. At this point, the light-burning is terminated to obtain a light-burning product, and an elution reducing material is prepared using the light-burning product.

前記炭酸マグネシウムを主成分として含む鉱物としては、炭酸マグネシウムを40重量%以上含む鉱物を好適に用いることができ、炭酸マグネシウムを45以上含む鉱物をより好適に用いることができる。該鉱物の具体例としては、ドロマイトやマグネサイト等を挙げることができる。   As the mineral containing magnesium carbonate as a main component, a mineral containing 40% by weight or more of magnesium carbonate can be suitably used, and a mineral containing 45 or more of magnesium carbonate can be more suitably used. Specific examples of the mineral include dolomite and magnesite.

ドロマイトとしては、炭酸マグネシウムを主成分とし、他に炭酸カルシウムを含有してなるものであれば特に限定されず、天然に産出するドロマイト(白雲石)のほか、水酸化マグネシウムスラリーと石灰乳との混合物を焼成して得られた合成ドロマイト等を用いることもできる。
なお、天然に産出するドロマイトは、一般に、CaO/MgOで表わされる複塩のモル比が0.70〜1.63の範囲であり、CaCO3をCaO換算で9〜40重量%程度、MgCO3をMgO換算で10〜38重量%程度含有するものである。
Dolomite is not particularly limited as long as it contains magnesium carbonate as a main component and contains calcium carbonate. In addition to naturally occurring dolomite (white dolomite), magnesium hydroxide slurry and lime milk Synthetic dolomite obtained by firing the mixture can also be used.
In addition, naturally produced dolomite generally has a molar ratio of double salt represented by CaO / MgO in the range of 0.70 to 1.63, CaCO 3 is about 9 to 40% by weight in terms of CaO, MgCO 3 Is about 10 to 38% by weight in terms of MgO.

これらの鉱物は、軽焼する前に粉砕して粒子状としておく。
前記鉱物は、ブレーン値が2000〜3000(cm2/g)の範囲内であるような粒子状としておく
These minerals are pulverized into particles before light burning.
The mineral is in the form of particles having a Blaine value in the range of 2000 to 3000 (cm 2 / g) .

軽焼の際の温度条件としては、650〜1000℃の範囲とし、好ましくは700〜900℃とし、さらに好ましくは750〜850℃とする。また、該軽焼による重量減少率が9〜20%となった時点で軽焼を終了するようにするため、軽焼時間は温度条件によっても変動するが、通常、10〜60分程度である。   As temperature conditions at the time of light baking, it is set as the range of 650-1000 degreeC, Preferably it is 700-900 degreeC, More preferably, you may be 750-850 degreeC. Moreover, in order to finish light baking when the weight reduction rate by this light baking becomes 9-20%, although light baking time changes also with temperature conditions, it is about 10 to 60 minutes normally. .

また、軽焼による重量減少率は9〜20%とするが、好ましくは10〜17%、より好ましくは16〜17%とする。軽焼による重量減少率をこのような数値範囲内とすることにより、炭酸マグネシウム等からの脱炭酸反応でカルシウムとマグネシウムを含む組成物を十分に生成させることができ、しかも該脱炭酸反応によって炭酸ガスが過渡的に抜けて形成された比較的小さな細孔を残した状態、つまりBET比表面積の大きな状態の軽焼生成物が得られるものと考えられる。   Moreover, although the weight reduction rate by light baking shall be 9-20%, Preferably it is 10-17%, More preferably, you may be 16-17%. By setting the rate of weight reduction due to light firing within such a numerical range, a composition containing calcium and magnesium can be sufficiently produced by decarboxylation from magnesium carbonate or the like, and carbonation by the decarboxylation reaction. It is considered that a lightly burned product is obtained in a state where relatively small pores formed by transient gas escape are left, that is, in a state where the BET specific surface area is large.

尚、焼成雰囲気等の他の焼成条件や、焼成に用いる焼成装置については、従来公知の焼成条件および焼成装置を採用することができる。   In addition, about other baking conditions, such as baking atmosphere, and the baking apparatus used for baking, a conventionally well-known baking condition and baking apparatus are employable.

次に、本発明に係る溶出低減材は、例えば上記のような方法によって炭酸マグネシウムを主成分として含む鉱物が軽焼されてなり、BET比表面積が5〜10m2/gであり、且つ細孔径分布のピーク半径が10〜20nmの数値範囲内である軽焼生成物を含有するものである。 Next, the elution reducing material according to the present invention is obtained by, for example, lightly burning a mineral containing magnesium carbonate as a main component by the above-described method, having a BET specific surface area of 5 to 10 m 2 / g, and a pore diameter. It contains lightly burned products with a distribution peak radius in the numerical range of 10-20 nm.

前記軽焼生成物のBET比表面積は5〜10m2/gであるが、好ましくは7〜10m2/gである。 BET specific surface area of the light burned product is a 5 to 10 m 2 / g, preferably from 7~10m 2 / g.

また、前記軽焼生成物は、上述の如きBET比表面積および細孔径分布を有する軽焼生成物であれば、該軽焼生成物のブレーン比表面積については特に限定されるものではないが、通常、3000〜5000cm2/g程度であり、好ましくは4000〜4500cm2/gとする。
必要以上に焼成を進行させると前記鉱物が過剰な脱炭酸によって崩壊して細かくなり、その結果、BET比表面積が小さく、細孔径分布のピーク半径が大きくなる傾向にある。
Further, the light burned product is not particularly limited as long as it is a light burned product having the BET specific surface area and the pore size distribution as described above, but the brane specific surface area of the light burned product is not particularly limited. , About 3000 to 5000 cm 2 / g, preferably 4000 to 4500 cm 2 / g.
When the firing is advanced more than necessary, the mineral is disintegrated and becomes fine due to excessive decarboxylation, and as a result, the BET specific surface area tends to be small and the peak radius of the pore diameter distribution tends to be large.

以下、実施例を挙げて本発明について更に詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to examples.

溶出低減材(実施例および比較例)の調製
栃木県葛生地方産出のドロマイト(住友大阪セメント株式会社唐沢鉱業所産、ブレーン値2500cm2/g)より7つのサンプルを用意し、各々、800℃の電気炉で0分(軽焼せず)、5分、10分、15分、30分、60分、120分軽焼することにより、溶出低減材を調製した。
Preparation of Elution Reduction Materials (Examples and Comparative Examples) Seven samples were prepared from dolomite (Sumitomo Osaka Cement Co., Ltd., Karasawa Mining Co., Ltd., Brain value: 2500 cm 2 / g) produced in Kuzuu, Tochigi Prefecture. Elution reduction materials were prepared by light baking in a furnace for 0 minutes (no light firing), 5 minutes, 10 minutes, 15 minutes, 30 minutes, 60 minutes, 120 minutes.

溶出低減材の物性測定
上記各粉体について、BET比表面積測定装置(日本ベル社製、高精度ガス吸着装置「BELSORP-mini」)を用いてBET比表面積(m2/g)を測定し、また、ブレーン測定装置(丸菱科学機械製作所製、「ブレーン空気透過粉末度測定器」)を用いてブレーン値(cm2/g)を測定し、さらに、軽焼前の重量に対する軽焼後の重量(すなわち、重量減少率(%))を測定した。結果を下記表1に示す。
Measurement of physical properties of elution reducing material For each of the above powders, the BET specific surface area (m 2 / g) was measured using a BET specific surface area measuring device (manufactured by Nippon Bell Co., Ltd., high-precision gas adsorption device “BELSORP-mini”). In addition, the brain value (cm 2 / g) was measured using a brain measuring device (manufactured by Maruhishi Kagaku Kikai Seisakusho, “Blaine Air Permeability Fineness Measuring Device”), and further, after light firing relative to the weight before light firing. The weight (ie, weight loss rate (%)) was measured. The results are shown in Table 1 below.

Figure 0005196332
Figure 0005196332

また、上記測定結果に基づき、実施例および比較例の溶出低減材について、軽焼時間(分)とBET比表面積(m2/g)及びブレーン値(cm2/g)の関係をプロットしたグラフを図1に示す。 Further, based on the above measurement results, a graph plotting the relationship between the light baking time (min), the BET specific surface area (m 2 / g), and the brain value (cm 2 / g) for the elution reducing materials of Examples and Comparative Examples. Is shown in FIG.

さらに、上記実施例および比較例の溶出低減材について、BET比表面積測定装置(日本ベル社製、高精度ガス吸着装置「BELSORP−mini」)を用い、細孔径分布を測定した。結果を図2に示す。また、実施例および比較例の溶出低減材について測定された焼成時間(分)と重量減少率(%)の関係をプロットしたグラフを図3に示す。   Further, for the elution reducing materials of the above Examples and Comparative Examples, the pore diameter distribution was measured using a BET specific surface area measuring device (manufactured by Nippon Bell Co., Ltd., high-precision gas adsorption device “BELSORP-mini”). The results are shown in FIG. Moreover, the graph which plotted the relationship between the baking time (minutes) measured about the elution reduction material of the Example and the comparative example and weight reduction rate (%) is shown in FIG.

溶出低減材の評価
実施例および比較例の各溶出低減材を、それぞれ、ヒ素および鉛の5mg/lおよび100mg/lの標準溶液100mlに1gの割合で添加し、4時間撹拌混合した後、ろ過した際のろ液中の重金属濃度をICP分析装置(バリアンテクノロジーズジャパンリミテッド社製、装置名「VARIAN ICP 発光分光分析装置 730−ES」)を用いて測定した。その測定結果より、下記の算出式を用いて吸着除去率として求めた。

吸着除去率[%]=(初期濃度−ろ液中濃度)÷ 初期濃度 × 100

また、pHメータ(堀場製作所社製)によりろ液のpHの測定も行った。これらの結果を下記表2および表3に示す。
Evaluation of Elution Reduction Materials Each of the elution reduction materials in Examples and Comparative Examples was added at a rate of 1 g to 100 ml of standard solutions of 5 mg / l and 100 mg / l of arsenic and lead, respectively, and stirred and mixed for 4 hours, followed by filtration. The heavy metal concentration in the filtrate was measured using an ICP analyzer (manufactured by Varian Technologies Japan Limited, device name “VARIAN ICP emission spectroscopic analyzer 730-ES”). From the measurement results, the adsorption removal rate was determined using the following calculation formula.

Adsorption removal rate [%] = (initial concentration-concentration in filtrate) ÷ initial concentration x 100

Moreover, the pH of the filtrate was also measured with a pH meter (manufactured by Horiba Ltd.). These results are shown in Tables 2 and 3 below.

Figure 0005196332
Figure 0005196332

Figure 0005196332
Figure 0005196332

表2および表3、並びに図3より、ドロマイトを15分軽焼して重量減少率が9.8%である実施例1、およびドロマイトを30分軽焼して重量減少率が16.5%である実施例2の溶出低減材は、比較例の溶出低減材と比較して大きなBET比表面積を有しており、しかもろ液のpHも11程度以下に低く抑えられており、長期的にも優れた吸着作用を発揮しうるものであることが認められる。   From Tables 2 and 3, and FIG. 3, Example 1 in which dolomite was lightly burned for 15 minutes and the weight reduction rate was 9.8%, and dolomite was lightly burned for 30 minutes and the weight reduction rate was 16.5%. The elution reducing material of Example 2, which has a BET specific surface area larger than that of the comparative elution reducing material, and the pH of the filtrate is suppressed to about 11 or less. It can be seen that can also exhibit an excellent adsorption action.

これに対し、15分未満の軽焼で重量減少率が9%未満である比較例1〜3の溶出低減材においては、ヒ素に対して十分な溶出低減作用が発揮されておらず、逆に、30分を超えて軽焼し重量減少率が20%を超えた比較例4、5の溶出低減材においては、ブレーン値は軽焼時間とともに大きくなるものの、ヒ素および鉛に対する吸着除去作用がかえって低下していることが認められる。また、これらの比較例においては、ろ液のpHが11を大きく超過しており、汚染土壌がこのようなアルカリに晒されることで重金属等が再溶出するなど、長期的には溶出低減作用の安定性が損なわれるおそれがある。これは、過剰に加熱されたことにより生石灰が生成され、高pHになりやすくなっているためであると思われる。   On the other hand, in the elution reducing materials of Comparative Examples 1 to 3 in which the weight reduction rate is less than 9% by light firing for less than 15 minutes, a sufficient elution reduction action for arsenic has not been demonstrated, conversely In the elution reducing materials of Comparative Examples 4 and 5 in which the weight reduction rate after light burning exceeds 30% for more than 30 minutes, although the brane value increases with the light baking time, the adsorption removal action for arsenic and lead is changed. It is observed that it is decreasing. Moreover, in these comparative examples, the pH of the filtrate greatly exceeds 11, and heavy metals and the like are re-eluted by exposing the contaminated soil to such alkalis. Stability may be impaired. This seems to be because quick lime is generated by being heated excessively and is likely to have a high pH.

Claims (5)

CaCO3をCaO換算で9〜40重量%、MgCO3をMgO換算で10〜38重量%含有し、ブレーン値が2000〜3000cm2/gの粒子状である鉱物を、650〜1000℃の条件下で軽焼するとともに、該軽焼による重量減少率が9〜20%となった時点で該軽焼を終了させることで得られた軽焼生成物であって、BET比表面積が5〜10m2/gであり、且つ細孔径分布のピーク半径が10〜20nmの範囲内である軽焼生成物を含有することを特徴とする重金属溶出低減材。 A mineral containing CaCO 3 in an amount of 9 to 40% by weight in terms of CaO, MgCO 3 in an amount of 10 to 38% by weight in terms of MgO, and having a Blaine value of 2000 to 3000 cm 2 / g, under conditions of 650 to 1000 ° C. And a light-burning product obtained by terminating the light-burning when the weight reduction rate due to the light-burning reaches 9 to 20%, and a BET specific surface area of 5 to 10 m 2. A heavy metal elution reducing material comprising a light-burning product having a pore radius distribution within a range of 10 to 20 nm. 前記鉱物が、栃木県葛生地方産出のドロマイトである請求項1に記載の重金属溶出低減材。 The heavy metal elution reducing material according to claim 1, wherein the mineral is dolomite produced in Kuzuu, Tochigi Prefecture. CaCO3をCaO換算で9〜40重量%、MgCO3をMgO換算で10〜38重量%含有する鉱物をブレーン値が2000〜3000cm2/gの粒子状に粉砕して、650〜1000℃の条件下で軽焼するとともに、該軽焼による重量減少率が9〜20%となった時点で該軽焼を終了させて軽焼生成物とし、該軽焼生成物を用いて重金属溶出低減材を調製することを特徴とする重金属溶出低減材の製造方法。 A mineral containing 9 to 40% by weight of CaCO 3 in terms of CaO and 10 to 38% by weight of MgCO 3 in terms of MgO is pulverized into particles having a brane value of 2000 to 3000 cm 2 / g, and a condition of 650 to 1000 ° C. Lightly baked at the bottom, and when the rate of weight reduction due to the light calcination becomes 9 to 20%, the light calcination is terminated to obtain a light baked product, and a heavy metal elution reducing material is obtained using the light baked product. A method for producing a heavy metal elution reducing material, characterized by comprising: 前記軽焼による重量減少率が10〜17%であることを特徴とする請求項3記載の重金属溶出低減材の製造方法。 The method for producing a heavy metal elution reducing material according to claim 3, wherein a weight reduction rate due to the light firing is 10 to 17%. 前記軽焼の時間が10分間以上60分間以下であることを特徴とする請求項3または4記載の重金属溶出低減材の製造方法。 The method for producing a heavy metal elution reducing material according to claim 3 or 4, wherein the light baking time is 10 minutes or more and 60 minutes or less.
JP2010021634A 2010-02-02 2010-02-02 Heavy metal elution reducing material and method for producing the same Active JP5196332B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010021634A JP5196332B2 (en) 2010-02-02 2010-02-02 Heavy metal elution reducing material and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010021634A JP5196332B2 (en) 2010-02-02 2010-02-02 Heavy metal elution reducing material and method for producing the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012093598A Division JP5729649B2 (en) 2012-04-17 2012-04-17 Heavy metal elution reducing material and method for producing the same

Publications (2)

Publication Number Publication Date
JP2011156504A JP2011156504A (en) 2011-08-18
JP5196332B2 true JP5196332B2 (en) 2013-05-15

Family

ID=44588959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010021634A Active JP5196332B2 (en) 2010-02-02 2010-02-02 Heavy metal elution reducing material and method for producing the same

Country Status (1)

Country Link
JP (1) JP5196332B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5682809B2 (en) * 2010-08-31 2015-03-11 住友大阪セメント株式会社 Method for producing heavy metal or fluorine elution reducing material
JP6066268B2 (en) * 2012-09-07 2017-01-25 住友大阪セメント株式会社 Heavy metal elution reducing material and method for reducing heavy metal elution from incinerated ash
WO2014054131A1 (en) * 2012-10-03 2014-04-10 住友大阪セメント株式会社 Dissolution inhibitor
JP6447313B2 (en) * 2015-03-31 2019-01-09 住友大阪セメント株式会社 Method for producing adsorbent such as dolomite heavy metal and its quality control method
JP6406101B2 (en) * 2015-03-31 2018-10-17 住友大阪セメント株式会社 Method for making dolomite material porous and method for producing porous dolomite material

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4219461B2 (en) * 1999-01-25 2009-02-04 信秀 前田 Dioxin contaminant improvement agent and its use
GB0022049D0 (en) * 2000-09-08 2000-10-25 Univ Belfast Improvements relating to water treatment
JP4990865B2 (en) * 2001-11-30 2012-08-01 松田技研工業株式会社 Solidified insolubilizer for soil and soil treatment method
JP4712483B2 (en) * 2005-08-19 2011-06-29 宇部興産株式会社 Treatment composition and treatment method for heavy metal contaminated soil
JP2008080223A (en) * 2006-09-27 2008-04-10 Nisshoku Corp Fluoride ion capturing material and its using method
JP5244368B2 (en) * 2007-11-05 2013-07-24 株式会社テルナイト Heavy metal insolubilizer and heavy metal contaminated soil treatment agent
JP5628486B2 (en) * 2009-03-13 2014-11-19 国立大学法人東京工業大学 Heavy metal elution inhibitor and curable composition containing the same

Also Published As

Publication number Publication date
JP2011156504A (en) 2011-08-18

Similar Documents

Publication Publication Date Title
JP5019188B2 (en) Method for producing heavy metal elution reducing material
JP5682809B2 (en) Method for producing heavy metal or fluorine elution reducing material
JP5196332B2 (en) Heavy metal elution reducing material and method for producing the same
JP5068245B2 (en) Insolubilized material
JP2017527516A (en) Carbonate-capable calcium silicate composition and method for producing the same
JP5757613B2 (en) Processing materials such as heavy metals
JP2008080223A (en) Fluoride ion capturing material and its using method
KR102099085B1 (en) Functional mortar composition comprising photocatalyst
JP2012092180A (en) Additive for neutral solidifying material, neutral solidifying material, and method for suppressing elution of heavy metal
CN107057705B (en) Heavy metal contaminated soil remediation material, preparation method and application
JP2012082330A (en) Insolubilization material of heavy metals, and insolubilization method of heavy metals
CN112110671B (en) Admixture for reducing water-soluble hexavalent chromium in cement
JP4715991B2 (en) Adsorbent that adsorbs fluorine and / or boron
JP5915202B2 (en) Insolubilization method
JP5599256B2 (en) Heavy metal elution control material and elution control method
JP5729649B2 (en) Heavy metal elution reducing material and method for producing the same
KR101461073B1 (en) Functional adhesive composition and method of manufacturing the same
JP2006167524A (en) Treatment method for arsenic-containing soil
JP2012055815A (en) Method of suppressing elution of heavy metals
JP5013005B1 (en) Insolubilizer and method for producing the same
JP4629170B2 (en) Portland cement clinker and Portland cement
JP2016129869A (en) Insolubilization material and insolubilization slurry
JP6675779B2 (en) Method for producing soil modifying material and method for modifying soil
JP6610855B2 (en) Processing method of heavy metal treatment material and heavy metal containing fly ash cleaning liquid
JP6066268B2 (en) Heavy metal elution reducing material and method for reducing heavy metal elution from incinerated ash

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120417

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121029

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20121105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130124

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5196332

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150