JP5181276B2 - POLYETHYL VINYL ETHER DERIVATIVE, ITS MANUFACTURING METHOD, AND LCST TYPE SEPARATION CONTROL METHOD - Google Patents

POLYETHYL VINYL ETHER DERIVATIVE, ITS MANUFACTURING METHOD, AND LCST TYPE SEPARATION CONTROL METHOD Download PDF

Info

Publication number
JP5181276B2
JP5181276B2 JP2008049125A JP2008049125A JP5181276B2 JP 5181276 B2 JP5181276 B2 JP 5181276B2 JP 2008049125 A JP2008049125 A JP 2008049125A JP 2008049125 A JP2008049125 A JP 2008049125A JP 5181276 B2 JP5181276 B2 JP 5181276B2
Authority
JP
Japan
Prior art keywords
vinyl ether
ether derivative
molecular weight
average molecular
polyethyl vinyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008049125A
Other languages
Japanese (ja)
Other versions
JP2009203396A (en
Inventor
貞人 青島
鍾局 金岡
賢一 瀬野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
Osaka University NUC
Original Assignee
JNC Corp
Osaka University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JNC Corp, Osaka University NUC filed Critical JNC Corp
Priority to JP2008049125A priority Critical patent/JP5181276B2/en
Publication of JP2009203396A publication Critical patent/JP2009203396A/en
Application granted granted Critical
Publication of JP5181276B2 publication Critical patent/JP5181276B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

本発明は、刺激応答性高分子に関し、より具体的には、低温では有機溶媒に溶解して透明な溶液を形成し、昇温すると有機溶媒と相分離(LCST型相分離)を起こすポリエチルビニルエーテル誘導体に関する。   The present invention relates to stimuli-responsive polymers, and more specifically, polyethyl which dissolves in an organic solvent at a low temperature to form a transparent solution and undergoes phase separation (LCST type phase separation) with the organic solvent when the temperature rises. It relates to vinyl ether derivatives.

温度変化やpH変化等に応答してその性質や形態を変化させる刺激応答性高分子は、種々のセンサーや機能性材料としての利用が考えられ、近年注目されている。例えば、下記の構造式(a)で表わされる高分子は、水に低温では溶解して透明な溶液を形成し、昇温すると相分離を引き起こすという、所謂LCST型相分離をするポリマーとして知られている。   Stimulus-responsive polymers that change their properties and forms in response to temperature changes, pH changes, etc. are considered to be used as various sensors and functional materials, and have attracted attention in recent years. For example, the polymer represented by the following structural formula (a) is known as a polymer that performs so-called LCST-type phase separation, in which it dissolves in water at a low temperature to form a transparent solution and causes phase separation at elevated temperatures. ing.

Figure 0005181276
Figure 0005181276

又、非特許文献1には、イオン液体(イオン性溶媒)に低温では溶解して透明な溶液を形成し、昇温すると相分離を起こすポリマーが開示されている。しかし、センサー等の電気器具の部品としての用途には、誘電率が高い水やイオン性溶媒からなる部材も求められるが、それとともに、誘電率が低い有機溶媒からなる部材も求められる。   Non-Patent Document 1 discloses a polymer that dissolves in an ionic liquid (ionic solvent) at a low temperature to form a transparent solution and causes phase separation when the temperature is raised. However, for use as a part of an electric appliance such as a sensor, a member made of water or an ionic solvent having a high dielectric constant is also required, and a member made of an organic solvent having a low dielectric constant is also required.

又、感度の高いセンサーを形成するためには、温度変化による相分離が所定温度で急激に生じることが望まれる。そこで、有機溶媒に低温では溶解して透明な溶液を形成し、昇温して所定の温度に達したときに相分離を起こす刺激応答性高分子、特に、所定の温度に達したときに急激に高い感度で相分離を起こす刺激応答性高分子が望まれていた。しかし、従来、有機溶媒中でLCST型相分離をするポリマーについての報告は少なく、特に、急激に高い感度で相分離を起こし、上記の要望を満たすポリマーは知られていなかった。
Watanabe, M. et al, Langmuir, (2007), 23, 988
Further, in order to form a highly sensitive sensor, it is desired that phase separation due to temperature change occurs rapidly at a predetermined temperature. Therefore, a stimulus-responsive polymer that dissolves in an organic solvent at a low temperature to form a transparent solution and causes phase separation when the temperature is raised to a predetermined temperature, particularly when the temperature reaches a predetermined temperature, Therefore, a stimulus-responsive polymer that causes phase separation with high sensitivity has been desired. However, there have been few reports on polymers that undergo LCST-type phase separation in an organic solvent, and in particular, no polymer has been known that causes phase separation with high sensitivity and satisfies the above requirements.
Watanabe, M. et al, Langmuir, (2007), 23, 988

本発明は、従来技術のこのような事情に鑑みたものであり、有機溶媒に低温では溶解して透明な溶液を形成し、昇温すると相分離を起こすポリマー、すなわち、LCST型相分離を引き起こす刺激応答性高分子、及びこの刺激応答性高分子を製造する方法を提供することを課題とする。   The present invention has been made in view of such circumstances of the prior art, and is a polymer that dissolves in an organic solvent at a low temperature to form a transparent solution, and causes phase separation when heated, that is, causes LCST type phase separation. It is an object to provide a stimulus-responsive polymer and a method for producing the stimulus-responsive polymer.

本発明者は、特定の構造のポリエチルビニルエーテル誘導体が、有機溶媒内で、所謂LCST型相分離を引き起こすこと、すなわち上記の課題を達成できることを見出した。本発明者は、又、ビニルエーテル類のカチオン重合において、不安定な生長炭素カチオンを安定化する方法を見いだし、室温程度の比較的高温の条件下でも、リビング系で重合を行うことを可能にし、このリビングカチオン重合により、分子量分布の狭いポリビニルエーテルが合成できること、その構造や重合度を制御できることを見出した。そして、このリビングカチオン重合を含む製造方法により得られる分子量分布の狭いポリエチルビニルエーテル誘導体であって、特定の構造、重合度範囲を有するものが、特定の有機溶媒内で上記のLCST型相分離を高い感度で引き起こすことを見出し、本発明を完成した。   The present inventor has found that a polyethyl vinyl ether derivative having a specific structure causes so-called LCST type phase separation in an organic solvent, that is, the above-described problem can be achieved. The present inventor has also found a method for stabilizing an unstable growth carbon cation in the cationic polymerization of vinyl ethers, and enables polymerization in a living system even under relatively high temperature conditions such as room temperature. It has been found that this living cationic polymerization can synthesize polyvinyl ether having a narrow molecular weight distribution and can control the structure and degree of polymerization. A polyethyl vinyl ether derivative having a narrow molecular weight distribution obtained by a production method including living cationic polymerization, which has a specific structure and a polymerization degree range, performs the above-mentioned LCST type phase separation in a specific organic solvent. It discovered that it raise | generates with high sensitivity, and completed this invention.

すなわち、本発明は、下記式(I)で表わされることを特徴とするポリエチルビニルエーテル誘導体を提供する。   That is, the present invention provides a polyethyl vinyl ether derivative represented by the following formula (I).

Figure 0005181276

(式(I)中、Rは水素又はメチルを表わし、Rは炭素数1〜8のアルキルを表わし、nは50〜200の数を表わし、Xは陰イオンを表わす。)
Figure 0005181276

(In formula (I), R 1 represents hydrogen or methyl, R represents an alkyl having 1 to 8 carbon atoms, n represents a number of 50 to 200, and X represents an anion.)

このポリエチルビニルエーテル誘導体は、クロロホルム等の特定の有機溶媒中で、LCST型相分離を引き起こすことができる。   This polyethyl vinyl ether derivative can cause LCST type phase separation in a specific organic solvent such as chloroform.

式(I)で表わされるポリエチルビニルエーテル誘導体の中でも、重量平均分子量/数平均分子量が1.25以下であるものは、高い感度でLCST型相分離を引き起こすことができるので好ましい。より好ましくは、重量平均分子量/数平均分子量値は1.15以下である。重量平均分子量/数平均分子量の値が小さい程、すなわち分子量分布が狭く単分散に近い程、昇温による、透明な溶液から相分離して不透明になる変化が所定の温度で、より急激に起るようになり、LCST型相分離をより高い感度で引き起こすことができる。従って、この観点からは重量平均分子量/数平均分子量の値は、1.0に近い程好ましいが、製造の容易さ等を考慮すると重量平均分子量/数平均分子量の下限は1.01程度である。ここで、重量平均分子量及び数平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)により求めた値である。   Among the polyethyl vinyl ether derivatives represented by the formula (I), those having a weight average molecular weight / number average molecular weight of 1.25 or less are preferable because they can cause LCST type phase separation with high sensitivity. More preferably, the weight average molecular weight / number average molecular weight value is 1.15 or less. The smaller the value of the weight average molecular weight / number average molecular weight, that is, the narrower the molecular weight distribution is, the closer to monodispersion, the more rapidly the change that becomes phase-separated from a transparent solution due to temperature rise occurs at a given temperature. Thus, LCST type phase separation can be caused with higher sensitivity. Therefore, from this point of view, the value of weight average molecular weight / number average molecular weight is preferably closer to 1.0, but the lower limit of weight average molecular weight / number average molecular weight is about 1.01 in view of ease of production. . Here, the weight average molecular weight and the number average molecular weight are values obtained by gel permeation chromatography (GPC).

本発明のポリエチルビニルエーテル誘導体は、本発明の趣旨を損なわない範囲で、式(I)で表わされる重合単位以外の重合単位を含むことができる。例えば、式(I)で表わされる重合単位と上記式(a)で表わされる重合単位のランダム共重合体やブロック共重合体を含むことができる。   The polyethyl vinyl ether derivative of the present invention can contain polymerized units other than the polymerized unit represented by the formula (I) as long as the gist of the present invention is not impaired. For example, a random copolymer or a block copolymer of the polymer unit represented by the formula (I) and the polymer unit represented by the formula (a) can be included.

式(I)中のRは、炭素数1〜8のアルキルを表わすが、中でも、炭素数2〜7のアルキルである場合、特に炭素数3〜5のアルキルである場合が、LCST型相分離をより高い感度で引き起こすための溶媒、濃度、重合度(nの値)の選択が容易であり好ましい。   R in formula (I) represents an alkyl having 1 to 8 carbon atoms. Among them, when it is an alkyl having 2 to 7 carbon atoms, particularly when it is an alkyl having 3 to 5 carbon atoms, LCST type phase separation Is preferable because it is easy to select a solvent, a concentration, and a polymerization degree (value of n) for causing a higher sensitivity.

式(I)中のnは、50〜200の数を表わすが、中でも、60〜180の数を表わす場合、特に、nが70〜130の範囲内である場合が、LCST型相分離を高い感度で引き起こすための、溶媒、濃度の選択を容易にするので好ましい。   N in the formula (I) represents a number of 50 to 200, and in particular, when the number represents 60 to 180, particularly when n is in the range of 70 to 130, the LCST type phase separation is high. This is preferable because it facilitates the selection of the solvent and concentration for causing the sensitivity.

式(I)中のXは、陰イオンである。この陰イオンとしては、塩素イオン、臭素イオン、ヨウ素イオン等のハロゲンイオンを挙げることができるが、特に、塩素イオンの場合がLCST型相分離を高い感度で引き起こすものとして挙げることができる。 X < - > in formula (I) is an anion. Examples of the anions include halogen ions such as chlorine ions, bromine ions, and iodine ions. In particular, chlorine ions can be cited as those that cause LCST type phase separation with high sensitivity.

本発明は、上記のポリエチルビニルエーテル誘導体に加えて、下記式(II)で表わされることを特徴とするポリエチルビニルエーテル誘導体。   The present invention is a polyethyl vinyl ether derivative represented by the following formula (II) in addition to the above polyethyl vinyl ether derivative.

Figure 0005181276

(式(II)中、Rは炭素数1〜6のアルキルを表わし、nは50〜200の数を表わし、Xは陰イオンを表わす。)
Figure 0005181276

(In the formula (II), R 2 represents alkyl having 1 to 6 carbon atoms, n represents a number of 50 to 200, and X represents an anion.)

式(II)で表わされるポリエチルビニルエーテル誘導体も、クロロホルム等の特定の有機溶媒中で、LCST型相分離を引き起こすことができる。中でも、重量平均分子量/数平均分子量の値が小さく単分散に近いものほどLCST型相分離をより高い感度で引き起こすことができるので好ましい。具体的には、重量平均分子量/数平均分子量が1.25以下であるものが好ましく、より好ましくは、重量平均分子量/数平均分子量値は1.15以下である。重量平均分子量/数平均分子量の値の意味等は、式(I)で表わされるポリエチルビニルエーテル誘導体の場合と同様である。   The polyethyl vinyl ether derivative represented by the formula (II) can also cause LCST type phase separation in a specific organic solvent such as chloroform. Among them, the smaller value of weight average molecular weight / number average molecular weight and closer to monodispersion is preferable because LCST type phase separation can be caused with higher sensitivity. Specifically, the weight average molecular weight / number average molecular weight is preferably 1.25 or less, and more preferably the weight average molecular weight / number average molecular weight value is 1.15 or less. The meaning of the value of the weight average molecular weight / number average molecular weight is the same as in the case of the polyethyl vinyl ether derivative represented by the formula (I).

上記のポリエチルビニルエーテル誘導体は、下記式(III)で表わされる2−ハロゲノエチルビニルエーテルをリビングカチオン重合して、ポリ(2−ハロゲノエチル)ビニルエーテルを合成し、その後、そのハロゲン原子を、下記式で表される1−アルキルイミダゾール(式(I)で表わされるポリエチルビニルエーテル誘導体の製造の場合)又は4−アルキルピリジン(式(II)で表わされるポリエチルビニルエーテル誘導体の製造の場合)で置換する方法により製造することができる。本発明は、この製造方法も提供するものである。   The above polyethyl vinyl ether derivative is a living cationic polymerization of 2-halogenoethyl vinyl ether represented by the following formula (III) to synthesize poly (2-halogenoethyl) vinyl ether, and then the halogen atom is represented by the following formula: Substitution with 1-alkylimidazole represented (in the case of production of polyethyl vinyl ether derivative represented by formula (I)) or 4-alkylpyridine (in the production of polyethyl vinyl ether derivative represented by formula (II)) Can be manufactured. The present invention also provides this manufacturing method.

Figure 0005181276
(式(III)中Yはハロゲン原子を表わす。)
Figure 0005181276
(In formula (III), Y represents a halogen atom.)

Figure 0005181276
1−アルキルイミダゾール(式中Rは、炭素数1〜8のアルキルを表わす。)
Figure 0005181276
1-alkylimidazole (wherein R represents alkyl having 1 to 8 carbon atoms)

ここでリビングカチオン重合は、トルエン等の溶媒中で、開始剤としてEtAlCl等のハロゲン化金属を用いるとともに、この系にルイス塩基(添加塩基)として酢酸エチル、THF、ジオキサン等の弱い塩基を添加して、2−ハロゲノエチルビニルエーテルを重合することにより行うことができる。ルイス塩基(添加塩基)として酢酸エチルやTHF等の弱い塩基を添加することにより、生長種が安定化され,室温程度の比較的高温の条件でもリビング重合を行うことができ、単分散に近い分子量分布のポリ(2−ハロゲノエチル)ビニルエーテルを得ることができる。 Living cationic polymerization uses a metal halide such as EtAlCl 2 as an initiator in a solvent such as toluene, and a weak base such as ethyl acetate, THF, or dioxane as a Lewis base (added base). Then, 2-halogenoethyl vinyl ether can be polymerized. By adding a weak base such as ethyl acetate or THF as a Lewis base (added base), the growth species can be stabilized, and living polymerization can be performed even under relatively high temperature conditions such as room temperature. A distribution of poly (2-halogenoethyl) vinyl ether can be obtained.

得られた活性種はリビング性を有しているので、重合終了時に第2のモノマーを添加することにより、選択的にブロック共重合体を合成することもできる。又、ポリマーの重合度や組成比は、容易に制御可能である。このようにして得られた単分散のポリ(2−ハロゲノエチル)ビニルエーテルのハロゲン原子を置換することにより得られる式(I)又は式(II)のポリエチルビニルエーテル誘導体も単分散のポリマーであり、例えば、重量平均分子量/数平均分子量が1.25以下との条件を満たすことができる。   Since the obtained active species has living properties, a block copolymer can be selectively synthesized by adding a second monomer at the end of the polymerization. Moreover, the polymerization degree and composition ratio of the polymer can be easily controlled. The polyethyl vinyl ether derivative of the formula (I) or formula (II) obtained by substituting the halogen atom of the monodisperse poly (2-halogenoethyl) vinyl ether thus obtained is also a monodisperse polymer, For example, the condition that the weight average molecular weight / number average molecular weight is 1.25 or less can be satisfied.

このようにして得られたポリエチルビニルエーテル誘導体は、クロロホルム等の有機溶媒中で、LCST型相分離を示し、特に、単分散のポリマーの場合、LCST型相分離を高感度で示す。LCST型相分離が生じるか否か、その相分離が生じる温度は、有機溶媒の種類、有機溶媒中のポリエチルビニルエーテル誘導体の濃度、ポリエチルビニルエーテル誘導体の重合度(鎖長:式(I)や(式(II)におけるnの値)等により変動する。従って、このポリエチルビニルエーテル誘導体と有機溶媒からなるセンサー等を制作する場合には、有機溶媒の種類、ポリエチルビニルエーテル誘導体の濃度、重合度等を変動させた予備実験を行い、LCST型相分離の有無、LCST型相分離が生じる温度を確認して、有機溶媒の種類やポリエチルビニルエーテル誘導体の濃度等の選択を行う。   The polyethyl vinyl ether derivative thus obtained exhibits LCST-type phase separation in an organic solvent such as chloroform, and particularly exhibits high-sensitivity LCST-type phase separation in the case of a monodisperse polymer. Whether LCST type phase separation occurs or the temperature at which the phase separation occurs depends on the type of organic solvent, the concentration of the polyethyl vinyl ether derivative in the organic solvent, the degree of polymerization of the polyethyl vinyl ether derivative (chain length: formula (I) or (Value of n in the formula (II)), etc. Therefore, when producing a sensor comprising this polyethyl vinyl ether derivative and an organic solvent, the type of organic solvent, the concentration of the polyethyl vinyl ether derivative, the degree of polymerization Preliminary experiments are performed, and the presence / absence of LCST type phase separation and the temperature at which LCST type phase separation occurs are confirmed, and the type of organic solvent, the concentration of the polyethylvinyl ether derivative, and the like are selected.

又、LCST型相分離が生じる温度は、ポリエチルビニルエーテル誘導体の重合度、有機溶媒中のポリエチルビニルエーテル誘導体の濃度等により変動するので、この重合度や濃度の調整により、有機溶媒中におけるLCST型相分離の挙動を制御することができる。本発明は、上記のポリエチルビニルエーテル誘導体の重合度の調整によるLCST型相分離の制御方法、及び、上記のポリエチルビニルエーテル誘導体の、有機溶媒中におけるポリマー濃度の調整によるLCST型相分離の制御方法も提供するものである。   Further, the temperature at which LCST type phase separation occurs varies depending on the degree of polymerization of the polyethyl vinyl ether derivative, the concentration of the polyethyl vinyl ether derivative in the organic solvent, and the like. By adjusting the degree of polymerization and the concentration, the LCST type in the organic solvent The behavior of phase separation can be controlled. The present invention relates to a method for controlling LCST type phase separation by adjusting the degree of polymerization of the polyethyl vinyl ether derivative, and a method for controlling LCST type phase separation by adjusting the polymer concentration of the polyethyl vinyl ether derivative in an organic solvent. Is also provided.

本発明のポリエチルビニルエーテル誘導体は、特定の有機溶媒に低温では溶解して透明な溶液を形成し、昇温し所定の温度に達すると、LCST型相分離を引き起こす刺激応答性高分子である。特に、重量平均分子量/数平均分子量が、1.25以下であるものは、所定の温度に達すると、急激に高い感度でLCST型相分離を引き起こす。そこで、電気器具のセンサー等に好適に用いられ、又機能性高分子等としての用途が考えられるものである。   The polyethyl vinyl ether derivative of the present invention is a stimuli-responsive polymer that dissolves in a specific organic solvent at a low temperature to form a transparent solution and raises the temperature to a predetermined temperature to cause LCST type phase separation. In particular, those having a weight average molecular weight / number average molecular weight of 1.25 or less cause LCST-type phase separation with high sensitivity when the temperature reaches a predetermined temperature. Therefore, it is preferably used as a sensor for electric appliances, and can be used as a functional polymer.

本発明のポリエチルビニルエーテル誘導体、特に、分子量分布が狭いことを特徴とする本発明のポリエチルビニルエーテル誘導体は、リビングカチオン重合を含む本発明の製造方法により容易に製造することができる。   The polyethyl vinyl ether derivative of the present invention, particularly the polyethyl vinyl ether derivative of the present invention characterized by a narrow molecular weight distribution, can be easily produced by the production method of the present invention including living cationic polymerization.

又、本発明のポリエチルビニルエーテル誘導体の重合度や濃度の調整により、有機溶媒中におけるLCST型相分離の挙動を制御することができる。   Moreover, the behavior of LCST type phase separation in an organic solvent can be controlled by adjusting the polymerization degree and concentration of the polyethyl vinyl ether derivative of the present invention.

以下、本発明を実施するための最良の形態について、以下の実施例に基づき説明する。なお、本発明は、以下の実施形態に限定されるものではない。本発明と同一および均等の範囲において、種々の変更を加えることが可能である。   Hereinafter, the best mode for carrying out the present invention will be described based on the following examples. In addition, this invention is not limited to the following embodiment. Various modifications can be made in the same and equivalent scope as the present invention.

製造例1 [ポリ(2−クロロエチル)ビニルエーテルの製造]
窒素フロー下において、トルエン中に(全体の系を5mLとして)、1,4−ジオキサン0.50mL、2−クロロエチルビニルエーテルを0.41mL、開始剤系としてCHCH(iBu)OCOCHのトルエン溶液(40mM)0.50mLをこの順に加え、最後にEt1.5AlCl1.5のトルエン溶液(200mM)0.50mLを加えて、30℃においてリビングカチオン重合を行い、ポリ(2−クロロエチル)ビニルエーテルを得た。
Production Example 1 [Production of poly (2-chloroethyl) vinyl ether]
Under nitrogen flow in toluene (total system as 5 mL), 1,4-dioxane 0.50 mL, 2-chloroethyl vinyl ether 0.41 mL, CH 3 CH (iBu) OCOCH 3 toluene as initiator system 0.50 mL of a solution (40 mM) was added in this order, and finally 0.50 mL of a toluene solution (200 mM) of Et 1.5 AlCl 1.5 was added, and living cationic polymerization was performed at 30 ° C. to obtain poly (2-chloroethyl) Vinyl ether was obtained.

反応開始後2.5時間で、2−クロロエチルビニルエーテルの42重量%がポリ(2−クロロエチル)ビニルエーテルとなり、GPCで測定したときの、このポリマーの数平均分子量は8000(式(I)のnは約80)であり、重量平均分子量/数平均分子量は1.13であった。この反応をさらに継続すると、反応開始後24時間で、2−クロロエチルビニルエーテルのほぼ100%がポリ(2−クロロエチル)ビニルエーテルとなり、GPCで測定したときの、このポリマーの数平均分子量は19000(式(I)のnは約200)であり、重量平均分子量/数平均分子量は1.06であった。   In 2.5 hours after the start of the reaction, 42% by weight of 2-chloroethyl vinyl ether became poly (2-chloroethyl) vinyl ether, and the number average molecular weight of this polymer as measured by GPC was 8000 (n in the formula (I)) The weight average molecular weight / number average molecular weight was 1.13. If this reaction is further continued, almost 100% of 2-chloroethyl vinyl ether becomes poly (2-chloroethyl) vinyl ether in 24 hours after the start of the reaction, and the number average molecular weight of this polymer as measured by GPC is 19000 (formula N of (I) was about 200), and the weight average molecular weight / number average molecular weight was 1.06.

上記と同様にして、数平均分子量が5000(式(I)のnは約50)であるポリ(2−クロロエチル)ビニルエーテル、数平均分子量が10000(式(I)のnは約100、重量平均分子量/数平均分子量は1.07)であるポリ(2−クロロエチル)ビニルエーテル、及び、数平均分子量が12000(式(I)のnは約125、重量平均分子量/数平均分子量は1.08)であるポリ(2−クロロエチル)ビニルエーテルを得た。   In the same manner as above, poly (2-chloroethyl) vinyl ether having a number average molecular weight of 5000 (n in the formula (I) is about 50), number average molecular weight is 10,000 (n in the formula (I) is about 100, weight average) Poly (2-chloroethyl) vinyl ether having a molecular weight / number average molecular weight of 1.07), and a number average molecular weight of 12,000 (n in formula (I) is about 125, weight average molecular weight / number average molecular weight is 1.08) To obtain poly (2-chloroethyl) vinyl ether.

分子量および分子量分布はGPCにより決定した。具体的には、溶離液はクロロホルム(flow rate=1.0mL/min)であり、温度40℃で、デュアルポンプTosoh DP−8020、カラムオーブンCO−8020、示差屈折率検出器RI−8020及び可視紫外吸収検出器UV−8020に接続された3つのポリスチレンゲルカラム(TSK gel G−4000HXL, G−3000HXL, G−2000HXL; internal diameter 7.8mm,length 300mm)を用いて行った。標準物質にはポリスチレンを用いた。   Molecular weight and molecular weight distribution were determined by GPC. Specifically, the eluent is chloroform (flow rate = 1.0 mL / min), the temperature is 40 ° C., dual pump Tosoh DP-8020, column oven CO-8020, differential refractive index detector RI-8020 and visible. The measurement was performed using three polystyrene gel columns (TSK gel G-4000HXL, G-3000HXL, G-2000HXL; internal diameter 7.8 mm, length 300 mm) connected to an ultraviolet absorption detector UV-8020. Polystyrene was used as a standard substance.

製造例2 [式(I)のポリエチルビニルエーテル誘導体の製造]
製造例1で得られたポリ(2−クロロエチル)ビニルエーテルのそれぞれに5倍当量の1−(n−ブチル)イミダゾールを加え、DMF中、60℃で24h加熱することで目的の式(I)のポリエチルビニルエーテル誘導体(ポリエチルビニルエーテル(1−ブチル)イミダゾリウム塩(クロライド))を得た。得られたポリマーの精製は、そのメタノール溶液をヘキサンに再沈殿させ、次にトルエンに再沈殿させることによって行った。数平均分子量が8000のポリ(2−クロロエチル)ビニルエーテルから得られたポリエチルビニルエーテル誘導体のHNMRスペクトル(d−DMSO中)を図1aに示す。
Production Example 2 [Production of Polyethyl Vinyl Ether Derivative of Formula (I)]
5 times equivalent 1- (n-butyl) imidazole was added to each of the poly (2-chloroethyl) vinyl ether obtained in Production Example 1, and the mixture was heated in DMF at 60 ° C. for 24 h to obtain the target of formula (I). A polyethyl vinyl ether derivative (polyethyl vinyl ether (1-butyl) imidazolium salt (chloride)) was obtained. The obtained polymer was purified by reprecipitation of the methanol solution in hexane and then reprecipitation in toluene. A 1 HNMR spectrum (in d 6 -DMSO) of a polyethyl vinyl ether derivative obtained from poly (2-chloroethyl) vinyl ether having a number average molecular weight of 8000 is shown in FIG. 1a.

このHNMRスペクトルから、ほぼ100mol%のポリ(2−クロロエチル)ビニルエーテルが、ポリエチルビニルエーテル(1−ブチル)イミダゾリウム塩(クロライド)となっていることが示された。他のポリビニルエーテルから得られたポリエチルビニルエーテル誘導体についても同様な測定を行い、同様にほぼ100mol%導入されていることが示された。 From the 1 HNMR spectrum, it was shown that almost 100 mol% of poly (2-chloroethyl) vinyl ether was polyethyl vinyl ether (1-butyl) imidazolium salt (chloride). The same measurement was performed on polyethyl vinyl ether derivatives obtained from other polyvinyl ethers, and it was shown that almost 100 mol% was similarly introduced.

製造例3 [式(I)のポリエチルビニルエーテル誘導体の製造]
数平均分子量が10000のポリ(2−クロロエチル)ビニルエーテル(重量平均分子量/数平均分子量は1.07)を用い、1−(n−ブチル)イミダゾールの代わりに、1−メチルイミダゾール又は1−(n−オクチル)イミダゾールを用いた以外は、製造例2と同様にして、式(I)で表わされるポリエチルビニルエーテル(1−メチル)イミダゾリウム塩(クロライド)又はポリエチルビニルエーテル(1−オクチル)イミダゾリウム塩(クロライド)を得た。
Production Example 3 [Production of Polyethyl Vinyl Ether Derivative of Formula (I)]
Poly (2-chloroethyl) vinyl ether having a number average molecular weight of 10,000 (weight average molecular weight / number average molecular weight is 1.07) is used instead of 1- (n-butyl) imidazole, 1-methylimidazole or 1- (n -Octyl) imidazole polyethyl vinyl ether (1-methyl) imidazolium salt (chloride) or polyethyl vinyl ether (1-octyl) imidazolium represented by formula (I) in the same manner as in Production Example 2 except that imidazole was used A salt (chloride) was obtained.

製造例4 [対アニオン変換]
数平均分子量が10000のポリ(2−クロロエチル)ビニルエーテル(重量平均分子量/数平均分子量は1.07)を用いて得られたポリエチルビニルエーテル(1−ブチル)イミダゾリウム塩(クロライド)水溶液に、1.2当量の(CFSONLiを添加し、塩素アニオンを(CFSOイオンに変換して、ポリエチルビニルエーテル(1−ブチル)イミダゾリウム(CFSO塩を得た。その後、得られたポリマーを水で数回洗浄した。
Production Example 4 [Conversion to Counter Anion]
A poly (2-chloroethyl) vinyl ether having a number average molecular weight of 10000 (weight average molecular weight / number average molecular weight is 1.07) was added to a polyethyl vinyl ether (1-butyl) imidazolium salt (chloride) aqueous solution. .2 equivalents of (CF 3 SO 2 ) 2 NLi are added to convert the chlorine anion to (CF 3 SO 2 ) 2 N - ion to give polyethyl vinyl ether (1-butyl) imidazolium (CF 3 SO 2 ) 2 N - salt was obtained. Thereafter, the obtained polymer was washed several times with water.

製造例5 [式(II)のポリエチルビニルエーテル誘導体の製造]
製造例1で得られ、数平均分子量が10000のポリ(2−クロロエチル)ビニルエーテル(重量平均分子量/数平均分子量は1.07)に5倍当量の4−メチルピリジンを加え、DMF中、60℃で24h加熱することで、式(II)のポリエチルビニルエーテル誘導体(ポリエチルビニルエーテル(4−メチルピリジニウム塩(クロライド))を得た。このポリマーのHNMRスペクトル(d−DMSO中)を測定したところ図1bに示すスペクトルが得られ、ほぼ100mol%のポリ(2−クロロエチル)ビニルエーテルが、ポリエチルビニルエーテル(4−メチルピリジニウム塩(クロライド)となっていることが示された。
Production Example 5 [Production of polyethyl vinyl ether derivative of formula (II)]
5-times equivalent of 4-methylpyridine was added to poly (2-chloroethyl) vinyl ether (weight average molecular weight / number average molecular weight is 1.07) obtained in Production Example 1 and having a number average molecular weight of 10,000, and the mixture was added at 60 ° C in DMF. To obtain a polyethyl vinyl ether derivative of formula (II) (polyethyl vinyl ether (4-methylpyridinium salt (chloride)). The 1 HNMR spectrum (in d 6 -DMSO) of this polymer was measured. However, the spectrum shown in FIG. 1b was obtained, and it was shown that approximately 100 mol% of poly (2-chloroethyl) vinyl ether was polyethyl vinyl ether (4-methylpyridinium salt (chloride)).

試験例1 溶解性試験
製造例2で得られ重合度が80であるポリエチルビニルエーテル誘導体(側鎖にブチルイミダゾリウム塩を有するホモポリマー:重量平均分子量/数平均分子量=1.13)を用いて、下記表1に示す様々な溶媒中で、0℃からそれぞれの溶媒の沸点までの範囲で溶解性を検討した。濃度は1重量%とした。
Test Example 1 Solubility Test Using the polyethylvinyl ether derivative obtained in Production Example 2 and having a polymerization degree of 80 (homopolymer having a butylimidazolium salt in the side chain: weight average molecular weight / number average molecular weight = 1.13) In various solvents shown in Table 1 below, solubility was examined in the range from 0 ° C. to the boiling point of each solvent. The concentration was 1% by weight.

その結果、ヘキサン、トルエンなどの無極性溶媒やアセトンには0℃からそれぞれの溶媒の沸点までの範囲で溶解せず、一方、メタノールなどのアルコールや水といった極性溶媒には0℃からそれぞれの溶媒の沸点までの範囲で溶解するが、クロロホルム中では低温では溶解し、温度を上げると溶液は白濁し、クロロホルム中では、LCST型の相転移(相分離挙動)を示すことがわかった。この結果を表1に示す。   As a result, non-polar solvents such as hexane and toluene and acetone do not dissolve in the range from 0 ° C. to the boiling point of each solvent, while polar solvents such as alcohols such as methanol and water each solvent from 0 ° C. Although it dissolves in the range up to the boiling point of, it is found that it dissolves at a low temperature in chloroform, the solution becomes cloudy when the temperature is raised, and LCST type phase transition (phase separation behavior) is shown in chloroform. The results are shown in Table 1.

クロロホルム中で、濃度を2重量%とした場合でも同様に低温では溶解し、温度を上げると溶液は白濁した。クロロホルム中の2重量%溶液の500nmの可視光の透過率(transmittance)の温度変化を、1℃/分で昇温した場合(図2中のheating)と、1℃/分で降温した場合(図2中のcooling)について測定したところ、図2に示すように、約30〜40℃で急激に高い感度でかつ可逆的にLCST型相分離が生じることが明らかとなった。   Even when the concentration was 2% by weight in chloroform, it was similarly dissolved at a low temperature, and when the temperature was raised, the solution became cloudy. When the temperature change of the transmittance of visible light at 500 nm of a 2 wt% solution in chloroform is increased at 1 ° C./min (heating in FIG. 2), and when the temperature is decreased at 1 ° C./min ( Measurement of the cooling in FIG. 2 revealed that LCST-type phase separation occurred rapidly and reversibly at about 30 to 40 ° C. as shown in FIG.

Figure 0005181276
Figure 0005181276

試験例2 溶解性試験
製造例2で得られ重合度が80であるポリエチルビニルエーテル誘導体(重量平均分子量/数平均分子量=1.13)を用いて、酢酸エチル85重量%/ブタノール15重量%、THF86重量%/ブタノール14重量%、及びトルエン90重量%/ブタノール10重量%の混合溶媒系中で、20℃〜80℃の範囲での溶解性を検討した。これらの混合溶媒系中の1重量%溶液の500nmの可視光の透過率(transmittance)の温度変化を、1℃/分で昇温した場合(図中のheating)と、1℃/分で降温した場合(図中のcooling)について測定したところ、図3に示すように、高い感度でかつ可逆的にLCST型相分離が生じた。
Test Example 2 Solubility Test Using the polyethylvinyl ether derivative (weight average molecular weight / number average molecular weight = 1.13) obtained in Production Example 2 and having a polymerization degree of 80, ethyl acetate 85% by weight / butanol 15% by weight, In a mixed solvent system of 86% by weight of THF / 14% by weight of butanol and 90% by weight of toluene / 10% by weight of butanol, the solubility in the range of 20 ° C. to 80 ° C. was examined. When the temperature change of the transmittance of 500 nm visible light of 1 wt% solution in these mixed solvent systems was increased at 1 ° C./min (heating in the figure), the temperature was decreased at 1 ° C./min. When measured (cooling in the figure), LCST type phase separation occurred with high sensitivity and reversibly as shown in FIG.

なお、図3aは、酢酸エチル85重量%/ブタノール15重量%の場合の結果を、図3bは、THF86重量%/ブタノール14重量%の場合の結果を、図3cは、トルエン90重量%/ブタノール10重量%の場合の結果を示す。このように、トルエン、THF、酢酸エチル(試験例1で不溶との結果が得られたもの)とブタノール(試験例1で溶解との結果が得られたもの)との混合溶媒(ブタノール重量分率:10−15重量%の範囲、ポリマー重量分率:1%)においても、LCST型の相分離挙動を示すことが明らかになった。   FIG. 3a shows the result in the case of 85% by weight of ethyl acetate / 15% by weight of butanol, FIG. 3b shows the result in the case of 86% by weight of THF / 14% by weight of butanol, and FIG. 3c shows the result of 90% by weight of toluene / butanol. The result in the case of 10% by weight is shown. Thus, a mixed solvent (butanol weight fraction) of toluene, THF, ethyl acetate (result obtained as insoluble in Test Example 1) and butanol (result obtained as dissolved in Test Example 1). It was also revealed that LCST type phase separation behavior was exhibited even in the range of 10-15% by weight and polymer weight fraction: 1%.

試験例3
製造例2で得られたポリエチルビニルエーテル誘導体の代わりに、製造例4で得られたポリエチルビニルエーテル(1−ブチル)イミダゾリウム(CFSO塩を用いた以外は、試験例1と同様な条件で、表2に示す様々な溶媒中での溶解性を検討した。その結果を表2に示す。表2に示されるようにこのポリエチルビニルエーテル誘導体はクロロホルム中でも不溶であり、LCST型の相転移(相分離挙動)を示す溶媒はなかった。このように、LCST型の相転移を引き起こすか否かは、対アニオンの種類に依存し、ポリエチルビニルエーテル(1−ブチル)イミダゾリウム塩の場合は、対アニオンとして、塩素イオンのようなハロゲノイオンが好ましいと考えられる。
Test example 3
Test examples except that the polyethyl vinyl ether (1-butyl) imidazolium (CF 3 SO 2 ) 2 N - salt obtained in Production Example 4 was used instead of the polyethyl vinyl ether derivative obtained in Production Example 2. The solubility in various solvents shown in Table 2 was examined under the same conditions as in 1. The results are shown in Table 2. As shown in Table 2, this polyethyl vinyl ether derivative was insoluble even in chloroform, and there was no solvent showing LCST type phase transition (phase separation behavior). Thus, whether or not to cause LCST-type phase transition depends on the type of counter anion. In the case of polyethyl vinyl ether (1-butyl) imidazolium salt, a halogeno ion such as a chlorine ion is used as the counter anion. Is considered preferable.

Figure 0005181276
Figure 0005181276

試験例4 鎖長(重合度)依存性の試験
製造例2で得られた重合度(式(I)中のn)が約50、80、125又は200のポリエチルビニルエーテル誘導体を用いて、クロロホルム中、濃度1重量%で、20℃〜60℃の範囲での溶解性を検討した。
Test Example 4 Chain Length (Degree of Polymerization) Dependence Test Using a polyethyl vinyl ether derivative having a degree of polymerization (n in formula (I)) of about 50, 80, 125 or 200 obtained in Production Example 2, The solubility in the range of 20 ° C. to 60 ° C. was examined at a concentration of 1% by weight.

その結果、重合度が約50の場合は、20℃〜60℃の範囲で溶解し、重合度が約200の場合は、20℃〜60℃の範囲で不溶であったが、重合度が約80及び約125の場合は、低温では溶解し、温度を上げると溶液は白濁するLCST型の相転移(相分離挙動)を示すことがわかった。この結果より、LCST型相分離を生じさせるための重合度nは60〜180程度が好ましく、70〜130程度がより好ましいと考えられる。   As a result, when the degree of polymerization was about 50, it was dissolved in the range of 20 ° C. to 60 ° C., and when the degree of polymerization was about 200, it was insoluble in the range of 20 ° C. to 60 ° C., but the degree of polymerization was about In the case of 80 and about 125, it turned out that it melt | dissolves at low temperature, and when temperature is raised, a solution shows LCST type | mold phase transition (phase-separation behavior) which becomes cloudy. From this result, it is considered that the degree of polymerization n for causing LCST type phase separation is preferably about 60 to 180, more preferably about 70 to 130.

重合度が約80及び約125の場合のクロロホルム中1重量%溶液の500nmの可視光の透過率(transmittance)の温度変化を、1℃/分で昇温した場合について測定したところ、図4に示す結果が得られた。図4に示されるように、重合度が約80の場合は約40〜60℃でLCST型相分離が生ずるが、重合度が約125の場合は約30〜50℃でLCST型相分離が生じ、LCST型相分離が生じる温度は、重合度により変化(重合度が上がればLCST型相分離が生じる温度は低下)することが示された。   When the temperature change of 500 nm visible light transmittance of a 1 wt% solution in chloroform when the degree of polymerization was about 80 and about 125 was measured at 1 ° C./min, it was shown in FIG. The results shown are obtained. As shown in FIG. 4, when the degree of polymerization is about 80, LCST type phase separation occurs at about 40 to 60 ° C., but when the degree of polymerization is about 125, LCST type phase separation occurs at about 30 to 50 ° C. It was shown that the temperature at which LCST type phase separation occurs varies depending on the degree of polymerization (if the degree of polymerization increases, the temperature at which LCST type phase separation occurs).

試験例5 イミダゾリウムカチオン上のアルキル鎖長(式(I)中のRの種類)の依存性
の試験
製造例2で得られたポリエチルビニルエーテル誘導体の代わりに、製造例3で得られたポリエチルビニルエーテル(1−メチル)イミダゾリウム塩(クロライド:式(I)中のR=メチル)及びポリエチルビニルエーテル(1−オクチル)イミダゾリウム塩(クロライド:式(I)中のR=n−オクチル)をそれぞれ用いた以外は、試験例1と同様な条件(1重量%溶液)で、表3に示す様々な溶媒中での溶解性を検討した。その結果を表3に示す。表3に示されるように、LCST型の相転移(相分離挙動)を示す溶媒はなかった。このように、LCST型の相分離を引き起こすか否かは、イミダゾリウムカチオン上のアルキル鎖長にも依存し、LCST型相分離を生じさせるためのアルキル鎖長は炭素数2〜7の範囲が好ましく、炭素数3〜5の範囲がより好ましいと考えられる。
Test Example 5 Test of Dependence of Alkyl Chain Length (Type of R in Formula (I)) on Imidazolium Cation Instead of the polyethyl vinyl ether derivative obtained in Production Example 2, the poly Ethyl vinyl ether (1-methyl) imidazolium salt (chloride: R = methyl in formula (I)) and polyethyl vinyl ether (1-octyl) imidazolium salt (chloride: R = n-octyl in formula (I)) Except for using each, the solubility in various solvents shown in Table 3 was examined under the same conditions (1 wt% solution) as in Test Example 1. The results are shown in Table 3. As shown in Table 3, there was no solvent showing LCST type phase transition (phase separation behavior). Thus, whether or not to cause LCST type phase separation also depends on the alkyl chain length on the imidazolium cation, and the alkyl chain length for causing LCST type phase separation has a range of 2 to 7 carbon atoms. Preferably, a range of 3 to 5 carbon atoms is considered more preferable.

Figure 0005181276
Figure 0005181276

試験例6 濃度依存性の試験
製造例2で得られた重合度(式(I)中のn)が約100のポリエチルビニルエーテル誘導体(重量平均分子量/数平均分子量=1.07)を用いて、クロロホルム中、濃度0.5重量%、濃度1重量%及び濃度2重量%の、20℃〜60℃の範囲での、500nmの可視光の透過率(transmittance)の温度変化を、1℃/分で昇温した場合について測定したところ、図5aに示す結果が得られた。又、濃度と透過率の減少が開始する温度との関係を図5bに示す。図5a、図5bから示されるように、LCST型相分離を生じる温度は、濃度が上昇するほど低下する。なお、製造例2で得られた重合度が約50のポリエチルビニルエーテル誘導体、及び重合度が約200のポリエチルビニルエーテル誘導体についても同様に検討した結果、重合度50のポリマーはどの濃度においてもクロロホルムに溶解したままであり、重合度200のポリマーは不溶なままであった。
Test Example 6 Concentration Dependence Test Using the polyethyl vinyl ether derivative (weight average molecular weight / number average molecular weight = 1.07) having a degree of polymerization (n in formula (I)) of about 100 obtained in Production Example 2 The change in the visible light transmittance of 500 nm in the range of 20 ° C. to 60 ° C. at a concentration of 0.5% by weight, 1% by weight and 2% by weight in chloroform was 1 ° C. / When the temperature was measured in minutes, the result shown in FIG. 5a was obtained. Further, FIG. 5b shows the relationship between the concentration and the temperature at which the decrease in transmittance starts. As shown in FIGS. 5a and 5b, the temperature at which LCST type phase separation occurs becomes lower as the concentration increases. The polyethyl vinyl ether derivative having a degree of polymerization of about 50 and the polyethyl vinyl ether derivative having a degree of polymerization of about 200 obtained in Production Example 2 were similarly examined. The polymer with a polymerization degree of 200 remained insoluble.

試験例7
製造例5で得られた式(II)のポリエチルビニルエーテル誘導体(ポリエチルビニルエーテル(4−メチル)ピリジニウム塩(クロライド):重量平均分子量/数平均分子量=1.07)を、クロロホルム/メタノールの97/3(重量比)の混合溶媒に、濃度1重量%で溶解させ、20℃〜60℃の範囲で、1℃/分で昇温した場合(図6中のheating)、1℃/分で降温した場合(図6中のcooling)の、700nmの可視光の透過率(transmittance)の変化を測定した。その結果を図6に示すが、可逆的にLCST型相分離が生じることが示された。
Test Example 7
The polyethyl vinyl ether derivative of formula (II) obtained in Production Example 5 (polyethyl vinyl ether (4-methyl) pyridinium salt (chloride): weight average molecular weight / number average molecular weight = 1.07) was converted into chloroform / methanol 97. / 3 (weight ratio) in a mixed solvent at a concentration of 1% by weight and heated at a rate of 1 ° C./min in the range of 20 ° C. to 60 ° C. (heating in FIG. 6) at 1 ° C./min When the temperature was lowered (cooling in FIG. 6), a change in transmittance of 700 nm visible light was measured. The result is shown in FIG. 6, and it was shown that LCST type phase separation occurs reversibly.

本発明のポリエチルビニルエーテル誘導体は、種々のセンサー等に用いることができ、又各種の機能性材料等としての利用が考えられる。   The polyethyl vinyl ether derivative of the present invention can be used for various sensors and the like, and can be used as various functional materials.

製造例2及び製造例5で得られたポリエチルビニルエーテル誘導体のHNMRスペクトル(d−DMSO中)である(a:製造例2、b:製造例5)。It is a 1 HNMR spectrum of polyethyl vinyl ether derivative obtained in Production Example 2 and Production Example 5 (in d 6 -DMSO) (a: Preparation Example 2, b: Preparation Example 5). 試験例1で得られた温度と透過率の関係を示すグラフである。4 is a graph showing the relationship between the temperature and the transmittance obtained in Test Example 1. 試験例2で得られた温度と透過率の関係を示すグラフである。6 is a graph showing the relationship between the temperature and the transmittance obtained in Test Example 2. 試験例4で得られた温度と透過率の関係を示すグラフである。6 is a graph showing the relationship between temperature and transmittance obtained in Test Example 4. 試験例6で得られた温度と透過率の関係を示すグラフ及び濃度と透過率の減少が開始する温度との関係を示すグラフである。It is the graph which shows the relationship between the temperature obtained in Test Example 6, and the transmittance | permeability, and the graph which shows the relationship between the density | concentration and the temperature which the fall of the transmittance | permeability starts. 試験例7で得られた温度と透過率の関係を示すグラフである。10 is a graph showing the relationship between temperature and transmittance obtained in Test Example 7.

Claims (10)

下記式(I)で表わされることを特徴とするポリエチルビニルエーテル誘導体。
Figure 0005181276

(式(I)中、Rは水素又はメチルを表わし、Rは炭素数1〜8のアルキルを表わし、nは50〜200の数を表わし、Xは陰イオンを表わす。)
A polyethyl vinyl ether derivative represented by the following formula (I):
Figure 0005181276

(In formula (I), R 1 represents hydrogen or methyl, R represents an alkyl having 1 to 8 carbon atoms, n represents a number of 50 to 200, and X represents an anion.)
ポリエチルビニルエーテル誘導体の重量平均分子量/数平均分子量が、1.25以下であることを特徴とする請求項1に記載のポリエチルビニルエーテル誘導体。   The polyethyl vinyl ether derivative according to claim 1, wherein the polyethyl vinyl ether derivative has a weight average molecular weight / number average molecular weight of 1.25 or less. 式(I)中のRは、炭素数3〜5のアルキルを表わすことを特徴とする請求項1又は請求項2に記載のポリエチルビニルエーテル誘導体。   The polyethyl vinyl ether derivative according to claim 1 or 2, wherein R in the formula (I) represents an alkyl having 3 to 5 carbon atoms. 式(I)中のnは、70〜130の数を表わすことを特徴とする請求項1ないし請求項3のいずれか1項に記載のポリエチルビニルエーテル誘導体。   The polyethyl vinyl ether derivative according to any one of claims 1 to 3, wherein n in the formula (I) represents a number of 70 to 130. 式(I)中のXは、塩素イオンを表わすことを特徴とする請求項1ないし請求項4のいずれか1項に記載のポリエチルビニルエーテル誘導体。 X in Formulas (I) - a poly vinyl ether derivative according to any one of claims 1 to 4, characterized in that a chlorine ion. 下記式(II)で表わされることを特徴とするポリエチルビニルエーテル誘導体。
Figure 0005181276

(式(II)中、Rは炭素数1〜6のアルキルを表わし、nは50〜200の数を表わし、Xは陰イオンを表わす。)
A polyethyl vinyl ether derivative represented by the following formula (II):
Figure 0005181276

(In the formula (II), R 2 represents alkyl having 1 to 6 carbon atoms, n represents a number of 50 to 200, and X represents an anion.)
ポリエチルビニルエーテル誘導体の重量平均分子量/数平均分子量が、1.25以下であることを特徴とする請求項6に記載のポリエチルビニルエーテル誘導体。   The polyethyl vinyl ether derivative according to claim 6, wherein the polyethyl vinyl ether derivative has a weight average molecular weight / number average molecular weight of 1.25 or less. 下記式(III)で表わされる2−ハロゲノエチルビニルエーテルのリビングカチオン重合を含むことを特徴とする請求項1ないし請求項7のいずれか1項に記載のポリエチルビニルエーテル誘導体の製造方法。
Figure 0005181276
(式(III)中Yはハロゲン原子を表わす。)
The method for producing a polyethylvinyl ether derivative according to any one of claims 1 to 7, comprising living cationic polymerization of 2-halogenoethyl vinyl ether represented by the following formula (III).
Figure 0005181276
(In formula (III), Y represents a halogen atom.)
請求項1ないし請求項7のいずれか1項に記載のポリエチルビニルエーテル誘導体の重合度の調整によるLCST型相分離の制御方法。   A method for controlling LCST type phase separation by adjusting the degree of polymerization of the polyethylvinyl ether derivative according to any one of claims 1 to 7. 請求項1ないし請求項7のいずれか1項に記載のポリエチルビニルエーテル誘導体の、有機溶媒中におけるポリマー濃度の調整によるLCST型相分離の制御方法。   A method for controlling LCST-type phase separation of the polyethylvinyl ether derivative according to any one of claims 1 to 7 by adjusting a polymer concentration in an organic solvent.
JP2008049125A 2008-02-29 2008-02-29 POLYETHYL VINYL ETHER DERIVATIVE, ITS MANUFACTURING METHOD, AND LCST TYPE SEPARATION CONTROL METHOD Active JP5181276B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008049125A JP5181276B2 (en) 2008-02-29 2008-02-29 POLYETHYL VINYL ETHER DERIVATIVE, ITS MANUFACTURING METHOD, AND LCST TYPE SEPARATION CONTROL METHOD

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008049125A JP5181276B2 (en) 2008-02-29 2008-02-29 POLYETHYL VINYL ETHER DERIVATIVE, ITS MANUFACTURING METHOD, AND LCST TYPE SEPARATION CONTROL METHOD

Publications (2)

Publication Number Publication Date
JP2009203396A JP2009203396A (en) 2009-09-10
JP5181276B2 true JP5181276B2 (en) 2013-04-10

Family

ID=41145978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008049125A Active JP5181276B2 (en) 2008-02-29 2008-02-29 POLYETHYL VINYL ETHER DERIVATIVE, ITS MANUFACTURING METHOD, AND LCST TYPE SEPARATION CONTROL METHOD

Country Status (1)

Country Link
JP (1) JP5181276B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6887299B2 (en) * 2017-05-12 2021-06-16 旭化成株式会社 A method for producing a metal particle cyclic structure, a composition, a laminate, and a metal particle annular structure.

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54114593A (en) * 1978-02-28 1979-09-06 Agency Of Ind Science & Technol New photosensitive polymeric compound and its preparation
JPH01108203A (en) * 1987-10-20 1989-04-25 Toshinobu Higashimura Manufacture of polyalkenyl ether

Also Published As

Publication number Publication date
JP2009203396A (en) 2009-09-10

Similar Documents

Publication Publication Date Title
Tang et al. Water‐soluble triply‐responsive homopolymers of N, N‐dimethylaminoethyl methacrylate with a terminal azobenzene moiety
Scognamillo et al. Thermoresponsive super water absorbent hydrogels prepared by frontal polymerization
Zhang et al. Synthesis and solution properties of temperature‐sensitive copolymers based on NIPAM
Deng et al. Conformational transition between random coil and helix of poly (N-propargylamides)
Mun et al. Temperature‐responsive water‐soluble copolymers based on 2‐hydroxyethyl acrylate and butyl acrylate
Rueda et al. New Thermo‐Sensitive Graft Copolymers Based on a Poly (N‐Isopropylacrylamide) Backbone and Functional Polyoxazoline Grafts with Random and Diblock Structure
Pineda‐Contreras et al. Importance of compositional homogeneity of macromolecular chains for UCST‐type transitions in water: Controlled versus conventional radical polymerization
Ezell et al. Electrolyte‐and pH‐responsive polyampholytes with potential as viscosity‐control agents in enhanced petroleum recovery
Ooi et al. “Click” PNIPAAm hydrogels–a comprehensive study of structure and properties
CN110418806A (en) The manufacturing method of polymer
Seo et al. Ionic liquid-doped and p-NIPAAm-based copolymer (p-NIBIm): extraordinary drug-entrapping and-releasing behaviors at 38–42° C
Li et al. Triply‐responsive (thermo/light/pH) copolymeric hydrogel of N‐isopropylacrylamide with an azobenzene‐containing monomer
Yamamoto et al. Synthesis and Thermosensitive Properties of Poly [(N‐vinylamide)‐co‐(vinyl acetate)] s and Their Hydrogels
JP5181276B2 (en) POLYETHYL VINYL ETHER DERIVATIVE, ITS MANUFACTURING METHOD, AND LCST TYPE SEPARATION CONTROL METHOD
Li et al. Rheological properties and enhanced oil recovery performance of a novel sulfonate polyacrylamide
Filippov et al. Solution behavior of polyimide‐graft‐polystyrene copolymers in selective solvents
Shaplov et al. Polymerization of the new double‐charged monomer bis‐1, 3 (N, N, N‐trimethylammonium dicyanamide)‐2‐propylmethacrylate and ionic conductivity of the novel polyelectrolytes
Wu et al. Hyperbranched poly (triazole) with thermal and metal ion dual stimuli-responsiveness
Coluccini et al. “Push‐pull” supramolecular chromophores supported on cyclopolymers
Taden et al. Synthesis and polymerization of 5‐(methacrylamido) tetrazole, a water‐soluble acidic monomer
CN105218454B (en) N- vinyl triarylimidazoles compounds and its polymer and purposes
Cao et al. N‐Isopropylacrylamide/2‐Hydroxyethyl Methacrylate Star Diblock Copolymers: Synthesis and Thermoresponsive Behavior
Ma et al. Deswelling comparison of temperature‐sensitive poly (N‐isopropylacrylamide) microgels containing functional OH groups with different hydrophilic long side chains
Jia et al. Effects of maintaining temperature and time on properties and structures of poly (dimethyldiallylammonium chloride)
Deng et al. Synthesis, characterization, and drug release behaviors of a novel thermo‐sensitive poly (N‐acryloylglycinates)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110207

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20110331

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120625

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121226

R150 Certificate of patent or registration of utility model

Ref document number: 5181276

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160125

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250