JP5162817B2 - Network carbon material - Google Patents

Network carbon material Download PDF

Info

Publication number
JP5162817B2
JP5162817B2 JP2005245221A JP2005245221A JP5162817B2 JP 5162817 B2 JP5162817 B2 JP 5162817B2 JP 2005245221 A JP2005245221 A JP 2005245221A JP 2005245221 A JP2005245221 A JP 2005245221A JP 5162817 B2 JP5162817 B2 JP 5162817B2
Authority
JP
Japan
Prior art keywords
bacterial cellulose
carbon
drying
carbon material
network
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005245221A
Other languages
Japanese (ja)
Other versions
JP2007055865A (en
Inventor
修生 大矢
信 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2005245221A priority Critical patent/JP5162817B2/en
Publication of JP2007055865A publication Critical patent/JP2007055865A/en
Application granted granted Critical
Publication of JP5162817B2 publication Critical patent/JP5162817B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

本発明は、大きい比表面積を有することにより、例えば高い物質吸着性、物質透過性、電子伝導性および/または化学的安定性等の性質を示すネットワーク状炭素材料に関する。詳しくは、例えば電気二重層キャパシタ、燃料電池などの電極材料等に好適に用いられる炭素フィブリルが絡み合ったシート状の炭素材料に関する。   The present invention relates to a network-like carbon material having a high specific surface area and thus exhibiting properties such as high substance adsorbability, substance permeability, electronic conductivity and / or chemical stability. Specifically, the present invention relates to a sheet-like carbon material in which carbon fibrils that are suitably used for an electrode material such as an electric double layer capacitor and a fuel cell are intertwined.

多孔質の炭素材料は、各種エネルギーデバイスの電極及びその周辺部材、高温フィルター、断熱材などに工業的に用いられているが、そのほとんどが炭素粉末または炭素繊維をバインダーで結合してシート状に成形して用いられている。また、バインダーで結合した後に炭素化して用いられることもしばしばある。しかしながら、その手法では多孔質構造の精密な制御は困難であり、炭素材料の設計の自由度が著しく阻害されている。この問題を解決する手段として、特開2000−335909号公報(特許文献1)にはポリイミド多孔質膜を炭素化することで微細な連続孔を有する多孔質炭化膜が得られることが記載されている。   Porous carbon materials are industrially used for electrodes and peripheral members of various energy devices, high-temperature filters, heat insulating materials, etc., but most of them are formed into a sheet by binding carbon powder or carbon fiber with a binder. Molded and used. Moreover, it is often used after carbonization after being bound with a binder. However, this method makes it difficult to precisely control the porous structure, and the degree of freedom in designing the carbon material is significantly hindered. As means for solving this problem, JP 2000-335909 A (Patent Document 1) describes that a porous carbonized film having fine continuous pores can be obtained by carbonizing a polyimide porous film. Yes.

一方、木質系セルロース系材料は炭素の前駆体と成り得ることが知られているが、その構造はフィブリル径が数μmオーダーと粗いために、機能性材料として用いる際に重要な比表面積は数m/gと非常に小さいのが一般的である。 On the other hand, it is known that woody cellulosic materials can be carbon precursors, but the structure has a rough fibril diameter on the order of several μm, so the specific surface area important for use as a functional material is several. In general, it is very small as m 2 / g.

セルロース系の微細なフィブリルとしては、特開2004−204380号公報(特許文献2)には、微生物が生産するバクテリアセルロースを乾燥することにより、比表面積の大きなシート状物を得る方法が記載されている。バクテリアセルロースは、例えば酢酸菌が生産するものは、食品素材「ナタデココ」として知られており、ナノレベルのフィブリル性を有し、特にフィブリル内部のセルロースが高度に配向、結晶化している。   As a cellulose-based fine fibril, Japanese Patent Application Laid-Open No. 2004-204380 (Patent Document 2) describes a method of obtaining a sheet-like material having a large specific surface area by drying bacterial cellulose produced by a microorganism. Yes. Bacterial cellulose, for example, produced by acetic acid bacteria, is known as a food material “Natadecoko”, has nano-level fibrillar properties, and in particular, cellulose in fibrils is highly oriented and crystallized.

しかしながら、バクテリアセルロースから比表面積の大きな炭素材料を製造することは現在まで成功していなかった。
特開2000−335909号公報 特開2004−204380号公報
However, production of a carbon material having a large specific surface area from bacterial cellulose has not been successful until now.
JP 2000-335909 A JP 2004-204380 A

本発明は、比表面積の大きな新規な構成のネットワーク状炭素材料およびそのシート状物を提供することを目的とする。   An object of the present invention is to provide a network-like carbon material having a large specific surface area and a sheet-like material thereof.

1. バクテリアが産生したゲル状態のバクテリアセルロースを、そのネットワーク構造を維持したまま乾燥する工程と、  1. Drying the gelatinous bacterial cellulose produced by the bacteria while maintaining its network structure;
乾燥したバクテリアセルロースをハロゲン蒸気に接触させる工程と、  Contacting the dried bacterial cellulose with halogen vapor;
ハロゲン蒸気に接触させたバクテリアセルロースを不活性ガス雰囲気下で700℃〜3200℃の温度で炭素化する工程と  Carbonizing bacterial cellulose contacted with halogen vapor at a temperature of 700 ° C. to 3200 ° C. in an inert gas atmosphere;
を有することを特徴とするネットワーク状炭素材料の製造方法。A method for producing a network-like carbon material, comprising:
2. バクテリアが産生したゲル状態のバクテリアセルロースを、そのネットワーク構造を維持したまま乾燥する工程と、  2. Drying the gelatinous bacterial cellulose produced by the bacteria while maintaining its network structure;
乾燥したバクテリアセルロースを加圧密閉下で蒸し焼きする工程と、  Steaming and baking dried bacterial cellulose under pressure and sealing;
蒸し焼きしたバクテリアセルロースを不活性ガス雰囲気下で700℃〜3200℃の温度で炭素化する工程と  Carbonizing the steamed bacterial cellulose at a temperature of 700 ° C. to 3200 ° C. in an inert gas atmosphere;
を有することを特徴とするネットワーク状炭素材料の製造方法。A method for producing a network-like carbon material, comprising:
3. 前記乾燥工程において、乾燥前のゲル状態からの見かけの収縮残存率が幅、長さ方向でも30%以上、厚み方向で10%以上となるように乾燥することを特徴とする上記1または2に記載の製造方法。  3. In the drying step, the drying is performed such that the apparent shrinkage remaining rate from the gel state before drying is 30% or more in the width and length directions and 10% or more in the thickness direction. The manufacturing method as described.
4. 前記乾燥が凍結乾燥であることを特徴とする上記3記載の製造方法。  4). 4. The method according to 3 above, wherein the drying is freeze-drying.
5. 前記炭素化温度が1500℃〜3200℃であることを特徴とする上記1〜4のいずれかに記載の製造方法。  5). The said carbonization temperature is 1500 degreeC-3200 degreeC, The manufacturing method in any one of said 1-4 characterized by the above-mentioned.
6. 乾燥したバクテリアセルロースを圧縮成形してシート状に成形する工程を有する上記1〜5のいずれかに記載の製造方法。  6). 6. The production method according to any one of 1 to 5 above, comprising a step of compression-molding dried bacterial cellulose to form a sheet.
さらに、本出願の次の事項も開示している。Further, the following matters of the present application are also disclosed.

1. 賦活処理なしで製造され、炭素フィブリルが互いに絡み合って3次元ネットワーク構造を形成しており、比表面積が30m/g以上であることを特徴とするネットワーク状炭素材料。 1. A network-like carbon material produced without an activation treatment, in which carbon fibrils are entangled with each other to form a three-dimensional network structure, and a specific surface area is 30 m 2 / g or more.

2. 前記炭素フィブリルは、分岐を有しており、
構成する炭素フィブリルの50体積%以上99.99体積%以下は、1nm〜300nmの直径を有するフィブリルであることを特徴とする上記1記載のネットワーク状炭素材料。
2. The carbon fibril has a branch,
2. The network-like carbon material as described in 1 above, wherein 50% by volume or more and 99.99% by volume or less of the constituent carbon fibrils are fibrils having a diameter of 1 nm to 300 nm.

3. バクテリアセルロースから製造されることを特徴とする上記1または2記載のネットワーク状炭素材料。   3. 3. The network-like carbon material as described in 1 or 2 above, which is produced from bacterial cellulose.

4. 黒鉛化率が30%以上であることを特徴とする上記1〜3のいずれかに記載のネットワーク状炭素材料。   4). 4. The network-like carbon material as described in any one of 1 to 3 above, wherein the graphitization rate is 30% or more.

5. バクテリアが産生したゲル状態のバクテリアセルロースを、そのネットワーク構造を維持したまま乾燥する工程と、
乾燥後のバクテリアセルロースを不活性ガス雰囲気下で700℃〜3200℃の温度で炭素化する工程と
を有することを特徴とするネットワーク状炭素材料の製造方法。
5. Drying the gelatinous bacterial cellulose produced by the bacteria while maintaining its network structure;
And a step of carbonizing the dried bacterial cellulose at a temperature of 700 ° C. to 3200 ° C. in an inert gas atmosphere.

6. 前記乾燥工程において、乾燥前のゲル状態からの見かけの収縮残存率が幅、長さ方向でも30%以上、厚み方向で10%以上となるように乾燥することを特徴とする上記5記載の製造方法。   6). 6. The production according to 5 above, wherein, in the drying step, drying is performed so that an apparent shrinkage remaining rate from a gel state before drying is 30% or more in the width and length directions and 10% or more in the thickness direction. Method.

7. 前記乾燥が凍結乾燥であることを特徴とする上記6記載の製造方法。   7). 7. The production method according to 6 above, wherein the drying is freeze-drying.

8. 前記炭素化工程前に、乾燥したバクテリアセルロースをハロゲン蒸気に接触させる工程を有する上記5〜7のいずれかに記載の製造方法。   8). The production method according to any one of 5 to 7 above, which comprises a step of bringing dried bacterial cellulose into contact with halogen vapor before the carbonization step.

9. 前記炭素化工程前に、乾燥したバクテリアセルロースを加圧密閉下で蒸し焼きする工程を有することを特徴とする上記5〜7のいずれかに記載の製造方法。   9. 8. The method according to any one of 5 to 7 above, further comprising a step of steaming and baking dried bacterial cellulose under pressure and sealing before the carbonization step.

10. 前記炭素化温度が1500℃〜3200℃であることを特徴とする上記5〜9のいずれかに記載の製造方法。   10. The said carbonization temperature is 1500 degreeC-3200 degreeC, The manufacturing method in any one of said 5-9 characterized by the above-mentioned.

11. 乾燥したバクテリアセルロースを圧縮成形してシート状に成形する工程を有する上記5〜10のいずれかに記載の製造方法。   11. 11. The production method according to any one of 5 to 10 above, comprising a step of compression-molding dried bacterial cellulose to form a sheet.

12. 上記11記載の製造方法で製造されるシート状の上記1〜4のいずれかに記載のネットワーク状炭素材料。   12 5. The network-like carbon material according to any one of 1 to 4, which is produced by the production method according to 11 above.

本発明によれば、賦活処理なしで製造され、極めて比表面積の大きな30m/g以上のネットワーク状の多孔質炭素材料を提供することができる。本発明の1態様では、極めて直径の細い微細なフィブリルでありながら、フィブリルの脱落が少なく耐久性に優れたネットワーク状炭素材料を提供することができる。特にネットワーク間にnmオーダーの細孔(網目間隙)を有することから、種々の高機能材料として使用することができる。 ADVANTAGE OF THE INVENTION According to this invention, it can manufacture without an activation process and can provide the network-like porous carbon material of 30 m < 2 > / g or more with a very large specific surface area. In one embodiment of the present invention, it is possible to provide a network-like carbon material that is a fine fibril having a very small diameter and that is less likely to fall off and has excellent durability. In particular, since it has pores (mesh gaps) on the order of nm between networks, it can be used as various highly functional materials.

また、本発明の製造方法によれば、上記のネットワーク状炭素材料を、バクテリアセルロースを原料として、その大きな表面積を維持しながら、収率よく製造することができる。また、炭素化条件を調整することで用途に合わせて黒鉛化率を変えることができ、例えば、黒鉛化率を30%以上に高めることができる。   Moreover, according to the manufacturing method of this invention, said network-like carbon material can be manufactured with a sufficient yield, maintaining the big surface area from bacterial cellulose as a raw material. Moreover, the graphitization rate can be changed according to a use by adjusting carbonization conditions, for example, a graphitization rate can be raised to 30% or more.

本発明で、ネットワーク状とは、フィブリルが3次元的に絡み合った状態をいうものであり、ネットワーク状材料がシート状に成形されたものは、一種の不織布に相当するともいえる。   In the present invention, the network shape means a state in which fibrils are entangled three-dimensionally, and it can be said that a network material formed into a sheet shape corresponds to a kind of nonwoven fabric.

本発明では、炭素フィブリルが互いに絡み合って3次元ネットワーク状(3次元網目構造)を構成して、重量あたりの比表面積が30m/g以上である。従来より存在する炭素繊維の不織布等においては、フィブリル径が十数〜数μmと太いためにこのような比表面積を得ることはできなかった。従来の炭素材料では、アルカリ等で処理し表面を多孔性とするいわゆる賦活処理を行ったもので、比表面積が30m/g以上のものが知られているが、繊維径は基本的には変化しないため、本発明のような1μm以下の極細のフィブリルから得られる目の細かい多孔質炭素材料とは性状は全く異なるものである。 In the present invention, carbon fibrils are intertwined with each other to form a three-dimensional network (three-dimensional network structure), and the specific surface area per weight is 30 m 2 / g or more. In the conventional non-woven fabric of carbon fiber and the like, such a specific surface area could not be obtained because the fibril diameter was as thick as 10 to several μm. Conventional carbon materials have been subjected to a so-called activation treatment in which the surface is made porous by treatment with alkali or the like, and those having a specific surface area of 30 m 2 / g or more are known, but the fiber diameter is basically Since it does not change, the property is completely different from the fine porous carbon material obtained from ultrafine fibrils of 1 μm or less as in the present invention.

本発明は、賦活処理なしで得られた炭素フィブリルであって、比表面積が30m/g以上を有するものであり、このような構成は従来にない全く新規なものである。さらに好ましくは、比表面積50m/g以上である。また比表面積の極めて大きなものは製造が次第に困難になるので、一般的には3000m/g以下である。 The present invention is a carbon fibril obtained without an activation treatment, and has a specific surface area of 30 m 2 / g or more. Such a configuration is completely new and unprecedented. More preferably, the specific surface area is 50 m 2 / g or more. Moreover, since a thing with a very large specific surface area becomes difficult to manufacture gradually, it is generally 3000 m < 2 > / g or less.

本発明の炭素フィブリルは、分岐(枝分かれ)を有していることが好ましい。例えば、通常の炭素繊維では1本のまっすぐな繊維であるが、分岐を有する炭素フィブリルでは、1本のフィブリルが途中で2本以上(2本が多い)の複数に分かれており、多くの場合、さらにその先で複数(2本が多い)に分かれている。2本に別れた分岐点では、3本のフィブリルが結合しているともいえる。このように分岐を有することにより、フィブリル同士の絡み合いが一層多くなり、本発明の炭素材料を繰り返し使用したときにもフィブリルの脱落が抑制されるので耐久性が向上する。また、電子伝導性や熱伝導性,機械的特性の観点からも、有利となる。このような特性は、特に使用電位幅が広い高出力キャパシター用の電極として、好適である。   The carbon fibril of the present invention preferably has a branch (branch). For example, a normal carbon fiber is a single straight fiber, but in a carbon fibril having a branch, one fibril is divided into two or more (many two) in the middle, and in many cases Further, it is further divided into a plurality (two are many). It can be said that three fibrils are bonded at a branch point divided into two. By having such a branch, the fibrils are further entangled with each other, and even when the carbon material of the present invention is repeatedly used, the fibrils are prevented from falling off, so that the durability is improved. In addition, it is advantageous from the viewpoint of electronic conductivity, thermal conductivity, and mechanical characteristics. Such characteristics are particularly suitable as an electrode for a high output capacitor having a wide use potential width.

ネットワーク状炭素材料は、好ましくは構成する炭素フィブリルの50体積%以上99.99体積%以下が、1nm〜300nmの直径、さらに好ましくは1nm〜150nmの直径を有している。   In the network-like carbon material, preferably, 50% by volume or more and 99.99% by volume or less of the constituent carbon fibrils have a diameter of 1 nm to 300 nm, more preferably 1 nm to 150 nm.

以上のような炭素材料は、好ましくは後述するようなバクテリアセルロースを出発原料として製造される。バクテリアセルロースは、nmオーダーの細いセルロースフィブリルを基本構造としており、高い比表面積、物質透過性、空孔率を有し、さらにフィブリル中のセルロース分子の配向も高度に発達していることから、本発明の炭素材料の前駆体として極めて好適なものである。また、バクテリアセルロースでは、バクテリアの増殖に基づいてセルロースフィブリルが上述のような分岐を有している点でも好ましいものである。   The carbon material as described above is preferably produced using bacterial cellulose as described below as a starting material. Bacterial cellulose has a basic structure of thin cellulose fibrils on the order of nm, has a high specific surface area, material permeability, and porosity, and the orientation of cellulose molecules in the fibrils is also highly developed. It is extremely suitable as a precursor of the carbon material of the invention. Bacterial cellulose is also preferable in that cellulose fibrils have the above-mentioned branching based on bacterial growth.

次に、本発明のネットワーク状炭素材料の製造方法を説明する。   Next, the manufacturing method of the network-like carbon material of this invention is demonstrated.

本発明で出発原料として使用するバクテリアセルロースは、公知のものが挙げられ、例えば、アセトバクター・キシリナム・サブスピーシーズ・シュクロファーメンタ(Acetobacter xylinum subsp.sucrofermentans )、アセトバクター・キシリナム(Acetobacter xylinum )ATCC23768、アセトバクター・キシリナムATCC23769、アセトバクター・パスツリアヌス(A. pasteurianus )ATCC10245、アセトバクター・キシリナムATCC14851、アセトバクター・キシリナムATCC11142及びアセトバクターキシリナムATCC10821等の酢酸菌(アセトバクター属)、アグロバクテリウム属、リゾビウム属、サルシナ属、シュードモナス属、アクロモバクター属、アルカリゲネス属、アエロバクター属、アゾトバクター属及びズーグレア属、エンテロバクター属またはクリューベラ属並びにそれらをNTG(ニトロソグアニジン)等を用いる公知の方法によって変異処理することにより創製される各種変異株を培養することにより生産される。本発明では、特に長い繊維長のセルロースが産生されるものが好ましく、酢酸菌等が好ましい。   Bacterial cellulose used as a starting material in the present invention includes known ones such as Acetobacter xylinum subsp. Sucrofermentans, Acetobacter xylinum ATCC 23768. Acetobacter xylinum ATCC 23769, A. pasteurianus ATCC 10245, Acetobacter xylinum ATCC 14851, Acetobacter xylinum ATCC 11142 and Acetobacter xylinum ATCC 10821, etc. Rhizobium, Sarsina, Pseudomonas, Achromobacter, Alkaligenes, Aerobacter, Azotobacter Zooglea genus are produced by culturing various mutant strains created by mutation treatment by a known method using a Enterobacter or Kuryubera genus and NTG them (nitrosoguanidine), or the like. In the present invention, those that produce cellulose having a particularly long fiber length are preferred, and acetic acid bacteria and the like are preferred.

バクテリアセルロースはナタデココの性状を見ればわかるように、水を含んだゲル状の材料であるので、炭素化する前に乾燥する必要がある。この工程を通常の熱風乾燥で処理すると、比表面積が大幅に低下してしまい、結果として得られる炭素材料の比表面積も小さくなる。そこで、本発明では、ゲル状態のバクテリアセルロースのネットワーク構造を維持しながら乾燥する必要がある。具体的には、乾燥後に収縮したときに、最初にバクテリアセルロースのゲル状物を静置したときの状態から、見かけの収縮残存率(=収縮後の長さ/元の長さ)で幅、長さ方向でも30%以上、厚みで10%以上となるように、好ましくは幅、長さ方向でも50%以上、厚みで20%以上の大きさが残るように(収縮率では、幅、長さ方向50%以下、厚み方向80%以下に)、乾燥することが好ましい。   Bacterial cellulose is a gel-like material containing water, as can be seen by looking at the properties of Nata de Coco, so it must be dried before carbonization. When this step is processed by ordinary hot air drying, the specific surface area is greatly reduced, and the specific surface area of the resulting carbon material is also reduced. Therefore, in the present invention, it is necessary to dry while maintaining the network structure of the bacterial cellulose in the gel state. Specifically, when shrinking after drying, from the state when the bacterial cellulose gel was first allowed to stand, the apparent shrinkage remaining rate (= length after shrinking / original length), width, 30% or more in the length direction and 10% or more in the thickness, preferably 50% or more in the length and length direction, and 20% or more in the thickness remain (in terms of shrinkage, width, length It is preferable to dry the film in a thickness direction of 50% or less and a thickness direction of 80% or less.

このような状態に乾燥できる方法であれば、どのような方法でもよいが、例えば凍結乾燥が簡便で好ましい。凍結乾燥の溶媒としては、水、アルコール等の通常使用される凍結乾燥溶媒を使用することができるが、凍った状態で蒸気圧の高いものが好ましく、特にアルコールが好ましく、中でもt−ブタノールが好ましい。水以外の溶媒を使用するときは、ゲルに含有される水を、凍結乾燥溶媒に置換してから凍結乾燥すればよい。   Any method can be used as long as it can be dried in such a state. For example, freeze-drying is simple and preferable. As the lyophilization solvent, commonly used lyophilization solvents such as water and alcohol can be used, but those having a high vapor pressure in the frozen state are preferable, alcohol is particularly preferable, and t-butanol is particularly preferable. . When using a solvent other than water, the water contained in the gel may be replaced with a freeze-dried solvent and then freeze-dried.

乾燥後のバクテリアセルロースは、セルロースフィブリルが絡み合ったスポンジ状の性状を有している。この形状のまま、炭素化処理を行っても良いが、この時点で成形することで最終的に製造される炭素材料の形状を規定することができる。通常、シート状で不織布として使用される用途では、凍結乾燥後のスポンジ状のバクテリアセルロースを一軸加圧圧縮してシート状に成形することが好ましい。   Bacterial cellulose after drying has a sponge-like property in which cellulose fibrils are intertwined. The carbonization treatment may be performed in this shape, but the shape of the carbon material finally produced can be defined by molding at this point. Usually, in the use used as a nonwoven fabric in a sheet form, it is preferable to form sponge-like bacterial cellulose after freeze-drying into a sheet form by uniaxial pressure compression.

乾燥後のバクテリアセルロースの炭素化は、通常、不活性ガス雰囲気下で700℃〜3200℃の温度で行う。好ましくは、3000℃以下である。また、炭素の結晶化を促進して黒鉛質を上げるためには、高温で炭素処理をすることが好ましく、黒鉛化率30%以上のネットワーク状炭素材料を得るためには、炭素化温度として1500℃〜3200℃(好ましくは3000℃以下)、好ましくは2000℃〜3000℃である。結晶子が発達して黒鉛化率が30%以上になると、透過型電子顕微鏡で炭素六角網目が容易に観察できるようになる。黒鉛化率を高める場合には、炭素化処理を2段階に分けて行ってもよく、1500℃未満の第1次炭素化処理を行った後、1500℃以上で第2次炭素化処理(黒鉛化処理)を行う。不活性ガスとしては窒素、アルゴン等が好ましく、特に黒鉛化の際の高温での処理ではアルゴンが好ましい。尚、黒鉛化率は広角X線散乱強度を学振法で解析することにより求められる値である。用途により要求される物性が異なるので、用途に合わせて黒鉛化率を変えることが好ましい。   Carbonization of bacterial cellulose after drying is usually performed at a temperature of 700 ° C. to 3200 ° C. in an inert gas atmosphere. Preferably, it is 3000 degrees C or less. In order to promote carbon crystallization and increase the graphite quality, it is preferable to perform carbon treatment at a high temperature, and in order to obtain a network-like carbon material having a graphitization rate of 30% or more, the carbonization temperature is 1500. C. to 3200.degree. C. (preferably 3000.degree. C. or less), preferably 2000.degree. C. to 3000.degree. When the crystallite develops and the graphitization rate becomes 30% or more, the carbon hexagonal network can be easily observed with a transmission electron microscope. In order to increase the graphitization rate, the carbonization treatment may be performed in two stages. After the primary carbonization treatment of less than 1500 ° C, the secondary carbonization treatment (graphite at 1500 ° C or higher) Process). As the inert gas, nitrogen, argon or the like is preferable, and argon is particularly preferable in the treatment at a high temperature during graphitization. The graphitization rate is a value obtained by analyzing the wide-angle X-ray scattering intensity by the Gakushin method. Since the required physical properties differ depending on the application, it is preferable to change the graphitization rate in accordance with the application.

炭素化工程では、乾燥後のバクテリアセルロースを炭素板の間に挟んで処理することが好ましい。このような処理により、炭素収率{=残存重量×100/乾燥セルロース重量}で、10重量%程度以上が得られる。一方、例えばるつぼの中に静置して処理を行うと、炭素収率で7%以下、最悪の場合0%になる場合があり、比表面積も前駆体のバクテリアセルロースより大幅に低下し、フィブリル構造が緻密化してしまうことがある。これは、バクテリアセルロースのフィブリルが特に繊細なために影響を受けやすいためと考えられる。従って、炭素板の間に挟んで処理を行うことは、バクテリアセルロースを原料とする場合に特に好ましい方法である。   In the carbonization step, it is preferable to treat the dried bacterial cellulose by sandwiching it between carbon plates. By such treatment, a carbon yield {= residual weight × 100 / dry cellulose weight} of about 10% by weight or more is obtained. On the other hand, for example, when the treatment is performed in a crucible, the carbon yield may be 7% or less, and in the worst case, 0%, and the specific surface area may be significantly lower than that of the precursor bacterial cellulose. The structure may become dense. This is presumably because bacterial cellulose fibrils are particularly sensitive and sensitive. Therefore, it is particularly preferable to perform the treatment by sandwiching between carbon plates when bacterial cellulose is used as a raw material.

本発明の1実施形態では、炭素化工程前に、乾燥したバクテリアセルロースをハロゲン蒸気に接触させることが好ましい。ハロゲンとしては、臭素およびヨウ素が好ましく、特にヨウ素が好ましい。この工程は、乾燥したバクテリアセルロースにハロゲン蒸気が接触するようにすればどのような方法でもよく、密閉容器中で処理してもよいし、流通式で処理しても良い。処理雰囲気は、純ハロゲン蒸気だけで満たした空間でもよいし、空気または反応に悪影響を与えないアルゴン等の不活性ガスが共存していてもよい。処理条件は、蒸気圧も考慮して適宜設定するができるが、例えば20〜120℃程度、好ましくは50〜100℃で、10分〜10日程度、好ましくは6時間から3日程度処理すればよい。   In one embodiment of the invention, it is preferred that the dried bacterial cellulose is contacted with halogen vapor prior to the carbonization step. As the halogen, bromine and iodine are preferable, and iodine is particularly preferable. This step may be performed by any method as long as the halogen vapor is brought into contact with the dried bacterial cellulose, and may be processed in a closed container or may be processed in a flow-through manner. The treatment atmosphere may be a space filled with pure halogen vapor alone, or air or an inert gas such as argon that does not adversely affect the reaction may coexist. The treatment conditions can be appropriately set in consideration of the vapor pressure. For example, the treatment conditions are about 20 to 120 ° C., preferably 50 to 100 ° C., about 10 minutes to 10 days, preferably about 6 hours to 3 days. Good.

このようにハロゲン処理を行ったバクテリアセルロースを、好ましくは上述のように炭素板の間に挟んで炭素化処理を行うと、炭素収率15重量%以上の高い収率で、高比表面積の炭素材料が得られる。   Bacterial cellulose thus treated with halogen is preferably carbonized by sandwiching it between carbon plates as described above, so that a carbon material having a high specific surface area can be obtained at a high yield of 15% by weight or more. can get.

さらに本発明の1実施形態では、炭素化工程前に、乾燥したバクテリアセルロースを加圧密閉下で蒸し焼きすることが好ましい。蒸し焼きは、不活性ガス雰囲気中で、適当な密閉容器中で、完全に炭素化しない温度で加熱することにより行われる。通常、700℃未満、好ましくは500℃以下で、通常200℃以上の温度である、処理時間は10分〜3日間、好ましくは1〜24時間、さらに好ましくは2〜10時間(例えば5時間)である。   Furthermore, in one embodiment of the present invention, it is preferable to steam and dry the dried bacterial cellulose under pressure and sealing before the carbonization step. Steaming is carried out in an inert gas atmosphere by heating in a suitable closed container at a temperature that does not completely carbonize. Usually, the temperature is less than 700 ° C., preferably 500 ° C. or less and usually 200 ° C. or more. The treatment time is 10 minutes to 3 days, preferably 1 to 24 hours, more preferably 2 to 10 hours (for example, 5 hours). It is.

このように加圧密閉下で蒸し焼き処理を行ったバクテリアセルロースを、好ましくは上述のように炭素板の間に挟んで炭素化処理を行うと、炭素収率15重量%以上の高い収率で、高比表面積の炭素材料が得られる。   Bacterial cellulose that has been steam-baked under pressure and hermetic sealing as described above is preferably carbonized by sandwiching it between carbon plates as described above, with a high yield of 15% by weight or more and a high ratio. A carbon material having a surface area is obtained.

本発明の製造方法では、ハロゲン処理と蒸し焼き処理を併用しても良い。その場合は、通常はハロゲン処理してから蒸し焼き処理することが好ましい。   In the production method of the present invention, a halogen treatment and a steaming treatment may be used in combination. In that case, it is usually preferable to perform a steaming treatment after halogen treatment.

以上の処理、即ち、炭素板に挟んでの炭素化、炭素化工程前のハロゲン処理および蒸し焼き処理は、成形していない乾燥バクテリアセルロースに対しても、シート状に成形したものに対しても適用できる。   The above treatment, that is, carbonization sandwiched between carbon plates, halogen treatment before the carbonization step and steaming treatment, can be applied to dry bacterial cellulose that has not been molded and to those that have been molded into a sheet. it can.

このようにして得られたネットワーク状炭素材料、特にシート状物は、その高い比表面積により、高い物質吸着性、物質透過性、電子伝導性等の物性を生かして、電気二重層キャパシタの電極材料として好適に使用することができる。特に、結晶性を高めて電極の化学的安定性を向上させたり、逆に結晶性を抑えて電解液に対する影響を抑えたりすることができるので、処理温度により黒鉛化率を調整してバランスのよい電極材料を提供することができる。   The network-like carbon material obtained in this way, especially the sheet-like material, makes use of physical properties such as high substance adsorption, substance permeability, and electron conductivity due to its high specific surface area, so that it is an electrode material for an electric double layer capacitor. Can be suitably used. In particular, the crystallinity can be increased to improve the chemical stability of the electrode, and conversely, the crystallinity can be suppressed and the influence on the electrolyte solution can be suppressed. A good electrode material can be provided.

また、燃料電池の触媒を担持する担体は、大きな表面積が必要である一方、水素、酸素、水が容易に通過できる空間・空隙が必要であるが、本発明のネットワーク状炭素材料、特にシート状物は、このような燃料電池の触媒担体用途にも好適に使用される。さらに、フィルタ、その他の表面積と空間が必要な用途に好適に使用することができる。   Further, the carrier supporting the fuel cell catalyst requires a large surface area, but also requires a space and a gap through which hydrogen, oxygen, and water can easily pass. The product is also suitably used for the catalyst support of such a fuel cell. Furthermore, it can be suitably used for filters and other applications that require surface area and space.

次に、実施例により本発明をさらに具体的に説明する。   Next, the present invention will be described more specifically with reference to examples.

尚、乾燥したバクテリアセルロース、ネットワーク状炭素材料の細孔構造は窒素吸着法により測定した。比表面積はBET法により算出した。細孔径分布は、窒素吸着等温線を利用してDollimore-Heal(DH)法により算出した。   The pore structure of the dried bacterial cellulose and network carbon material was measured by a nitrogen adsorption method. The specific surface area was calculated by the BET method. The pore size distribution was calculated by the Dollimore-Heal (DH) method using a nitrogen adsorption isotherm.

<比較例1>
ゲル状の市販の微生物産生微細繊維状セルロース(バクテリアセルロース)含水物を熱風乾燥した。重量は1%以下になり、外観で厚み方向には1/100以下、縦、横方向で1/2以下の寸法に収縮した。表面を走査型電子顕微鏡(SEM)で観察した結果、緻密化していることが分かった。比表面積を測定したところ、2m/g以下であった。
<Comparative Example 1>
A gel-like commercially available microbial-produced fine fibrous cellulose (bacterial cellulose) hydrated product was dried with hot air. The weight was 1% or less, and the appearance was reduced to 1/100 or less in the thickness direction and to 1/2 or less in the vertical and horizontal directions. As a result of observing the surface with a scanning electron microscope (SEM), it was found that the surface was densified. When the specific surface area was measured, it was 2 m 2 / g or less.

<実施例1>
比較例1で用いたバクテリアセルロース含水物をt−ブチルアルコール中に20時間以上浸漬することで、水とt−ブチルアルコールの溶媒交換を行った。その後、試料を冷却して凍結し、凍結乾燥処理を行った。その結果、白いスポンジ状の乾燥物を得た。出発原料のゲル状物から、厚み方向が98%、縦、横方向が95%の大きさまで収縮していた。
<Example 1>
The bacterial cellulose hydrate used in Comparative Example 1 was immersed in t-butyl alcohol for 20 hours or more to perform solvent exchange between water and t-butyl alcohol. Thereafter, the sample was cooled and frozen, and freeze-dried. As a result, a white sponge-like dried product was obtained. From the gel material of the starting material, the shrinkage was 98% in the thickness direction and 95% in the vertical and horizontal directions.

SEM観察を行った結果、表面(図1参照)、内部(図2参照)ともに、微細なフィブリルが分岐で連結したネットワーク構造(多孔質構造)を有していることが分かった。得られたものの比表面積は、50m/g以上であった。また、細孔径分布を測定したところ、直径が2〜10nmの範囲の細孔を多数有していることが明らかになった(図3参照)。 As a result of SEM observation, it was found that both the surface (see FIG. 1) and the inside (see FIG. 2) have a network structure (porous structure) in which fine fibrils are connected by branching. The specific surface area of the obtained product was 50 m 2 / g or more. Moreover, when pore diameter distribution was measured, it became clear that it has many pores with a diameter in the range of 2-10 nm (refer FIG. 3).

<比較例2>
実施例1で得られたバクテリアセルロース乾燥物を炭素るつぼの中に静置し、窒素雰囲気化で1400℃1時間の熱処理を行ったところ、外観で1/10程度に寸法が収縮した炭素化物を得た。炭素収率を算出したところ、10%以下であった。
<Comparative example 2>
The dried bacterial cellulose obtained in Example 1 was allowed to stand in a carbon crucible and subjected to heat treatment at 1400 ° C. for 1 hour in a nitrogen atmosphere. Obtained. When the carbon yield was calculated, it was 10% or less.

<実施例2>
実施例1で得られたバクテリアセルロース乾燥物を一軸圧縮成形機で、厚みが元の試料の1/10になるように加圧成形してシート状物を得た。この試料を窒素吸着で比表面積、細孔径分布を測定したところ、圧縮前後でほとんど変化が無いことが確認できた。
<Example 2>
The bacterial cellulose dried product obtained in Example 1 was pressure-molded with a uniaxial compression molding machine so that the thickness was 1/10 of the original sample to obtain a sheet-like product. When this sample was measured for specific surface area and pore size distribution by nitrogen adsorption, it was confirmed that there was almost no change before and after compression.

<実施例3>
実施例2で得た試料を2枚の炭素板で挟み、炭素るつぼ中に静置し、窒素雰囲気化で1400℃1時間の熱処理を行ったところ、シート状の炭素膜が得られた。炭素収率は、14%であった。SEM観察を行ったところ、表面、断面共に炭素フィブリルが連結した多孔質構造を維持していることが分かった。また、比表面積は70m/gと若干増加していた。細孔径分布は、わずかに径が大きい側にシフトしていた(図3参照)。
<Example 3>
The sample obtained in Example 2 was sandwiched between two carbon plates, allowed to stand in a carbon crucible, and subjected to heat treatment at 1400 ° C. for 1 hour in a nitrogen atmosphere, whereby a sheet-like carbon film was obtained. The carbon yield was 14%. As a result of SEM observation, it was found that a porous structure in which carbon fibrils were connected on both the surface and the cross section was maintained. Further, the specific surface area was slightly increased to 70 m 2 / g. The pore size distribution was shifted to the slightly larger side (see FIG. 3).

<実施例4>(蒸し焼き処理)
実施例2で得られたシート状物を、小型のオートクレーブ中に静置し窒素ガスで中を置換した後に密閉し400℃3時間の加熱処理を行ったところ、茶色のシートを得た。収率は40%であった。SEM観察を行ったところ、表面、断面共に炭素フィブリルが連結した多孔質構造を保持していることを確認できた(図4、5参照)。その後、実施例3と同様の1400℃の炭素化処理を行い、黒色のシート物を得た。収率は45%であり、バクテリアセルロース乾燥物からの収率は18%と大きな改善が確認できた。SEM観察を行ったところ、表面、断面共に炭素フィブリルが連結した多孔質構造であることが分かった(図6、7参照)。また、比表面積は70m/gと前駆体であるバクテリアセルロースと比べて若干増加していた。細孔径分布は、わずかに径が大きい側にシフトしていた。広角X線散乱において2θ=25°付近にブロードな散乱が確認された。黒鉛化度は10%以下であった。
<Example 4> (steaming treatment)
The sheet-like material obtained in Example 2 was left standing in a small autoclave, the inside was replaced with nitrogen gas, and then sealed and heat-treated at 400 ° C. for 3 hours to obtain a brown sheet. The yield was 40%. When SEM observation was performed, it was confirmed that both the surface and the cross-section retained a porous structure in which carbon fibrils were connected (see FIGS. 4 and 5). Then, the carbonization process of 1400 degreeC similar to Example 3 was performed, and the black sheet thing was obtained. The yield was 45%, and the yield from the dried bacterial cellulose was 18%, confirming a great improvement. As a result of SEM observation, it was found that the surface and the cross section had a porous structure in which carbon fibrils were connected (see FIGS. 6 and 7). Further, the specific surface area was 70 m 2 / g, which was slightly increased compared to the bacterial cellulose as a precursor. The pore size distribution was shifted to the slightly larger side. In the wide-angle X-ray scattering, broad scattering was confirmed in the vicinity of 2θ = 25 °. The degree of graphitization was 10% or less.

<実施例5>(黒鉛化処理)
実施例4で作製したネットワーク状多孔質炭素シートを黒鉛化炉内に炭素板で挟んで静置し、アルゴンガス雰囲気で3000℃1.5時間の熱処理を行った。その結果、灰色の鈍い光沢を呈する炭素シートを得た。SEM観察を行ったところ、表面は炭素フィブリルが連結した多孔質構造であり、断面はシート平面方向にフィブリルが配向した構造を有していることが分かった(図8、9参照)。また、高分解能透過型電子顕微鏡(HRTEM)で観察した結果、炭素六角網面の発達を示す格子縞が多数観察された(図10参照)。広角X線散乱を測定したところ、黒鉛結晶の成長を示す002反射が2θ=26°付近に明確に観察された。黒鉛化率は、約30%と推算された。
<Example 5> (Graphitization treatment)
The network-like porous carbon sheet produced in Example 4 was placed between a carbon plate in a graphitization furnace and allowed to stand, and heat treatment was performed at 3000 ° C. for 1.5 hours in an argon gas atmosphere. As a result, a carbon sheet having a dull gray luster was obtained. As a result of SEM observation, it was found that the surface had a porous structure in which carbon fibrils were connected, and the cross section had a structure in which fibrils were oriented in the sheet plane direction (see FIGS. 8 and 9). In addition, as a result of observation with a high-resolution transmission electron microscope (HRTEM), a large number of lattice stripes indicating the development of the carbon hexagonal network surface were observed (see FIG. 10). When wide-angle X-ray scattering was measured, 002 reflection indicating the growth of graphite crystals was clearly observed around 2θ = 26 °. The graphitization rate was estimated to be about 30%.

<実施例6>(ヨウ素処理)
実施例2で得られたバクテリアセルロースシート状物0.3gとヨウ素0.6gを500ccのガラス容器内に入れ、密閉した後に80℃で24時間加熱処理を行った。その後、実施例3と同様に1400℃で炭素化処理を行い黒色のシート物を得た。バクテリアセルロースからの炭素収率は22%であり、大きな改善が確認できた。SEM観察を行ったところ、表面は炭素フィブリルが連結した多孔質構造であることが分かった。広角X線散乱において2θ=25°付近にブロードな散乱が確認された。黒鉛化度は10%以下であった。
<Example 6> (iodine treatment)
0.3 g of the bacterial cellulose sheet obtained in Example 2 and 0.6 g of iodine were placed in a 500 cc glass container and sealed, followed by heat treatment at 80 ° C. for 24 hours. Thereafter, carbonization was performed at 1400 ° C. in the same manner as in Example 3 to obtain a black sheet. The carbon yield from bacterial cellulose was 22%, confirming a significant improvement. As a result of SEM observation, it was found that the surface had a porous structure in which carbon fibrils were connected. In the wide-angle X-ray scattering, broad scattering was confirmed in the vicinity of 2θ = 25 °. The degree of graphitization was 10% or less.

<実施例7>(黒鉛化処理)
実施例6で作製したネットワーク状多孔質炭素シートを黒鉛化炉内に炭素板で挟んで静置し、アルゴンガス雰囲気で3000℃1.5時間の熱処理を行った。その結果、灰色の鈍い光沢を呈する炭素シートを得た。SEM観察を行ったところ、表面は炭素フィブリルが連結した多孔質構造であり、断面はシート平面方向にフィブリルが配向した構造を有していることが分かった(図11、12参照)。また、高分解能透過型電子顕微鏡(HRTEM)で観察した結果、炭素六角網面の発達を示す格子縞が多数観察された(図13参照)。また、同じ視野の電子線回折パターンから、黒鉛結晶が配向していることが分かった(図14)。広角X線散乱を測定したところ、黒鉛結晶の成長を示す002反射が2θ=26°付近に明確に観察され、黒鉛化率は約35%であった。
<Example 7> (graphitization treatment)
The network-like porous carbon sheet produced in Example 6 was placed between a carbon plate in a graphitization furnace and allowed to stand, and heat treatment was performed at 3000 ° C. for 1.5 hours in an argon gas atmosphere. As a result, a carbon sheet having a dull gray luster was obtained. As a result of SEM observation, it was found that the surface had a porous structure in which carbon fibrils were connected, and the cross section had a structure in which fibrils were oriented in the sheet plane direction (see FIGS. 11 and 12). In addition, as a result of observation with a high-resolution transmission electron microscope (HRTEM), a large number of lattice stripes indicating the development of the carbon hexagonal network surface were observed (see FIG. 13). Moreover, it turned out that the graphite crystal is orientating from the electron beam diffraction pattern of the same visual field (FIG. 14). When wide-angle X-ray scattering was measured, 002 reflection indicating the growth of graphite crystals was clearly observed in the vicinity of 2θ = 26 °, and the graphitization rate was about 35%.

実施例1で作製したバクテリアセルロース乾燥物の表面のSEM画像である。2 is a SEM image of the surface of a dried bacterial cellulose produced in Example 1. 実施例1で作製したバクテリアセルロース乾燥物の内部のSEM画像である。2 is an SEM image of the dried bacterial cellulose produced in Example 1. FIG. 実施例1,3のバクテリアセルロースまたは炭素材料のDH法による細孔径分布を示すグラフである。It is a graph which shows the pore size distribution by the DH method of the bacterial cellulose or carbon material of Examples 1 and 3. 実施例4で蒸し焼き処理後のバクテリアセルロース表面のSEM画像である。It is a SEM image of the bacterial cellulose surface after a steaming process in Example 4. 実施例4で蒸し焼き処理後のバクテリアセルロースの断面のSEM画像である。It is a SEM image of the cross section of the bacterial cellulose after the steaming process in Example 4. 実施例4で作製した炭素材料表面のSEM画像である。4 is a SEM image of the surface of a carbon material produced in Example 4. 実施例4で作製した炭素材料の断面のSEM画像である。6 is a SEM image of a cross section of the carbon material produced in Example 4. 実施例5で作製した炭素材料表面のSEM画像である。6 is a SEM image of the surface of a carbon material produced in Example 5. 実施例5で作製した炭素材料の断面のSEM画像である。6 is a SEM image of a cross section of the carbon material produced in Example 5. 実施例5で作製した炭素材料のHRTEM画像である。6 is an HRTEM image of a carbon material produced in Example 5. 実施例7で作製した炭素材料表面のSEM画像である。7 is a SEM image of the surface of a carbon material produced in Example 7. 実施例7で作製した炭素材料の断面のSEM画像である。7 is a SEM image of a cross section of the carbon material produced in Example 7. 実施例7で作製した炭素材料のHRTEM画像である。6 is an HRTEM image of the carbon material produced in Example 7. 図13のHRTEM画像視野での電子線回折パターンである。14 is an electron diffraction pattern in the HRTEM image field of FIG. 13.

Claims (6)

バクテリアが産生したゲル状態のバクテリアセルロースを、そのネットワーク構造を維持したまま乾燥する工程と、
乾燥したバクテリアセルロースをハロゲン蒸気に接触させる工程と、
ハロゲン蒸気に接触させたバクテリアセルロースを不活性ガス雰囲気下で700℃〜3200℃の温度で炭素化する工程と
を有することを特徴とするネットワーク状炭素材料の製造方法。
Drying the gelatinous bacterial cellulose produced by the bacteria while maintaining its network structure;
Contacting the dried bacterial cellulose with halogen vapor;
And a step of carbonizing bacterial cellulose brought into contact with halogen vapor at a temperature of 700 ° C. to 3200 ° C. in an inert gas atmosphere.
バクテリアが産生したゲル状態のバクテリアセルロースを、そのネットワーク構造を維持したまま乾燥する工程と、
乾燥したバクテリアセルロースを加圧密閉下で蒸し焼きする工程と、
蒸し焼きしたバクテリアセルロースを不活性ガス雰囲気下で700℃〜3200℃の温度で炭素化する工程と
を有することを特徴とするネットワーク状炭素材料の製造方法。
Drying the gelatinous bacterial cellulose produced by the bacteria while maintaining its network structure;
Steaming and baking dried bacterial cellulose under pressure and sealing;
And carbonizing the steamed and baked bacterial cellulose at a temperature of 700 ° C. to 3200 ° C. in an inert gas atmosphere.
前記乾燥工程において、乾燥前のゲル状態からの見かけの収縮残存率が幅、長さ方向でも30%以上、厚み方向で10%以上となるように乾燥することを特徴とする請求項1または2に記載の製造方法。 Wherein in the drying step, shrinkage residual ratio width apparent from the gel state prior to drying, 30% more than in the length direction, claim, characterized in that drying such that the thickness direction of 10% or more 1 or 2 The manufacturing method as described in. 前記乾燥が凍結乾燥であることを特徴とする請求項記載の製造方法。 The manufacturing method according to claim 3 , wherein the drying is freeze-drying. 前記炭素化温度が1500℃〜3200℃であることを特徴とする請求項1〜4のいずれかに記載の製造方法。 The said carbonization temperature is 1500 degreeC-3200 degreeC, The manufacturing method in any one of Claims 1-4 characterized by the above-mentioned. 乾燥したバクテリアセルロースを圧縮成形してシート状に成形する工程を有する請求項1〜5のいずれかに記載の製造方法。 The process according to claim 1, the dried bacterial cellulose by compression molding comprising a step of molding into a sheet.
JP2005245221A 2005-08-26 2005-08-26 Network carbon material Active JP5162817B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005245221A JP5162817B2 (en) 2005-08-26 2005-08-26 Network carbon material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005245221A JP5162817B2 (en) 2005-08-26 2005-08-26 Network carbon material

Publications (2)

Publication Number Publication Date
JP2007055865A JP2007055865A (en) 2007-03-08
JP5162817B2 true JP5162817B2 (en) 2013-03-13

Family

ID=37919667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005245221A Active JP5162817B2 (en) 2005-08-26 2005-08-26 Network carbon material

Country Status (1)

Country Link
JP (1) JP5162817B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105174253A (en) * 2015-09-08 2015-12-23 哈尔滨工业大学 Method for preparing nano active carbon fiber in one step
CN105609324A (en) * 2015-12-25 2016-05-25 哈尔滨工业大学 Preparation method and application of N-P-dopted carbon fiber/graphene/bacterial cellulose conducting film material
CN110184849A (en) * 2019-05-20 2019-08-30 龙云峰 A kind of preparation method of conductive paper of carbon fiber
CN112103090A (en) * 2020-08-24 2020-12-18 宁波工程学院 Self-supporting flexible supercapacitor
KR20210068663A (en) 2019-12-02 2021-06-10 한국과학기술연구원 Carbon nanotemplate for magnesium metal battery anode and method for preparing the same

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4931116B2 (en) * 2006-07-27 2012-05-16 日本電信電話株式会社 Electrochemical device and method for producing electrode material for electrochemical device
JP5252617B2 (en) * 2006-09-04 2013-07-31 国立大学法人 筑波大学 Method for producing film-like carbon material and film-like carbon material
JP2009292676A (en) * 2008-06-04 2009-12-17 Kazuo Akagi Method for producing carbon material and carbon material
JP5276378B2 (en) * 2008-08-04 2013-08-28 国立大学法人福島大学 Method for producing carbon fiber reinforced carbon material
JP5599029B2 (en) * 2009-11-25 2014-10-01 国立大学法人 筑波大学 Gas diffusion layer for fuel cells
JP6037498B2 (en) * 2012-04-13 2016-12-07 国立大学法人山梨大学 Method for producing metal oxide-carrying carbon paper and metal oxide-carrying carbon paper
WO2013183668A1 (en) 2012-06-05 2013-12-12 国立大学法人筑波大学 Method for producing carbon material using catalyst, and carbon material
WO2015198920A1 (en) * 2014-06-23 2015-12-30 東レ株式会社 Porous carbon material
KR101669462B1 (en) * 2014-12-24 2016-10-27 중앙대학교 산학협력단 Bacteria cellulose-sillica composite, and preparing method of the same
JPWO2016143439A1 (en) * 2015-03-06 2017-12-14 国立大学法人大阪大学 Porous body containing bacterial cellulose and polymer and method for producing the same
JP6563804B2 (en) * 2015-12-21 2019-08-21 日本電信電話株式会社 Air electrode for lithium air secondary battery, method for producing the same, and lithium air secondary battery
CN105355450B (en) * 2015-12-25 2017-11-17 哈尔滨工业大学 A kind of preparation method and applications of nitrogen-doped carbon fiber/nitrogen-doped graphene/bacteria cellulose membrane material
CN107240506A (en) * 2016-03-28 2017-10-10 国家纳米科学中心 A kind of nitrogen-doped carbon nano composite material and its production and use
JP6673759B2 (en) * 2016-06-23 2020-03-25 日本電信電話株式会社 Manufacturing method of magnesium air battery
JP6711915B2 (en) * 2016-07-01 2020-06-17 日本電信電話株式会社 Battery and method for manufacturing positive electrode thereof
JP6715173B2 (en) * 2016-12-07 2020-07-01 日本電信電話株式会社 Zinc-air battery manufacturing method
JP6695304B2 (en) * 2017-05-31 2020-05-20 日本電信電話株式会社 Method for manufacturing magnesium-air battery, positive electrode thereof, negative electrode and separator
CN109256528B (en) * 2017-07-12 2021-04-06 天津大学 Lithium iron phosphate-bacterial cellulose-graphene composite material and preparation method and application thereof
KR101972952B1 (en) * 2017-09-29 2019-04-26 인하대학교 산학협력단 Catalytic Carbon Nanotemplate for Sodium Metal Battery Anode and Method for Preparing the Same
CN108538647A (en) * 2018-05-07 2018-09-14 中国科学技术大学 The preparation method of membrane electrode
CN109776851A (en) * 2019-01-04 2019-05-21 浙江工业大学 A kind of bacteria cellulose/metal sulfide plural gel and preparation method thereof and conductive processing method
JP7273286B2 (en) * 2019-01-16 2023-05-15 日本電信電話株式会社 Cellulose nanofiber carbon and its production method
KR102246094B1 (en) * 2019-04-02 2021-04-29 강원대학교산학협력단 S-dopped Catalytic Carbon Nanotemplate for Sodium Metal Battery Anode and Method for Preparing the Same
WO2020230227A1 (en) * 2019-05-13 2020-11-19 日本電信電話株式会社 Method for producing cellulose nanofiber carbon
CN110289179B (en) * 2019-05-29 2021-07-13 南京源恒能源科技有限公司 Preparation method of active metal oxide-carbonized bacterial cellulose electrode material
CN110289173B (en) * 2019-06-25 2021-04-13 陕西科技大学 Bacterial cellulose-based flexible supercapacitor electrode material and preparation method and application thereof
CN110474008A (en) * 2019-08-22 2019-11-19 浙江工业大学 A kind of preparation method of lithium battery diaphragm
CN113913971B (en) * 2020-07-10 2024-03-12 南京理工大学 Method for in-situ growth of bacterial cellulose in wood fiber

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0785860A (en) * 1993-09-10 1995-03-31 Hyperion Catalysis Internatl Inc Lithium battery
JP2003082535A (en) * 2001-09-12 2003-03-19 Shigenori Kuga Minute fibrous carbon material derived from cellulose raw material and method for producing the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105174253A (en) * 2015-09-08 2015-12-23 哈尔滨工业大学 Method for preparing nano active carbon fiber in one step
CN105609324A (en) * 2015-12-25 2016-05-25 哈尔滨工业大学 Preparation method and application of N-P-dopted carbon fiber/graphene/bacterial cellulose conducting film material
CN110184849A (en) * 2019-05-20 2019-08-30 龙云峰 A kind of preparation method of conductive paper of carbon fiber
KR20210068663A (en) 2019-12-02 2021-06-10 한국과학기술연구원 Carbon nanotemplate for magnesium metal battery anode and method for preparing the same
US11411219B2 (en) 2019-12-02 2022-08-09 Korea Institute Of Science And Technology Calcined carbon material for magnesium battery anode and method for preparing the same
CN112103090A (en) * 2020-08-24 2020-12-18 宁波工程学院 Self-supporting flexible supercapacitor

Also Published As

Publication number Publication date
JP2007055865A (en) 2007-03-08

Similar Documents

Publication Publication Date Title
JP5162817B2 (en) Network carbon material
Inagaki New carbons-control of structure and functions
RU2135363C1 (en) Three-dimensional microscopic assemblies of randomly oriented carbon elementary filaments and composites containing such assemblies
WO2003025271A1 (en) Microfibrous carbon substance originating in cellulose material and process for producing the same
Johnson et al. The fine structure of lignin-based carbon fibres
JP2006193858A (en) Microporous cellulose sheet and method for producing the same
JP6037498B2 (en) Method for producing metal oxide-carrying carbon paper and metal oxide-carrying carbon paper
CN106517144B (en) A method of carbon nano-fiber aeroge is prepared by timber
KR102057134B1 (en) Method for producing carbon material using catalyst, and carbon material
CN110997563B (en) Cellulose nanofiber carbon and method for producing same
Meng et al. Understanding the local structure of disordered carbons from cellulose and lignin
CN109761216A (en) A kind of general, method that porous carbon materials are prepared based on organic zinc salt
Chen et al. Scalable fabrication of novel SiC nanowire nonwoven fabric
JP5388051B2 (en) Mesoporous carbon (MC-MCM-48) and method for producing the same
KR100421557B1 (en) Method of preparing fibrous carbonaceous nano-materials and electrode materials for electrochemical capacitor using them
EP2105406B1 (en) Method of synthesizing carbonized cellulose material having graphite nanolayer on the surface thereof
JP2009292676A (en) Method for producing carbon material and carbon material
US20230142450A1 (en) Thermal insulation materials suitable for use at high temperatures, and process for making said materials
Liou et al. A sustainable route to synthesize graphene oxide/ordered mesoporous carbon as effect nanocomposite adsorbent
KR100444141B1 (en) Anode active materials for lithium secondary battery, anode plates and secondary battery using them
JP4310126B2 (en) Method for producing graphitizable substance
Buettner Investigation Of Bacterial Cellulose As A Carbon Fiber Precursor And Its Potential For Piezoelectric Energy Harvesting
JPH01203267A (en) Production of carbon/carbon composite material
JP2023140423A (en) Production method of carbon aerogel
JP3654657B2 (en) Method for producing carbon thin film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080519

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110406

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120314

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120508

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121203

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5162817

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250