JP5161423B2 - Fluid focusing propeller - Google Patents

Fluid focusing propeller Download PDF

Info

Publication number
JP5161423B2
JP5161423B2 JP2005318126A JP2005318126A JP5161423B2 JP 5161423 B2 JP5161423 B2 JP 5161423B2 JP 2005318126 A JP2005318126 A JP 2005318126A JP 2005318126 A JP2005318126 A JP 2005318126A JP 5161423 B2 JP5161423 B2 JP 5161423B2
Authority
JP
Japan
Prior art keywords
propeller
blade
fluid
arc
edge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005318126A
Other languages
Japanese (ja)
Other versions
JP2007125914A (en
Inventor
政彦 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bellsion KK
Original Assignee
Bellsion KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2005318126A priority Critical patent/JP5161423B2/en
Application filed by Bellsion KK filed Critical Bellsion KK
Priority to CA2627984A priority patent/CA2627984C/en
Priority to EP06822624.0A priority patent/EP1953083B1/en
Priority to RU2008121964/11A priority patent/RU2385255C2/en
Priority to PCT/JP2006/321695 priority patent/WO2007052626A1/en
Priority to BRPI0619723-0A priority patent/BRPI0619723B1/en
Priority to US12/092,114 priority patent/US8371819B2/en
Priority to ES06822624.0T priority patent/ES2444512T3/en
Priority to CN2006800407971A priority patent/CN101300169B/en
Priority to KR1020087012636A priority patent/KR100971937B1/en
Priority to DK06822624.0T priority patent/DK1953083T3/en
Priority to AU2006309773A priority patent/AU2006309773B2/en
Publication of JP2007125914A publication Critical patent/JP2007125914A/en
Application granted granted Critical
Publication of JP5161423B2 publication Critical patent/JP5161423B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Wind Motors (AREA)

Description

本発明は流体集束プロペラに係り、特に、プロペラ翼の前縁の翼端部を背後方向に湾曲させ、流体をプロペラの回転半径内の略円錐状に集束させて、流出させるようにした流体集束プロペラに関する。 BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fluid focusing propeller , and more particularly, a fluid focusing in which a blade tip portion of a leading edge of a propeller blade is curved backward to focus the fluid into a substantially conical shape within the rotation radius of the propeller and to flow out. Regarding propellers .

従来、プロペラとして飛行機用、スクリュー、扇風機、換気扇、風車用等が知られている。この中で飛行機用やスクリューは、回転によって後方へ流体を押し出すことによって推進力を得ている。扇風機は、回転によって流体を前方向に押し出し涼を得るものであり、換気扇は、回転によって室内の空気を換気する。風車用は、風を受けて風力を動力として回転する。 Conventionally, propellers for airplanes, screws, fans, ventilation fans, wind turbines, and the like are known. Among these, airplanes and screws obtain propulsive force by pushing fluid backward by rotation. A fan pushes a fluid forward by rotation to obtain coolness, and a ventilation fan ventilates indoor air by rotation. For wind turbines, wind power is received and the wind power is used as power.

従来の横軸プロペラでは、プロペラ翼の構造上、回転に伴い、流体がプロペラの遠心方向へ拡散するロスが生じる。
本発明は、プロペラの回転時に、流体が遠心方向へ拡散するロスを抑止して、流体を前方向外部から背後方向の軸心方向へ集束させて、流体圧を高めて流出させることのできる、流体集束プロペラを提供することを目的としている。
In the conventional horizontal axis propeller , due to the structure of the propeller blade , a loss occurs in which the fluid diffuses in the centrifugal direction of the propeller as it rotates.
The present invention suppresses the loss of fluid diffusing in the centrifugal direction when the propeller rotates, allows the fluid to converge from the outside in the front direction to the axial direction in the back direction, and increase the fluid pressure to flow out. An object is to provide a fluid focusing propeller .

本発明の流体集束プロペラは、プロペラ翼の翼端部分から、流体が拡散しないように、プロペラ翼の構造を変化させたものであり、その発明の具体的な内容は、次の通りである。 Fluid focusing propeller of the invention, the blade tip portion of the propeller blade, so that fluid does not spread, which was changed the structure of the propeller blades, the specific content of the invention is as follows.

(1) プロペラ翼の背面を、前縁から後縁へかけて放流面とし、側面視において、前縁の正面が、プロペラ軸と直交する基準正面線に沿い、中間から先端へかけて、翼根における背面を超えて背後方向へ大きく湾曲する円弧部とし、前縁端面の厚さは、翼根部から円弧部の始点まで背面から正面方向へ次第に薄くし、円弧部は全体に同厚とし、放流面の後縁は、前縁側からの側面視で、翼根の背後端面から翼端へかけて次第に背後方向へ次第に傾斜させ、円弧部における翼端背後の円弧面を、プロペラ翼の背後軸心方向へ向けて斜めに形成した流体集束プロペラ(1) The back surface of the propeller blade is a discharge surface from the leading edge to the trailing edge, and in front view, the front surface of the leading edge is along the reference front line perpendicular to the propeller axis and from the middle to the tip. The arc part is greatly curved in the rear direction beyond the back surface at the root, and the thickness of the front edge end surface is gradually reduced from the back to the front direction from the blade root part to the starting point of the arc part, and the arc part has the same thickness as the whole, The rear edge of the discharge surface is gradually inclined backward from the rear end surface of the blade root to the blade tip in a side view from the front edge side, and the arc surface behind the blade tip in the arc portion is the rear axis of the propeller blade . A fluid focusing propeller formed obliquely toward the heart.

(2)
前記放流面が、後縁部分は、回転方向にほぼ平行な前縁から次第に背後方向へせり出す変向面とされている前記(1)に記載の流体集束プロペラ
(2)
The fluid focusing propeller according to (1), wherein the discharge surface is a turning surface whose rear edge portion gradually protrudes from the front edge substantially parallel to the rotation direction to the rear direction.

(3) 前記放流面における変向面は、放流面の翼根部分における後縁よりも、背面視で回転後方向へ湾曲して突出している前記(2)に記載の流体集束プロペラ(3) The fluid focusing propeller according to (2), wherein the diverting surface of the discharge surface is curved and protrudes in the rearward rotation direction in a rear view rather than the rear edge of the blade root portion of the discharge surface.

(4) 前記円弧部の翼端背後の円弧面は、ここに当る流体を、プロペラの回転により軸心方向へ斜めに集束させる前記(1)〜(3)のいずれかに記載の流体集束プロペラ(4) arc surface of the blade tip behind the arcuate section, the fluid striking the here, fluid focusing propeller according to any one of the focusing obliquely to the axial direction by the rotation of the propeller (1) to (3) .

本発明によると、次のような効果が奏せられる。   According to the present invention, the following effects can be obtained.

前記(1)に記載の流体集束プロペラは、プロペラ翼の前縁先端部に、背面方向へ湾曲した円弧部を形成し、円弧部の後縁が翼根部分の背後面よりも背後方向に突出しているために、回転時に遠心方向へ拡散しようとする流体が、円弧部によって背後方向の軸心方向へ押動されるので、遠心方向への拡散が生じず、軸心方向へ押動される流体は、流体圧が高められて強い推進力を得ることができる。この流体集束プロペラは、水中推進用と、気中推進用の両方に使用することができる。 The fluid focusing propeller described in the above (1) forms a circular arc portion curved in the back direction at the leading edge tip portion of the propeller blade , and the trailing edge of the circular arc portion protrudes backward from the rear surface of the blade root portion. Therefore, the fluid that is about to diffuse in the centrifugal direction during rotation is pushed in the axial direction in the rear direction by the arc portion, so that diffusion in the centrifugal direction does not occur and the fluid is pushed in the axial direction. The fluid can obtain a strong driving force by increasing the fluid pressure. This fluid focusing propeller can be used for both underwater propulsion and air propulsion.

前記(2)に記載の流体集束プロペラは、プロペラ翼の放流面の後縁が、前縁部分から次第に背後方向へせり出して、変向面が形成されているので、回転すると、流体が背後方向の軸心方向へ、略円錐状に押出され集束されるため、流体圧が高まり、強い推進力を得ることができ、小型化することができる。
また、円弧部があるために、回転により遠心方向へ流体が拡散されず、後進流と拡散流との衝撃音が生じない。
In the fluid focusing propeller described in the above (2), the trailing edge of the discharge surface of the propeller blade gradually protrudes backward from the leading edge portion to form a turning surface. Therefore, the fluid pressure increases, a strong driving force can be obtained, and the size can be reduced.
Further, since there is an arc portion, the fluid is not diffused in the centrifugal direction by the rotation, and the impulsive sound of the backward flow and the diffusion flow is not generated.

前記(3)に記載の流体集束プロペラは、プロペラ翼の変向面が、放流面の翼根部分の後縁よりも、回転後方向へ湾曲して突出しているので、ここで押出される流体は、大きな円錐形状に押出され、流体圧を高める。 In the fluid focusing propeller described in (3) above, the direction of the propeller blade is curved and protrudes in the direction of rotation more than the trailing edge of the blade root portion of the discharge surface. Is extruded into a large conical shape to increase fluid pressure.

前記(4)に記載の流体集束プロペラは、円弧部の翼端背後の円弧面が、プロペラの回転により、ここに当る流体を、背後の軸心方向へ斜めに集束させるので、軸心部に大きな流体圧が生じて、強い推進力を得ることができる。 In the fluid focusing propeller described in the above (4), the arc surface behind the blade tip of the arc portion converges the fluid hitting it obliquely in the axial direction behind the propeller due to the rotation of the propeller. A large fluid pressure is generated, and a strong driving force can be obtained.

以下に、本発明の実施例を図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は、本発明に係る流体集束プロペラ(以下単にプロペラという)の背面図、図2は側面図で、左方が背面である。
プロペラ(1)において、プロペラ軸(4)に固定するハブ(2)の周囲に、3枚のプロペラ翼(3)を複数、定間隔でかつ、放射方向を向いて配設している。
FIG. 1 is a rear view of a fluid focusing propeller (hereinafter simply referred to as a propeller ) according to the present invention, FIG. 2 is a side view, and a left side is a back side.
In the propeller (1), a plurality of three propeller blades (3) are arranged at regular intervals and facing the radial direction around a hub (2) fixed to the propeller shaft (4).

プロペラ(1)は、小型であればハブ(2)とプロペラ翼(3)が1体成形されるが、大型の場合には、ハブ(2)とプロペラ翼(3)とを、別体で成形して一体に組立てられる。プロペラ(1)の材質は、例えばハブ(2)を金属とし、プロペラ翼(3)をプラスチックとすることができる。 If the propeller (1) is small, the hub (2) and the propeller blade (3) are formed as a single unit. If the propeller (1) is large, the hub (2) and the propeller blade (3) are separated. Molded and assembled together. As for the material of the propeller (1), for example, the hub (2) can be made of metal and the propeller blade (3) can be made of plastic.

図1において、プロペラ翼(3)は、翼根よりも翼端の弦長を大とした逆テーパ状をなし、翼根部分においては、回転方向の前縁(3a)と後縁(3b)とは、基準放射線(S)の左右にほぼ同じ幅としている。プロペラ翼(3)の先端部では、前縁(3a)の先端が基準放射線(S)と接している交点Xから、後縁(3b)にかけて弦長を大とし、広い放流面(3c)を形成し、交点Xより先端にかけて円弧状としてある。 In FIG. 1, the propeller blade (3) has a reverse taper shape in which the chord length of the blade tip is larger than that of the blade root, and the leading edge (3a) and the trailing edge (3b) in the rotation direction are formed at the blade root portion. Is substantially the same width on the left and right of the reference radiation (S). At the tip of the propeller blade (3), the chord length increases from the intersection X where the tip of the leading edge (3a) is in contact with the reference radiation (S) to the trailing edge (3b), and a wide discharge surface (3c) is formed. An arc is formed from the intersection X to the tip.

放流面(3c)の最大弦長は、プロペラ翼(3)の回転半径の約50%に設定されているが、これに限定されるものではない。
ただし、プロペラ翼(3)の背面の総面積は、プロペラ翼(3)の回転半径を半径とする円の面積の2分の1以下とすることが望ましい。
The maximum chord length of the discharge surface (3c) is set to about 50% of the rotation radius of the propeller blade (3), but is not limited to this.
However, the total area of the back of the propeller blades (3) is preferably set to less than one-half of the area of the circle the radius of rotation of the propeller blade (3) and radius.

プロペラ翼(3)の前縁(3a)は、図2に示すように、翼根から半径の約半分までは基準正面線(F)に沿っており、その先端方向は背後方向を向く翼端背後の円弧面を持つ円弧部(3d)とされている。
図2に示すように、軸心線(L)と基準正面線(F)とは直交し、回転半径線(T)は軸心線(L)と平行であり、点PーOと、プロペラ翼(3)の半径である点OーQの距離は等しい。
As shown in Fig. 2, the leading edge (3a) of the propeller blade (3) is along the reference front line (F) from the blade root to about half the radius, and the tip of the blade is oriented backward. It is an arc part (3d) having a back arc surface.
As shown in FIG. 2, the axial center line (L) and the reference front line (F) are orthogonal to each other, the turning radius line (T) is parallel to the axial center line (L), the point PO, and the propeller The distance of point O-Q, which is the radius of wing (3), is equal.

点VーQは、プロペラ翼(3)の厚さであり、点UーQは点VーQと同じに設定されている。従って点PーQを結ぶ対角線(W)上の点(R)は、プロペラ翼(3)の先端、点Vを通る基準正面線(F)と平行な線の交点であり、中心点Uを通る回転半径線(T)と平行な線の交点に設定している。 Point V-Q is the thickness of the propeller blade (3), and point U-Q is set to be the same as point V-Q. Therefore, the point (R) on the diagonal line (W) connecting the points P and Q is the intersection of a line parallel to the tip of the propeller blade (3) and the reference front line (F) passing through the point V. It is set at the intersection of a line parallel to the turning radius line (T).

前記円弧部(3d)は、中心点(R)を中心とする円弧面をなしている。従って、プロペラ翼(3)の回転半径、或いはプロペラ翼(3)の厚さの差違に準じて、この円弧部(3d)の大きさは、大小に変化する。
また点PーOを点OーQより長くすることによって、円弧部(3d)の翼端背後の円弧面が変化する。この円弧は、楕円をも含むものである。
The arc portion (3d) forms an arc surface centered on the center point (R). Thus, the radius of rotation of the propeller blades (3), or in accordance with the thickness of the difference of the propeller blades (3), the size of the circular arc portion (3d) changes the magnitude.
Further, by making the point PO longer than the point O-Q, the arc surface behind the blade tip of the arc portion (3d) changes. This arc also includes an ellipse.

この円弧部(3d)は、回転によって流体を遠心方向へ拡散させないためのものである。従って、円弧部(3d)の翼端背後の円弧面は正円でも楕円でもよいが、翼端部分の翼長の約10%に当る部位の翼端背後の円弧面線(G)は、プロペラ(1)の回転半径線(T)に対して近接した角度であることが望ましい。 The arc portion (3d) is for preventing the fluid from diffusing in the centrifugal direction by rotation. Therefore, the arc surface behind the blade tip of the arc portion (3d) may be a perfect circle or an ellipse, but the arc surface line (G) behind the blade tip of the portion corresponding to about 10% of the blade length of the blade tip portion is the propeller. It is desirable that the angle be close to the turning radius line (T) of (1).

例えば図3に示すように、点Qーgの長さは、回転半径である点OーQの10%である。この10%の部分の翼端背後の円弧面線(G)は、回転半径線(T)に対して約22度の傾斜角度であるが、最先端部は、回転半径線(T)にほぼ平行に形成されているので、遠心方向へ出ようとする流体は、円弧部(3d)で押さえられて軸心線(L)方向へ押される。 For example, as shown in FIG. 3, the length of the point Q-g is 10% of the point O-Q which is the turning radius. Tip behind the arc surface line of the 10% portion (G) is a tilt angle of about 22 degrees with respect to the rotating radial line (T), the most distal end portion is substantially the rotating radial line (T) Since they are formed in parallel, the fluid going out in the centrifugal direction is pressed by the arc portion (3d) and pressed in the axial center line (L) direction.

図4は、円弧部(3d)の前後厚が小のものである。図5、図6のものは、いずれも点VーQ<点QーUの形のものである。これらを見ると、円弧部(3d)の翼端背後の円弧面は正円の方が、プロペラ翼(3)の半径線(T)に対する、翼端背後の円弧面線(G)の傾斜角度を、小とすることができる。 In FIG. 4, the thickness of the arc portion (3d) is small. 5 and 6 both have the form of point VQ <point QU. When these are seen, the circular arc surface behind the blade tip of the arc part (3d) is more circular, the inclination angle of the arc surface line (G) behind the blade tip with respect to the radial line (T) of the propeller blade (3) Can be made small.

図7は、図1におけるAーA線断面図、図8は図1におけるBーB線断面図、図9は図1におけるCーC線断面図である。
図9におけるCーC線断面図で判るように、前縁(3a)の後面は、基準正面線(F)から板厚だけ後方に下っているが、後縁(3b)の後面は、湾曲して大きく後退している。
7 is a sectional view taken along line AA in FIG. 1, FIG. 8 is a sectional view taken along line BB in FIG. 1, and FIG. 9 is a sectional view taken along line CC in FIG.
As can be seen from the cross-sectional view taken along the line CC in FIG. 9, the rear surface of the front edge (3a) descends backward from the reference front line (F) by a thickness, but the rear surface of the rear edge (3b) is curved. And it ’s a big retreat.

図7において、前縁(3a)は基準正面線(F)にほぼ平行で、かっ近い位置にあるが、後縁(3b)は、基準正面線(F)から遠ざかるように後退し、その後面は、前縁(3a)から後縁(3b)へかけて、次第に円弧状に湾曲して、変向面(3e)となっている。 In FIG. 7, the front edge (3a) is substantially parallel to and close to the reference front line (F), but the rear edge (3b) recedes away from the reference front line (F), and the rear surface Is gradually curved in an arc shape from the front edge (3a) to the rear edge (3b) to form a turning surface (3e).

変向面(3e)は、流体の流動方向を変えるもので、図7においては、軸心線(L)に対して30〜50度の角度としてある。
従って、プロペラ(1)が図1における右方向に回転するとき、前縁(3a)の背後面に掻かれた流体は、図7における変向面(3e)によって軸心線(L)方向へ変向される。
The turning surface (3e) changes the flow direction of the fluid, and in FIG. 7, the angle is 30 to 50 degrees with respect to the axial center line (L).
Accordingly, when the propeller (1) rotates in the right direction in FIG. 1, the fluid scratched on the rear surface of the front edge (3a) is moved in the direction of the axis (L) by the turning surface (3e) in FIG. Turned around.

図10は、プロペラ(1)を、モーターボートの船外スクリュー(5a)として実施した側面図である。図中の符号(5b)は支持体、(5c)はエンジン部、(5d)はハンドルである。 FIG. 10 is a side view in which the propeller (1) is implemented as an outboard screw (5a) of a motor boat. In the figure, reference numeral (5b) denotes a support, (5c) denotes an engine unit, and (5d) denotes a handle.

プロペラ(1)が回転すると、水流は、軸心(L)の方へ集束される。すなわち、従来は回転遠心方向へ水流が拡散されたが、このプロペラ(1)は、遠心部を円弧部(3d)としてあるので、水流は円弧部(3d)で囲いこまれ、その円弧面によって背後の軸心線(L)方向へ変向される。 As the propeller (1) rotates, the water stream is focused towards the axis (L). That is, in the past, water flow was diffused in the direction of rotating centrifugal, but this propeller (1) has the centrifugal portion as an arc portion (3d), so the water flow is surrounded by the arc portion (3d), and the arc surface It is turned in the direction of the back axis (L).

更に前縁(3a)で掻かれた水流が、変向面(3e)によって軸心線(L)方向へと変向するので、プロペラ(1)の後方には、水流が略円錐状に集束されて強く押出される。
このことは、略円錐状の水流の先端に近づくほど、水圧が高くなることを意味し、拡散される水流の水圧よりも、強い推進力を得ることができる。従ってエンジンの排気量を小とし小型にしても、推進力を高性能とすることができる。
Furthermore, the water flow scratched by the leading edge (3a) is turned to the axial center line (L) direction by the turning surface (3e), so that the water flow converges in a substantially conical shape behind the propeller (1). And then strongly extruded.
This means that the closer to the tip of the substantially conical water flow, the higher the water pressure, and a stronger driving force can be obtained than the water pressure of the diffused water flow. Therefore, even if the engine displacement is reduced and the engine is reduced in size, the driving force can be improved.

このプロペラ(1)の特徴は、回転に伴う水掻音がしないことである。これは円弧部(3d)によって囲われた水が、略円錐状に送り出されるため、従来のスクリューのように、遠心方向へ水が拡散されて、後方向へ通過する水流と衝突しないためである。従って小音なので潜水艦には特に適している。 The feature of this propeller (1) is that there is no water squeaking accompanying rotation. This is because the water surrounded by the circular arc part (3d) is sent out in a substantially conical shape, so that the water is diffused in the centrifugal direction and does not collide with the water flow passing in the backward direction like a conventional screw. . Therefore, it is particularly suitable for submarines because of its low sound.

このプロペラ(1)は、プロペラ翼(3)の半分を水面に出して回転させても、かえって回転数があがり、ボートの速度があがる。従来のスクリューでは、エアーをかんでしまうが、このプロペラ(1)にはそのようなことは生じない。 Even if half of the propeller blade (3) is put on the surface of the water and rotated, this propeller (1) increases the rotation speed and speeds up the boat. With the conventional screw, air is trapped, but this does not occur in the propeller (1).

図11は、プロペラの実施例2を示す背面図、図12は側面図である。前例と同じ部位には、同じ符号を付して説明を省略する。
この実施例2は、プロペラ翼(3)を4枚としたものである。スクリューとして試験をすると、4枚翼よりも3枚翼の方が効率がよいが、エンジンにトルクが大きい場合は、4枚翼の方がよい。
FIG. 11 is a rear view showing a second embodiment of the propeller , and FIG. 12 is a side view thereof. The same parts as those in the previous example are denoted by the same reference numerals and description thereof is omitted.
In Example 2, four propeller blades (3) are used. When tested as a screw, three blades are more efficient than four blades, but four blades are better when the engine has a large torque.

この実施例2は、図示のように、変向面(3e)の弦長が大とされている。従って、軸心部への強い変向流を作る。また円弧部(3d)の前後厚みが、図1のものより小しされているので、変向面(3e)は、それだけなだらかに設定されている。   In the second embodiment, as shown in the drawing, the chord length of the turning surface (3e) is increased. Therefore, a strong turning flow toward the axial center is created. Further, since the front and rear thickness of the arc portion (3d) is smaller than that of FIG. 1, the turning surface (3e) is set gently.

図13は、プロペラ(1)の実施例2を、船(5)の後上部に搭載して、空気用推進機として使用するもので、図中の符号(6)は水中翼、(7)は揚翼、(8)は方向舵である。プロペラ(1)が回転すると、図12に示すように、気流は拡散せず、略円錐形になって、ジェット気流のように、後方向へ強く送り出されて、強い推進力を得ることができる。 FIG. 13 shows an example in which the propeller (1) according to the second embodiment is mounted on the rear upper part of the ship (5) and used as an air propulsion device. Reference numeral (6) in the figure denotes a hydrofoil, (7) Is the lifting wing and (8) is the rudder. When the propeller (1) rotates, as shown in FIG. 12, the airflow is not diffused, becomes a substantially conical shape, and is sent out strongly backward like a jet airflow to obtain a strong propulsive force. .

図13に示す船(5)の方向舵(8)は、水空両用に設定されている。プロペラ(1)から送り出される気流は、集束された強い気流なので、方向舵(8)の操縦性に優れている。船(5)が航行すると、水中翼(6)によって船(5)は浮上し、また主翼(7)によって浮上するため、船底の水の抵抗が小となり速度があがる。プロペラ(1)のエンジンが強ければ、水上に浮上、飛翔することができる。 The rudder (8) of the ship (5) shown in FIG. 13 is set for both water and air. Since the airflow sent out from the propeller (1) is a strong focused airflow, the rudder (8) has excellent maneuverability. When the ship (5) sails, the ship (5) is levitated by the hydrofoil (6) and levitated by the main wing (7), so the resistance of the water at the bottom of the ship is reduced and the speed is increased. If the engine of the propeller (1) is strong, it can float on the water and fly.

図14は、プロペラ(1)を飛行艇(9)の左右の主翼(7)上に搭載した正面図である。小型のものは小型エンジンで水上滑走が可能で、トルクの大きなエンジンでは滑空することが出来る。用途はレジャー用のほか、水産養殖場交通、離島間交通、その他の用途に使用することができる。 FIG. 14 is a front view of the propeller (1) mounted on the left and right main wings (7) of the flying boat (9). Small ones can run on the water with a small engine, and can glide with a large torque engine. In addition to leisure, it can be used for aquaculture traffic, remote island traffic, and other uses.

なおこの発明は、前記実施例に限定されるものではなく、目的に沿って適宜設計変更をすることができる。   The present invention is not limited to the above-described embodiment, and can be appropriately changed in design according to the purpose.

このプロペラは、流体を拡散させずに、軸心へ集束して流出させることができるので、スクリュー並びに空気用推進機に利用することができる。 Since this propeller can focus and flow out to the shaft center without diffusing the fluid, it can be used for a screw and an air propulsion device.

本発明のプロペラの実施例1の背面図である。It is a rear view of Example 1 of the propeller of the present invention. 本発明のプロペラの側面図である。It is a side view of the propeller of the present invention. 説明用プロペラ翼の側面図である。It is a side view of a propeller blade for explanation. 説明用プロペラ翼の側面図である。It is a side view of a propeller blade for explanation. 説明用プロペラ翼の側面図である。It is a side view of a propeller blade for explanation. 説明用プロペラ翼の側面図である。It is a side view of a propeller blade for explanation. 図1におけるAーA線断面図である。It is the sectional view on the AA line in FIG. 図1におけるBーB線断面図である。It is the BB sectional view taken on the line in FIG. 図1におけるCーC線断面図である。It is CC sectional view taken on the line in FIG. 船用に使用したプロペラの側面図である。It is a side view of the propeller used for ships. 本発明のプロペラの実施例2の背面図である。It is a rear view of Example 2 of the propeller of this invention. 図7におけるプロペラの側面図である。It is a side view of the propeller in FIG. 船に使用したプロペラの側面図である。It is a side view of the propeller used for the ship. 飛行艇に使用したプロペラの正面図である。It is a front view of the propeller used for the flying boat.

(1)流体集束プロペラ
(2)ハブ
(3)プロペラ翼
(3a)前縁
(3b)後縁
(3c)放流面
(3d)円弧部
(3e)変向面
(4)プロペラ
(5)船
(5a)船外スクリュー
(5b)支持体
(5c)エンジン部
(5d)ハンドル
(6)水中翼
(7)主翼
(8)方向舵
(9)飛行艇
F.基準正面線
G.翼端背後の円弧面線
L.軸心線
O.プロペラ翼の前面の中心
P. 軸心線Lと対角線Wの交点
Q.基準正面線Fと半径線Tの交点
R.円弧部(3d)の中心点
S.基準放射線
T.プロペラの回転半径線
U.プロペラ翼前面の円弧部の湾曲開始点
V.プロペラ翼の先端
W.点QとRを結ぶ対角線
X.プロペラ翼の前縁基準放射線との交点
(1) Fluid focusing propeller
(2) Hub
(3) Propeller wing
(3a) Leading edge
(3b) Trailing edge
(3c) Release surface
(3d) Arc part
(3e) Turning plane
(4) Propeller shaft
(5) Ship
(5a) Outboard screw
(5b) Support
(5c) Engine part
(5d) Handle
(6) Hydrofoil
(7) Main wing
(8) Rudder
(9) Flying boat Reference front line G.G. Arc surface line behind the wing tip Axial line O.D. Center of front surface of propeller blade P. Intersection Q. of axis L and diagonal W Intersection R. of reference front line F and radius line T. The center point S. of the arc (3d). Reference radiation T.P. Propeller turning radius line U.P. B. Curve start point of arc portion in front of propeller blade Propeller wing of the tip W. Diagonal line X connecting points Q and R. Propeller blade intersection with leading edge reference radiation

Claims (4)

プロペラ翼の背面を、前縁から後縁へかけて放流面とし、側面視において、前縁の正面が、プロペラ軸と直交する基準正面線に沿い、中間から先端へかけて、翼根における背面を超えて背後方向へ大きく湾曲する円弧部とし、前縁端面の厚さは、翼根部から円弧部の始点まで背面から正面方向へ次第に薄くし、円弧部は全体に同厚とし、放流面の後縁は、前縁側からの側面視で、翼根の背後端面から翼端へかけて次第に背後方向へ次第に傾斜させ、円弧部における翼端背後の円弧面を、プロペラ翼の背後軸心方向へ向けて斜めに形成したことを特徴とする流体集束プロペラThe back surface of the propeller blade is the discharge surface from the leading edge to the trailing edge, and the front surface of the leading edge is along the reference front line perpendicular to the propeller axis in the side view, from the middle to the tip, and the back surface at the blade root The thickness of the front edge surface is gradually reduced from the back to the front from the blade root to the starting point of the arc, and the arc is the same thickness as a whole. In the side view from the leading edge side, the trailing edge is gradually inclined backward from the rear end surface of the blade root to the blade tip, and the arc surface behind the blade tip in the arc portion is directed toward the back axis of the propeller blade . A fluid focusing propeller characterized in that the fluid focusing propeller is formed obliquely toward the head. 前記放流面が、後縁部分は、回転方向にほぼ平行な前縁から次第に背後方向へせり出す変向面とされていることを特徴とする請求項1に記載の流体集束プロペラ2. The fluid focusing propeller according to claim 1, wherein the discharge surface is a turning surface in which a rear edge portion gradually protrudes backward from a front edge substantially parallel to a rotation direction. 前記放流面における変向面は、放流面の翼根部分における後縁よりも、背面視で回転後方向へ湾曲して突出していることを特徴とする請求項2に記載の流体集束プロペラ3. The fluid focusing propeller according to claim 2, wherein the diverting surface of the discharge surface is curved and protrudes in a backward direction in a rear view from a rear edge of a blade root portion of the discharge surface. 前記円弧部の翼端背後の円弧面は、ここに当る流体を、プロペラの回転により、軸心方向へ斜めに集束させることを特徴とする請求項1〜3のいずれかに記載の流体集束プロペラ。 Arcuate surface of the blade tip behind the arcuate section, the fluid striking the here, by the rotation of the propeller, fluid focusing propeller according to any one of claims 1 to 3, characterized in that focusing obliquely to the axial direction .
JP2005318126A 2005-11-01 2005-11-01 Fluid focusing propeller Expired - Fee Related JP5161423B2 (en)

Priority Applications (12)

Application Number Priority Date Filing Date Title
JP2005318126A JP5161423B2 (en) 2005-11-01 2005-11-01 Fluid focusing propeller
CN2006800407971A CN101300169B (en) 2005-11-01 2006-10-31 Quiet propeller
RU2008121964/11A RU2385255C2 (en) 2005-11-01 2006-10-31 Noiseless screw propeller
PCT/JP2006/321695 WO2007052626A1 (en) 2005-11-01 2006-10-31 Quiet propeller
BRPI0619723-0A BRPI0619723B1 (en) 2005-11-01 2006-10-31 SILENT PROPELLER
US12/092,114 US8371819B2 (en) 2005-11-01 2006-10-31 Quiet propeller
CA2627984A CA2627984C (en) 2005-11-01 2006-10-31 Quiet propeller
EP06822624.0A EP1953083B1 (en) 2005-11-01 2006-10-31 Quiet propeller
KR1020087012636A KR100971937B1 (en) 2005-11-01 2006-10-31 Quiet propeller
DK06822624.0T DK1953083T3 (en) 2005-11-01 2006-10-31 QUIET PROPEL
AU2006309773A AU2006309773B2 (en) 2005-11-01 2006-10-31 Quiet propeller
ES06822624.0T ES2444512T3 (en) 2005-11-01 2006-10-31 Silent propeller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005318126A JP5161423B2 (en) 2005-11-01 2005-11-01 Fluid focusing propeller

Publications (2)

Publication Number Publication Date
JP2007125914A JP2007125914A (en) 2007-05-24
JP5161423B2 true JP5161423B2 (en) 2013-03-13

Family

ID=38148963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005318126A Expired - Fee Related JP5161423B2 (en) 2005-11-01 2005-11-01 Fluid focusing propeller

Country Status (2)

Country Link
JP (1) JP5161423B2 (en)
CN (1) CN101300169B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5160098B2 (en) * 2007-02-01 2013-03-13 株式会社ベルシオン Flying boat
WO2010074594A1 (en) * 2008-12-23 2010-07-01 Churilin Sergei Nikolaevich Turboprop propeller for a floating transportation means
US10155575B2 (en) 2013-06-07 2018-12-18 National Taiwan Ocean University Diffuser-type endplate propeller
TWI515147B (en) * 2013-06-07 2016-01-01 國立臺灣海洋大學 Diffuser-type endplate propeller
CN104139849B (en) * 2014-08-07 2015-02-25 西北工业大学 High-altitude propeller and propeller tip winglet capable of improving efficiency of high-altitude propeller
CN105564618B (en) * 2015-11-27 2017-11-21 镇江同舟螺旋桨有限公司 A kind of four-blade propeller combination fixed structure based on CAPP system designs
CN105564619B (en) * 2015-11-27 2017-11-21 镇江同舟螺旋桨有限公司 A kind of combination four-blade propeller based on CAPP system designs
JP2017154576A (en) 2016-03-01 2017-09-07 株式会社ベルシオン Horizontal-shaft rotor and craft comprising the same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB511932A (en) * 1939-03-28 1939-08-25 Derek Richard Barker Improvements in and relating to ventilating fans
JP3402061B2 (en) * 1996-04-18 2003-04-28 井澗 順 Ship
JP3670811B2 (en) * 1997-07-25 2005-07-13 三菱重工業株式会社 propeller
JP2003011897A (en) * 2001-04-27 2003-01-15 Osami Matsumoto Rotor blade
CN1338413A (en) * 2001-05-23 2002-03-06 佟宪良 Method for improving efficiency of spiral propelling device
JP2003191889A (en) * 2001-12-26 2003-07-09 Takehiko Nishijima Propeller with low vibration and high efficiency by wing end curving and bending structure
JP3984215B2 (en) * 2003-10-31 2007-10-03 森田電工株式会社 Blower fan and electric fan using the same

Also Published As

Publication number Publication date
CN101300169B (en) 2011-06-15
JP2007125914A (en) 2007-05-24
CN101300169A (en) 2008-11-05

Similar Documents

Publication Publication Date Title
JP5161423B2 (en) Fluid focusing propeller
EP1953083B1 (en) Quiet propeller
US7637722B1 (en) Marine propeller
US6701862B2 (en) Bow mounted system and method for jet-propelling a submarine or torpedo through water
US6354804B1 (en) Fluid displacing blade
JP2020526453A (en) New low noise propeller
US2754919A (en) Propeller
WO2017150299A1 (en) Horizontal axis rotor and boat equipped with said rotor
JP5372319B2 (en) Horizontal axis propeller
KR200480863Y1 (en) Propeller for Ship
US20050175458A1 (en) Propeller, propeller propulsion system and vessel comprising propulsion system
JP5348822B2 (en) Horizontal axis propeller
US5573373A (en) Propellar having optimum efficiency in forward and rewarded navigation
KR102150102B1 (en) Ship propeller
TWI809990B (en) boat speed propeller
JP6975921B1 (en) Fuel economy reduction ship
US20150266554A1 (en) Tractor Mode Marine Propulsion
US3282352A (en) Dual air screw propeller
JPS6250357B2 (en)
EP1541461A1 (en) Propeller, propeller propulsion system and vessel comprising propulsion system
TWM636363U (en) Acceleration type propeller for ships
JP2005239099A (en) Spiral barrel propeller
JP2006118363A (en) High efficiency propeller
TWM254421U (en) Power boat
AU6812898A (en) Improved fluid displacing blade

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080626

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080707

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110107

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20110107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110815

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121214

R150 Certificate of patent or registration of utility model

Ref document number: 5161423

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151221

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S201 Request for registration of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314201

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees