JP5154306B2 - Vehicle power supply - Google Patents

Vehicle power supply Download PDF

Info

Publication number
JP5154306B2
JP5154306B2 JP2008134686A JP2008134686A JP5154306B2 JP 5154306 B2 JP5154306 B2 JP 5154306B2 JP 2008134686 A JP2008134686 A JP 2008134686A JP 2008134686 A JP2008134686 A JP 2008134686A JP 5154306 B2 JP5154306 B2 JP 5154306B2
Authority
JP
Japan
Prior art keywords
capacitor
battery
relay
voltage
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008134686A
Other languages
Japanese (ja)
Other versions
JP2009280096A (en
Inventor
良亮 堀田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Jukogyo KK filed Critical Fuji Jukogyo KK
Priority to JP2008134686A priority Critical patent/JP5154306B2/en
Publication of JP2009280096A publication Critical patent/JP2009280096A/en
Application granted granted Critical
Publication of JP5154306B2 publication Critical patent/JP5154306B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、鉛バッテリとキャパシタとをリレーを介して並列に接続した車両用電源装置に関する。   The present invention relates to a vehicle power supply device in which a lead battery and a capacitor are connected in parallel via a relay.

従来、自動車等の車両に搭載される鉛バッテリにキャパシタ(コンデンサ)を並列に接続し、電源特性を向上させたり、減速時の回生エネルギをキャパシタに蓄えることで急速充電の苦手な鉛バッテリを補い、その後のオルタネータの発電負荷を低減して燃費向上を図る技術が知られている。   Conventionally, a capacitor (capacitor) is connected in parallel to a lead battery mounted on a vehicle such as an automobile to improve power supply characteristics, and regenerative energy during deceleration is stored in the capacitor to compensate for a lead battery that is not good at rapid charging. A technique for improving the fuel efficiency by reducing the power generation load of the alternator thereafter is known.

例えば、特許文献1には、鉛バッテリとコンデンサとを並列に接続し、スタータを駆動するために大電流が必要なエンジン始動時に、コンデンサからの電流により鉛バッテリを補う技術が開示されている。   For example, Patent Document 1 discloses a technology in which a lead battery and a capacitor are connected in parallel, and the lead battery is supplemented with the current from the capacitor at the time of engine start that requires a large current to drive the starter.

この場合、鉛バッテリとコンデンサとを常時接続しておくと、コンデンサの絶縁性が低下した場合に鉛バッテリからコンデンサを通して放電してしまい、バッテリ上がりを生じる虞がある。   In this case, if the lead battery and the capacitor are always connected, when the insulation of the capacitor is lowered, the lead battery discharges through the capacitor, which may cause the battery to rise.

このため、特許文献2には、コンデンサと鉛バッテリとの間にリレー接点を設け、キースイッチのイグニッション端子をオンしたときのみコンデンサを鉛バッテリに接続し、非使用時にはコンデンサと鉛バッテリとを切断する技術が提案されている。   For this reason, in Patent Document 2, a relay contact is provided between the capacitor and the lead battery, the capacitor is connected to the lead battery only when the ignition terminal of the key switch is turned on, and the capacitor and the lead battery are disconnected when not in use. Techniques to do this have been proposed.

しかしながら、キャパシタと鉛バッテリとをリレー等により接続・開放する場合、鉛バッテリとキャパシタとの間に電位差が生じている状態でリレーをONすると大電流が流れ、リレーの耐久性悪化や突入電流による接点溶着が懸念される。従って、このようなリレー保護を目的として、図4に示すようなプリチャージ回路が採用されることが多い。   However, when a capacitor and a lead battery are connected / released by a relay or the like, a large current flows when the relay is turned on with a potential difference between the lead battery and the capacitor, resulting in deterioration of relay durability or inrush current. There is concern about contact welding. Therefore, a precharge circuit as shown in FIG. 4 is often employed for the purpose of such relay protection.

図4に示すプリチャージ回路の例では、鉛バッテリ50は、リレーRY2のリレー接点を介してキャパシタ51が並列に接続されている。更に、鉛バッテリ50とキャパシタ51との間には、リレーRY2のリレー接点と並列に、リレーRY1のリレー接点及び電流制限抵抗Rが接続されている。各リレーRY1,RY2は、電子制御ユニット60によって制御され、図5に示すように、始動スイッチ52からの信号を検知したとき、リレーRY1をONして電流制限抵抗Rを介したプリチャージを実施して鉛バッテリ50とキャパシタ51との間の電位差を解消し、その後、リレーRY2をONすることにより、リレーRY2のリレー接点を保護するようにしている。
特開平2−175350号公報 特開平5−99103号公報
In the example of the precharge circuit shown in FIG. 4, the lead battery 50 has a capacitor 51 connected in parallel via a relay contact of the relay RY2. Further, between the lead battery 50 and the capacitor 51, a relay contact of the relay RY1 and a current limiting resistor R are connected in parallel with the relay contact of the relay RY2. Each of the relays RY1 and RY2 is controlled by the electronic control unit 60. When a signal from the start switch 52 is detected as shown in FIG. 5, the relay RY1 is turned on to perform precharging via the current limiting resistor R. Thus, the potential difference between the lead battery 50 and the capacitor 51 is eliminated, and then the relay RY2 is turned on to protect the relay contact of the relay RY2.
Japanese Patent Laid-Open No. 2-175350 JP-A-5-99103

しかしながら、図4に示すようなプリチャージ回路を有する従来の電源系では、リレーRY2の接点保護のためにプリチャージが終了し、鉛バッテリ50とキャパシタ51との間の電位差が解消するまでは、リレーRY2をONすることができない。   However, in the conventional power supply system having the precharge circuit as shown in FIG. 4, until the precharge is completed for protecting the contact of the relay RY2, and the potential difference between the lead battery 50 and the capacitor 51 is eliminated. Relay RY2 cannot be turned on.

このため、鉛バッテリ50とキャパシタ51との電位差が解消するまでは、キャパシタ51は電流制限抵抗Rを介してオルタネータ53に接続されることになり、この間はオルタネータ53の発電電圧を制御してキャパシタ51へ電力を回生することが困難となる。従って、このプリチャージ期間は、回生による燃費低減効果を得ることができず、キャパシタの有効利用の点で必ずしも満足のゆくものではなかった。   Therefore, until the potential difference between the lead battery 50 and the capacitor 51 is eliminated, the capacitor 51 is connected to the alternator 53 via the current limiting resistor R. During this period, the generated voltage of the alternator 53 is controlled to control the capacitor. It becomes difficult to regenerate power to 51. Therefore, during this precharge period, the effect of reducing fuel consumption due to regeneration cannot be obtained, and it is not always satisfactory in terms of effective use of the capacitor.

本発明は上記事情に鑑みてなされたもので、車両の電気系統の始動時、鉛バッテリとキャパシタとの間に設けたリレーを保護しつつ早期に鉛バッテリとキャパシタとを接続し、回生頻度の向上やキャパシタの有効利用による燃費向上効果を高めることのできる車両用電源装置を提供することを目的としている。   The present invention has been made in view of the above circumstances, and at the time of starting the electric system of a vehicle, the lead battery and the capacitor are connected at an early stage while protecting the relay provided between the lead battery and the capacitor. It aims at providing the power supply device for vehicles which can raise the fuel consumption improvement effect by improvement and effective use of a capacitor.

上記目的を達成するため、本発明による車両用電源装置は、鉛バッテリに接続される車載発電機を備え、前記鉛バッテリとキャパシタとをリレーを介して並列に接続し、車両への電力の供給を行なう車両用電源装置であって、上記鉛バッテリと上記キャパシタとの電位差を検出する電位差検出部と、上記リレーが開の状態で上記電位差が閾値以上のとき、上記車載発電機の発電電圧指示値を上記キャパシタと同電位とし、上記鉛バッテリと上記キャパシタとが同電位になった後に上記リレーを閉とする制御部とを有することを特徴とする。   In order to achieve the above object, a vehicle power supply apparatus according to the present invention includes an in-vehicle generator connected to a lead battery, and connects the lead battery and the capacitor in parallel via a relay to supply power to the vehicle. A vehicle power supply device for detecting a potential difference between the lead battery and the capacitor; and when the relay is open and the potential difference is equal to or greater than a threshold value, And a controller that closes the relay after the lead battery and the capacitor have the same potential.

本発明によれば、車両の電気系統の始動時に鉛バッテリとキャパシタとの間に設けたリレーを保護しつつ早期に鉛バッテリとキャパシタとを接続することができ、回生頻度の向上やキャパシタの有効利用による燃費向上効果を高めることができる。   According to the present invention, it is possible to connect the lead battery and the capacitor at an early stage while protecting the relay provided between the lead battery and the capacitor at the time of starting the electric system of the vehicle. The fuel efficiency improvement effect by use can be heightened.

以下、図面を参照して本発明の実施の形態を説明する。図1〜図3は本発明の実施の一形態に係り、図1は車両の電源系を示す構成図、図2は電源制御ルーチンのフローチャート、図3は各部の電圧変化を示すタイムチャートである。   Embodiments of the present invention will be described below with reference to the drawings. 1 to 3 relate to an embodiment of the present invention, FIG. 1 is a configuration diagram showing a power supply system of a vehicle, FIG. 2 is a flowchart of a power supply control routine, and FIG. 3 is a time chart showing a voltage change of each part. .

図1に示す車両の電源系は、各種車体負荷へ電力を供給する主電源としての鉛バッテリ(以下、単に「バッテリ」と記載)1と、このバッテリ1に並列に接続されるキャパシタ2とを主として構成されている。キャパシタ2は、複数の大容量のキャパシタセル2a,…を直列に接続することで要求される耐電圧と容量とを確保するものであり、このキャパシタ2の正極端子とバッテリ1の正極端子との間に、リレーRYのリレー接点が介装されている。バッテリ1及びキャパシタ2の負極端子は、共に接地されている。   The vehicle power supply system shown in FIG. 1 includes a lead battery (hereinafter simply referred to as “battery”) 1 as a main power source for supplying power to various vehicle body loads, and a capacitor 2 connected in parallel to the battery 1. It is mainly composed. The capacitor 2 secures the withstand voltage and capacity required by connecting a plurality of large-capacity capacitor cells 2a,... In series, and the positive terminal of the capacitor 2 and the positive terminal of the battery 1 In the middle, a relay contact of the relay RY is interposed. Both negative terminals of the battery 1 and the capacitor 2 are grounded.

リレーRYは、リレーコイルの一方の端子がバッテリ1の正極端子に接続され、他方の端子がマイクロコンピュータ等からなる電子制御ユニット(ECU)20に接続されている。ECU20には、リレーコイルの他、鉛バッテリ1の正極端子、キャパシタ2の正極端子、車両の電気系統の始動時にスタート信号を出力し、車両の電気系統の稼動中はスタート信号を出力し続ける始動スイッチ3、車載発電機としてのオルタネータ4の制御端子等が接続されている。オルタネータ4は、整流出力端子がバッテリ1を介して車体負荷に接続されると共に、負極端子が接地されている。   The relay RY has one terminal of a relay coil connected to the positive terminal of the battery 1 and the other terminal connected to an electronic control unit (ECU) 20 made of a microcomputer or the like. In addition to the relay coil, the ECU 20 outputs a start signal when starting the positive terminal of the lead battery 1, the positive terminal of the capacitor 2, and the electric system of the vehicle, and continues to output the start signal during operation of the electric system of the vehicle. A switch 3 and a control terminal of an alternator 4 as an on-vehicle generator are connected. The alternator 4 has a rectified output terminal connected to the vehicle body load via the battery 1 and a negative electrode terminal grounded.

ECU20は、バッテリ電圧をモニタしながら必要な電力を供給すべく、オルタネータ4の発電電圧を緻密に制御する。また、ECU20は、車両の電気系統の始動時、バッテリ1とキャパシタ2との電位差を解消するための電流制限抵抗を介したプリチャージを要することなく、早期にバッテリ1とキャパシタ2とを接続可能としている。   The ECU 20 precisely controls the power generation voltage of the alternator 4 to supply necessary power while monitoring the battery voltage. Further, when starting the electric system of the vehicle, the ECU 20 can connect the battery 1 and the capacitor 2 at an early stage without requiring precharging via a current limiting resistor for eliminating the potential difference between the battery 1 and the capacitor 2. It is said.

この車両の電気系統の始動時のバッテリ1とキャパシタ2との早期接続は、鉛バッテリであるバッテリ1の「分極」現象を利用して実現される。すなわち、鉛バッテリであるバッテリ1には、充電中・放電中及びその直後に、残存容量による発生電圧に対して電極電位がずれる分極現象が発生する。従って、車両の電気系統が始動すると、これに合わせて行われるエンジンの始動によりシステム電圧となるオルタネータ4の発電電圧をキャパシタ2と同電位として、バッテリ1の充電或いは放電による分極を発生させてキャパシタ電圧との差を小さくすることで、バッテリ1の電圧を迅速にキャパシタ2と同電位にすることができ、電流制限抵抗を介することなくリレー接点を保護し、バッテリ1とキャパシタ2とを早期に接続することが可能となる。   The early connection between the battery 1 and the capacitor 2 at the start of the electric system of the vehicle is realized by utilizing the “polarization” phenomenon of the battery 1 which is a lead battery. That is, in the battery 1 which is a lead battery, a polarization phenomenon occurs in which the electrode potential shifts with respect to the voltage generated by the remaining capacity during and immediately after charging and discharging. Therefore, when the electric system of the vehicle is started, the power generation voltage of the alternator 4 that is the system voltage is set to the same potential as that of the capacitor 2 by starting the engine in accordance with this, and polarization due to charging or discharging of the battery 1 is generated. By reducing the difference from the voltage, the voltage of the battery 1 can be quickly made the same potential as that of the capacitor 2, the relay contact is protected without going through the current limiting resistor, and the battery 1 and the capacitor 2 can be quickly connected. It becomes possible to connect.

このため、ECU20は、車両電源系に対する管理機能として、バッテリ1とキャパシタ2との電位差を検出する電位差検出部21と、リレーRYの開閉制御及びオルタネータ4の発電管理を行う制御部22とを有している。すなわち、ECU20は、エンジン始動時、バッテリ1及びキャパシタ2の電圧をモニタしてバッテリ1とキャパシタ2との電位差を検出し、リレーRYのリレー接点が開の状態でバッテリ1とキャパシタ2との電位差が閾値以上のとき、オルタネータ4への発電電圧指示値をキャパシタ2と同電位として与える。そして、バッテリ1とキャパシタ2とが同電位になった後、リレーRYのリレー接点を開から閉に切り換える。   Therefore, the ECU 20 has, as management functions for the vehicle power supply system, a potential difference detection unit 21 that detects a potential difference between the battery 1 and the capacitor 2, and a control unit 22 that performs open / close control of the relay RY and power generation management of the alternator 4. doing. That is, when the engine is started, the ECU 20 monitors the voltage of the battery 1 and the capacitor 2 to detect a potential difference between the battery 1 and the capacitor 2, and the potential difference between the battery 1 and the capacitor 2 when the relay contact of the relay RY is open. Is equal to or greater than the threshold value, the generated voltage instruction value to the alternator 4 is given as the same potential as the capacitor 2. Then, after the battery 1 and the capacitor 2 have the same potential, the relay contact of the relay RY is switched from open to closed.

以上のECU20の電源管理に係る機能は、具体的には、図2のフローチャートに示す電源制御ルーチンによって実現される。次に、電源制御ルーチンについて説明する。   The above-described functions related to power management of the ECU 20 are specifically realized by a power control routine shown in the flowchart of FIG. Next, the power supply control routine will be described.

この電源制御ルーチンでは、先ず、最初のステップS1において、始動スイッチ3からのスタート信号がONか否か判定する。始動スイッチ3からのスタート信号がOFFである場合には、ステップS2でリレーRYをOFFとしてリレー接点を開放状態に維持し、ルーチンを抜ける。   In this power supply control routine, first, in the first step S1, it is determined whether or not the start signal from the start switch 3 is ON. If the start signal from the start switch 3 is OFF, in step S2, the relay RY is turned OFF, the relay contact is kept open, and the routine is exited.

一方、始動スイッチ3からのスタート信号がONである場合には、ステップS1からステップS3へ進んでキャパシタ2の電圧Vcを検出し、更に、ステップS4でバッテリ1の電圧Vbを検出する。この場合、始動スイッチ3がONになった直後ではリレーRYが開放状態であるため、バッテリ電圧Vbとキャパシタ電圧Vcとは、それぞれの個別の電圧を示すことになる。   On the other hand, when the start signal from the start switch 3 is ON, the process proceeds from step S1 to step S3 to detect the voltage Vc of the capacitor 2, and further detects the voltage Vb of the battery 1 in step S4. In this case, since the relay RY is in an open state immediately after the start switch 3 is turned on, the battery voltage Vb and the capacitor voltage Vc indicate individual voltages.

続くステップS5では、バッテリ電圧Vbとキャパシタ電圧Vcとの電位差ΔV(絶対値)が予め設定した閾値Vs以上か否かを調べる。電位差ΔVが閾値Vs以上の場合、ステップS6でオルタネータ4にキャパシタ電圧Vcを目標電圧とする発電指示値を与え、ステップS3へ戻って、再度、キャパシタ電圧Vcを検出し、また、ステップS4でバッテリ電圧Vbを検出する。   In the subsequent step S5, it is checked whether or not the potential difference ΔV (absolute value) between the battery voltage Vb and the capacitor voltage Vc is greater than or equal to a preset threshold value Vs. If the potential difference ΔV is greater than or equal to the threshold value Vs, a power generation instruction value with the capacitor voltage Vc as the target voltage is given to the alternator 4 in step S6, the process returns to step S3, and the capacitor voltage Vc is detected again. The voltage Vb is detected.

そして、ステップS5においてバッテリ電圧Vbとキャパシタ電圧Vcのとの電位差ΔVが閾値Vs未満になったとき、ステップS7へ進んでリレーRYをONしてリレー接点を閉成し、ステップS8でオルタネータ4を回生制御を含めた通常の発電制御に切換え、ルーチンを抜ける。尚、リレーRYをONしてリレー接点を閉じるまでの間は、オルタネータ4の回生制御を禁止し、バッテリ電圧Vbが迅速にキャパシタ電圧Vcと同電位になるようにする。   When the potential difference ΔV between the battery voltage Vb and the capacitor voltage Vc becomes less than the threshold value Vs in step S5, the process proceeds to step S7 to turn on the relay RY and close the relay contact. In step S8, the alternator 4 is turned on. Switch to normal power generation control including regenerative control and exit routine. Incidentally, until the relay RY is turned on and the relay contact is closed, the regenerative control of the alternator 4 is prohibited so that the battery voltage Vb quickly becomes the same potential as the capacitor voltage Vc.

ここで、バッテリ電圧Vbとキャパシタ電圧Vcとの電位差ΔVが閾値Vs以上で、Vc<Vbの場合とVc>Vbの場合とのそれぞれの動作について説明する。   Here, each operation in the case where the potential difference ΔV between the battery voltage Vb and the capacitor voltage Vc is equal to or greater than the threshold value Vs and Vc <Vb and Vc> Vb will be described.

先ず、キャパシタ電圧Vcがバッテリ電圧Vbより低い場合には、図3に示すように、オルタネータ4の発電電圧をキャパシタ2と同電位まで低下させる。これにより、オルタネータ4の発電電圧はバッテリ電圧Vbより低くなり、オルタネータ4から充電されること無くバッテリ1より放電が行なわれる。このバッテリ1の放電により、バッテリ1に放電分極が発生し、バッテリ電圧が迅速に低下してキャパシタ2と同電位となる。従って、このバッテリ1の電圧低下によりバッテリ1とキャパシタ2との間の電位差が閾値未満になることを待ってリレーRYをONし、その後、回生制御を含めたオルタネータ4の発電電圧制御を実施する。   First, when the capacitor voltage Vc is lower than the battery voltage Vb, the generated voltage of the alternator 4 is lowered to the same potential as the capacitor 2 as shown in FIG. Thereby, the generated voltage of the alternator 4 becomes lower than the battery voltage Vb, and the battery 1 is discharged without being charged from the alternator 4. Due to the discharge of the battery 1, discharge polarization occurs in the battery 1, and the battery voltage rapidly decreases to the same potential as the capacitor 2. Therefore, the relay RY is turned on after waiting for the potential difference between the battery 1 and the capacitor 2 to become less than the threshold due to the voltage drop of the battery 1, and then the power generation voltage control of the alternator 4 including the regeneration control is performed. .

一方、キャパシタ電圧Vcがバッテリ電圧Vbより高い場合には、オルタネータ4にキャパシタ2の電圧と同じ電圧を発電電圧指示値として与える。これにより、バッテリ1が充電されることによる充電分極の効果、更にはバッテリ1と並列に接続された車体負荷の電位がキャパシタ電圧と等しくなるため、同様にバッテリ電圧が迅速にキャパシタ電圧と等しくなり、早期にリレーRYがONされる。   On the other hand, when the capacitor voltage Vc is higher than the battery voltage Vb, the same voltage as the voltage of the capacitor 2 is given to the alternator 4 as the generated voltage instruction value. As a result, the effect of charge polarization due to charging of the battery 1 and the potential of the vehicle body load connected in parallel with the battery 1 become equal to the capacitor voltage. Similarly, the battery voltage quickly becomes equal to the capacitor voltage. The relay RY is turned on early.

このように、本実施の形態においては、車両の電気系統の始動時にバッテリ電圧とキャパシタ電圧とに所定の電位差がある場合には、キャパシタ電圧がバッテリ電圧より低い場合、キャパシタ電圧がバッテリ電圧より高い場合の何れの場合においても、キャパシタと鉛バッテリとを接続するリレーの接点間電位差が閾値未満となってからリレー接点が閉とされるため、リレー接点が劣化することは無い。従って、電流制限抵抗を用いたプリチャージ回路を要することなく、リレー接点の劣化を防止することが可能となる。   Thus, in the present embodiment, when there is a predetermined potential difference between the battery voltage and the capacitor voltage at the start of the electric system of the vehicle, when the capacitor voltage is lower than the battery voltage, the capacitor voltage is higher than the battery voltage. In any case, since the relay contact is closed after the potential difference between the contacts of the relay connecting the capacitor and the lead battery becomes less than the threshold value, the relay contact is not deteriorated. Therefore, it is possible to prevent deterioration of the relay contact without requiring a precharge circuit using a current limiting resistor.

また、鉛バッテリの分極という電極電位がずれる現象を利用しているため、電流制限抵抗を用いたプリチャージよりも短時間で鉛バッテリとキャパシタとを接続することができ、キャパシタの有効活用と回生制御の頻度向上により、燃費向上効果を高めることができる。   In addition, the use of the phenomenon that the electrode potential shifts, such as the polarization of the lead battery, allows the lead battery and the capacitor to be connected in a shorter time than the precharge using the current limiting resistor. By improving the frequency of control, the fuel efficiency improvement effect can be enhanced.

車両の電源系を示す構成図Configuration diagram showing vehicle power supply system 電源制御ルーチンのフローチャートFlow chart of power control routine 各部の電圧変化を示すタイムチャートTime chart showing voltage change of each part 従来の電源系を示す構成図、Configuration diagram showing a conventional power supply system, 従来に電源系における各部の電圧変化を示すタイムチャートTime chart showing the voltage change of each part in the conventional power supply system

符号の説明Explanation of symbols

1 鉛バッテリ
2 キャパシタ
4 オルタネータ
20 電子制御ユニット
21 電位差検出部
22 制御部
Vb バッテリ電圧
Vc キャパシタ電圧
ΔV 電位差
DESCRIPTION OF SYMBOLS 1 Lead battery 2 Capacitor 4 Alternator 20 Electronic control unit 21 Potential difference detection part 22 Control part Vb Battery voltage Vc Capacitor voltage (DELTA) V Potential difference

Claims (2)

鉛バッテリに接続される車載発電機を備え、前記鉛バッテリとキャパシタとをリレーを介して並列に接続し、車両への電力の供給を行なう車両用電源装置であって、
上記鉛バッテリと上記キャパシタとの電位差を検出する電位差検出部と、
上記リレーが開の状態で上記電位差が閾値以上のとき、上記車載発電機の発電電圧指示値を上記キャパシタと同電位とし、上記鉛バッテリと上記キャパシタとが同電位になった後に上記リレーを閉とする制御部と
を有することを特徴とする車両用電源装置。
A vehicle power supply device comprising an in-vehicle generator connected to a lead battery, connecting the lead battery and the capacitor in parallel via a relay, and supplying power to the vehicle,
A potential difference detection unit for detecting a potential difference between the lead battery and the capacitor;
When the potential difference is greater than or equal to a threshold value when the relay is open, the power generation voltage instruction value of the on-vehicle generator is set to the same potential as the capacitor, and the relay is closed after the lead battery and the capacitor are at the same potential. A vehicle power supply device comprising: a control unit.
上記制御部は、上記リレーを閉とするまでの間、上記車載発電機による回生を禁止することを特徴とする請求項1記載の車両用電源装置。   The vehicle power supply device according to claim 1, wherein the control unit prohibits regeneration by the on-vehicle generator until the relay is closed.
JP2008134686A 2008-05-22 2008-05-22 Vehicle power supply Expired - Fee Related JP5154306B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008134686A JP5154306B2 (en) 2008-05-22 2008-05-22 Vehicle power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008134686A JP5154306B2 (en) 2008-05-22 2008-05-22 Vehicle power supply

Publications (2)

Publication Number Publication Date
JP2009280096A JP2009280096A (en) 2009-12-03
JP5154306B2 true JP5154306B2 (en) 2013-02-27

Family

ID=41451031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008134686A Expired - Fee Related JP5154306B2 (en) 2008-05-22 2008-05-22 Vehicle power supply

Country Status (1)

Country Link
JP (1) JP5154306B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5500089B2 (en) * 2011-01-21 2014-05-21 三菱自動車工業株式会社 Vehicle starter
JP2012249369A (en) * 2011-05-26 2012-12-13 Toyota Industries Corp Secondary battery power supply start-up circuit and cell balance device
JP6170343B2 (en) * 2013-05-30 2017-07-26 株式会社Subaru Power supply unit
JP6403383B2 (en) * 2013-12-26 2018-10-10 ダイハツ工業株式会社 Vehicle power supply
JP2015123823A (en) * 2013-12-26 2015-07-06 ダイハツ工業株式会社 Vehicular power supply device
JP6658761B2 (en) * 2015-10-02 2020-03-04 日産自動車株式会社 Power supply control method for vehicle, power supply control device for vehicle
JP6583009B2 (en) * 2016-01-19 2019-10-02 スズキ株式会社 Vehicle charging / discharging device
JP6642496B2 (en) * 2017-01-11 2020-02-05 株式会社デンソー Power supply and power supply system
WO2018131367A1 (en) * 2017-01-11 2018-07-19 株式会社デンソー Power supply device and power supply system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4391028B2 (en) * 2001-02-20 2009-12-24 本田技研工業株式会社 Control device for hybrid vehicle
JP2004120866A (en) * 2002-09-25 2004-04-15 Mitsubishi Fuso Truck & Bus Corp Power controller of electric automobile
JP4519728B2 (en) * 2005-07-15 2010-08-04 本田技研工業株式会社 Control device for electric vehicle

Also Published As

Publication number Publication date
JP2009280096A (en) 2009-12-03

Similar Documents

Publication Publication Date Title
JP5154306B2 (en) Vehicle power supply
US9956882B2 (en) Electric power storage system
US10442373B2 (en) Battery management system of vehicle with reconnection switch for connection state determination
JP5050325B2 (en) Battery control device
US7688023B2 (en) Battery pack management method for HEV and EV
JP4866187B2 (en) Battery control device, electric vehicle, and program for causing computer to execute processing for estimating charge state of secondary battery
JP6128491B2 (en) Power supply device for vehicle and vehicle provided with this power supply device
WO2015015743A1 (en) Vehicular power source system
US11114707B2 (en) Monitoring apparatus for energy storage device, energy storage apparatus, and a method of monitoring energy storage device
JP5708625B2 (en) Power storage system
CN108656968B (en) Power supply device for vehicle
JP5924418B2 (en) Power storage system
JP6598542B2 (en) Power supply device and control method of power supply device
JP2013252015A (en) Power supply control method and device for vehicle
JP2020096402A (en) Vehicular power supply device
WO2014087213A1 (en) Electrical storage system
JP6860421B2 (en) Vehicle power supply
US11673485B2 (en) Method for controlling an electrical system of an electrically drivable motor vehicle having a plurality of batteries, and electrical system of an electrically drivable motor vehicle having a plurality of batteries
JP2015009654A (en) Power storage system
JP2016193632A (en) Vehicular power supply device
JP6543069B2 (en) Power supply for vehicles
JP6485823B2 (en) In-vehicle power storage device
JP7373113B2 (en) Vehicle power control device
JP3705278B2 (en) Battery connection control device for electric vehicle
JP2015012685A (en) Power storage system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121205

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151214

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5154306

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees