JP5150091B2 - Cell and heart preservatives under hypoxic conditions - Google Patents

Cell and heart preservatives under hypoxic conditions Download PDF

Info

Publication number
JP5150091B2
JP5150091B2 JP2006297772A JP2006297772A JP5150091B2 JP 5150091 B2 JP5150091 B2 JP 5150091B2 JP 2006297772 A JP2006297772 A JP 2006297772A JP 2006297772 A JP2006297772 A JP 2006297772A JP 5150091 B2 JP5150091 B2 JP 5150091B2
Authority
JP
Japan
Prior art keywords
cells
cell
ischemic
hypoxic
heart
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006297772A
Other languages
Japanese (ja)
Other versions
JP2008115089A (en
Inventor
和浩 阿邊山
寧 吉元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sunus Co Ltd
Original Assignee
Nihon Starch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Starch Co Ltd filed Critical Nihon Starch Co Ltd
Priority to JP2006297772A priority Critical patent/JP5150091B2/en
Publication of JP2008115089A publication Critical patent/JP2008115089A/en
Application granted granted Critical
Publication of JP5150091B2 publication Critical patent/JP5150091B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Pyrane Compounds (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Description

本発明は、低酸素状態下での細胞および心臓保存剤に関する。更に詳しくは、1,5−D−アンヒドロフルクトースを有効成分とする、低酸素状態下での細胞、及び心臓保存剤に関する。 The present invention relates to cells and cardiac preservatives under hypoxic conditions . More specifically, the present invention relates to a cell under hypoxia and a heart preservative containing 1,5-D-anhydrofructose as an active ingredient.

1,5−D−アンヒドロフルクトース(以下、1,5−AFという)は、ある種の子嚢菌や紅藻由来の酵素であるα−1,4−グルカンリアーゼを澱粉あるいは澱粉分解物に作用させることで生産することができる。1,5−AFは、その分子間内に二重結合を有しており、他の単糖類と比較して反応性に富む糖である。
1,5−AFは抗酸化活性および抗菌活性を有することから、食品に安全に添加される抗酸化剤(特許文献1参照)、枯草菌および乳酸菌に特に有効な抗菌剤(特許文献2参照)としての用途が開示されている。また、この単糖は抗生物質ミクロテシンの前駆体でもある(特許文献3参照)。
また、最近では、抗う蝕作用(特許文献4参照)、血糖降下作用(特許文献5参照)、抗炎症作用、血小板凝集抑制作用(特許文献6参照)についても報告されており、1,5−AFは、さらに機能性を持った健康食品あるいは医薬品等の様々な分野でもその利用が期待される糖質である。
さらに、1,5−AF誘導体として1,5−AFを構成糖として含有する糖鎖(G−(G)−AF)を製造する技術についても提案されている(特許文献7参照)。
1,5-D-anhydrofructose (hereinafter referred to as 1,5-AF) acts on starch or starch degradation products of α-1,4-glucan lyase, an enzyme derived from certain ascomycetes and red algae. Can be produced. 1,5-AF has a double bond in the molecule, and is a highly reactive sugar compared to other monosaccharides.
Since 1,5-AF has antioxidant activity and antibacterial activity, it is an antioxidant that can be safely added to foods (see Patent Document 1), and an antibacterial agent that is particularly effective against Bacillus subtilis and lactic acid bacteria (see Patent Document 2). The use as is disclosed. This monosaccharide is also a precursor of antibiotic microtesin (see Patent Document 3).
Recently, anti-caries action (see Patent Document 4), hypoglycemic action (see Patent Document 5), anti-inflammatory action, and platelet aggregation inhibitory action (see Patent Document 6) have also been reported. AF is a carbohydrate that is expected to be used in various fields such as health foods and pharmaceuticals having further functionality.
Furthermore, a technique for producing a sugar chain (G- (G) n -AF) containing 1,5-AF as a constituent sugar as a 1,5-AF derivative has also been proposed (see Patent Document 7).

ところで、本邦に限らず世界では虚血性障害による疾患、例えば脳梗塞、心筋梗塞などは増加の一途をたどっており、心臓、脳、腎臓など生命維持に必要不可欠な器官での虚血性障害は、血流が運ぶ酸素の欠乏および/または細胞の呼吸減少が急速にもたらす不可逆的な細胞障害を介して、重篤な疾患、あるいは死亡の一因となりうる。虚血性組織障害は主に低酸素が誘発する細胞壊死による機能障害、さらには虚血後の炎症性反応(壊死細胞からのATP、HMGB−1のような炎症伝達物質の放出,または低酸素―再酸素化に伴う酸化ストレスによる生細胞での炎症シグナル、サイトカイン産生)によるものである。後者の機序は、2次的な全身性の炎症性障害の原因になる可能性もある。   By the way, not only in Japan, but also in the world, diseases caused by ischemic disorders, such as cerebral infarction and myocardial infarction, are steadily increasing, and ischemic disorders in organs indispensable for life support such as heart, brain and kidney are Serious illness or death can be contributed through the irreversible cellular damage that rapidly results from a lack of oxygen carried by the bloodstream and / or a decrease in cellular respiration. Ischemic tissue damage is mainly caused by hypoxia-induced cell necrosis, and further inflammatory reaction after ischemia (release of inflammatory mediators such as ATP and HMGB-1 from necrotic cells, or hypoxia − Inflammatory signals and cytokine production in living cells due to oxidative stress accompanying reoxygenation. The latter mechanism may also cause secondary systemic inflammatory disorders.

現在、心筋梗塞、脳梗塞など虚血性疾患の治療には外科的治療の他、治療剤として抗血小板薬、抗凝固薬などが一般に用いられているが、これらは主に虚血性疾患を引き起こす原因となる血栓を標的としたもので、病状の悪化を防ぐ程度のものであり、直接的な治療剤とは言いがたい。加えて、従来から用いられているアスピリンなどは抗血小板、抗凝固作用を有するため、出血している患者、肝臓障害の患者、白血球減少症の患者では利用できない。またパナルジン(第一製薬(株)、商品名)などは、副作用として無顆粒球症、黄疸などを生じさせる恐れがある。従って、副作用が少なく、虚血(低酸素)条件下で細胞壊死を減少させることは、最も効果的な虚血性疾患の治療法、予防法と考えられ、そのような薬剤の開発が切望されている。虚血状態下における細胞の生存率を向上させる薬剤としてキノロン系、キノン系、アミノグリコシド系又はクロラムフェニコールの抗菌剤を有効成分として含む薬剤が提案されている(特許文献8参照)が、これらは、アスピリンのような抗血小版作用を有する薬剤との併用において、けいれん等の中枢神経系の副作用の可能性も示唆されていることや、効果の面で十分であるとは考えにくいことなどより、さらに安全で、効果的な薬剤が望まれている。   Currently, antiplatelet drugs and anticoagulants are commonly used as therapeutic agents in addition to surgical treatment for the treatment of ischemic diseases such as myocardial infarction and cerebral infarction. The target is a thrombus, which prevents the disease from worsening, and is not a direct therapeutic agent. In addition, since aspirin and the like conventionally used have antiplatelet and anticoagulant actions, they cannot be used in patients who are bleeding, patients with liver disorders, and patients with leukopenia. Panaldine (Daiichi Pharmaceutical Co., Ltd., trade name) may cause agranulocytosis, jaundice, etc. as side effects. Therefore, reducing side-effects and reducing cell necrosis under ischemic (hypoxic) conditions is considered the most effective treatment and prevention method for ischemic diseases, and the development of such drugs is eagerly desired. Yes. As drugs for improving the survival rate of cells under ischemic conditions, drugs containing quinolone, quinone, aminoglycoside or chloramphenicol antibacterial agents as active ingredients have been proposed (see Patent Document 8). Has been suggested to have possible side effects in the central nervous system, such as convulsions, in combination with drugs that have anti-blood small-plate action, such as aspirin, and is unlikely to be sufficient in terms of efficacy Therefore, safer and more effective drugs are desired.

臓器移植においても、臓器提供者より臓器を摘出し、移植するまでの間は虚血状態(低酸素状態)となり、移植後は再潅流(再酸素化)される。また、移植に要する時間が長い程、臓器障害の度合いも大きくなる。この障害は虚血−再潅流により活性酸素が生じ、それが細胞を構成している成分を攻撃することが原因であると考えられている。この現象に対して臓器保存薬として、酸化還元性を示す物質としてペプチド(特許文献9参照)や抗酸化組成物(特許文献10参照)が提案されている。但し、これらについても、ペプチドにおいては、その抗原性が問題になるであろうし、1,5−AFより複雑な化学構造を有している抗酸化組成物については生体内で毒性の問題点が生じる可能性がある。
特表平9−505988号公報 特開2001−89377号公報 仏国特許出願公開第2617502 特開2004−123604号公報 特表2003−519660号公報 特開2006−16301号公報 特開2001−204490号公報 WO01/051614 特開平5−139992号公報 特開平8−26902号公報
Also in organ transplantation, an organ is removed from the organ donor and is ischemic (hypoxic) until transplantation, and is reperfused (reoxygenated) after transplantation. In addition, the longer the time required for transplantation, the greater the degree of organ damage. This disorder is thought to be caused by ischemia-reperfusion to generate active oxygen, which attacks the components that make up the cell. As an organ preservative for this phenomenon, peptides (see Patent Document 9) and antioxidant compositions (see Patent Document 10) have been proposed as substances exhibiting redox properties. However, for these peptides, the antigenicity of peptides will be a problem, and the antioxidant composition having a more complex chemical structure than 1,5-AF has a problem of toxicity in vivo. It can happen.
Japanese National Patent Publication No. 9-505988 JP 2001-89377 A French Patent Application Publication No. 2617502 JP 2004-123604 A Special table 2003-519660 gazette JP 2006-16301 A JP 2001-204490 A WO01 / 051614 Japanese Patent Laid-Open No. 5-139992 JP-A-8-26902

本発明の目的は、血管閉塞が原因となって生じる心筋梗塞、その他重篤な虚血性心疾患の予防、治療を最終的な目標として、低酸素状態下での筋芽細胞または心筋細胞または生体外心臓の保存のために1,5−AFの使用を提供することにある。 The object of the present invention is to prevent or treat myocardial infarction caused by vascular occlusion and other serious ischemic heart diseases, and to treat myoblasts or myocardial cells or living bodies under hypoxic conditions. It is to provide the use of 1,5-AF for preservation of the external heart .

本発明のさらに他の目的および利点は、以下の説明から明らかになろう。   Still other objects and advantages of the present invention will become apparent from the following description.

このように、虚血性心疾患の臨床管理に対して、1,5−AFの使用可能性の示唆は1,5−AFを用いた治療概念新しい識見を与えることであろう。 Thus, for the clinical management of ischemic heart disease, suggesting the potential use of 1, 5-AF will be given a new insight into the treatment concept using 1, 5-AF.

本発明によれば、本発明の上記目的および利点は、第1に、1,5−AFを含有することを特徴とする、低酸素状態下での筋芽細胞または心筋細胞の保存剤によって達成される。
また、本発明の上記目的および利点は、第2に、1,5−D−アンヒドロフルクトースを含有することを特徴とする、低酸素状態下での心臓の保存剤によって達成される。
さらに、本発明の上記目的および利点は、第3に、1,5−D−アンヒドロフルクトースの低酸素状態下、生体外での細胞の保護または保存のための使用であって、該細胞が筋芽細胞または心筋細胞でありそして該保護または保存がVEGF(血管内皮細胞増殖因子)の産生に影響を与えない上記使用によって達成される。
According to the present invention, the above objects and advantages of the present invention are achieved firstly by a preservative for myoblasts or cardiomyocytes under hypoxic conditions characterized in that it contains 1,5-AF. Is done.
The above objects and advantages of the present invention are secondly achieved by a preservative for the heart under hypoxia characterized by containing 1,5-D-anhydrofructose.
Furthermore, the above objects and advantages of the present invention are thirdly the use of 1,5-D-anhydrofructose for protecting or storing cells in vitro under hypoxic conditions, Myoblasts or cardiomyocytes and the protection or preservation is achieved by the above use which does not affect the production of VEGF (vascular endothelial growth factor).

1,5−AFを用いることで、虚血性心疾患を予防ないし治療することが示唆されおよび摘出心臓を保存することが可能である。 By using 1,5-AF, it is suggested to prevent or treat ischemic heart disease and it is possible to preserve the isolated heart.

本発明において使用される1,5−AFは、薬剤組成物として使用する場合は、既に公知の方法、例えば、特許文献1に記載の方法によって調製可能である。
1,5−AFの使用が示唆される虚血性疾患としては、例えば、虚血性心筋症、心筋梗塞、虚血性心不全などが挙げられる。
1,5−AFを含有する薬剤組成物は、それ自体公知の種々の方法でその剤型に応じて投与することが可能であり、投与量、投与部位、投与する間隔、期間等は、患者の年齢や体重、病状あるいは他の薬剤や治療法と併用した場合などを考慮して決定することができる。投与方法としては、例えば、経口投与あるいは、注射や点滴などの方法によって静脈内や皮下、腹腔内など直接体内に投与する方法や外用とすることができ、特別に制限されない。
1,5-AF used in the present invention can be prepared by a known method, for example, the method described in Patent Document 1, when used as a pharmaceutical composition .
The ischemic diseases where Ru is suggested the use of 1, 5-AF, for example, ischemic cardiomyopathy, myocardial infarction, etc. ischemic heart failure like.
A pharmaceutical composition containing 1,5-AF can be administered according to its dosage form by various methods known per se. The dosage, administration site, administration interval, period, etc. It can be determined in consideration of the age, weight, medical condition, or other drugs or treatments. The administration method can be, for example, oral administration, direct injection into the body, such as intravenous, subcutaneous, intraperitoneal, or external use, such as injection or infusion, and is not particularly limited.

剤組成物の投与量は、その剤型、投与方法、あるいは予防もしくは治療しようとする症状により異なるが、例えば、体重1kgあたりの投与量として有効成分換算で0.1mg〜100,000mg、好ましくは10mg〜1,000mgとすることができ、1日1回あるいは数回、あるいは数日毎に1回というような、適当な投与頻度によって投与することが可能である。
剤組成物の形態としては、例えば、錠剤、カプセル剤、点滴製剤、散剤、顆粒剤、注射剤等が挙げられるが、特に制限されない。また製剤を調製する上で必要な成分例えば、製剤担体や賦形剤、安定剤等を含有することもできる。
The dose of drug compositions, the dosage form, administration method, or preventing or varies by condition to be treated, for example, 0.1Mg~100,000mg in terms of active ingredient as the dose per body weight 1 kg, preferably Can be 10 mg to 1,000 mg, and can be administered at an appropriate dosing frequency such as once or several times a day or once every several days.
The form of the drug composition, e.g., tablets, capsules, drip preparations, powders, granules, although injection and the like are not particularly limited. In addition, components necessary for preparing a preparation, such as a preparation carrier, an excipient, and a stabilizer, can also be contained.

さらに、上記薬剤組成物は虚血性心疾患の予防ないし治療剤あるいはその他の薬理成分あるいはブドウ糖などの栄養成分を含むことも可能である。
剤組成物は、人間以外の哺乳動物にも投与することができる。

Furthermore, the pharmaceutical composition Ru also der include nutrients, such as preventive or therapeutic agent or any other pharmaceutical agent or glucose ischemic heart disease.
Drug composition is Ru can also be administered to a non-human mammal.

本発明の摘出心臓保存剤は1,5−AFが保存液に溶解した状態で使用することができる。この保存液としては生理食塩水、緩衝液、等張化液や従来から使用されてきた臓器保存液などが利用できる。
下、実施例により本発明をさらに詳述する。本発明はかかる実施例により何ら制限されるものではない。
Excised heart coercive Sonzai of the present invention can be used in a state of 1, 5-A F is dissolved in the storage solution. The preservation solution as saline, buffers, such as isotonic solution and an organ preservation solution that has been used conventionally Ru available.
Below, further details the present invention by way of examples. The present invention is not limited to the embodiment.

虚血性疾患では血流が途絶え、その先の組織・細胞が低酸素状態に陥り、細胞死に至る。低酸素培養モデルは、臨床における急性期の虚血状態を想定したもので、例えば脳神経細胞を用いた場合、脳梗塞等のモデルとして汎用されている。ここでは、1,5−AFの虚血性疾患に対する作用を、種々の細胞における低酸素培養条件下での細胞保護(細胞死抑制)の観点から評価した。尚、細胞は心筋梗塞のモデルとして心筋細胞、脳梗塞のモデルとして脳神経細胞、四肢の虚血性疾患モデルとして筋芽細胞及びケラチノサイトを用いた。なお、実施例2、3は参考例である。

In an ischemic disease, blood flow is interrupted, and the tissues and cells beyond that fall into a hypoxic state, leading to cell death. The hypoxic culture model assumes an ischemic state in the acute phase in clinical practice, and is widely used as a model for cerebral infarction, for example, when cerebral nerve cells are used. Here, the action of 1,5-AF on ischemic diseases was evaluated from the viewpoint of cell protection (cell death suppression) under hypoxic culture conditions in various cells. The cells used were myocardial cells as a model of myocardial infarction, cerebral neurons as a model of cerebral infarction, and myoblasts and keratinocytes as models of limb ischemic disease. Examples 2 and 3 are reference examples.

実施例1 (心筋細胞に対する1,5−AFの細胞保護効果)
ラット心筋由来の細胞株であるH9c2細胞を24ウェルマイクロプレート(1×10 cells/well)に播種して24時間培養後、1,5−AFならびに1,5−AFの生体内代謝産物である1,5−D−アンヒドログルシトール(以下1,5−AG)を所定の量加え、直ちにアネロパック・ケンキ/虚血システム(三菱ガス化学(株)製)を用いて72時間低酸素培養(O濃度1%以下,CO濃度5%前後)を行った{培地:FBS10%とペニシリン・ストレプトマイシン2%を含むD−MEM(Low glucose)}。低酸素培養後、接着細胞を80%エタノールで固定した後、0.4%クリスタルバイオレットで染色した。染色後プレートを水でよく洗浄した後、dye(色素)をメタノールで抽出しマイクロプレートリーダーを用いて570nmの波長で吸光度を測定した。なお、細胞生存率は低酸素培養開始前の吸光度を100%として算出した。
結果を図1に示した。72時間低酸素培養後の生細胞率は、1,5−AFが0、125、250μg/ml群、ならびに1,5−AG群(1,000μg/ml)では約5%であり、細胞はほとんど死滅していることがわかる。しかしながら、1,5−AFが500ないし1,000μg/mlの群での生細胞率はそれぞれ28.8±2.6%と11.2±1.1%であり、低酸素培養での心筋細胞の壊死を有意に抑制した。このことから、1,5−AFは低酸素培養条件下での心筋細胞に対して、細胞保護効果を有することが認められた。
Example 1 (Cytoprotective effect of 1,5-AF on cardiomyocytes)
H9c2 cells, a cell line derived from rat myocardium, were seeded in a 24-well microplate (1 × 10 5 cells / well) and cultured for 24 hours, and then metabolized with 1,5-AF and 1,5-AF in vivo. A certain amount of 1,5-D-anhydroglucitol (hereinafter referred to as 1,5-AG) was added in a predetermined amount, and hypoxia was immediately performed for 72 hours using Aneropac Kenki / Ischemic System (Mitsubishi Gas Chemical Co., Ltd.). Culture (O 2 concentration 1% or less, CO 2 concentration around 5%) was performed {medium: D-MEM (Low glucose) containing 10% FBS and 2% penicillin / streptomycin}. After hypoxic culture, adherent cells were fixed with 80% ethanol and then stained with 0.4% crystal violet. After staining, the plate was washed well with water, dye (dye) was extracted with methanol, and absorbance was measured at a wavelength of 570 nm using a microplate reader. The cell viability was calculated with the absorbance before the start of hypoxic culture as 100%.
The results are shown in FIG. The viable cell rate after 72-hour hypoxic culture is about 5% in the 1,5-AF 0, 125, 250 μg / ml group, and the 1,5-AG group (1,000 μg / ml). It turns out that it is almost dead. However, the viable cell rates in the group of 1,5-AF of 500 to 1,000 μg / ml are 28.8 ± 2.6% and 11.2 ± 1.1%, respectively. Cell necrosis was significantly suppressed. From this, it was confirmed that 1,5-AF has a cytoprotective effect on cardiomyocytes under hypoxic culture conditions.

実施例2 (神経細胞に対する1,5−AFの細胞保護効果の検討)
神経前駆細胞のモデルとして汎用されるPC12細胞(ラット副腎髄質褐色細胞腫)を24ウェルマイクロプレートに1×10 cells/wellの割合で播種し、37℃、CO5%の条件下で培養を行った{培地:FBS10%とペニシリン・ストレプトマイシン2%を含むD−MEM(Low glucose)}。次いで、dibutylyl cyclic cAMP 2mM(ブクラデシンナトリウム:アクトシン注、第一製薬(株)製)を含む同上培地に置換し24時間培養を行い神経細胞様へ分化させた。その後、上澄を除去し、1,5−AFならびに1,5−AGを所定の量含む培地を加え、直ちにアネロパック・ケンキ/虚血システム(三菱ガス化学(株)製)を用いて48時間低酸素培養(O濃度1%以下,CO濃度5%前後)を行った。低酸素培養後、接着細胞を80%エタノールで固定した後、0.4%クリスタルバイオレットで染色した。染色後プレートを水でよく洗浄した後、dye(色素)をメタノールで抽出しマイクロプレートリーダーを用いて570nmの波長で吸光度を測定した。なお、細胞生存率は低酸素培養開始前の吸光度を100%として算出した。
結果を図2に示した。48時間低酸素培養後の生細胞率は1,5−AFが0、125、ならびに1,5−AG群(1,000μg/ml)では約10%であった。しかしながら、1,5−AFが250、500、1,000μg/mlでは生細胞率はそれぞれ45.9±3.1%、69.4±4.9%、54.9±10.5%であり、低酸素培養での細胞死を有意に抑制した。このことから、1,5−AFは低酸素培養条件下での神経細胞に対して、細胞保護効果を有することがわかった。
Example 2 (Investigation of cytoprotective effect of 1,5-AF on nerve cells)
PC12 cells (rat adrenal medullary pheochromocytoma) commonly used as a model of neural progenitor cells are seeded in a 24-well microplate at a rate of 1 × 10 5 cells / well and cultured under conditions of 37 ° C. and CO 2 5%. {Medium: D-MEM (Low glucose) containing 10% FBS and 2% penicillin / streptomycin}. Subsequently, the medium was replaced with the same medium containing dibutylyl cyclic cAMP 2 mM (bucladecin sodium: Actocin injection, manufactured by Daiichi Pharmaceutical Co., Ltd.), and cultured for 24 hours to differentiate into nerve cells. Thereafter, the supernatant is removed, a medium containing predetermined amounts of 1,5-AF and 1,5-AG is added, and immediately, 48 hours using Aneropac Kenki / Ischemic System (Mitsubishi Gas Chemical Co., Ltd.) Hypoxic culture (O 2 concentration 1% or less, CO 2 concentration around 5%) was performed. After hypoxic culture, adherent cells were fixed with 80% ethanol and then stained with 0.4% crystal violet. After staining, the plate was washed well with water, dye (dye) was extracted with methanol, and absorbance was measured at a wavelength of 570 nm using a microplate reader. The cell viability was calculated with the absorbance before the start of hypoxic culture as 100%.
The results are shown in FIG. The viable cell rate after 48 hours of hypoxic culture was approximately 10% in the 1,5-AF 0, 125, and 1,5-AG groups (1,000 μg / ml). However, when 1,5-AF is 250, 500, and 1,000 μg / ml, the viable cell rates are 45.9 ± 3.1%, 69.4 ± 4.9%, and 54.9 ± 10.5%, respectively. Yes, cell death in hypoxic culture was significantly suppressed. From this, it was found that 1,5-AF has a cytoprotective effect on neurons under hypoxic culture conditions.

実施例3 (ケラチノサイトに対する1,5−AFの細胞保護効果の検討)
ヒトケラチノサイト(HaCaT)細胞を24ウェルマイクロプレート(1×10 cells/well)に播種し24時間培養後、1,5−AFならびに1,5−AGを所定の量加え、直ちにアネロパック・ケンキ/虚血システム(三菱ガス化学(株)製)を用いて48時間低酸素培養(O濃度1%以下,CO濃度5%前後)を行った{培地:FBS10%とペニシリン・ストレプトマイシン2%を含むD−MEM(Low glucose)}。低酸素培養後、接着細胞を80%エタノールで固定した後、0.4%クリスタルバイオレットで染色した。染色後プレートを水でよく洗浄した後、dye(色素)をメタノールで抽出しマイクロプレートリーダーを用いて570nmの波長で吸光度を測定した。なお、細胞生存率は低酸素培養開始前の吸光度を100%として算出した。
結果を図3に示した。48時間低酸素培養後の1,5−AFが500ならびに1,000μg/mlの生細胞率は、他の群と比較して有意に高く(500μg/ml:55.7±10.9%、1,000μg/ml:73.4±14.8%)、低酸素培養での細胞死を有意に抑制した。このことから、1,5−AFは低酸素培養条件下でのケラチノサイトに対して、細胞保護効果を有することがわかった。
Example 3 (Examination of cytoprotective effect of 1,5-AF on keratinocytes)
Human keratinocyte (HaCaT) cells are seeded in a 24-well microplate (1 × 10 5 cells / well) and cultured for 24 hours, and then predetermined amounts of 1,5-AF and 1,5-AG are added. Hypoxic culture (O 2 concentration 1% or less, CO 2 concentration around 5%) was performed for 48 hours using an ischemic system (Mitsubishi Gas Chemical Co., Ltd.) {medium: FBS 10% and penicillin streptomycin 2% Including D-MEM (Low glucose)}. After hypoxic culture, adherent cells were fixed with 80% ethanol and then stained with 0.4% crystal violet. After staining, the plate was washed well with water, dye (dye) was extracted with methanol, and absorbance was measured at a wavelength of 570 nm using a microplate reader. The cell viability was calculated with the absorbance before the start of hypoxic culture as 100%.
The results are shown in FIG. After 48 hours of hypoxic culture, the viable cell rate of 1,5-AF at 500 and 1,000 μg / ml was significantly higher than the other groups (500 μg / ml: 55.7 ± 10.9%, 1,000 μg / ml: 73.4 ± 14.8%), cell death in hypoxic culture was significantly suppressed. This indicates that 1,5-AF has a cytoprotective effect against keratinocytes under hypoxic culture conditions.

実施例4 (筋芽細胞に対する1,5−AFの細胞保護効果の検討)
マウス筋芽細胞(C2C12)を24ウェルマイクロプレート(1×10 cells/well)に播種し24時間培養後、1,5−AFならびに1,5−AGを所定の量加え、直ちにアネロパック・ケンキ/虚血システム(三菱ガス化学(株)製)を用いて24時間低酸素培養(O濃度1%以下,CO濃度5%前後)を行った{培地:FBS10%とペニシリン・ストレプトマイシン2%を含むD−MEM(Low glucose)}。低酸素培養後、接着細胞を80%エタノールで固定した後、0.4%クリスタルバイオレットで染色した。染色後プレートを水でよく洗浄した後、dye(色素)をメタノールで抽出しマイクロプレートリーダーを用いて570nmの波長で吸光度を測定した。なお、細胞生存率は低酸素培養開始前の吸光度を100%として算出した。同時に培養上澄中のVEGF(血管内皮細胞増殖因子)をELISAキット(BioSource社製)、乳酸値をラクテート・プロLT−1710(アークレイ(株)製)を用いて測定した。
Example 4 (Study of cytoprotective effect of 1,5-AF on myoblasts)
Mouse myoblasts (C2C12) were seeded in a 24-well microplate (1 × 10 5 cells / well) and cultured for 24 hours, and then predetermined amounts of 1,5-AF and 1,5-AG were added. / Hypoxic culture (O 2 concentration 1% or less, CO 2 concentration around 5%) was performed for 24 hours using an ischemic system (Mitsubishi Gas Chemical Co., Ltd.) {medium: FBS 10% and penicillin streptomycin 2% D-MEM (Low glucose)}. After hypoxic culture, adherent cells were fixed with 80% ethanol and then stained with 0.4% crystal violet. After staining, the plate was washed well with water, dye (dye) was extracted with methanol, and absorbance was measured at a wavelength of 570 nm using a microplate reader. The cell viability was calculated with the absorbance before the start of hypoxic culture as 100%. At the same time, VEGF (vascular endothelial growth factor) in the culture supernatant was measured using an ELISA kit (manufactured by BioSource), and the lactic acid level was measured using Lactate Pro LT-1710 (manufactured by Arkray).

細胞生存率の結果を図4のAに示した。24時間低酸素培養後の生細胞は、1,5−AFが0、125、ならびに1,5−AG群(1,000μg/ml)ではほとんど認められなかった。しかしながら、1,5−AFが250、500、1,000μg/mlでは生細胞率は約60〜70%であり(250μg/ml:62.3±4.8%、500μg/ml:68.8±2.9%、1,000μg/ml:66.2±8.5%)、低酸素培養での細胞死を有意に抑制した。このことから、1,5−AFは低酸素培養条件下での筋芽細胞に対して、細胞保護効果を有することがわかった。   The cell viability results are shown in FIG. Viable cells after 24-hour hypoxic culture were hardly observed in 1,5-AF 0, 125, and 1,5-AG groups (1,000 μg / ml). However, when 1,5-AF is 250, 500, and 1,000 μg / ml, the viable cell rate is about 60 to 70% (250 μg / ml: 62.3 ± 4.8%, 500 μg / ml: 68.8). ± 2.9%, 1,000 μg / ml: 66.2 ± 8.5%), and cell death in hypoxic culture was significantly suppressed. From this, it was found that 1,5-AF has a cytoprotective effect on myoblasts under hypoxic culture conditions.

24時間低酸素培養後の上澄中のVEGF含量を図4のBに示した。低酸素培養によって、培養上澄中のVEGFは有意に増加するが、1,5−AFは低酸素培養によるVEGFの産生に影響を与えないことがわかった。この傾向は心筋細胞でも認められた。虚血部位での低酸素組織中のVEGF産生の減少は例えば血液供給の補填としての血管新生や新血管新生など血管の再構築を先延ばしにすることから、1,5−AFがVEGFの産生に影響を与えないことは非常に有用であると思われる。一方、培養上澄中の乳酸値は低酸素培養により有意に増加するが、これに対して1,5−AFは濃度依存的に乳酸の産生を抑制することが認められた(図4のC)。   The VEGF content in the supernatant after 24 hours of hypoxic culture is shown in FIG. It was found that low oxygen culture significantly increased VEGF in the culture supernatant, but 1,5-AF did not affect the production of VEGF by hypoxic culture. This tendency was also observed in cardiomyocytes. The decrease in VEGF production in hypoxic tissue at the ischemic site prolongs the remodeling of blood vessels such as angiogenesis and neovascularization as a supplement to the blood supply, so that 1,5-AF produces VEGF. It seems to be very useful not to affect. On the other hand, the lactic acid level in the culture supernatant was significantly increased by the hypoxic culture, whereas 1,5-AF was found to suppress the production of lactic acid in a concentration-dependent manner (C in FIG. 4). ).

実施例5 (前処理による1,5−AFの細胞保護効果の検討)
マウス筋芽細胞(C2C12)およびラット心筋由来細胞株(H9c2)を24ウェルマイクロプレート(1×10 cells/well)に播種し24時間培養後、1,5−AFならびに1,5−AGを所定の量加え、さらに24時間培養した{培地:FBS10%とペニシリン・ストレプトマイシン2%を含むD−MEM(Low glucose)}。その後、培養上澄を洗浄し1,5−AFならびに1,5−AGを除去して、同上培地を加えて、アネロパック・ケンキ/虚血システム(三菱ガス化学(株)製)を用いて低酸素培養(O濃度1%以下,CO濃度5%前後)を行った。低酸素培養後、接着細胞を80%エタノールで固定した後、0.4%クリスタルバイオレットで染色した。染色後プレートを水でよく洗浄した後、dye(色素)をメタノールで抽出しマイクロプレートリーダーを用いて570nmの波長で吸光度を測定した。なお、細胞生存率は低酸素培養開始前の吸光度を100%として算出した。
Example 5 (Examination of cytoprotective effect of 1,5-AF by pretreatment)
Mouse myoblasts (C2C12) and rat myocardial cell line (H9c2) were seeded in a 24-well microplate (1 × 10 5 cells / well) and cultured for 24 hours, and then 1,5-AF and 1,5-AG were added. A predetermined amount was added and further cultured for 24 hours {Medium: D-MEM (Low glucose) containing 10% FBS and 2% penicillin / streptomycin}. Thereafter, the culture supernatant is washed to remove 1,5-AF and 1,5-AG, the same medium as above is added, and low using an aneropack-kenki / ischemic system (Mitsubishi Gas Chemical Co., Ltd.). Oxygen culture (O 2 concentration 1% or less, CO 2 concentration around 5%) was performed. After hypoxic culture, adherent cells were fixed with 80% ethanol and then stained with 0.4% crystal violet. After staining, the plate was washed well with water, dye (dye) was extracted with methanol, and absorbance was measured at a wavelength of 570 nm using a microplate reader. The cell viability was calculated with the absorbance before the start of hypoxic culture as 100%.

24時間低酸素培養後のC2C12細胞の生存率を(図5のA)に示した。500μg/mlと1,000μg/mlの1,5−AFで前処理することで、低酸素培養に伴う細胞壊死が有意に抑制された。また、72時間低酸素培養後のH9c2細胞においても1,000μg/mlの1,5−AFで同じ結果が得られた(図5のB)。これらのことから、1,5−AFを予め摂取することは虚血性疾患の予防に繋がることが示唆された。   The survival rate of C2C12 cells after 24 hours of hypoxic culture is shown in FIG. Pretreatment with 1,5-AF at 500 μg / ml and 1,000 μg / ml significantly suppressed cell necrosis associated with hypoxic culture. In addition, the same result was obtained with 1,000 μg / ml 1,5-AF in H9c2 cells after 72 hours of hypoxic culture (FIG. 5B). These results suggest that taking 1,5-AF in advance leads to prevention of ischemic disease.

心筋細胞低酸素培養条件下での1,5−AFの細胞保護作用の評価Evaluation of cytoprotective action of 1,5-AF under cardiomyocyte hypoxic culture conditions 神経細胞低酸素培養条件下での1,5−AFの細胞保護作用の評価Evaluation of cytoprotective action of 1,5-AF under neuronal hypoxic culture conditions ケラチノサイト低酸素培養条件下での1,5−AFの細胞保護作用の評価Evaluation of cytoprotective action of 1,5-AF under keratinocyte hypoxic culture conditions 筋芽細胞低酸素培養条件下での1,5−AFの細胞保護作用の評価と培養上澄中のVEGF含量並びに乳酸値Evaluation of cytoprotective effect of 1,5-AF under myoblast hypoxia culture condition, VEGF content and lactic acid level in culture supernatant 筋芽・心筋細胞低酸素培養条件下における1,5−AF前処理による細胞保護作用の評価Evaluation of cytoprotective effect of 1,5-AF pretreatment under myoblast and cardiomyocyte hypoxic culture conditions

Claims (3)

1,5−D−アンヒドロフルクトースを含有することを特徴とする、低酸素状態下での筋芽細胞または心筋細胞の保存剤。 A preservative for myoblasts or cardiomyocytes under hypoxic conditions, comprising 1,5-D-anhydrofructose. 1,5−D−アンヒドロフルクトースを含有することを特徴とする、低酸素状態下での心臓の保存剤。 A preservative for the heart under hypoxic conditions, comprising 1,5-D-anhydrofructose. 1,5−D−アンヒドロフルクトースの低酸素状態下、生体外での細胞の保護または保存のための使用であって、該細胞が筋芽細胞または心筋細胞でありそして該保護または保存がVEGF(血管内皮細胞増殖因子)の産生に影響を与えない上記使用。 Use of 1,5-D-anhydrofructose for the protection or preservation of cells in vitro under hypoxic conditions, wherein the cells are myoblasts or cardiomyocytes and the protection or preservation is VEGF Use as described above, which does not affect the production of (vascular endothelial growth factor).
JP2006297772A 2006-11-01 2006-11-01 Cell and heart preservatives under hypoxic conditions Expired - Fee Related JP5150091B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006297772A JP5150091B2 (en) 2006-11-01 2006-11-01 Cell and heart preservatives under hypoxic conditions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006297772A JP5150091B2 (en) 2006-11-01 2006-11-01 Cell and heart preservatives under hypoxic conditions

Publications (2)

Publication Number Publication Date
JP2008115089A JP2008115089A (en) 2008-05-22
JP5150091B2 true JP5150091B2 (en) 2013-02-20

Family

ID=39501339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006297772A Expired - Fee Related JP5150091B2 (en) 2006-11-01 2006-11-01 Cell and heart preservatives under hypoxic conditions

Country Status (1)

Country Link
JP (1) JP5150091B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2767278B1 (en) 2011-10-12 2019-11-06 SBI Pharmaceuticals Co., Ltd. Enhancer of survival of transplanted organ
CN104411306B (en) 2012-07-13 2017-05-24 思佰益药业股份有限公司 Immune tolerance inducer
JP2020100601A (en) * 2018-12-25 2020-07-02 国立大学法人 鹿児島大学 Nitric oxide synthase activator
JP2021038147A (en) * 2019-08-30 2021-03-11 国立大学法人 鹿児島大学 Mitochondrial biosynthesis promoter

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2174116C (en) * 1993-10-15 2007-05-01 Shukun Yu Use of .alpha.-1,4-glucan lyase for preparation of 1,5-d-anhydrofructose
JP2002322091A (en) * 2001-04-27 2002-11-08 Takeda Chem Ind Ltd Prophylactic/therapeutic agent for ischemic encephalopathy comprising nonpeptidic compound having ccr receptor antagonism
BR0309239A (en) * 2002-04-10 2005-02-15 Dongbu Hannong Chemical Co Ltd Secondary amine substituted benzopyran derivatives including tetrazole, method for their preparation and pharmaceutical compositions containing
WO2004044142A2 (en) * 2002-11-05 2004-05-27 The Brigham And Women's Hospital, Inc. Mesenchymal stem cells and methods of use thereof
JP4825413B2 (en) * 2003-10-28 2011-11-30 日本澱粉工業株式会社 Antitumor agent
TW200633990A (en) * 2004-11-18 2006-10-01 Takeda Pharmaceuticals Co Amide compound

Also Published As

Publication number Publication date
JP2008115089A (en) 2008-05-22

Similar Documents

Publication Publication Date Title
Zhang et al. Cardioprotection of tetrahedral DNA nanostructures in myocardial ischemia-reperfusion injury
JP5230042B2 (en) Preservatives for animal cells or organs and methods for their preservation.
JP7179888B2 (en) Use of kaurane compounds in the manufacture of medicaments for the treatment of cardiac hypertrophy and pulmonary hypertension
Zou et al. Co-administration of hydrogen and metformin exerts cardioprotective effects by inhibiting pyroptosis and fibrosis in diabetic cardiomyopathy
Wang et al. Streptozotocin-induced diabetic cardiomyopathy in rats: ameliorative effect of PIPERINE via Bcl2, Bax/Bcl2, and caspase-3 pathways
Najafi et al. Inhibition of mitochondrial permeability transition pore restores the cardioprotection by postconditioning in diabetic hearts
JP5150091B2 (en) Cell and heart preservatives under hypoxic conditions
Hosseinian et al. Prospects of mitochondrial transplantation in clinical medicine: Aspirations and challenges
CN102580099B (en) Composition for resisting ischemia reperfusion injury and preparation method and application thereof
KR100879253B1 (en) treatment for hypertension and diabetic nephropathy using ADP-ribosyl cyclase inhibitors
CN106035316B (en) A kind of Celsior of improvement preserves liquid and preparation method thereof for the heart
JP2018508479A (en) Use of biphenols in the preparation of drugs to prevent and treat ischemic stroke
Yang et al. Injectable selenium-containing polymeric hydrogel formulation for effective treatment of myocardial infarction
Jeddi et al. Hydrogen sulfide potentiates the protective effects of nitrite against myocardial ischemia-reperfusion injury in type 2 diabetic rats
Pavlovna et al. Evaluation of cardioprotective effects of the incritinmimetics exenatideand vildagliptin in the experiment
KR101704914B1 (en) A pharmaceutical composition comprising dammarenediol-ii for preventing or treating diseases by diabetic vascular leakage
Zahedi et al. The potential therapeutic impacts of trehalose on cardiovascular diseases as the environmental-influenced disorders: an overview of contemporary findings
EP2968319B1 (en) Treatment for chemotherapy-induced cognitive impairment
CN103459362A (en) A complex of garcinol, cyclodextrin and method thereof
TW201132342A (en) Antrocin containing pharmaceutical compositions for inhibiting cancer cells
WO2016131320A1 (en) Use of nadph in preparing medicines for treatment of heart diseases
Li et al. Metformin suppressed tendon injury-induced adhesion via hydrogel-nanoparticle sustained-release system
KR101567954B1 (en) Composition for preventing or treating erectile dysfunction comprising HGF protein or gene therefor and use thereof
Li et al. Polymerized human placenta hemoglobin given before ischemia protects rat heart from ischemia reperfusion injury
CN103083323A (en) Application of fasudil hydrochloride in preparation of medicament for promoting in-vivo survival and repair of mesenchymal stem cells and preparation of fasudil hydrochloride

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120509

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120816

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121010

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121203

R150 Certificate of patent or registration of utility model

Ref document number: 5150091

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151207

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees