JP5144955B2 - Flexible flat cable - Google Patents

Flexible flat cable Download PDF

Info

Publication number
JP5144955B2
JP5144955B2 JP2007120546A JP2007120546A JP5144955B2 JP 5144955 B2 JP5144955 B2 JP 5144955B2 JP 2007120546 A JP2007120546 A JP 2007120546A JP 2007120546 A JP2007120546 A JP 2007120546A JP 5144955 B2 JP5144955 B2 JP 5144955B2
Authority
JP
Japan
Prior art keywords
ffc
flat cable
flexible flat
repulsive force
force coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007120546A
Other languages
Japanese (ja)
Other versions
JP2008277177A (en
Inventor
諭 村尾
博之 兒玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Wiring Systems Ltd
AutoNetworks Technologies Ltd
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Wiring Systems Ltd
AutoNetworks Technologies Ltd
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Wiring Systems Ltd, AutoNetworks Technologies Ltd, Sumitomo Electric Industries Ltd filed Critical Sumitomo Wiring Systems Ltd
Priority to JP2007120546A priority Critical patent/JP5144955B2/en
Priority to PCT/JP2008/058059 priority patent/WO2008139891A1/en
Publication of JP2008277177A publication Critical patent/JP2008277177A/en
Application granted granted Critical
Publication of JP5144955B2 publication Critical patent/JP5144955B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/08Flat or ribbon cables

Landscapes

  • Insulated Conductors (AREA)

Description

本発明は、フレキシブルフラットケーブルに関する。   The present invention relates to a flexible flat cable.

フレキシブルフラットケーブル(以下、FFCということもある)は、可撓性を有するテープ状絶縁体の内部に、断面が平角型の線状導体が 埋設されたものである。FFCは、薄く、可撓性に優れており、例えば自動車のルーフ、ドア、フロア、インパネなどの各種配線材として用いられている。   A flexible flat cable (hereinafter also referred to as FFC) is a tape-shaped insulator having flexibility, in which a linear conductor having a flat cross section is embedded. FFC is thin and excellent in flexibility, and is used as various wiring materials such as roofs, doors, floors, and instrument panels of automobiles.

従来、FFCは片面に熱接着層を有する2枚の絶縁フィルムの接着層の間に導体を挟み、加熱ローラの間を通して絶縁フィルム同士を熱接着する熱ラミネート法により製造されていた。上記FFCの絶縁フィルムとしては、ポリエチレンテレフタレートフィルム等のポリエステルフィルムが使用されていた。   Conventionally, an FFC has been manufactured by a thermal laminating method in which a conductor is sandwiched between two adhesive layers of an insulating film having a thermal adhesive layer on one side, and the insulating films are thermally bonded through a heating roller. As the FFC insulating film, a polyester film such as a polyethylene terephthalate film has been used.

しかしながら上記熱ラミネート法によるFFCの製造方法は、接着層を加熱溶融させる必要があり、接着に時間がかかる為、FFCの生産性が低くコストが掛かるという問題があった。そこで、押出機を用いて絶縁体の樹脂を線状導体の周囲に押出被覆する押出法によりFFCを製造することで、FFCの製造コストを低減することが公知である(例えば特許文献1参照)。   However, the FFC manufacturing method using the thermal laminating method involves heating and melting the adhesive layer, and it takes time to bond, so that there is a problem that the productivity of FFC is low and the cost is high. Therefore, it is known to reduce the manufacturing cost of FFC by manufacturing FFC by an extrusion method in which an insulating resin is extrusion coated around a linear conductor using an extruder (see, for example, Patent Document 1). .

特許第3700861号公報Japanese Patent No. 3700861

ところで、これまで量産されている押出法によるFFCは、絶縁体の材料として、ポリウレタンエラストマーや、ポリ塩化ビニル系樹脂等の軟質樹脂が用いられていた。これらの絶縁体を用いた押出法によるFFCは、熱ラミネート法によるFFCと比較して、巻きぐせが付き易いという問題があった。例えば自動車のボディーにFFCを配索する場合、巻きぐせが付くと下記の様な問題がある。FFCは所定の長さごとに束ねた状態で、ゴムでしばってFFCハーネスとして梱包しておく。そして、FFCハーネスを縛っていたゴムを取外して、ハーネスを広げてボディーに配索する。熱ラミネート法によるFFCは、巻きぐせが付きにくいので、ゴムを外したとたんにボディー全体に自然に広がる。しかし押出しFFCの場合、梱包時の巻きぐせがついていると、ゴムを外したときに自然に広がらない。FFCが直ぐに広がらないと、手でハーネスを伸ばして広げる必要があり、配索作業性が低下してしまう。   By the way, FFC by the extrusion method currently mass-produced has used soft resins, such as a polyurethane elastomer and a polyvinyl chloride resin, as a material of an insulator. The FFC by the extrusion method using these insulators has a problem that it is easy to be wound compared with the FFC by the heat laminating method. For example, when an FFC is routed on the body of an automobile, there are the following problems if it is wrapped. The FFC is bundled with a predetermined length, and is packed with rubber and packed as an FFC harness. Then, remove the rubber that tied the FFC harness, spread the harness and route it to the body. FFC by the heat laminating method is difficult to curl and spreads naturally throughout the body as soon as the rubber is removed. However, in the case of extruded FFC, if there is wrapping at the time of packing, it will not spread naturally when the rubber is removed. If the FFC does not spread immediately, it is necessary to extend the harness by hand and the routing workability will be reduced.

本発明の解決しようとする課題は、上記問題点を解決しようとするものであり、ケーブルを束ねておいても巻きぐせが付きにくく、束ねた状態から広げた際に、直ぐに広がることができ、配索作業性の優れたFFCを提供することを目的とする。   The problem to be solved by the present invention is to solve the above-mentioned problems, and even when the cables are bundled, it is difficult to wind them up, and when the cables are spread out from the bundled state, they can spread immediately. An object of the present invention is to provide an FFC with excellent routing workability.

上記課題を解決するために、本発明のフレキシブルフラットケーブルは押出成形により形成された絶縁性樹脂からなるテープ状絶縁体の内部に平行に配列した複数の平角導体が埋設されているフレキシブルフラットケーブルにおいて、フレキシブルフラットケーブルを三重に巻いて直径50mmの円環状に形成し、円環が押し潰されるように外部から荷重W〔N〕を加えてδ〔mm〕の変形を生じさせた場合の比(W/δ)を反発力係数K〔N/mm〕とした場合、反発力係数Kが0.04〜0.75〔N/mm〕であることを要旨とする。   In order to solve the above problems, the flexible flat cable of the present invention is a flexible flat cable in which a plurality of rectangular conductors arranged in parallel inside a tape-like insulator made of an insulating resin formed by extrusion molding are embedded. A ratio of the case where a flexible flat cable is wound in triplicate to form an annular shape with a diameter of 50 mm, and a load W [N] is applied from the outside so that the annular shape is crushed and deformation of δ [mm] is caused ( When W / δ) is a repulsive force coefficient K [N / mm], the gist is that the repulsive force coefficient K is 0.04 to 0.75 [N / mm].

上記フレキシブルフラットケーブルは、厚さ0.15〜0.6mm、幅3〜50mmに形成することができる。また上記平角導体は、厚さ0.1〜0.2mm、幅1〜3mmに形成することができる。   The flexible flat cable can be formed to have a thickness of 0.15 to 0.6 mm and a width of 3 to 50 mm. The rectangular conductor can be formed with a thickness of 0.1 to 0.2 mm and a width of 1 to 3 mm.

上記フレキシブルフラットケーブルにおいて、平角導体が、タフピッチ軟銅であることや、絶縁性樹脂が、変性ポリフェニレンエーテルからなることが好ましい。   In the flexible flat cable, the flat conductor is preferably tough pitch annealed copper, and the insulating resin is preferably made of a modified polyphenylene ether.

本発明におけるフレキシブルフラットケーブルの反発力係数Kの測定方法は以下の通りである。図1(a)は、反発力係数の測定に使用するフレキシブルフラットケーブルの試験片を示す説明図であり、同図(b)は(a)のB−B断面図である。図1(a)、(b)に示すように、フレキシブルフラットケーブル1を3重に巻いて直径50mmの円環状に形成して試験片10とする。試験片10は、フレキシブルフラットケーブル1の端部を重ねたところがほどけないように、巻き始めと巻き終わりの部分が10mm重なるように接着しろとして、その重なり部分を粘着テープ2を巻き回して固定する。   The measuring method of the repulsive force coefficient K of the flexible flat cable in the present invention is as follows. Fig.1 (a) is explanatory drawing which shows the test piece of the flexible flat cable used for the measurement of a repulsive force coefficient, The same figure (b) is BB sectional drawing of (a). As shown in FIGS. 1A and 1B, the flexible flat cable 1 is wound three times to form a test piece 10 having an annular shape with a diameter of 50 mm. The test piece 10 is fixed by winding the adhesive tape 2 around the overlapping portion of the flexible flat cable 1 so that the overlapping portions of the flexible flat cable 1 are not unraveled, so that the portions at the beginning and end of winding overlap 10 mm. .

図2(a)、(b)は、反発力係数Kの測定方法を示す説明図であり、(a)は試験片の環状体の変形前の状態を示し、(b)は試験片を変形させている状態を示す。試験は引張り試験機20を押し込み荷重測定モードにして、図2(a)に示すようにロードセル21とジグ22との間に試験片10を配置し、下のジグに両面テープ23を用いて固定する。次に図2(b)に示すように、上側のロードセル21を試験片10の環を押し潰すように下方に40mmまで変位させる。このときの押込み速度は50mm/分とする。試験片10は、ロードセル21によって押されると、高さ10mmの扁平形状になる。このときロードセル21では、潰される試験片10の環が、ばね弾性によって元に戻ろうとする反発力が荷重として測定される。各変位〔mm〕とロードセルに21に加わる荷重〔N〕を測定すると、変位と荷重の関係を示すグラフが得られる。   2 (a) and 2 (b) are explanatory views showing a method for measuring the repulsive force coefficient K, (a) showing a state before the annular body of the test piece is deformed, and (b) showing a deformation of the test piece. Indicates the state of being made. In the test, the tensile tester 20 is set in the indentation load measurement mode, the test piece 10 is arranged between the load cell 21 and the jig 22 as shown in FIG. 2A, and fixed to the lower jig with the double-sided tape 23. To do. Next, as shown in FIG. 2B, the upper load cell 21 is displaced downward to 40 mm so as to crush the ring of the test piece 10. The pushing speed at this time is 50 mm / min. When the test piece 10 is pushed by the load cell 21, it becomes a flat shape having a height of 10 mm. At this time, in the load cell 21, the repulsive force that the ring of the test piece 10 to be crushed returns to its original state by spring elasticity is measured as a load. When the displacement [mm] and the load [N] applied to the load cell 21 are measured, a graph showing the relationship between the displacement and the load is obtained.

図3は、上記測定方法により得られる押込み変位と荷重との関係を示すグラフである。図3に示すように上記測定方法により、押込み変位−荷重曲線Sからなるグラフが得られる。この曲線Sの傾きを反発力係数K(N/mm)とする。すなわちこのグラフの傾きは、ロードセルにより測定される荷重をW(N)として、50φの円環を高さ10mmまで押し潰す押込み変位を変形量δ(mm)とした場合の比W/δを表すものである。   FIG. 3 is a graph showing the relationship between indentation displacement and load obtained by the measurement method. As shown in FIG. 3, a graph composed of the indentation displacement-load curve S is obtained by the above measuring method. The slope of this curve S is defined as a repulsive force coefficient K (N / mm). That is, the slope of this graph represents the ratio W / δ when the load measured by the load cell is W (N) and the indentation displacement that crushes the 50φ ring to a height of 10 mm is the deformation amount δ (mm). Is.

上記本発明に係る反発力係数Kは、フレキシブルフラットケーブルが備えている、ばね弾性を示すものと言える。反発力係数Kは、巻きぐせの付き難さや配索性の指標となる。すなわち本発明のフレキシブルフラットケーブルは、三重に巻いて直径50mmの円環状に形成し、円環が押し潰されるように外部から荷重W〔N〕を加えて変形量がδ〔mm〕となるように変形を生じさせた場合の反発力係数Kが0.04〜0.75〔N/mm〕であるように構成したことにより、従来の押出法によるフレキシブルフラットケーブルと比較して、ケーブルを束ねておいても巻きぐせが付きにくく、束ねた状態から広げた際に、直ぐに広がることができ、配索作業性が優れている。   It can be said that the repulsive force coefficient K according to the present invention indicates the spring elasticity of the flexible flat cable. The repulsive force coefficient K is an index of difficulty in winding and routing. That is, the flexible flat cable of the present invention is formed in an annular shape having a diameter of 50 mm by wrapping in a triple manner so that the deformation amount becomes δ [mm] by applying a load W [N] from the outside so that the annular shape is crushed. The cable is bundled in comparison with a flexible flat cable by a conventional extrusion method because the repulsive force coefficient K is 0.04 to 0.75 [N / mm]. It is difficult to wrap around, and when it is unfolded from a bundled state, it can spread immediately, and the wiring workability is excellent.

以下、本発明の実施形態について、図面を参照して詳細に説明する。図4は、本発明フレキシブルフラットケーブルの一例を示す、幅方向の縦断面図である。図4に示すように、フレキシブルフラットケーブル1(以下、FFCということもある)は、押出成形により形成された絶縁性樹脂からなるテープ状絶縁体12の内部に、平行に配列した複数の平角導体11a、11b、11cからなる導体11が埋設されている。導体11の周囲は絶縁体12と接している。図4に示すFFC1は、3本の導体11a、11b、11cが所定間隔で平行に配置されているものである。導体11と絶縁体12の接触面は、密着した状態にあるが、両者が接着している状態であっても良いし、また両者が単に密着しているだけで接着していない状態であっても良い。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 4 is a longitudinal sectional view in the width direction showing an example of the flexible flat cable of the present invention. As shown in FIG. 4, the flexible flat cable 1 (hereinafter also referred to as FFC) includes a plurality of rectangular conductors arranged in parallel inside a tape-like insulator 12 made of an insulating resin formed by extrusion molding. A conductor 11 composed of 11a, 11b, and 11c is embedded. The periphery of the conductor 11 is in contact with the insulator 12. The FFC 1 shown in FIG. 4 has three conductors 11a, 11b, and 11c arranged in parallel at a predetermined interval. The contact surface of the conductor 11 and the insulator 12 is in a close contact state, but may be in a state in which the conductor 11 and the insulator 12 are in contact with each other. Also good.

図4に示すFFC1は、断面が長方形に形成され、表面及び裏面に凹凸がなく平らな面として形成されている。またFFC1の角は、特に面取りしない状態に形成されている。尚、FFC1において表面側及び裏面側の区別はないが、便宜上、図4の上側を表面側とし下側を裏面側とする。   The FFC 1 shown in FIG. 4 has a rectangular cross section, and is formed as a flat surface with no irregularities on the front and back surfaces. The corners of the FFC 1 are not particularly chamfered. In the FFC 1, there is no distinction between the front side and the back side, but for the sake of convenience, the upper side in FIG. 4 is the front side and the lower side is the back side.

図5は本発明FFCの他の例を示す、幅方向の縦断面図である。図5に示すように、FFC1は、角の部分Rを面取りした形状としても良い。またFFC1は、同図に示すように、表面及び裏面の導体11どうしの間の部分に、長手方向に延びる断面がV字形の凹溝Gを設けても良い。   FIG. 5 is a longitudinal sectional view in the width direction showing another example of the FFC of the present invention. As shown in FIG. 5, the FFC 1 may have a shape in which a corner portion R is chamfered. Further, as shown in the figure, the FFC 1 may be provided with a groove G having a V-shaped cross section extending in the longitudinal direction in a portion between the conductors 11 on the front surface and the back surface.

上記したように、本発明FFC1は、FFCを三重に巻いて直径50mmの円環状に形成し、円環が押し潰されるように外部から荷重W〔N〕を加えて変形量がδ〔mm〕となるように変形を生じさせた場合の反発力係数Kが、0.04〜0.75〔N/mm〕となるように形成されている。FFC1の反発力係数Kが上記範囲を外れて、0.04〔N/mm〕未満になると、反発力が小さくなりすぎて十分な配索性が得られない。また反発力係数Kが0.75〔N/mm〕を超えると、巻ぐせが付きにくくなるものの、反発力が大きくなりすぎて、配索性が低下してしまう。反発力係数Kは、0.05〜0.15〔N/mm〕とすることが、確実に巻ぐせを防止することができ、良好な配索性が確実に得られることから、更に好ましい。   As described above, the FFC 1 of the present invention is formed by winding the FFC in triplicate to form an annular shape with a diameter of 50 mm, and applying a load W [N] from the outside so that the annular shape is crushed, the deformation amount is δ [mm]. In this case, the repulsive force coefficient K is 0.04 to 0.75 [N / mm]. When the repulsive force coefficient K of FFC1 is out of the above range and is less than 0.04 [N / mm], the repulsive force is too small to obtain sufficient routing. On the other hand, if the repulsive force coefficient K exceeds 0.75 [N / mm], it will be difficult to wind, but the repulsive force will be too large, and the routing will be reduced. The repulsive force coefficient K is more preferably 0.05 to 0.15 [N / mm] because it can surely prevent winding and a good routing property can be obtained with certainty.

FFC1において反発力係数Kを上記範囲とするには、FFC1における導体11の寸法(幅、厚さ)、材質、絶縁体12の材質、及び絶縁体12の構造等を適宜組み合わせることで、所望の反発力係数Kを有するFFC1を構成することができる。絶縁体12の構造とは、例えば絶縁体12の表面の凹凸形状の有無や、導体11の配置等が挙げられる。例えば図4及び図5に示すように、FFC1において、角の部分Rの面取りの有無や、表裏面の凹溝Gの有無等によって、FFC1の反発力係数Kを変化させることができる。   In order to set the repulsive force coefficient K in the FFC 1 within the above range, a desired combination of the dimensions (width, thickness), material, material of the insulator 12, the structure of the insulator 12, and the like of the conductor 11 in the FFC 1 can be obtained. An FFC 1 having a repulsive force coefficient K can be configured. The structure of the insulator 12 includes, for example, the presence or absence of uneven shapes on the surface of the insulator 12, the arrangement of the conductor 11, and the like. For example, as shown in FIGS. 4 and 5, in the FFC 1, the repulsive force coefficient K of the FFC 1 can be changed depending on the presence / absence of chamfering of the corner portion R, the presence / absence of the groove G on the front and back surfaces, and the like.

FFC1の好ましい寸法は、幅3〜50mmであり、厚さ0.15〜0.6mmである。FFC1の寸法が上記範囲であれば、上記特定の範囲の反発力係数Kを有するFFC1が容易に得られる。また、上記寸法範囲のFFC1は、一般的な自動車ボディーの配索用に最適に使用できる。   The preferred dimensions of the FFC 1 are 3 to 50 mm in width and 0.15 to 0.6 mm in thickness. If the dimension of FFC1 is the said range, FFC1 which has the repulsive force coefficient K of the said specific range will be obtained easily. The FFC 1 having the above size range can be optimally used for wiring a general automobile body.

FFC1の平角導体11は、図4及び図5に示すように、FFC1の幅方向の断面形状において、その厚さが幅よりも小さい長方形に形成されている、平角導体11は、扁平な断面形状を有するものが好ましい。またFFC1の絶縁体12の内部における配置としては、絶縁体12の内部の厚さ方向において同じ深さに埋設されている。平角導体11は、銅、銅合金、アルミニウム、アルミニウム合金、錫めっきを施した銅等の導電性を有する導線が用いられる。タフピッチ軟銅は、導電率、コスト、屈曲性が良好なことから平角導体として好ましい材料の一つである。また平角導体11は、扁平な断面形状を有するものが好ましく用いられる。平角導体11の好ましい寸法は、例えば、厚さ0.1〜0.2mm、幅1〜3mmである。   4 and 5, the flat conductor 11 of the FFC 1 is formed in a rectangular shape whose thickness is smaller than the width in the cross-sectional shape of the FFC 1 in the width direction. The flat conductor 11 has a flat cross-sectional shape. Those having the following are preferred. The FFC 1 is embedded in the insulator 12 at the same depth in the thickness direction inside the insulator 12. The flat conductor 11 is made of conductive wire such as copper, copper alloy, aluminum, aluminum alloy, or copper plated with tin. Tough pitch annealed copper is one of the preferred materials for flat conductors because of its good electrical conductivity, cost, and flexibility. The rectangular conductor 11 preferably has a flat cross-sectional shape. The preferred dimensions of the flat conductor 11 are, for example, a thickness of 0.1 to 0.2 mm and a width of 1 to 3 mm.

FFC1の絶縁体12は、押出法により形成されたものである。押出法では、複数の線状導体11a〜11cに対し、押出機を用いて絶縁体12の樹脂を押出被覆することで得られる。押出法は、熱ラミネート法によるFFC製造方法と比較してFFCの生産性が高く、FFCを低コストで製造することができる。押出法は、公知のFFCの製造方法を用いることができる。   The insulator 12 of the FFC 1 is formed by an extrusion method. In the extrusion method, the resin of the insulator 12 is obtained by extrusion coating with respect to the plurality of linear conductors 11a to 11c using an extruder. The extrusion method has higher FFC productivity than the FFC manufacturing method using the thermal laminating method, and can manufacture the FFC at a low cost. As the extrusion method, a known FFC production method can be used.

絶縁体12の材料としては、押出し成形による絶縁体12の形成が可能であり、FFC1とした場合に上記の反発力係数Kの範囲となるように形成可能な絶縁性樹脂が用いられる。絶縁性樹脂として好ましい材料は、変性ポリフェニレンエーテル、水添スチレン系熱可塑性エラストマー、変性水添スチレン系熱可塑性エラストマー、ポリプロピレン、ポリエーテルイミド等が好ましく用いられる。これらは1種単独或いは2種以上の混合物が挙げられる。上記樹脂は、難燃化と絶縁性のバランスが取りやすいことから好ましい。特に絶縁体12は、変性ポリフェニレンエーテルが、難燃化と絶縁性のバランスが取りやすいことに加え、コストが安く、反発力係数を望ましい範囲にしやすい点から更に好ましく用いられる。   As the material of the insulator 12, the insulator 12 can be formed by extrusion molding, and an insulating resin that can be formed so as to be in the range of the repulsive force coefficient K in the case of FFC1 is used. Preferred materials for the insulating resin include modified polyphenylene ether, hydrogenated styrene thermoplastic elastomer, modified hydrogenated styrene thermoplastic elastomer, polypropylene, polyetherimide, and the like. These may be a single type or a mixture of two or more types. The resin is preferable because it is easy to balance flame retardancy and insulation. In particular, the insulator 12 is more preferably used because the modified polyphenylene ether is easy to balance the flame retardancy and the insulating property, and the cost is low and the repulsive force coefficient is easily within a desired range.

絶縁体12には、上記樹脂に、難燃剤、成形助剤、無機フィラー、紫外線吸収剤、安定剤等の添加剤を添加しても良い。   To the insulator 12, additives such as a flame retardant, a molding aid, an inorganic filler, an ultraviolet absorber, and a stabilizer may be added to the resin.

以下、本発明の実施例、比較例を示す。
実施例1
厚さ0.1mm、幅1.5mmのタフピッチ軟銅をピッチ2.5mmで3芯を並列に配置した状態で、絶縁性樹脂として変性ポリフェニレンエーテル(変性PPE)80部(以下、全て質量部)及び水添スチレン系熱可塑性エラストマー20部から成る配合組成物(表1参照)を用い、厚さが200μmになるように押し出して、FFCを製造した。得られたFFCの反発力係数K、くせつき性、及び配索追従性について試験を行い、総合評価をした。その結果を表2に示す。
Examples of the present invention and comparative examples are shown below.
Example 1
80 parts (hereinafter, all parts by mass) of modified polyphenylene ether (modified PPE) as an insulating resin in a state in which three cores are arranged in parallel at a pitch of 2.5 mm and a tough pitch annealed copper having a thickness of 0.1 mm and a width of 1.5 mm; An FFC was produced by using a blended composition (see Table 1) comprising 20 parts of a hydrogenated styrene-based thermoplastic elastomer and extruding it to a thickness of 200 μm. The obtained FFC was subjected to tests for repulsive force coefficient K, tackiness, and routing followability, and was subjected to comprehensive evaluation. The results are shown in Table 2.

絶縁体の配合組成

Figure 0005144955
Insulator composition
Figure 0005144955

Figure 0005144955
Figure 0005144955

くせつき性、及び配索追従性の試験方法は、以下の通りである。   The test methods for the tackiness and the routing followability are as follows.

[くせつき性]
図6(a)、(b)はくせつき性の測定方法の説明図である。図6(a)に示すように、FFC1を一回巻き回し環を作り、端部をクリップ24で固定する。この状態で23℃で168時間放置する。次いで、同図(b)に示すように、端部のクリップ24を外して開放した状態で、FFC1の端部間の距離Xを測定する。この端部間の距離Xが大きい方が、FFCにくせが付きにくいということであり、くせつき性が良好であると言える。くせつき性の評価は、この端部間の距離Xが40mm以上ある場合を○とし、40mm未満の場合を×とした。
[Hiddenness]
6 (a) and 6 (b) are explanatory diagrams of a method for measuring the tackiness. As shown in FIG. 6A, the FFC 1 is wound once to form a ring, and the end is fixed with a clip 24. In this state, it is allowed to stand at 23 ° C. for 168 hours. Next, as shown in FIG. 2B, the distance X between the end portions of the FFC 1 is measured in a state where the clip 24 at the end portion is removed and opened. The one where the distance X between the end portions is larger means that the FFC is less likely to become habit, and it can be said that the habitability is good. In the evaluation of the biting property, the case where the distance X between the end portions is 40 mm or more was evaluated as ◯, and the case where the distance X was less than 40 mm was evaluated as ×.

[配索追従性]
図7(a)〜(c)は、配索追従性の測定方法の説明図である。図7(a)に示すように、FFC1を180°曲げる。そして同図(b)に示すように、折り曲げ部分を荷重5kgfの重り24で押える。同図(c)は折り曲げ部分の拡大図である。同図(c)に示すように、重り24で押えた状態で、FFC1の折り曲げ部分のFFC間の距離Yを測定する。この折り曲げたFFC1間の距離Yの大きさが小さい方が、FFC10は配索する際に折り曲げや自動車ボディへの追従性が良好であり、配索性が優れていると言える。配索性の評価は、この折り曲げたFFC1間の距離Yが3.0mm以下である場合を○とし、3.0mmを超える場合を×とした。
[Routing tracking]
7A to 7C are explanatory diagrams of a method for measuring the routing followability. As shown in FIG. 7A, the FFC 1 is bent 180 degrees. Then, as shown in FIG. 5B, the bent portion is pressed with a weight 24 having a load of 5 kgf. FIG. 3C is an enlarged view of a bent portion. As shown in FIG. 5C, the distance Y between the FFCs of the bent portion of the FFC 1 is measured while being pressed by the weight 24. It can be said that when the distance Y between the folded FFCs 1 is smaller, the FFC 10 has better bendability and followability to the automobile body when routing, and the routing ability is excellent. In the evaluation of the routing property, the case where the distance Y between the folded FFCs 1 was 3.0 mm or less was evaluated as ◯, and the case where the distance Y exceeded 3.0 mm was evaluated as x.

実施例2〜4、比較例1〜3
絶縁性樹脂として表1に示す配合組成のものを用い、導体のサイズ、ピッチ、絶縁体の厚さ、芯数を表2に示すものとした以外は、実施例1と同様にしてFFCを製造した。得られたFFCの反発力係数K、くせつき性、及び配索追従性について試験を行い、総合評価をした。その結果を表2に示す。
Examples 2-4, Comparative Examples 1-3
An FFC was produced in the same manner as in Example 1 except that the insulating resin having the composition shown in Table 1 was used and the conductor size, pitch, insulator thickness, and number of cores were as shown in Table 2. did. The obtained FFC was subjected to tests for repulsive force coefficient K, tackiness, and routing followability, and was subjected to comprehensive evaluation. The results are shown in Table 2.

参考例1
参考のために、厚さ50μmのポリエチレンテレフタレートに厚さ40μmのホットメルト接着剤を塗布したフィルムの間に表2に示す導体を挟んで熱ラミネートを行ってFFCを製造した。得られたFFCの反発力係数K、くせつき性、及び配索追従性について試験を行った。その結果を表2に示す。
Reference example 1
For reference, an FFC was manufactured by sandwiching a conductor shown in Table 2 between a film in which a hot melt adhesive having a thickness of 40 μm was applied to a polyethylene terephthalate having a thickness of 50 μm, and a conductor shown in Table 2. The obtained FFC was tested for the repulsive force coefficient K, the tackiness, and the routing followability. The results are shown in Table 2.

(a)は、反発力係数の測定に使用するフレキシブルフラットケーブルの試験片を示す説明図であり、(b)は(a)のB−B断面図である。(A) is explanatory drawing which shows the test piece of the flexible flat cable used for the measurement of a repulsive force coefficient, (b) is BB sectional drawing of (a). 反発力係数Kの測定方法を示す説明図であり、(a)は試験片の環状体の変形前の状態を示し、(b)は試験片を変形させている状態を示す。It is explanatory drawing which shows the measuring method of the repulsive force coefficient K, (a) shows the state before the deformation | transformation of the annular body of a test piece, (b) shows the state which has deform | transformed the test piece. 図2の測定方法により得られる押込み変位と荷重との関係を示すグラフである。It is a graph which shows the relationship between the indentation displacement and load which are obtained by the measuring method of FIG. 本発明フレキシブルフラットケーブルの一例を示す、幅方向の縦断面図である。It is a longitudinal cross-sectional view of the width direction which shows an example of this invention flexible flat cable. 本発明フレキシブルフラットケーブルの他の例を示す、幅方向の縦断面図である。It is a longitudinal cross-sectional view of the width direction which shows the other example of this invention flexible flat cable. (a)、(b)は、くせつき性の測定方法の説明図である。(A), (b) is explanatory drawing of the measuring method of a biting property. (a)〜(c)は、配索追従性の測定方法の説明図である。(A)-(c) is explanatory drawing of the measuring method of routing followability.

符号の説明Explanation of symbols

1 フレキシブルフラットケーブル(FFC)
10 FFCの試験片
11 平角導体
12 絶縁体
20 引張り試験機
21 ロードセル
22 ジグ
1 Flexible flat cable (FFC)
10 FFC specimen 11 Flat conductor 12 Insulator 20 Tensile tester 21 Load cell 22 Jig

Claims (5)

押出成形により形成された絶縁性樹脂からなるテープ状絶縁体の内部に平行に配列した複数の平角導体が埋設されているフレキシブルフラットケーブルにおいて、フレキシブルフラットケーブルを三重に巻いて直径50mmの円環状に形成し、円環が押し潰されるように外部から荷重W〔N〕を加えてδ〔mm〕の変形を生じさせた場合の比(W/δ)を反発力係数K〔N/mm〕とした場合、反発力係数Kが0.04〜0.75〔N/mm〕であることを特徴とするフレキシブルフラットケーブル。   In a flexible flat cable in which a plurality of flat conductors arranged in parallel are embedded in a tape-like insulator made of an insulating resin formed by extrusion molding, the flexible flat cable is wound in triplicate to form an annular shape having a diameter of 50 mm The ratio (W / δ) in the case of forming and deforming δ [mm] by applying a load W [N] from the outside so that the ring is crushed is expressed as a repulsive force coefficient K [N / mm]. In this case, the flexible flat cable has a repulsive force coefficient K of 0.04 to 0.75 [N / mm]. フレキシブルフラットケーブルが、厚さ0.15〜0.6mm、幅3〜50mmであることを特徴とする請求項1記載のフレキシブルフラットケーブル。   The flexible flat cable according to claim 1, wherein the flexible flat cable has a thickness of 0.15 to 0.6 mm and a width of 3 to 50 mm. 平角導体が、厚さ0.1〜0.2mm、幅1〜3mmであることを特徴とする請求項1又は2記載のフレキシブルフラットケーブル。   The flexible flat cable according to claim 1 or 2, wherein the flat conductor has a thickness of 0.1 to 0.2 mm and a width of 1 to 3 mm. 平角導体が、タフピッチ軟銅であることを特徴とする請求項1〜3のいずれか1に記載のフレキシブルフラットケーブル。   The flexible flat cable according to claim 1, wherein the flat conductor is tough pitch annealed copper. 絶縁性樹脂が、変性ポリフェニレンエーテルであることを特徴とする請求項1〜4のいずれか1に記載のフレキシブルフラットケーブル。   The flexible flat cable according to any one of claims 1 to 4, wherein the insulating resin is a modified polyphenylene ether.
JP2007120546A 2007-05-01 2007-05-01 Flexible flat cable Expired - Fee Related JP5144955B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007120546A JP5144955B2 (en) 2007-05-01 2007-05-01 Flexible flat cable
PCT/JP2008/058059 WO2008139891A1 (en) 2007-05-01 2008-04-25 Flexible flat cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007120546A JP5144955B2 (en) 2007-05-01 2007-05-01 Flexible flat cable

Publications (2)

Publication Number Publication Date
JP2008277177A JP2008277177A (en) 2008-11-13
JP5144955B2 true JP5144955B2 (en) 2013-02-13

Family

ID=40002107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007120546A Expired - Fee Related JP5144955B2 (en) 2007-05-01 2007-05-01 Flexible flat cable

Country Status (2)

Country Link
JP (1) JP5144955B2 (en)
WO (1) WO2008139891A1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07211149A (en) * 1994-01-07 1995-08-11 Teijin Ltd Insulating film for flat cable
WO1998052199A1 (en) * 1997-05-16 1998-11-19 The Furukawa Electric Co., Ltd. Flat cable and method of manufacturing the same
JP3654497B2 (en) * 1999-09-21 2005-06-02 株式会社オートネットワーク技術研究所 Flexible flat cable and wiring method thereof
JP2004281108A (en) * 2003-03-13 2004-10-07 Sumitomo Wiring Syst Ltd Flat cable and its manufacturing method

Also Published As

Publication number Publication date
JP2008277177A (en) 2008-11-13
WO2008139891A1 (en) 2008-11-20

Similar Documents

Publication Publication Date Title
US5502287A (en) Multi-component cable assembly
US9208925B2 (en) High performance, high temperature wire or cable
AU662689B2 (en) An improved ribbon cable construction
US3459877A (en) Electric cable
CN103098145A (en) Electrical cable with semi-conductive outer layer distinguishable from jacket
US7534962B2 (en) Non-halogenated heavy metal free vehicular cable insulation and harness covering material
US20130037306A1 (en) Multilayer elastic tube having electric properties and method for manufacturing the same
US4225749A (en) Sealed power cable
JP5144955B2 (en) Flexible flat cable
CN102959644A (en) Self-supporting cable
CN2845115Y (en) Medium voltage cable with silicon rubber against water, salt mist and corrosion
JP7330440B2 (en) electrical insulated cable
JP7264170B2 (en) electrical insulated cable
KR101667514B1 (en) Flat-cable insulating film and flat cable
JP2008235185A (en) Flexible flat cable
JP2010103011A (en) Flexible flat cable
JP6037333B2 (en) cable
WO2023127114A1 (en) Flat cable
JP3245782U (en) flat cable
JP7427637B2 (en) heat resistant wire
CN216793354U (en) Tensile and compressive power cable
CN2325858Y (en) High performance, low smoke and non-halogen flame retarded cable
CN107945933B (en) Electric wire and method for manufacturing same
WO2017052119A1 (en) Conductor compression sleeve and ultra-high-voltage direct current power cable system using same
KR20240132279A (en) Flat Cable

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121120

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121126

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151130

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees