JP5137110B2 - Recovery method of zinc oxide from electric furnace dust - Google Patents

Recovery method of zinc oxide from electric furnace dust Download PDF

Info

Publication number
JP5137110B2
JP5137110B2 JP2007195891A JP2007195891A JP5137110B2 JP 5137110 B2 JP5137110 B2 JP 5137110B2 JP 2007195891 A JP2007195891 A JP 2007195891A JP 2007195891 A JP2007195891 A JP 2007195891A JP 5137110 B2 JP5137110 B2 JP 5137110B2
Authority
JP
Japan
Prior art keywords
electric furnace
zinc oxide
furnace dust
powder
dust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007195891A
Other languages
Japanese (ja)
Other versions
JP2009030121A (en
Inventor
徹也 長坂
聰 伊藤
一代 横山
謙一 中島
Original Assignee
国立大学法人東北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東北大学 filed Critical 国立大学法人東北大学
Priority to JP2007195891A priority Critical patent/JP5137110B2/en
Publication of JP2009030121A publication Critical patent/JP2009030121A/en
Application granted granted Critical
Publication of JP5137110B2 publication Critical patent/JP5137110B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Description

本発明は、亜鉛メッキ鋼板などの鉄スクラップを電気炉により再溶製・製錬を行って粗鋼を製造する際に発生する電気炉ダストから、有価物である酸化亜鉛や鉄成分の回収方法に関するものである。   The present invention relates to a method for recovering zinc oxide and iron components, which are valuable materials, from electric furnace dust generated when steel scrap such as galvanized steel sheet is remelted and smelted by an electric furnace to produce crude steel. Is.

従来、日本の粗鋼生産量の約3割が、亜鉛メッキ鋼板など鉄スクラップを電気炉により再溶製・製錬を行うことにより生産されている。この電気炉で、亜鉛メッキ鋼板中の還元揮発亜鉛は再酸化され、集塵ダストとして回収される。すなわち、電気炉製鋼ダストは、電気炉による鉄スクラップのリサイクルの際に発生する。日本全体のダスト発生量は、年間約50〜60万トンと見積もることができる。自動車用メッキ鋼板スクラップの増加、並びに電気炉ダストの発生原単位の上昇傾向により、電気炉ダストの発生量は、今後とも増加する傾向にある。   Conventionally, about 30% of Japan's crude steel production is produced by remelting and smelting steel scrap such as galvanized steel sheets in an electric furnace. In this electric furnace, the reduced volatile zinc in the galvanized steel sheet is reoxidized and recovered as dust collection dust. That is, electric furnace steelmaking dust is generated when iron scrap is recycled by the electric furnace. The total amount of dust generated in Japan can be estimated at about 500,000 to 600,000 tons per year. The amount of electric furnace dust generated tends to increase in the future due to an increase in the number of scraps of plated steel sheets for automobiles and an increase in the basic unit of electric furnace dust.

電気炉ダストの主成分はFe、Znであるが、これらは主にジンクフェライトZnFe2O4として存在し、一部FeOとZnOとしても存在する。ダスト中に含まれる亜鉛は、資源として有価であるものの、ZnFe2O4は亜鉛湿式製錬において難溶性であるので嫌われている。しかし、このZnFe2O4から酸化亜鉛と酸化鉄とを効率よく分離できれば、酸化亜鉛は亜鉛製錬に、酸化鉄は鉄鋼製錬にリサイクルできると考えられる。 The main components of the electric furnace dust are Fe and Zn. These mainly exist as zinc ferrite ZnFe 2 O 4 , and partly exist as Fe 2 O 3 and ZnO. Although zinc contained in dust is valuable as a resource, ZnFe 2 O 4 is hated because it is poorly soluble in zinc hydrometallurgy. However, if zinc oxide and iron oxide can be efficiently separated from this ZnFe 2 O 4 , zinc oxide can be recycled for zinc smelting and iron oxide can be recycled for steel smelting.

このリサイクル処理方法として、国内外ともに主にWaelz法が用いられている。図7は、Waelz法の概要である。Waelz法は、ロータリーキルンの中に電気炉ダストと炭材を入れ、ダスト中のジンクフェライトの亜鉛成分と酸化亜鉛とを還元して亜鉛蒸気とし、回収したガスを空気で再酸化して酸化亜鉛として取り出し、亜鉛製錬へ供給している。この粗酸化亜鉛は、約50%の亜鉛を含んでいる。   As a recycling method, the Waelz method is mainly used both in Japan and overseas. FIG. 7 is an outline of the Waelz method. In the Waelz method, electric furnace dust and charcoal are placed in a rotary kiln, the zinc component of zinc ferrite and zinc oxide in the dust are reduced to zinc vapor, and the recovered gas is reoxidized with air to produce zinc oxide. It is taken out and supplied to zinc smelting. This crude zinc oxide contains about 50% zinc.

しかし、Waelz法には下記の問題がある。
(1)酸化亜鉛は一旦金属亜鉛まで還元されるが、後に再び酸化されるので、エネルギーロスが極めて大きい。
(2)結果的に、地球温暖化の原因となる二酸化炭素を必要以上に大量発生する。
(3)取り出した鉄成分の多くはセメントとして使われており、鉄源として有効に利用されていない。
However, the Waelz method has the following problems.
(1) Although zinc oxide is once reduced to metallic zinc, it is oxidized again later, so that energy loss is extremely large.
(2) As a result, an unnecessarily large amount of carbon dioxide that causes global warming is generated.
(3) Most of the extracted iron components are used as cement and are not effectively used as iron sources.

そこで、電気炉ダストの処理方法として、密封容器内で電気炉ダストを所定の高温に維持し、金属亜鉛を蒸気のまま回収する方法(例えば、特許文献1参照)や、電気炉ダストと希硝酸とを混合し、亜鉛を含む重金属を浸出させて鉄分を除去し、更に溶融シリカを分離し、更にイオン化傾向を利用して亜鉛以外の重金属を析出除去する方法(例えば、特許文献2参照)等が提案されている。   Therefore, as a method for treating electric furnace dust, a method of maintaining electric furnace dust at a predetermined high temperature in a sealed container and recovering metallic zinc as vapor (see, for example, Patent Document 1), electric furnace dust and dilute nitric acid And leaching heavy metals containing zinc to remove iron, further separating fused silica, and further using ionization tendency to precipitate and remove heavy metals other than zinc (see Patent Document 2, for example) Has been proposed.

しかし、亜鉛蒸気を回収する方法では、亜鉛蒸気を得るために、絶えず電気炉ダストを高温に保持する必要があり、多大のエネルギーを要するという問題点がある。また、蒸気を密封する装置が大掛かりになる、という問題点もある。また、希硝酸に溶解する方法は、溶解槽や洗浄槽、電解槽など多くの設備が必要であり、かつ、反応が複雑で工程が長く、必要コストが過大になるという問題点がある。   However, in the method of recovering zinc vapor, it is necessary to constantly keep the electric furnace dust at a high temperature in order to obtain zinc vapor, and there is a problem that a great deal of energy is required. There is also a problem that a device for sealing the steam becomes large. In addition, the method of dissolving in dilute nitric acid has a problem that many facilities such as a dissolution tank, a washing tank, and an electrolytic tank are required, and the reaction is complicated, the process is long, and the necessary cost is excessive.

特開2005−345005号公報JP 2005-345005 A 特開2003−13275号公報JP 2003-13275 A

そこで、本発明の目的は、酸化亜鉛が還元されることなくそのまま得られ、省エネルギーで、より効率的に酸化亜鉛を分離でき、さらに酸化鉄に付加価値をつけることができる電気炉ダストからの酸化亜鉛の回収方法を提供することにある。   Therefore, an object of the present invention is to obtain an oxide from electric furnace dust that can be obtained as it is without reduction of zinc oxide, can be separated more efficiently with energy saving, and can add value to iron oxide. It is to provide a method for recovering zinc.

図1は、ZnO−CaO−Fe2O3の状態図である。本発明者等は、本発明者等が明らかにした図1の状態図により、電気炉ダストの主要成分であるZnFe2O4にCaOを1100℃近傍の比較的低温で反応させると、電気炉ダスト中のZnFe2O4を、ZnOおよび2CaO・Fe2O3の2相に変化させることができることを見出し、本発明に至った。 FIG. 1 is a phase diagram of ZnO—CaO—Fe 2 O 3 . According to the state diagram of FIG. 1 clarified by the present inventors, the present inventors reacted CaO with ZnFe 2 O 4 which is a main component of electric furnace dust at a relatively low temperature near 1100 ° C. It was found that ZnFe 2 O 4 in the dust can be changed into two phases of ZnO and 2CaO · Fe 2 O 3 , and the present invention has been achieved.

本発明によれば、電気炉ダストの粉末とカルシウム化合物の粉末とを所定量秤量、混合後、該混合粉末を加圧成型し、該加圧成形体を大気中電気炉で、温度900℃以上、1000℃以下で、60時間以上、120時間以下保持する工程と、前記電気炉で処理後の前記加圧成形体を冷却後、粉砕し、粉砕後の粉末を液体に分散する工程と、しかる後に、該分散液体を直流磁場中で磁気分離することにより、非磁性体の酸化亜鉛を回収する工程とを、有することを特徴とする電気炉ダストからの酸化亜鉛の回収方法が得られる。   According to the present invention, after weighing and mixing a predetermined amount of electric furnace dust powder and calcium compound powder, the mixed powder is pressure-molded, and the pressure-molded body is heated in an atmospheric electric furnace at a temperature of 900 ° C. or higher. A step of holding at 1000 ° C. or less for 60 hours or more and 120 hours or less, and a step of cooling and crushing the pressure-formed body after treatment in the electric furnace, and dispersing the pulverized powder in a liquid. Thereafter, the dispersion liquid is magnetically separated in a direct current magnetic field to recover non-magnetic zinc oxide, thereby obtaining a method for recovering zinc oxide from electric furnace dust.

また、本発明によれば、前記カルシウム化合物は、酸化カルシウムまたは炭酸カルシウムのいずれか一種から成り、前記電気炉ダストの粉末と前記カルシウム化合物の粉末との配合比率が、酸化カルシウム当量で、1:2以上であることを、特徴とする電気炉ダストからの酸化亜鉛の回収方法が得られる。   Further, according to the present invention, the calcium compound is composed of any one of calcium oxide and calcium carbonate, and the blending ratio of the electric furnace dust powder and the calcium compound powder is a calcium oxide equivalent of 1: A method for recovering zinc oxide from electric furnace dust characterized by being 2 or more is obtained.

また、本発明によれば、水溶性成分を除去するために、前記電気炉ダストの粉末を、予め水洗浄・乾燥する工程を有することを、特徴とする電気炉ダストからの酸化亜鉛の回収方法が得られる。   In addition, according to the present invention, there is provided a method for recovering zinc oxide from electric furnace dust, comprising a step of previously washing and drying the electric furnace dust powder in order to remove water-soluble components. Is obtained.

また、本発明によれば、前記分散液体を磁気分離する工程において、酸化亜鉛の分離回収と同時に、強磁性体粉末を分離回収することを、特徴とする電気炉ダストからの酸化亜鉛の回収方法が得られる。   According to the present invention, in the step of magnetically separating the dispersion liquid, the ferromagnetic powder is separated and recovered at the same time as the zinc oxide is separated and recovered, and the method for recovering zinc oxide from electric furnace dust is characterized. Is obtained.

本発明により、酸化亜鉛が還元されることなくそのまま得られ、省エネルギーで、より効率的に酸化亜鉛を分離でき、さらに酸化鉄に付加価値をつけることができる電気炉ダストからの酸化亜鉛の回収方法を提供することができる。また、本発明により、電気炉ダストが有効利用され、有価金属のリサイクルの効果が得られる。   According to the present invention, zinc oxide can be obtained as it is without being reduced, and zinc oxide can be separated more efficiently with energy saving. Furthermore, a method for recovering zinc oxide from electric furnace dust that can add value to iron oxide Can be provided. Further, according to the present invention, electric furnace dust is effectively used, and the effect of recycling valuable metals can be obtained.

以下、本発明の実施の形態について詳細に説明する。
本発明のプロセスは、式(1)の反応を利用して、電気炉ダストの主成分であるZnFe2O4に第三成分MxOyを反応させて、酸化亜鉛とnMxOy・Fe2O3複合酸化物とに分離しようとするものである。
ZnFe2O4 (s) +nMxOy (s) = ZnO(s) +nMxOy・Fe2O3 (s) (1)
Hereinafter, embodiments of the present invention will be described in detail.
In the process of the present invention, the third component M x O y is reacted with ZnFe 2 O 4 which is the main component of the electric furnace dust using the reaction of the formula (1), and zinc oxide and nM x O y. It is intended to separate into Fe 2 O 3 complex oxide.
ZnFe 2 O 4 (s) + nM x O y (s) = ZnO (s) + nM x O y · Fe 2 O 3 (s) (1)

この方法によれば、酸化亜鉛を還元することなく、Waelz法の生産物と同じ酸化亜鉛がそのまま得られるので、より効率的に分離でき、さらに酸化鉄にMxOy成分の付加価値をつけることができる可能性があると考えられる。この第3成分MxOyに求められる条件としては、まず安価であり、生成物が無害でかつ有用であること、分離できる可能性があることで、CaOを選択した。 According to this method, the same zinc oxide as the product of the Waelz method can be obtained as it is without reducing the zinc oxide, so that it can be separated more efficiently, and the added value of the M x O y component is added to the iron oxide. It is possible that The conditions required for the third component M x O y were CaO because it was inexpensive, the product was harmless and useful, and it could be separated.

具体的なZnFe2O4とCaOとの反応式を式(2)に示した。
ZnFe2O4 (s) +2CaO (s) = ZnO(s) +2CaO・Fe2O3 (s) (2)
この場合、CaOとFe2O3との化合物は、塩基性フラックス成分のCaOを含むので、ダストの発生元である鉄鋼メーカー事業所内で焼結鉱、脱リン剤としてそのまま利用することができる。
A specific reaction formula between ZnFe 2 O 4 and CaO is shown in Formula (2).
ZnFe 2 O 4 (s) + 2CaO (s) = ZnO (s) + 2CaO · Fe 2 O 3 (s) (2)
In this case, since the compound of CaO and Fe 2 O 3 contains the basic flux component CaO, it can be used as it is as a sintered ore and dephosphorizing agent in the steel manufacturer's office where dust is generated.

CaOは吸湿性があるので、代わりにCaCO3を使用し、電気炉ダストの主成分であるZnFe2O4にCaCO3中のCaOを目的組成となるように合計1.5g秤量し、めのう乳鉢でよく混合した後、400MPaで圧粉成型し、径10mmのブリケットとした。表1に、試料の調合組成、実験条件を示す。図2は、加熱に用いたカンタル線巻堅型電気抵抗炉である。この電気炉は、ほぼ中央に±1Kの均熱帯を40~50mm有しており、この部分に試料が位置するように石英反応管を固定した。加熱時間、温度は前述の表1に示す。急冷後の試料を白金るつぼから取り出し、それを鉄およびめのう乳鉢で粉末にし、X線ディフラクトメータ(XRD)による相の同定を行った。 Since CaO is hygroscopic, use CaCO 3 instead, weigh 1.5g of CaO in CaCO 3 to the target composition into ZnFe 2 O 4 which is the main component of electric furnace dust, and agate mortar After thoroughly mixing, the mixture was compacted at 400 MPa to obtain a briquette having a diameter of 10 mm. Table 1 shows the composition of the sample and the experimental conditions. FIG. 2 shows a Kanthal wire wound type electric resistance furnace used for heating. This electric furnace had a ± 1K soaking zone of approximately 40 to 50 mm at the center, and a quartz reaction tube was fixed so that the sample was located in this portion. The heating time and temperature are shown in Table 1 above. The rapidly cooled sample was taken out of the platinum crucible, powdered with iron and agate mortar, and the phase was identified by X-ray diffractometer (XRD).

図3は、X線回折パターンについて、温度、時間の違いをまとめたものである。また、図4は、X線回折パターンについて、モル比の違いをまとめたものである。図3中の楕円で囲まれた部分に注目すると、時間が長いほど、温度が高いほどZnOおよび2CaO・Fe2O3のピークが大きくなり、反応が進行することがわかる。また、図4中の楕円で囲まれた部分に注目すると、同じ時間、同じ温度で比較すると、ZnFeO4に対するCaOのモル比が増加すると、ZnFeO4のピークが減少しているので、過剰のほうが良いと思われる。 FIG. 3 summarizes the differences in temperature and time for the X-ray diffraction pattern. FIG. 4 summarizes the difference in molar ratio for the X-ray diffraction pattern. When attention is paid to the portion surrounded by the ellipse in FIG. 3, it can be seen that the longer the time and the higher the temperature, the larger the peaks of ZnO and 2CaO · Fe 2 O 3 , and the reaction proceeds. In addition, when focusing on the part surrounded by the ellipse in FIG. 4, when the molar ratio of CaO to ZnFe 2 O 4 increases, the peak of ZnFe 2 O 4 decreases when compared at the same time and at the same temperature. It seems that excess is better.

従って、図3から明らかに、成形体を大気中電気炉で、温度900℃以上、1000℃以下で、60時間以上、120時間以下保持する必要がある。900℃未満では、反応の進み方が非常に遅くなり、また1100℃を超えると、エネルギーや設備のコストが工業的でなくなるのは当然である。また、図4から、電気炉ダスト粉末:カルシウム化合物粉末の配合比率が、酸化カルシウム当量で、1:2以上である必要がある。   Therefore, as apparent from FIG. 3, it is necessary to hold the molded body in an atmospheric electric furnace at a temperature of 900 ° C. or higher and 1000 ° C. or lower for 60 hours or longer and 120 hours or shorter. If it is less than 900 degreeC, the way of reaction will become very slow, and if it exceeds 1100 degreeC, it is natural that the cost of energy and equipment will not be industrial. Moreover, from FIG. 4, the mixing ratio of electric furnace dust powder: calcium compound powder needs to be 1: 2 or more in terms of calcium oxide equivalent.

次に、ZnOと2CaO・Fe2O3とを実際に分離ができるかを調べるための実験を行った。CaOとZnFeO4とをめのう乳鉢でよく混合した後、400MPaで圧粉成型し、径10mmのブリケットとし、これを白金るつぼ中に置き、大気開放型電気炉により1373Kで60時間加熱保持後、目的温度の1173Kに温度を下げ、3日間加熱保持した後、空冷してZnOと2CaO・Fe2O3とを合成した。これを鉄およびめのう乳鉢で粉砕し、その粉末試料0.9069gを凝集を防ぐ目的で分散剤とともに水約250mlに懸濁させ、超音波にて分散を促した。 Next, an experiment was conducted to examine whether ZnO and 2CaO.Fe 2 O 3 could actually be separated. CaO and ZnFe 2 O 4 are mixed well in an agate mortar, then compacted at 400 MPa to form a 10 mm diameter briquette, placed in a platinum crucible, and kept heated at 1373 K for 60 hours in an open air electric furnace. Then, the temperature was lowered to the target temperature of 1173 K, heated and held for 3 days, and then air-cooled to synthesize ZnO and 2CaO.Fe 2 O 3 . This was ground in an iron and agate mortar, and 0.9069 g of the powder sample was suspended in about 250 ml of water together with a dispersant for the purpose of preventing aggregation, and dispersion was promoted by ultrasonic waves.

図5は、分離実験に用いたスプリット型無冷媒マグネットを用いた磁気分離装置である。真鍮製の筒の中にスペーサーを使って等間隔に設置した16枚のステンレ鋼スメッシュフィルター(メッシュの間隔は0.6mm以下)を、ガラス管の中に装入して超伝導マグネット内にセットし、排出口を閉じてガラス管の中を蒸留水で満たした後、排出口を開放するのと同時に、ガラス管上部から水に懸濁させた粉末試料をガラス管内に落下させて、磁場強度5テスラの磁場にて磁気分離した。ガラス管内に試料が残留するのを防ぐために、試料を流した後、蒸留水を500ml流した。その後、分離できた非磁着物を希塩酸により完全に分解した後、高周波誘導結合プラズマ発光分光分析法(ICP)によりZn、Fe、Caの分析を行った。   FIG. 5 shows a magnetic separation apparatus using a split type refrigerant-free magnet used in the separation experiment. 16 stainless steel smesh filters (mesh spacing is less than 0.6mm) installed at equal intervals using a spacer in a brass tube are placed in a glass tube and placed in a superconducting magnet. Set, close the discharge port, fill the glass tube with distilled water, open the discharge port, and simultaneously drop the powder sample suspended in water from the top of the glass tube into the glass tube, Magnetic separation was performed in a magnetic field having a strength of 5 Tesla. In order to prevent the sample from remaining in the glass tube, 500 ml of distilled water was flowed after flowing the sample. Thereafter, the separated non-magnetic deposits were completely decomposed with dilute hydrochloric acid, and then analyzed for Zn, Fe, and Ca by high frequency inductively coupled plasma emission spectroscopy (ICP).

図6は、磁気分離の投入物(図6中の「Before」)、非磁着物(図6中の「Non-adherent to filter」)、磁着物(図6中の「Adherent to filter」)におけるZnおよびFe+Caの質量である。式(3)のようにZnの回収率Rを定義した。
R = mNon-adherent /minit・100 (%) (3)
ここで、mNon-adherentは、非磁着物内のZnの質量、minitは投入した試料内のZnの質量である。結果として、非磁着物により亜鉛を95%回収することができた。すなわち、ZnOおよび2CaO・Fe2O3について、湿式による磁気分離を行い、ZnOと2CaO・Fe2O3とを分離できることが確認できた。
FIG. 6 shows a magnetic separation input (“Before” in FIG. 6), non-magnetic attachment (“Non-adherent to filter” in FIG. 6), and magnetic attachment (“Adherent to filter” in FIG. 6). It is the mass of Zn and Fe + Ca. The recovery rate R of Zn was defined as in equation (3).
R = m Non-adherent / m init · 100 (%) (3)
Here, m Non-adherent, the mass of Zn in the non-magnetically attached product, m init is the mass of Zn in the charged sample. As a result, 95% of zinc could be recovered by non-magnetic deposits. That is, the ZnO and 2CaO · Fe 2 O 3, with magnetic separation by the wet, it was confirmed that it was possible separation of ZnO and 2CaO · Fe 2 O 3.

また、実際の電気炉ダストには、様々な成分が微量含まれているので、電気炉ダストを水洗・乾燥し、水に可溶な不純物を予め除去しておくことで、液体生成物の反応を抑え、ZnOおよび2CaO・Fe2O3の生成反応を円滑に進めることが可能となる。 In addition, since the actual electric furnace dust contains a small amount of various components, the electric furnace dust is washed and dried to remove impurities that are soluble in water in advance, thereby reacting the liquid product. Thus, it is possible to smoothly promote the formation reaction of ZnO and 2CaO.Fe 2 O 3 .

ZnO−CaO−Fe2O3の状態図Phase diagram of ZnO-CaO-Fe 2 O 3 本発明の実施の形態の電気炉ダストからの酸化亜鉛の回収方法の、加熱に用いるカンタル線巻堅型電気抵抗炉を示す側面図である。It is a side view which shows the Kanthal wire winding type | mold electric resistance furnace used for a heating of the recovery method of the zinc oxide from the electric furnace dust of embodiment of this invention. 本発明の実施の形態の電気炉ダストからの酸化亜鉛の回収方法の、電気炉での処理後に急冷した試料の温度および時間の違いによるX線回折パターンである。It is an X-ray-diffraction pattern by the temperature and time difference of the sample rapidly cooled after the process by the electric furnace of the recovery method of the zinc oxide from the electric furnace dust of embodiment of this invention. 本発明の実施の形態の電気炉ダストからの酸化亜鉛の回収方法の、電気炉での処理後に急冷した試料のモル比の違いによるX線回折パターンである。It is an X-ray-diffraction pattern by the difference in the molar ratio of the sample rapidly cooled after the process by the electric furnace of the recovery method of the zinc oxide from the electric furnace dust of embodiment of this invention. 本発明の実施の形態の電気炉ダストからの酸化亜鉛の回収方法の、分離実験に用いるスプリット型無冷媒マグネットを用いた磁気分離装置を示す斜視図である。It is a perspective view which shows the magnetic separation apparatus using the split type non-refrigerant magnet used for the separation experiment of the recovery method of zinc oxide from the electric furnace dust of the embodiment of the present invention. 本発明の実施の形態の電気炉ダストからの酸化亜鉛の回収方法の、磁気分離の投入物(Before)、非磁着物(Non-adherent to filter)、磁着物(Adherent to filter)におけるZnおよびFe+Caの質量を示すグラフである。Zn and Fe in magnetic separation input (Before), non-adherent to filter, and adherent to filter in the method for recovering zinc oxide from electric furnace dust according to the embodiment of the present invention It is a graph which shows the mass of + Ca. 従来のWaelz法の概要を示す原理図である。It is a principle figure which shows the outline | summary of the conventional Waelz method.

Claims (4)

電気炉ダストの粉末とカルシウム化合物の粉末とを所定量秤量、混合後、該混合粉末を加圧成型し、該加圧成形体を大気中電気炉で、温度900℃以上、1000℃以下で、60時間以上、120時間以下保持する工程と、
前記電気炉で処理後の前記加圧成形体を冷却後、粉砕し、粉砕後の粉末を液体に分散する工程と、
しかる後に、該分散液体を直流磁場中で磁気分離することにより、非磁性体の酸化亜鉛を回収する工程とを、
有することを特徴とする電気炉ダストからの酸化亜鉛の回収方法。
After weighing and mixing a predetermined amount of the powder of the electric furnace dust and the powder of the calcium compound, the mixed powder is pressure-molded, and the pressure-molded body is heated in an atmospheric electric furnace at a temperature of 900 ° C. or more and 1000 ° C. or less. Holding for 60 hours or more and 120 hours or less;
Cooling the pressure-formed body after treatment in the electric furnace, pulverizing, and dispersing the pulverized powder in a liquid;
Thereafter, the step of recovering non-magnetic zinc oxide by magnetically separating the dispersion liquid in a DC magnetic field,
A method for recovering zinc oxide from electric furnace dust.
前記カルシウム化合物は、酸化カルシウムまたは炭酸カルシウムのいずれか一種から成り、前記電気炉ダストの粉末と前記カルシウム化合物の粉末との配合比率が、酸化カルシウム当量で、1:2以上であることを、特徴とする請求項1記載の電気炉ダストからの酸化亜鉛の回収方法。   The calcium compound is composed of any one of calcium oxide and calcium carbonate, and the blending ratio of the electric furnace dust powder and the calcium compound powder is 1: 2 or more in terms of calcium oxide equivalent, The method for recovering zinc oxide from electric furnace dust according to claim 1. 水溶性成分を除去するために、前記電気炉ダストの粉末を、予め水洗浄・乾燥する工程を有することを、特徴とする請求項1または2記載の電気炉ダストからの酸化亜鉛の回収方法。   The method for recovering zinc oxide from electric furnace dust according to claim 1 or 2, further comprising a step of previously washing and drying the electric furnace dust powder to remove water-soluble components. 前記分散液体を磁気分離する工程において、酸化亜鉛の分離回収と同時に、強磁性体粉末を分離回収することを、特徴とする請求項1、2または3記載の電気炉ダストからの酸化亜鉛の回収方法。
The recovery of zinc oxide from electric furnace dust according to claim 1, 2 or 3, wherein in the step of magnetically separating the dispersion liquid, the ferromagnetic powder is separated and recovered simultaneously with the separation and recovery of zinc oxide. Method.
JP2007195891A 2007-07-27 2007-07-27 Recovery method of zinc oxide from electric furnace dust Active JP5137110B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007195891A JP5137110B2 (en) 2007-07-27 2007-07-27 Recovery method of zinc oxide from electric furnace dust

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007195891A JP5137110B2 (en) 2007-07-27 2007-07-27 Recovery method of zinc oxide from electric furnace dust

Publications (2)

Publication Number Publication Date
JP2009030121A JP2009030121A (en) 2009-02-12
JP5137110B2 true JP5137110B2 (en) 2013-02-06

Family

ID=40400940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007195891A Active JP5137110B2 (en) 2007-07-27 2007-07-27 Recovery method of zinc oxide from electric furnace dust

Country Status (1)

Country Link
JP (1) JP5137110B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101914685B (en) * 2010-08-19 2012-01-25 北京科技大学 Method for preparing metal iron and zinc/zinc oxide from electric furnace dust
CN101974696B (en) * 2010-09-30 2012-05-30 昆明理工大学 Zinc ash reducing agent for hot-dip galvanizing
KR20160034927A (en) * 2013-07-30 2016-03-30 고쿠리츠다이가쿠호진 도호쿠다이가쿠 Method for recovering zinc from electric-furnace steelmaking dust and device for recovering zinc from electric-furnace steelmaking dust
CN105371653B (en) * 2015-09-08 2017-12-08 刘建华 A kind of vertical zinc oxide smelting furnace
JP6113344B1 (en) 2016-04-28 2017-04-12 国立大学法人東北大学 Steel dust treatment method, zinc production method and reduced iron production method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5613776B2 (en) * 1975-02-14 1981-03-31
JPS61106730A (en) * 1984-10-30 1986-05-24 Mitsubishi Steel Mfg Co Ltd Treatment of dust in steel making
JP3929260B2 (en) * 2001-07-09 2007-06-13 トピー工業株式会社 Zinc enriched compact and method for concentrating zinc in steelmaking dust using the compact
JP2009006273A (en) * 2007-06-28 2009-01-15 Jfe Steel Kk Wet type magnetic separation method for separating mixture of microparticles

Also Published As

Publication number Publication date
JP2009030121A (en) 2009-02-12

Similar Documents

Publication Publication Date Title
Kumari et al. Recovery of rare earths from spent NdFeB magnets of wind turbine: Leaching and kinetic aspects
Sattar et al. Resource recovery of critically-rare metals by hydrometallurgical recycling of spent lithium ion batteries
Chairaksa-Fujimoto et al. The selective alkaline leaching of zinc oxide from Electric Arc Furnace dust pre-treated with calcium oxide
Borra et al. Recovery of rare earths and major metals from bauxite residue (red mud) by alkali roasting, smelting, and leaching
Orhan Leaching and cementation of heavy metals from electric arc furnace dust in alkaline medium
Li et al. Extraction of scandium from scandium-rich material derived from bauxite ore residues
JP6406675B2 (en) Zinc recovery method from electric furnace steelmaking dust and zinc recovery device from electric furnace steelmaking dust
Tang et al. Study on extraction of rare earth elements from coal fly ash through alkali fusion–Acid leaching
WO2009119720A1 (en) Method and apparatus for collection of rare earth element
JP5137110B2 (en) Recovery method of zinc oxide from electric furnace dust
Anderson et al. Survey of recycled rare earths metallurgical processing
US20200199709A1 (en) Process for the recovery of rare earth metals from permanent magnets
Liu et al. High-efficiency simultaneous extraction of rare earth elements and iron from NdFeB waste by oxalic acid leaching
JP5149164B2 (en) Method for recovering useful materials from rare earth-iron-boron magnet scrap
Bonomi et al. Review of technologies in the recovery of iron, aluminium, titanium and rare earth elements from bauxite residue (red mud)
JP2006241529A (en) Refining method for removing sulfur and the like from nickel compound or cobalt compound, and method for producing ferronickel
Tunsu Hydrometallurgy in the recycling of spent NdFeB permanent magnets
Bian et al. Recovery of rare earth elements from permanent magnet scraps by pyrometallurgical process
Tanvar et al. Microwave Exposure of Discarded Hard Disc Drive Magnets for Recovery of Rare Earth Values
Bisaka et al. Extraction of rare-earth elements from iron-rich rare-earth deposits
Chen et al. Efficient extraction and separation of zinc and iron from electric arc furnace dust by roasting with FeSO4· 7H2O followed by water leaching
RU2460813C1 (en) Method for selective extraction of metals from complex ores
KR102153737B1 (en) Method of recovery rare earth elements from a ferrite-rare earth-based permanent magnet using selective chlorination
Lucas et al. Conditioning of bauxite residue with bottom ash in view of recovery of valuable metals: a sustainable approach
WO2022003694A1 (en) Recovery of rare earth metals from ferromagnetic alloys

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100317

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120822

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120828

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R155 Notification before disposition of declining of application

Free format text: JAPANESE INTERMEDIATE CODE: R155

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121108

R150 Certificate of patent or registration of utility model

Ref document number: 5137110

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151122

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250