JP5137103B2 - Radio wave imaging method and apparatus - Google Patents

Radio wave imaging method and apparatus Download PDF

Info

Publication number
JP5137103B2
JP5137103B2 JP2007067941A JP2007067941A JP5137103B2 JP 5137103 B2 JP5137103 B2 JP 5137103B2 JP 2007067941 A JP2007067941 A JP 2007067941A JP 2007067941 A JP2007067941 A JP 2007067941A JP 5137103 B2 JP5137103 B2 JP 5137103B2
Authority
JP
Japan
Prior art keywords
sample
radio wave
signal
imaging
output signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007067941A
Other languages
Japanese (ja)
Other versions
JP2008232624A (en
Inventor
麻弥 水野
香 福永
巌 寳迫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Information and Communications Technology
Original Assignee
National Institute of Information and Communications Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Information and Communications Technology filed Critical National Institute of Information and Communications Technology
Priority to JP2007067941A priority Critical patent/JP5137103B2/en
Publication of JP2008232624A publication Critical patent/JP2008232624A/en
Application granted granted Critical
Publication of JP5137103B2 publication Critical patent/JP5137103B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、試料に電波を照射して、試料のイメージングを行なう方法及び装置に関する。   The present invention relates to a method and apparatus for imaging a sample by irradiating the sample with radio waves.

電波は、木材や、プラスチック、紙などをよく透過することから、これらの物質内部にある他の物質をイメージングする技術が、従来から期待されていた。   Since radio waves often penetrate wood, plastic, paper, etc., techniques for imaging other substances inside these substances have been expected in the past.

長波長の電波では、金属以外の物質にはあまり影響を受けないが、電波としては光波に最も近い短波長のミリ波では、金属以外の物質でも影響を受けるようになる。しかし、完全な光ではないので、光を透過させない物質はミリ波も透過させないというわけではない。
ミリ波より長波長のマイクロ波では、人体や物体の2次元や3次元画像を生成することができるマイクロ波イメージングシステムが、近年開発されている。
Long-wave radio waves are not significantly affected by substances other than metal, but short-wave millimeter waves closest to light waves are also affected by substances other than metal. However, since it is not perfect light, a material that does not transmit light does not transmit millimeter waves.
In recent years, a microwave imaging system capable of generating a two-dimensional or three-dimensional image of a human body or an object with a microwave having a longer wavelength than millimeter waves has been developed.

しかしながら、電波は、光波と比べて波長が長いだけでなく回折する性質を有するため、イメージングの分解能を十分向上させることができなかった。   However, radio waves not only have a longer wavelength than light waves but also have the property of being diffracted, so that the imaging resolution could not be sufficiently improved.

従来のイメージング技術としては、非特許文献1のようなファーフィールドイメージングと、非特許文献2のような近接場イメージングが挙げられる。
ファーフィールドイメージングは、空間伝搬させた電磁波を誘電体レンズ等で集光し、遠くにある試料をイメージすることが可能であるが、電磁波には回折限界があるため分解能は波長サイズが限界であり、電波においては高い分解能が望めない。
David M. Sheen, Douglas L. McMakin, and Thomas E. Hall, “Three-Dimensional Millimeter-WaveImaging for Concealed Weapon Detection,” IEEE TRANSACTIONS ON MICROWAVE THEORYAND TECHNIQUES, Vol. 49, No. 9, p. 1581 (2001)
Conventional imaging techniques include far-field imaging as in Non-Patent Document 1 and near-field imaging as in Non-Patent Document 2.
In far-field imaging, it is possible to collect a spatially propagated electromagnetic wave with a dielectric lens, etc., and image a distant sample. However, because the electromagnetic wave has a diffraction limit, the resolution is limited in wavelength size. In radio waves, high resolution cannot be expected.
David M. Sheen, Douglas L. McMakin, and Thomas E. Hall, “Three-Dimensional Millimeter-WaveImaging for Concealed Weapon Detection,” IEEE TRANSACTIONS ON MICROWAVE THEORYAND TECHNIQUES, Vol. 49, No. 9, p. 1581 (2001)

近接場イメージングは、波長以下の表面イメージングが可能であるが、物質の内部など、アパーチャーから少し離れた位置の試料のイメージングは困難である。
Tatsuo Nozokido, Jongsuck Bae and Koji Mizuno,“Scanning Near-Field Millimeter-Wave Microscopy Using a Metal Slit as aScanning Probe,” IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, Vol. 49,No. 3, p. 491 (2001)
Near-field imaging enables surface imaging at a wavelength or less, but it is difficult to image a sample at a position slightly away from the aperture, such as inside a substance.
Tatsuo Nozokido, Jongsuck Bae and Koji Mizuno, “Scanning Near-Field Millimeter-Wave Microscopy Using a Metal Slit as aScanning Probe,” IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, Vol. 49, No. 3, p. 491 (2001)

電波によるイメージング技術に関する特許文献としては、ミリ波については特許文献1〜2、マイクロ波については特許文献3〜5がある。
特開2006−250724「物体透視装置」 特開2006−242780「ミリ波イメージング装置」 特開平7−134174「マイクロ波イメージング装置」 米国特許出願10/997422「A Device for ReflectingElectromagnetic Radiation」 米国特許出願10/997583「Broadband Binary PhasedAntenna」
Patent documents relating to imaging technology using radio waves include Patent Documents 1 and 2 for millimeter waves and Patent Documents 3 to 5 for microwaves.
JP 2006-250724 “Object fluoroscopy device” Japanese Patent Application Laid-Open No. 2006-242780 “Millimeter Wave Imaging Device” Japanese Patent Laid-Open No. 7-134174 “Microwave Imaging Device” US Patent Application 10/997422 “A Device for Reflecting Electromagnetic Radiation” US Patent Application No. 10 / 997,583 "Broadband Binary Phased Antenna"

特許文献4や5には、アナログフェイズドアレイやバイナリリフレクタアレイを用い、隣接するアンテナ素子間の間隔が電波の半波長になるように、アンテナ素子をアレイ内に密に配列して、空間解像度を高めることが開示されている。しかし、分解能は依然として波長程度にとどまっている。   In Patent Documents 4 and 5, analog phased arrays and binary reflector arrays are used, and the antenna elements are arranged closely in the array so that the spacing between adjacent antenna elements is half the wavelength of the radio wave. It is disclosed to enhance. However, the resolution is still around the wavelength.

そこで、本発明は、簡易な構成でありながらも、分解能低下の原因を抑え、波長以下の高分解能で試料の透過イメージを取得することが可能な電波イメージング方法と、その方法を実施する装置を提供することを課題とする。   Therefore, the present invention provides a radio wave imaging method capable of acquiring a transmission image of a sample with a high resolution below the wavelength while suppressing the cause of resolution reduction with a simple configuration, and an apparatus for implementing the method. The issue is to provide.

上記課題を解決するために、本発明の電波イメージング装置は、次の構成を備える。すなわち、試料に電波を照射し、その透過信号によって試料のイメージングを行なう装置であって、電波の発生源と、その電波源からの出力信号を外部端子及び演算処理部へ誘導する線路と、外部端子で受入した外部の試料からの信号を演算処理部へ誘導する線路と、試料からの信号を基にしてそのイメージングを行なう演算処理部とを少なくとも備える測定器と、その測定器の外部端子に接続され、中心導体の突出したプラグの配設された同軸コネクターを備える2本のプローブとを有し、その2本の中心導体の間隔を、電波源からの出力信号の波長以下に設定すると共に、2本の中心導体の間に試料を配置することを特徴とする。  In order to solve the above problems, the radio wave imaging apparatus of the present invention has the following configuration. That is, an apparatus for irradiating a sample with radio waves and imaging the sample with the transmission signal thereof, a source of radio waves, a line for guiding an output signal from the radio wave source to an external terminal and an arithmetic processing unit, and an external A measuring instrument having at least a line for guiding a signal from an external sample received at the terminal to the arithmetic processing unit, an arithmetic processing unit for imaging based on the signal from the sample, and an external terminal of the measuring device And two probes having coaxial connectors connected to each other and provided with a coaxial connector on which a projecting plug of the central conductor is disposed, and the interval between the two central conductors is set to be equal to or less than the wavelength of the output signal from the radio wave source. A sample is disposed between two central conductors.

ここで、測定器としてはネットワークアナライザーが好適に用いられる。   Here, a network analyzer is preferably used as the measuring instrument.

検出側の中心導体に、電波源からの出力信号の波長以下のアパーチャーを付設して、回折電波の干渉を抑止し分解能向上に寄与させてもよい。   An aperture having a wavelength equal to or smaller than the wavelength of the output signal from the radio wave source may be attached to the center conductor on the detection side to suppress interference of diffracted radio waves and contribute to an improvement in resolution.

試料を支持すると共に、信号の射出方向と略垂直な方向へ移動させる試料移動部材を設けて、電波源からの出力信号を試料の所望部位全体にわたって照射し、試料の広範囲のイメージングに寄与させてもよい。   Provide a sample moving member that supports the sample and moves it in a direction substantially perpendicular to the signal emission direction, and irradiates the output signal from the radio wave source over the entire desired part of the sample to contribute to a wide range of imaging of the sample. Also good.

また、本発明の電波イメージング方法は、試料に電波を照射し、その透過信号によって試料のイメージングを行なう方法であって、電波の発生源と、その電波源からの出力信号を外部端子及び演算処理部へ誘導する線路と、外部端子で受入した外部の試料からの信号を演算処理部へ誘導する線路と、試料からの信号を基にしてそのイメージングを行なう演算処理部とを少なくとも備える測定器と、その測定器の外部端子に接続され、中心導体の突出したプラグの配設された同軸コネクターを備える2本のプローブとを有した構成において、その2本の中心導体の間隔を、電波源からの出力信号の波長以下に設定すると共に、2本の中心導体の間に試料を配置し、電波源からの出力信号の送出側のコネクターから射出された信号を、その信号が分散する前に試料へ照射し、試料を透過した信号を、検出側のコネクターで受入することを特徴とする。   Further, the radio wave imaging method of the present invention is a method of irradiating a sample with radio waves and imaging the sample by the transmitted signal, and the radio wave generation source and the output signal from the radio wave source are connected to an external terminal and arithmetic processing. A measuring instrument comprising at least a line that leads to a part, a line that guides a signal from an external sample received by an external terminal to the arithmetic processing part, and an arithmetic processing part that performs imaging based on the signal from the sample; In a configuration having two probes connected to an external terminal of the measuring instrument and having a coaxial connector provided with a protruding plug of the central conductor, the distance between the two central conductors is determined from the radio wave source. The sample is placed between the two center conductors, and the signal emitted from the output signal connector from the radio wave source is Before diffusing irradiated to the sample, the transmitted signal samples, characterized by receiving at the detection side connector.

ここで、測定器にネットワークアナライザーを使用してもよい。   Here, a network analyzer may be used for the measuring instrument.

検出側の中心導体に、電波源からの出力信号の波長以下のアパーチャーを使用して、回折電波の干渉を抑止し分解能向上に寄与させてもよい。   An aperture having a wavelength equal to or smaller than the wavelength of the output signal from the radio wave source may be used for the center conductor on the detection side to suppress the interference of the diffracted radio wave and contribute to an improvement in resolution.

検出側の中心導体にアパーチャーを数mmまで接近させて、アパーチャーからの漏れ波の検出に寄与させてもよい。   An aperture may be brought close to the central conductor on the detection side to several millimeters to contribute to detection of leakage waves from the aperture.

試料保持部材によって、試料を支持すると共に、信号の射出方向と略垂直な方向へ移動させて、電波源からの出力信号を試料の所望部位全体にわたって照射し、試料の広範囲のイメージングに寄与させてもよい。   The sample holding member supports the sample and moves it in a direction substantially perpendicular to the signal emission direction, irradiates the output signal from the radio wave source over the entire desired part of the sample, and contributes to a wide range of imaging of the sample. Also good.

本発明によると、2本のプローブの中心導体の間隔が電波信号の波長以下であり、その信号が分散する前に試料へ照射し、試料を透過した信号をプローブの中心導体で受入するので、分解能低下の原因を抑え、波長以下の高分解能で試料の透過イメージを取得することができる。
特に、検出側プローブの中心導体に、電波源からの出力信号の波長以下のアパーチャーを付設すると、回折電波の干渉を抑止し分解能の向上が図れる。
According to the present invention, the distance between the center conductors of the two probes is equal to or less than the wavelength of the radio signal, the sample is irradiated before the signal is dispersed, and the signal transmitted through the sample is received by the center conductor of the probe. A transmission image of the sample can be acquired with a high resolution below the wavelength while suppressing the cause of the reduction in resolution.
In particular, if an aperture having a wavelength equal to or smaller than the wavelength of the output signal from the radio wave source is attached to the central conductor of the detection side probe, interference of diffracted radio waves can be suppressed and resolution can be improved.

以下に、図面を基に本発明の実施形態を説明する。
図1は、本発明による電波イメージング装置の概要を示す模式図である。
本発明は、試料に電波を照射し、その透過信号によって試料のイメージングを行なうことを基本とする。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a schematic diagram showing an outline of a radio wave imaging apparatus according to the present invention.
The present invention is basically based on irradiating a sample with radio waves and imaging the sample using the transmission signal.

図示の例では、測定器にネットワークアナライザー(例:Agilent E8363B)が用いられている。測定器としては、一般に、電波の発生源と、その電波源からの出力信号を外部端子及び演算処理部へ誘導する線路と、外部端子で受入した外部の試料からの信号を演算処理部へ誘導する線路と、試料からの信号を基にしてそのイメージングを行なう演算処理部とを少なくとも備える機器が利用可能である。
本発明による電波イメージング装置は、導波管やホーンアンテナ等を使用しないイメージング装置であるため周波数が限定されず、広帯域光源を使用することにより、様々な周波数でイメージングすることが可能である。
In the illustrated example, a network analyzer (eg, Agilent E8363B) is used as a measuring instrument. As a measuring instrument, in general, a radio wave generation source, a line for guiding an output signal from the radio wave source to an external terminal and an arithmetic processing unit, and a signal from an external sample received by the external terminal are guided to the arithmetic processing unit. It is possible to use an apparatus including at least a line to be processed and an arithmetic processing unit that performs imaging based on a signal from a sample.
Since the radio wave imaging apparatus according to the present invention is an imaging apparatus that does not use a waveguide, a horn antenna, or the like, the frequency is not limited, and it is possible to perform imaging at various frequencies by using a broadband light source.

図2は、ネットワークアナライザーの要部回路を示す回路図である。
ネットワークアナライザーは、一般には、回路や素子にマイクロ波等の高周波を出力し、回路からの反射や通過状態を計測して回路や素子の電気的特性を求める装置である。
ネットワークアナライザー内部に備わる信号源は、測定する範囲の周波数を掃引する。
信号源と外部出力端子との間には、方向性結合器が備わる。試料は、2つの外部出力端子の間に配置される。信号源から試料に与えられた信号と、試料からの透過或いは反射信号が方向性結合器によって制御され、演算処理部で処理される。
FIG. 2 is a circuit diagram showing a main circuit of the network analyzer.
In general, a network analyzer is a device that outputs high-frequency waves such as microwaves to circuits and elements, and measures the reflection and passage states from the circuits to determine the electrical characteristics of the circuits and elements.
The signal source provided in the network analyzer sweeps the frequency in the range to be measured.
A directional coupler is provided between the signal source and the external output terminal. The sample is disposed between two external output terminals. A signal given to the sample from the signal source and a transmitted or reflected signal from the sample are controlled by the directional coupler and processed by the arithmetic processing unit.

方向性結合器は、その2つのポートのうち、一方から入ってくる信号の方向を分別して出力する。図2で左側の方向性結合器において、信号源側のポートから入ってくる信号は端子a1へ出力され、試料側のポートから入ってくる信号は端子b1に出力される。右側の方向性結合器についても同様である。
信号線路に入力された全ての電力が信号線路から端子a1またはb1に導かれるわけでなく、通常1/100(-20dB)程度の電力が方向性をもって取り出される。実際のネットワークアナライザーでは測定精度を上げるために、端子a1、a2は方向性結合器を用いないで信号源の電力を分配して測り、また試料からの信号電力もできるだけ高い比率で端子b1、b2に導く方向性結合器を用いることが多い。
方向性結合器の端子a及びbに出力される信号は、振幅のみが検出されるタイプと振幅と位相の両方が検出されるタイプがある。位相も測れるタイプのベクトルネットワークアナライザーでは、試料の入出力部の透過或いは反射量と位相からSパラメータを求めることができる。
The directional coupler classifies and outputs the direction of a signal coming from one of the two ports. In the directional coupler on the left side in FIG. 2, a signal entering from the signal source side port is output to the terminal a1, and a signal entering from the sample side port is output to the terminal b1. The same applies to the right directional coupler.
Not all the power input to the signal line is led from the signal line to the terminal a1 or b1, and usually about 1/100 (−20 dB) of power is extracted with directionality. In an actual network analyzer, the terminals a1 and a2 are measured by distributing the power of the signal source without using a directional coupler to increase the measurement accuracy, and the signal power from the sample is also as high as possible at the terminals b1 and b2. Often a directional coupler leading to
The signals output to the terminals a and b of the directional coupler include a type in which only amplitude is detected and a type in which both amplitude and phase are detected. In a vector network analyzer that can also measure the phase, the S parameter can be obtained from the amount of transmission or reflection at the input / output part of the sample and the phase.

ネットワークアナライザーの外部端子には、中心導体の突出したプラグ(オス)の配設された同軸コネクターを備える2本のプローブ(例:Agilent 85133)が接続される。
コネクターのタイプとしては、BNC、SMAタイプ、N型コネクタも利用可能である。
To the external terminal of the network analyzer, two probes (for example, Agilent 85133) having a coaxial connector in which a plug (male) with a protruding central conductor is disposed are connected.
BNC, SMA type and N type connectors are also available as connector types.

その2つのコネクターは、各先端の中心導体の間隔が、約4mmなど電波源からの出力信号の波長以下になるように設置される。その間隙に、試料が配置され、電波源からの出力信号の送出側のコネクターから射出された信号を、分散する前に試料へ照射し、試料を透過した信号を、検出側のコネクターで受入して検出する。   The two connectors are installed so that the distance between the central conductors at each end is less than the wavelength of the output signal from the radio wave source, such as about 4 mm. The sample is placed in the gap, and the signal emitted from the connector on the transmission side of the output signal from the radio wave source is irradiated to the sample before being dispersed, and the signal transmitted through the sample is received by the connector on the detection side. To detect.

検出側のコネクターには、φ2 mmアルミ製などのアパーチャーが付設される。アパーチャーとしては、電波源からの出力信号の波長以下のサイズの金属類が使用される。
アパーチャーを検出側の中心導体に数mmまで接近させることで、回折電波の干渉を抑止し分解能を向上させられる。この際、アパーチャーに中心導体の先端を、どの程度接近させるか或いはどの程度差し込みかを調整することで、アパーチャーからの漏れ波を検出し、回折低減や検出効率向上や分解能向上を図れる。
The detection side connector has an aperture made of φ2 mm aluminum. As the aperture, a metal having a size equal to or smaller than the wavelength of the output signal from the radio wave source is used.
By bringing the aperture close to the center conductor on the detection side up to several millimeters, it is possible to suppress the interference of diffracted radio waves and improve the resolution. At this time, by adjusting how close or how far the tip of the central conductor is inserted into the aperture, leakage waves from the aperture can be detected to reduce diffraction, improve detection efficiency, and improve resolution.

試料を支持する部材に、信号の射出方向と略垂直な方向へ移動可能にする機構を付設して、電波源からの出力信号を試料の所望部位全体にわたって照射させ、試料を広範囲にイメージングできるようにしてもよい。そのように、試料を移動可能に支持する試料保持部材は、ステージ移動機構など従来公知の部材が適宜利用できる。   A member that supports the sample is attached with a mechanism that allows it to move in a direction substantially perpendicular to the signal emission direction, so that the output signal from the radio wave source is irradiated over the entire desired part of the sample so that the sample can be imaged over a wide range. It may be. As described above, a conventionally known member such as a stage moving mechanism can be appropriately used as the sample holding member that supports the sample so as to be movable.

図3は、35GHzのビームを測定した実験結果を示すグラフである。
トランス側のコネクターの端から約1mm 離れた位置で、アルミ板を用いてナイフエッジ法により35GHz ビーム(波長約8mm)の形状等を調べた。図3(a)は、アパーチャーを用いない場合のグラフ、図3(b)は、アパーチャーを用いた場合のグラフである。
図3(a)のように、アパーチャーを用いない場合は、ビーム径が約2 mm と、一見小さく見えるが、回折電波との干渉が大きい。それに対して、図3(b)のように、アパーチャーを用いた場合は、ビーム径が約3 mm であるが、干渉の影響が小さくなった。
FIG. 3 is a graph showing experimental results obtained by measuring a 35 GHz beam.
The shape of a 35 GHz beam (wavelength of about 8 mm) was examined by the knife edge method using an aluminum plate at a position about 1 mm away from the end of the transformer-side connector. FIG. 3A is a graph when no aperture is used, and FIG. 3B is a graph when an aperture is used.
As shown in FIG. 3A, when the aperture is not used, the beam diameter is about 2 mm, which seems to be small, but the interference with the diffracted radio wave is large. On the other hand, when an aperture is used as shown in FIG. 3B, the beam diameter is about 3 mm, but the influence of interference is reduced.

図4は、カードをイメージングした実験結果を簡易的に示す説明図である。
図4(a)に示すカード(JR Suica) を、35 GHzビームによりイメージングした。図4(b)は、アパーチャーを用いない場合、図4(c)は、アパーチャーを用いた場合である。
いずれの場合も、カード内部における金属の分布が観察された。図4(b)のように、アパーチャーを用いない場合でも波長以下でイメージングすることが可能であるが、図4(c)のように、アパーチャーを用いた場合では、電波の回折による影響を抑えることができ、より鮮明なイメージが得られた。
FIG. 4 is an explanatory diagram simply showing experimental results of imaging a card.
The card (JR Suica) shown in FIG. 4 (a) was imaged with a 35 GHz beam. FIG. 4B shows a case where no aperture is used, and FIG. 4C shows a case where an aperture is used.
In both cases, metal distribution within the card was observed. As shown in FIG. 4B, it is possible to perform imaging at a wavelength or less even when no aperture is used. However, when an aperture is used as shown in FIG. 4C, the influence of radio wave diffraction is suppressed. And a clearer image was obtained.

同様に、ぶた肉をイメージングした。
ぶた肉の水分や脂肪、それに添加する溶液(DMSO)等の量によって、電波の吸収が異なる様子が観察できた。この実験結果から、イメージングによって生体試料の均一性を評価できる可能性があることが判明した。
Similarly, pig meat was imaged.
It was observed that the absorption of radio waves differed depending on the amount of moisture and fat in the meat and the solution added to it (DMSO). From this experimental result, it was found that there is a possibility that the uniformity of the biological sample can be evaluated by imaging.

本発明によると、簡易な構成でありながらも、波長以下の高分解能で試料の透過イメージを得られるので、金属探知などのセキュリティ分野や、生体組織観察などの生化学分野など、幅広く活用でき産業上利用価値が高い。  According to the present invention, a transmission image of a sample can be obtained with a high resolution below the wavelength even with a simple configuration, so that it can be widely used in security fields such as metal detection and biochemistry fields such as biological tissue observation. High utility value.

本発明による電波イメージング装置の概要を示す模式図The schematic diagram which shows the outline | summary of the radio wave imaging apparatus by this invention ネットワークアナライザーの要部回路を示す回路図Circuit diagram showing the main circuit of the network analyzer 35GHzビームを測定した実験結果を示すグラフGraph showing the experimental results of measuring 35 GHz beam カードをイメージングした実験結果を簡易的に示す説明図Explanatory drawing which shows the experimental result which imaged the card simply

Claims (9)

試料に電波を照射し、その透過信号によって試料のイメージングを行なう装置であって、
電波の発生源と、その電波源からの出力信号を外部端子及び演算処理部へ誘導する線路と、外部端子で受入した外部の試料からの信号を演算処理部へ誘導する線路と、試料からの信号を基にしてそのイメージングを行なう演算処理部とを少なくとも備える測定器と、
その測定器の外部端子に接続され、中心導体の突出したプラグの配設された同軸コネクターを備える2本のプローブとを有し、
その2本の中心導体の間隔を、電波源からの出力信号の波長以下に設定すると共に、2本の中心導体の間に試料を配置する
ことを特徴とする電波イメージング装置。
A device for irradiating a sample with radio waves and imaging the sample using the transmission signal,
A source of radio waves, a line for guiding an output signal from the radio wave source to the external terminal and the processing unit, a line for guiding a signal from an external sample received by the external terminal to the processing unit, and a line from the sample A measuring device including at least an arithmetic processing unit that performs imaging based on a signal;
Two probes having a coaxial connector connected to an external terminal of the measuring instrument and provided with a protruding plug of a central conductor;
A radio wave imaging apparatus characterized in that a distance between the two central conductors is set to be equal to or less than a wavelength of an output signal from a radio wave source, and a sample is disposed between the two central conductors.
測定器がネットワークアナライザーである
請求項1に記載の電波イメージング装置。
The radio wave imaging apparatus according to claim 1, wherein the measuring instrument is a network analyzer.
検出側の中心導体に、電波源からの出力信号の波長以下のアパーチャーを付設した
請求項1または2に記載の電波イメージング装置。
The radio wave imaging apparatus according to claim 1, wherein an aperture having a wavelength equal to or less than a wavelength of the output signal from the radio wave source is attached to the center conductor on the detection side.
試料を支持すると共に、信号の射出方向と略垂直な方向へ移動させる試料移動部材を有する
請求項1ないし3に記載の電波イメージング装置。
The radio wave imaging apparatus according to any one of claims 1 to 3, further comprising a sample moving member that supports the sample and moves the sample in a direction substantially perpendicular to a signal emission direction.
試料に電波を照射し、その透過信号によって試料のイメージングを行なう方法であって、
電波の発生源と、その電波源からの出力信号を外部端子及び演算処理部へ誘導する線路と、外部端子で受入した外部の試料からの信号を演算処理部へ誘導する線路と、試料からの信号を基にしてそのイメージングを行なう演算処理部とを少なくとも備える測定器と、
その測定器の外部端子に接続され、中心導体の突出したプラグの配設された同軸コネクターを備える2本のプローブとを有した構成において、
その2本の中心導体の間隔を、電波源からの出力信号の波長以下に設定すると共に、2本の中心導体の間に試料を配置し、
電波源からの出力信号の送出側のコネクターから射出された信号を、その信号が分散する前に試料へ照射し、試料を透過した信号を、検出側のコネクターで受入する
ことを特徴とする電波イメージング方法。
A method of irradiating a sample with radio waves and imaging the sample using the transmission signal,
A source of radio waves, a line for guiding an output signal from the radio wave source to the external terminal and the processing unit, a line for guiding a signal from an external sample received by the external terminal to the processing unit, and a line from the sample A measuring device including at least an arithmetic processing unit that performs imaging based on a signal;
In a configuration having two probes connected to an external terminal of the measuring instrument and provided with a coaxial connector provided with a protruding plug of a central conductor,
The distance between the two central conductors is set to be equal to or less than the wavelength of the output signal from the radio wave source, and a sample is disposed between the two central conductors.
A signal emitted from a connector on the transmission side of an output signal from a radio wave source is irradiated to the sample before the signal is dispersed, and the signal that has passed through the sample is received by the connector on the detection side. Imaging method.
測定器にネットワークアナライザーを用いる
請求項5に記載の電波イメージング方法。
The radio wave imaging method according to claim 5, wherein a network analyzer is used for the measuring instrument.
検出側の中心導体に、電波源からの出力信号の波長以下のアパーチャーを付設して、回折電波の干渉を抑止する
請求項5または6に記載の電波イメージング方法。
The radio wave imaging method according to claim 5, wherein an aperture having a wavelength equal to or smaller than a wavelength of an output signal from the radio wave source is attached to the center conductor on the detection side to suppress interference of diffracted radio waves.
検出側の中心導体にアパーチャーを数mmまで接近させて、アパーチャーからの漏れ波を検出する
請求項7に記載の電波イメージング方法。
The radio wave imaging method according to claim 7, wherein the leaking wave from the aperture is detected by bringing the aperture close to the central conductor on the detection side up to several millimeters.
試料保持部材によって、試料を支持すると共に、信号の射出方向と略垂直な方向へ移動させて、電波源からの出力信号を試料の所望部位全体にわたって照射する
請求項5ないし8に記載の電波イメージング方法。
The radio wave imaging according to claim 5, wherein the sample is supported by the sample holding member and moved in a direction substantially perpendicular to the signal emission direction to irradiate the output signal from the radio wave source over the entire desired part of the sample. Method.
JP2007067941A 2007-03-16 2007-03-16 Radio wave imaging method and apparatus Expired - Fee Related JP5137103B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007067941A JP5137103B2 (en) 2007-03-16 2007-03-16 Radio wave imaging method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007067941A JP5137103B2 (en) 2007-03-16 2007-03-16 Radio wave imaging method and apparatus

Publications (2)

Publication Number Publication Date
JP2008232624A JP2008232624A (en) 2008-10-02
JP5137103B2 true JP5137103B2 (en) 2013-02-06

Family

ID=39905621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007067941A Expired - Fee Related JP5137103B2 (en) 2007-03-16 2007-03-16 Radio wave imaging method and apparatus

Country Status (1)

Country Link
JP (1) JP5137103B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8374486B2 (en) 2004-03-26 2013-02-12 Lg Electronics Inc. Recording medium storing a text subtitle stream, method and apparatus for a text subtitle stream to display a text subtitle

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5747453B2 (en) * 2010-07-01 2015-07-15 国立研究開発法人情報通信研究機構 Radio wave imaging method and apparatus

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0650066B2 (en) * 1984-08-20 1994-06-29 株式会社豊田中央研究所 Microwave / optical probe
US5576627A (en) * 1994-09-06 1996-11-19 The Regents Of The University Of California Narrow field electromagnetic sensor system and method
JP3754556B2 (en) * 1998-03-30 2006-03-15 真澄 坂 Internal quality evaluation apparatus and evaluation method for dielectric material products
JP2001050908A (en) * 1999-08-13 2001-02-23 Nippon Telegr & Teleph Corp <Ntt> Millimeter wave imaging system
JP2002168801A (en) * 2000-12-04 2002-06-14 Nec Corp Scan type microwave microscope and microwave resonator
JP2006234587A (en) * 2005-02-25 2006-09-07 Canon Inc Electromagnetic wave imaging system
US8882670B2 (en) * 2005-07-06 2014-11-11 Credent Medical Limited Apparatus and method for measuring constituent concentrations within a biological tissue structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8374486B2 (en) 2004-03-26 2013-02-12 Lg Electronics Inc. Recording medium storing a text subtitle stream, method and apparatus for a text subtitle stream to display a text subtitle
US8380044B2 (en) 2004-03-26 2013-02-19 Lg Electronics Inc. Recording medium storing a text subtitle stream, method and apparatus for reproducing a text subtitle stream to display a text subtitle

Also Published As

Publication number Publication date
JP2008232624A (en) 2008-10-02

Similar Documents

Publication Publication Date Title
Islam et al. A low cost and portable microwave imaging system for breast tumor detection using UWB directional antenna array
Abbak et al. Experimental microwave imaging with a novel corrugated Vivaldi antenna
de Oliveira et al. A fern antipodal vivaldi antenna for near-field microwave imaging medical applications
Mobashsher et al. Performance of directional and omnidirectional antennas in wideband head imaging
Kibria et al. Breast phantom imaging using iteratively corrected coherence factor delay and sum
Camblor-Diaz et al. Sub-millimeter wave frequency scanning 8 x 1 antenna array
US20100007568A1 (en) Antenna with Balun
Saeidi et al. Near-field and far-field investigation of miniaturized UWB antenna for imaging of wood
US4162500A (en) Ridged waveguide antenna submerged in dielectric liquid
Tiang et al. Radar sensing featuring biconical antenna and enhanced delay and sum algorithm for early stage breast cancer detection
Amineh et al. Three-dimensional microwave holographic imaging employing forward-scattered waves only
Vohra et al. K-and W-band free-space characterizations of highly conductive radar absorbing materials
CN104854424B (en) 3D hologram imaging system and method
Saeidi et al. Ultra-wideband elliptical patch antenna for microwave imaging of wood
JP5137103B2 (en) Radio wave imaging method and apparatus
Al-Zuhairi et al. Compact dual-polarized quad-ridged UWB horn antenna design for breast imaging
Hamberger et al. Setup and Characterization of a Volumetric $\boldsymbol {W} $-Band Near-Field Antenna Measurement System
Wang et al. Microwave breast imaging sensor using compact and directive antenna with fixed mainbeam direction
JP5747453B2 (en) Radio wave imaging method and apparatus
JP6962173B2 (en) Probe antenna and measuring device
Khor et al. Investigations into an UWB microwave radar system for breast cancer detection
Leng et al. A Microwave Holographic Imaging Method by Photo-induced Plasma Scanning
Briqech et al. Millimeter-wave imaging system using a 60 GHz dual-polarized AFTSA-SC probe
Kowalewski et al. Vivaldi antenna with improved directivity for medical applications
Theerawisitpong et al. Near-field transmission imaging by 60 GHz band waveguide-type microscopic aperture probe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120822

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121108

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151122

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees