JP5132271B2 - Method for producing flame retardant polyester polymer - Google Patents

Method for producing flame retardant polyester polymer Download PDF

Info

Publication number
JP5132271B2
JP5132271B2 JP2007297651A JP2007297651A JP5132271B2 JP 5132271 B2 JP5132271 B2 JP 5132271B2 JP 2007297651 A JP2007297651 A JP 2007297651A JP 2007297651 A JP2007297651 A JP 2007297651A JP 5132271 B2 JP5132271 B2 JP 5132271B2
Authority
JP
Japan
Prior art keywords
flame
polyester polymer
flame retardant
esterification reaction
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007297651A
Other languages
Japanese (ja)
Other versions
JP2008127570A (en
Inventor
承哲 梁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hyosung Corp
Original Assignee
Hyosung Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hyosung Corp filed Critical Hyosung Corp
Publication of JP2008127570A publication Critical patent/JP2008127570A/en
Application granted granted Critical
Publication of JP5132271B2 publication Critical patent/JP5132271B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K21/00Fireproofing materials
    • C09K21/06Organic materials
    • C09K21/12Organic materials containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/181Acids containing aromatic rings
    • C08G63/183Terephthalic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/68Polyesters containing atoms other than carbon, hydrogen and oxygen
    • C08G63/692Polyesters containing atoms other than carbon, hydrogen and oxygen containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/68Polyesters containing atoms other than carbon, hydrogen and oxygen
    • C08G63/692Polyesters containing atoms other than carbon, hydrogen and oxygen containing phosphorus
    • C08G63/6924Polyesters containing atoms other than carbon, hydrogen and oxygen containing phosphorus derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/6926Dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/82Preparation processes characterised by the catalyst used
    • C08G63/83Alkali metals, alkaline earth metals, beryllium, magnesium, copper, silver, gold, zinc, cadmium, mercury, manganese, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/53Phosphorus bound to oxygen bound to oxygen and to carbon only
    • C08K5/5313Phosphinic compounds, e.g. R2=P(:O)OR'
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/07Addition of substances to the spinning solution or to the melt for making fire- or flame-proof filaments
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/62Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/59Stability
    • C08G2261/594Stability against light, i.e. electromagnetic radiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/02Flame or fire retardant/resistant
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/22Halogen free composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2666/00Composition of polymers characterized by a further compound in the blend, being organic macromolecular compounds, natural resins, waxes or and bituminous materials, non-macromolecular organic substances, inorganic substances or characterized by their function in the composition
    • C08L2666/66Substances characterised by their function in the composition
    • C08L2666/78Stabilisers against oxidation, heat, light or ozone
    • C08L2666/82Phosphorus-containing stabilizers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2666/00Composition of polymers characterized by a further compound in the blend, being organic macromolecular compounds, natural resins, waxes or and bituminous materials, non-macromolecular organic substances, inorganic substances or characterized by their function in the composition
    • C08L2666/66Substances characterised by their function in the composition
    • C08L2666/84Flame-proofing or flame-retarding additives

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Artificial Filaments (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、ポリエステル重合物の製造方法、この方法により製造される重合物、およびこの重合物から製造される繊維に係り、より具体的には、リン系の難燃剤を、リン原子換算でポリエステル重合物に対して第2エステル化反応段階に投入すると共に、UV安定剤としてのマンガン塩とリン化合物とをそれぞれマンガン原子とリン原子換算で0.1〜500ppm投入してなる難燃性ポリエステル重合物の製造方法、これにより製造される重合物、およびこれから製造される繊維に関する。   The present invention relates to a method for producing a polyester polymer, a polymer produced by the method, and a fiber produced from the polymer, and more specifically, a phosphorus-based flame retardant is converted to a polyester in terms of phosphorus atoms. Flame retardant polyester polymerization in which a polymer is introduced into the second esterification reaction stage, and manganese salt and phosphorus compound as UV stabilizers are added in an amount of 0.1 to 500 ppm in terms of manganese atom and phosphorus atom, respectively. The present invention relates to a method for producing a product, a polymer produced thereby, and a fiber produced therefrom.

一般に、ポリエステル、特にポリエチレンテレフタレート(以下「PET」という)は、機械的性質が優秀で、耐薬品性などの化学的性質が良好であって繊維、フィルムおよびエンジニアリングプラスチックなどに広く用いられている。ところが、このような従来のポリエステルは、燃焼し易いという欠点がある。特に、最近、幼児用衣服などの衣類分野および自動車のカーシート、カーテン、カーペットなどの産資用分野において法的な規制が厳しくなっており、火災予防の目的で難燃繊維に対する要求が高まっている。   In general, polyester, particularly polyethylene terephthalate (hereinafter referred to as “PET”) has excellent mechanical properties and chemical properties such as chemical resistance, and is widely used for fibers, films, engineering plastics, and the like. However, such a conventional polyester has a drawback that it easily burns. In recent years, legal regulations have become stricter in the clothing field such as infant clothes and in the field of industrial goods such as car seats, curtains, and carpets for automobiles, and the demand for flame retardant fibers has increased for the purpose of fire prevention. Yes.

ポリエステル繊維に難燃性を与える方法としては、繊維の表面に難燃剤を処理する第1の方法、紡糸の際に難燃性物質を添加して紡糸する第2の方法、重合の際に難燃性物質を添加して共重合する第3の方法などがある。第1の方法は、製造コストの面では有利であるが、耐久性に問題がある。第2の方法は、難燃性を発揮する物質(難燃剤)を混合紡糸する方法と、難燃剤を過量含有する難燃マスターバッチ(master batch)をブレンドして紡糸する方法とがあるが、前者は、紡糸性および原糸の物性が低下するという問題点があり、後者は、難燃マスターバッチを用いて、所望の粘度、色相などの物性を持つ重合物を製造することに困難さがある。第3の方法は、難燃性の耐久性の面で有利であり、通常のポリエステル製造過程と類似であるという利点がある。第3の方法である、共重合による難燃性ポリエステルの製造にはハロゲン系難燃剤(特に臭素(Br)系難燃剤)、およびリン(P)系難燃剤が主に用いられる。   Examples of methods for imparting flame retardancy to polyester fibers include a first method in which a flame retardant is treated on the surface of the fiber, a second method in which a flame retardant is added during spinning, and a method in which spinning is performed. There is a third method in which a flammable substance is added and copolymerized. The first method is advantageous in terms of manufacturing cost, but has a problem in durability. The second method includes a method of mixing and spinning a substance exhibiting flame retardancy (a flame retardant) and a method of blending and spinning a flame retardant master batch containing an excessive amount of a flame retardant. The former has a problem that spinnability and physical properties of the raw yarn are lowered, and the latter has difficulty in producing a polymer having physical properties such as desired viscosity and hue by using a flame retardant masterbatch. is there. The third method is advantageous in terms of durability of flame retardancy and has an advantage that it is similar to a normal polyester production process. For the production of flame retardant polyester by copolymerization, which is the third method, halogen flame retardants (particularly bromine (Br) flame retardants) and phosphorus (P) flame retardants are mainly used.

臭素系難燃剤を使用した特許としては、特許文献1、特許文献2、特許文献3などがあるが、臭素系化合物が高温で熱分解し易いため、効果的な難燃性を得るためには難燃剤を多量添加しなければならない。その結果、臭素系難燃剤を使用すると、高分子物の色相および耐光性が低下し、燃焼の際に有毒ガスが発生するという問題点などがある。   Patents using brominated flame retardants include Patent Document 1, Patent Document 2, Patent Document 3 and the like. However, in order to obtain effective flame retardancy, brominated compounds are easily pyrolyzed at high temperatures. A large amount of flame retardant must be added. As a result, when a brominated flame retardant is used, there is a problem that the hue and light resistance of the polymer are lowered, and a toxic gas is generated during combustion.

また、リン系難燃剤を用いる特許としては、特許文献4、特許文献5、特許文献6、特許文献7、特許文献8などがあるが、本発明者らがこれら特許の記載通りに試験を行ったところ、難燃性ポリエステルはUVによる物性の低下が大きいことが確認された。また、大部分の場合に使用されたPET重合の際に、ジメチルテレフタレート(以下「DMT」という)を原料とすれば、テレフタル酸(以下「TPA」という)による重合法に比べてコストの上昇幅が大きいという欠点がある。
特開昭62−6912号公報 特開昭53−46398号公報 特開昭51−28894号公報 米国特許第3,941,752号明細書 米国特許第5,399,428号明細書 米国特許第5,180,793号明細書 特開昭50−56488号公報 特開昭52−47891号公報
Patents using phosphorus-based flame retardants include Patent Document 4, Patent Document 5, Patent Document 6, Patent Document 7, and Patent Document 8, and the present inventors conducted tests as described in these patents. As a result, it was confirmed that the flame-retardant polyester has a great decrease in physical properties due to UV. Further, in the case of PET polymerization used in most cases, if dimethyl terephthalate (hereinafter referred to as “DMT”) is used as a raw material, the cost increase compared to the polymerization method using terephthalic acid (hereinafter referred to as “TPA”). Has the disadvantage of being large.
JP 62-6912 A JP-A-53-46398 Japanese Patent Laid-Open No. 51-28894 US Pat. No. 3,941,752 US Pat. No. 5,399,428 US Pat. No. 5,180,793 Japanese Patent Laid-Open No. 50-56488 JP 52-47891 A

そこで、本発明は、上述した従来の技術の問題点を解決するためのもので、その目的とするところは、永久的難燃性を有し、特にUV(紫外線)に対して安定性に優れたポリエステル重合物の製造方法および繊維を提供することにある。   Therefore, the present invention is for solving the above-mentioned problems of the prior art, and the object is to have permanent flame retardancy and particularly excellent stability to UV (ultraviolet rays). Another object of the present invention is to provide a method for producing a polyester polymer and a fiber.

本発明の他の目的は、前記難燃性ポリエステル重合物の製造方法によって生産されたポリエステル重合物、およびこれから製造される繊維を提供することにある。   Another object of the present invention is to provide a polyester polymer produced by the method for producing a flame-retardant polyester polymer, and a fiber produced therefrom.

上記目的を達成するために、本発明のある観点によれば、テレフタル酸工法を用いる難燃性ポリエステル重合物の製造方法において、反応原料であるテレフタル酸(TPA)とエチレングリコール(EG)のスラリーを調製する段階と、前記スラリーを第1エステル化反応槽に投入してオリゴマーを生成する第1エステル化反応段階と、前記第1エステル化反応段階で生成されたオリゴマーを第2エステル化反応槽へ移送し、下記化学式1で表されるリン系の難燃剤をポリエステル重合物に対するリン原子換算で500〜50,000ppm、エチレングリコール(EG)と混合して投入するとともに、UV安定剤としてのマンガン塩とリンとをそれぞれマンガン原子とリン原子換算で0.1〜500ppm投入して難燃性オリゴマーを製造する第2エステル化反応段階と、前記第2エステル化反応段階で生成されたオリゴマーを移送して重縮合する段階とを含む難燃性ポリエステル重合物の製造方法を提供する。 In order to achieve the above object, according to one aspect of the present invention, a slurry of terephthalic acid (TPA) and ethylene glycol (EG) as reaction raw materials in a method for producing a flame-retardant polyester polymer using a terephthalic acid method A first esterification reaction stage in which the slurry is charged into a first esterification reaction tank to produce an oligomer, and the oligomer produced in the first esterification reaction stage is a second esterification reaction tank The phosphorus-based flame retardant represented by the following chemical formula 1 is mixed with 500 to 50,000 ppm in terms of phosphorus atoms with respect to the polyester polymer , mixed with ethylene glycol (EG), and added as manganese as a UV stabilizer. A flame retardant oligomer is produced by adding 0.1 to 500 ppm of salt and phosphoric acid in terms of manganese atom and phosphorus atom, respectively. There is provided a method for producing a flame-retardant polyester polymer comprising a second esterification reaction step to be prepared, and a step of transferring and polycondensing the oligomer produced in the second esterification reaction step.

[化学式1]     [Chemical Formula 1]

Figure 0005132271
(式中、Rは水素または炭素数1〜10のヒドロキシアルキル基であり、Rは水素、炭素数1〜10のアルキル基、または炭素数6〜24のアリール基であり、Rは水素、炭素数1〜10のアルキル基またはヒドロキシアルキル基、またはこれらのエステル形成性官能基である。)
Figure 0005132271
(Wherein R 1 is hydrogen or a hydroxyalkyl group having 1 to 10 carbon atoms, R 2 is hydrogen, an alkyl group having 1 to 10 carbon atoms, or an aryl group having 6 to 24 carbon atoms, and R 3 is Hydrogen, an alkyl group having 1 to 10 carbon atoms or a hydroxyalkyl group, or an ester-forming functional group thereof.)

上述した本発明に係る難燃性ポリエステル重合物およびこれにより製造される難燃性ポリエステルは、色相および難燃性に優れるうえ、紡糸作業を介して最終製品に成形されたときのUVに対する安定性に優れる。   The above-mentioned flame retardant polyester polymer according to the present invention and the flame retardant polyester produced thereby are excellent in hue and flame retardancy, and also have stability against UV when formed into a final product through a spinning operation. Excellent.

以下に添付図面を参照しながら、本発明について詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

図1は本発明の一具現例の工程流れ図である。図1を参照すると、スラリー調製段階は、反応原料であるテレフタル酸とエチレングリコールとから反応槽1でスラリーを調製する段階である。この段階で、調製されたスラリーを保管するスラリー保管槽2がさらに設けられてもよい。   FIG. 1 is a process flow diagram of an embodiment of the present invention. Referring to FIG. 1, the slurry preparation stage is a stage in which a slurry is prepared in a reaction vessel 1 from terephthalic acid and ethylene glycol which are reaction raw materials. At this stage, a slurry storage tank 2 for storing the prepared slurry may be further provided.

第1エステル反応段階は、前記スラリーを第1エステル化反応槽3に投入してオリゴマーを生成する段階である。反応槽3には生成物としてのベースオリゴマー(Base Oligomer)が常時滞留する。反応槽3と反応槽5との間には、反応槽3で調製されたオリゴマーを移送する移送ラインのフィルター4が設けられてもよい。前記フィルター4はバスケットフィルターを使用することができる。   The first ester reaction stage is a stage in which the slurry is charged into the first esterification reaction tank 3 to generate oligomers. A base oligomer as a product always stays in the reaction tank 3. Between the reaction vessel 3 and the reaction vessel 5, a transfer line filter 4 for transferring the oligomer prepared in the reaction vessel 3 may be provided. The filter 4 can be a basket filter.

第2エステル化反応段階は、前記第1エステル化反応段階で生成されたオリゴマーを第2エステル化反応槽5へ移送して難燃性オリゴマーを生成する段階である。ここで、下記化学式1で表されるリン系の難燃剤をポリエステル重合物に対するリン原子換算で500〜50,000ppm投入するとともに、UV安定剤としてのマンガン塩とリン化合物をそれぞれマンガン原子換算とリン原子換算とで0.1〜500ppm投入する。   The second esterification reaction stage is a stage in which the oligomer produced in the first esterification reaction stage is transferred to the second esterification reaction tank 5 to produce a flame retardant oligomer. Here, 500 to 50,000 ppm of a phosphorus-based flame retardant represented by the following chemical formula 1 is added in terms of phosphorus atom to the polyester polymer, and manganese salt and phosphorus compound as UV stabilizers are converted into manganese atom and phosphorus, respectively. 0.1 to 500 ppm is added in terms of atoms.

反応槽5との重縮合反応槽7との間には、反応槽5で調製されたオリゴマーを移送する移送ラインのフィルター6が設けられてもよい。前記フィルター6はバスケットフィルターを使用することができる。   Between the reaction tank 5 and the polycondensation reaction tank 7, a transfer line filter 6 for transferring the oligomer prepared in the reaction tank 5 may be provided. The filter 6 can be a basket filter.

重縮合段階は、前記第2エステル化反応段階で生成されたオリゴマーを移送して高真空の下で重縮合する段階である。   The polycondensation step is a step in which the oligomer produced in the second esterification reaction step is transferred and polycondensed under high vacuum.

ここで、製造されたポリマーを排出してチップ(chip)化するペレタイザー8が設けられてもよい。   Here, a pelletizer 8 for discharging the produced polymer into a chip may be provided.

反応原料であるテレフタル酸(TPA)とエチレングリコール(EG)とを直接反応させてビスヒドロキシエチルテレフタレートとこれらの低重合度オリゴマーを製造した後、高真空の下で重縮合する方法については既に公知になっているが、本発明は、永久的難燃性を持つポリエステル重合物を製造するために、前記化学式1で表されるリン系難燃剤を第2エステル化反応段階に投入し、UV安定剤としてのマンガン塩とリン化合物とをそれぞれマンガン原子換算とリン原子換算とで0.1〜500ppm投入する難燃性ポリエステル重合物の製造方法である。以下、本発明の各特徴的構成についてより詳細に説明する。   A method of polycondensation under high vacuum after producing bishydroxyethyl terephthalate and these low-polymerization oligomers by directly reacting terephthalic acid (TPA) and ethylene glycol (EG) as reaction raw materials is already known. However, in the present invention, in order to produce a polyester polymer having permanent flame retardancy, the phosphorous flame retardant represented by the above chemical formula 1 is introduced into the second esterification reaction stage, and UV stabilization is achieved. It is a method for producing a flame retardant polyester polymer in which a manganese salt and a phosphorus compound as an agent are added in an amount of 0.1 to 500 ppm in terms of manganese atom and phosphorus atom, respectively. Hereafter, each characteristic structure of this invention is demonstrated in detail.

1.リン系難燃剤の選定
環境無害性、優れた難燃性、重合工程性、製造コスト、難燃糸の燃焼挙動などをまとめて考慮した結果、化学式1で表されるリン系難燃剤が好適であった。
1. Selection of Phosphorus Flame Retardant As a result of considering environmental harmlessness, excellent flame retardancy, polymerization processability, production cost, combustion behavior of flame retardant yarn, etc., the phosphorus flame retardant represented by Chemical Formula 1 was suitable. It was.

このリン系難燃剤は、難燃剤の分子量対比リン含量が大きいので、少なく投入しても十分な難燃効果を得ることができ、工程安定性の面でも有利である。また、従来のホスファフェナントレン(phosphophenanthrene)基を含む難燃剤と比較するとき、芳香族基が少ないため燃焼の際に煤煙、有毒ガスの発生が少ない。   Since this phosphorus flame retardant has a high phosphorus content relative to the molecular weight of the flame retardant, a sufficient flame retardant effect can be obtained even if it is used in a small amount, and it is advantageous in terms of process stability. In addition, when compared with conventional flame retardants containing phosphophenanthrene groups, the generation of soot and toxic gases is reduced during combustion due to the small amount of aromatic groups.

2.重合物内のリン系難燃剤の含量選定
重合物内に投入されるリン系難燃剤の含量を選定するために、本発明者らが様々な試験を行った結果、投入されるリン系難燃剤の含量は、化学式1で表されるリン系難燃剤の構造にあまり関係なく、重合物に対するリン原子換算で500〜50,000ppmが適することが分かった。特に、重合工程性と原糸製造との観点からみれば、重量物に対するリン原子換算で1,000〜20,000ppmがさらに適することが分かった。リン系難燃剤の含量が重合物に対するリン原子換算で500ppm未満であると、目的する難燃効果を期待することができず、50,000ppm超えると、製造されたポリエステルの重合度を高めることが難しいため、結晶性があまり低下して繊維として生産することが難しいという問題が生じて好ましくない。
2. Selection of content of phosphorus-based flame retardant in polymer As a result of various tests conducted by the present inventors in order to select the content of phosphorus-based flame retardant to be injected into polymer, phosphorus-based flame retardant to be input It has been found that the content of is not particularly related to the structure of the phosphorus-based flame retardant represented by the chemical formula 1, and is suitably 500 to 50,000 ppm in terms of phosphorus atoms relative to the polymer. In particular, from the viewpoint of polymerization processability and raw yarn production, it has been found that 1,000 to 20,000 ppm is more suitable in terms of phosphorus atoms relative to heavy objects. When the content of the phosphorus flame retardant is less than 500 ppm in terms of phosphorus atom relative to the polymer, the intended flame retardant effect cannot be expected, and when it exceeds 50,000 ppm, the degree of polymerization of the produced polyester is increased. Since it is difficult, the crystallinity is lowered so much that it is difficult to produce the fiber, which is not preferable.

3.リン系難燃剤の反応槽への投入方法
化学式1で表される難燃剤の投入方法は、難燃剤の性状によって異なる。化学式1で表される難燃剤が固相の場合にはエチレングリコール(EG)溶液または分散相として投入可能であり、液相の場合には難燃剤単独で或いはEGとの溶液状態で投入可能である。溶液または分散相として投入する場合のEGの量は、下記数式1を満足する範囲で投入することが有利である。
3. Method of charging a phosphorus-based flame retardant into a reaction tank The method of charging a flame retardant represented by Chemical Formula 1 varies depending on the properties of the flame retardant. When the flame retardant represented by Chemical Formula 1 is a solid phase, it can be charged as an ethylene glycol (EG) solution or a dispersed phase, and when it is a liquid phase, it can be charged as a flame retardant alone or in a solution with EG. is there. The amount of EG to be charged as a solution or a dispersed phase is advantageously charged within a range satisfying the following formula 1.

[数式1]
0.2×難燃剤(g)×(FN難燃剤 ×62)/(MW難燃剤×(1+α)≦EG(g)≦3×難燃剤(g)×(FN難燃剤 ×62)/(MW- 燃剤×(1+α)
(式中、FN難燃剤は難燃剤1モル当りカルボン酸基の数であり、MW難燃剤は難燃剤の分子量(g/モル)であり、αは難燃剤が固相であれば1、液相であれば0の定数である。)
第2エステル化反応槽へ移送されるオリゴマーの反応率が95%以上になると、オリゴマーの酸価(Acid Value)が小さいため無視することができるが、95%未満になると、ここに対応してEGをさらに添加しなければならない。この際、EGの量はオリゴマーの酸価に応じて下記数式2を満足する量とすることが良い。
[Formula 1]
0.2 x flame retardant (g) x (FN flame retardant x 62) / (MW flame retardant ) x (1 + α) ≤ EG (g) ≤ 3 x flame retardant (g) x (FN flame retardant x 62) / ( MW- flame retardant ) × (1 + α)
( Where FN flame retardant is the number of carboxylic acid groups per mole of flame retardant, MW flame retardant is the molecular weight of the flame retardant (g / mol), α is 1 if the flame retardant is a solid phase, 1 liquid If it is a phase, it is a constant of 0.)
If the reaction rate of the oligomer transferred to the second esterification reactor is 95% or more, it can be ignored because the acid value of the oligomer is small, but if it is less than 95%, it corresponds to this. More EG must be added. At this time, the amount of EG is preferably set to an amount satisfying the following formula 2 according to the acid value of the oligomer.

[数式2]
AVoligomer ×31/1000≦EG(g)≦AVoligomer ×62/1000
(式中、A- ligomerはオリゴマーの酸価であり、単位は(KOH当量)/(1kg重合物)である。)
難燃剤投入の際に添加されるEGの量(g)が0.2×難燃剤(g)×(FN難燃剤 ×62)/(MW難燃剤×(1+α)より少なければ、投入される難燃剤の粘性が高くて反応槽への投入が難しいうえ、難燃剤のエステル化反応が難しくなるという問題が発生し、投入されるEGの量(g)が3×難燃剤(g)×(FN難燃剤 ×62)/(2×MW難燃剤×(1+α)より多ければ、難燃剤の添加は有利であるが、DEGの生成量が多くなって耐熱性の低下が発生する。
[Formula 2]
AV oligomer x 31/1000 ≦ EG (g) ≦ AV oligomer x 62/1000
(In the formula, A V -o ligomer is the acid value of the oligomer, and the unit is (KOH equivalent) / (1 kg polymer).)
When the amount (g) of EG added at the time of adding the flame retardant is less than 0.2 × flame retardant (g) × (FN flame retardant × 62) / (MW flame retardant ) × (1 + α), it is added. The flame retardant has a high viscosity and is difficult to be charged into the reaction tank, and the esterification reaction of the flame retardant becomes difficult. The amount of EG charged (g) is 3 x flame retardant (g) x ( Addition of a flame retardant is advantageous if it is more than FN flame retardant x 62) / (2 x MW flame retardant ) x (1 + α), but the amount of DEG produced increases and heat resistance is reduced.

4.ジエチレングリコール(以下「DEG」という)の含量調整
TPA工法によるポリエステル生産の際にDEGの含量が多くなると、ポリマーの耐熱性が低下するという問題点がある。DEGの生成量は反応物の酸度(acidity)が高いほど多くなるので、酸度を下げるための方法が必要である。
4). Adjustment of the content of diethylene glycol (hereinafter referred to as “DEG”) If the content of DEG increases during the production of polyester by the TPA method, there is a problem that the heat resistance of the polymer decreases. Since the amount of DEG produced increases as the acidity of the reactant increases, a method for lowering the acidity is required.

本発明者らが酸度を下げるための方法として試験したことは、アルカリ物質を投入することと、化学式1で表されるリン系化合物を図1における反応槽5に投入することであったが、品質の安定性の面で後者がさらに有利であることが分かった。勿論、反応槽3または5にアルカリ性物質を投入し、或いは化学式1で表されるリン系化合物にアルカリ性物質を投入することは本発明から排除されない。   What the inventors have tested as a method for lowering the acidity was to introduce an alkaline substance and to introduce a phosphorus compound represented by Chemical Formula 1 into the reaction vessel 5 in FIG. The latter was found to be more advantageous in terms of quality stability. Of course, it is not excluded from the present invention that an alkaline substance is introduced into the reaction tank 3 or 5 or an alkaline substance is introduced into the phosphorus compound represented by the chemical formula 1.

化学式1で表されるリン系化合物を図1における反応槽5に投入することにおいて、DEGの含量を重合物対比3.0重量%以下にしてこれを均一に保つことが、物性の低下を防止し且つ紡糸や仮撚、染色などにおける問題がなくて好ましい。   By introducing the phosphorus compound represented by Chemical Formula 1 into the reaction vessel 5 in FIG. 1, it is possible to keep the DEG content 3.0% by weight or less compared to the polymer and keep it uniform to prevent deterioration of physical properties. In addition, there is no problem in spinning, false twisting, and dyeing, which is preferable.

化学式1のリン系化合物をスラリー保管槽2または反応槽3に投入すると、反応物の酸度が高くなってDEGが持続的に増加するという問題が生ずる。   When the phosphorus compound of Chemical Formula 1 is introduced into the slurry storage tank 2 or the reaction tank 3, the acidity of the reaction product becomes high, causing a problem that DEG increases continuously.

5.UV安定剤の選定
難燃性ポリエステル繊維は、用途が主にカーテンなどの室内装飾物なので、UV安定性が必要である。したがって、本発明者らはUV安定性に関する研究を行った。UV安定剤としては有機系、無機系の安定剤が多く開発されているが、機能性とコストの観点から、リン酸マンガンが最も適することが分かった。
5. Selection of UV stabilizers Flame retardant polyester fibers are primarily used for interior decorations such as curtains, so UV stability is required. Therefore, the inventors conducted research on UV stability. Many organic and inorganic stabilizers have been developed as UV stabilizers, but it has been found that manganese phosphate is most suitable from the viewpoint of functionality and cost.

ところが、リン酸マンガンはEGに溶解しないため、リン酸マンガンを反応系に直接投入すると、凝集が生じてポリマー内への異物形成が多く、その結果、紡糸時のパック圧上昇などの問題が発生することを発見した。したがって、本発明者らは、マンガン化合物を重合系内で生成させる方法を種々試験した結果、マンガン塩とリン系化合物とを別途投入することにより、解決が可能であることが分かった。   However, since manganese phosphate does not dissolve in EG, if manganese phosphate is added directly to the reaction system, agglomeration occurs and many foreign substances are formed in the polymer, resulting in problems such as an increase in pack pressure during spinning. I found it to be. Therefore, as a result of various tests on methods for producing a manganese compound in a polymerization system, the present inventors have found that a solution is possible by separately adding a manganese salt and a phosphorus compound.

また、UV安定剤として使用されたマンガン塩の含量は、重合物に対するマンガン原子換算で0.1〜500ppmが好ましく、さらに好ましくは0.2〜200ppmの範囲である。マンガン塩の含量が0.1ppm未満であると、目的するUV安定性を得ることが難しく、マンガン塩の含量が500ppmを超えると、分散性に問題が生じ、これにより紡糸時のパック圧上昇などの問題が生ずる。   Further, the content of the manganese salt used as the UV stabilizer is preferably 0.1 to 500 ppm, more preferably 0.2 to 200 ppm in terms of manganese atom relative to the polymer. If the manganese salt content is less than 0.1 ppm, it is difficult to obtain the desired UV stability, and if the manganese salt content exceeds 500 ppm, a problem occurs in dispersibility, thereby increasing the pack pressure during spinning, etc. Problem arises.

また、マンガン塩と共に投入されるリン系化合物の含量は、ポリマーに対するリン原子換算で0.1〜500ppmの範囲がよい。さらに好ましくは0.2〜200ppmの範囲がよい。リン系物質はマンガン塩との反応が問題にならない限りは添加してもよいが、リン系物質の含量が500ppmを超えると、触媒の活性が低下して重合工程性が低下する。   The content of the phosphorus compound added together with the manganese salt is preferably in the range of 0.1 to 500 ppm in terms of phosphorus atom relative to the polymer. More preferably, the range is 0.2 to 200 ppm. The phosphorus-based material may be added as long as the reaction with the manganese salt does not cause a problem. However, when the content of the phosphorus-based material exceeds 500 ppm, the activity of the catalyst decreases and the polymerization processability decreases.

6.共重合単量体の追加投入
ポリエステル重合物は、多様な機能性を与えるために第3の共重合単量体が多く用いられている。本発明で目標とする難燃性ポリエステルも、機能性付与のために第3の共重合単量体の投入が可能である。本発明で使用可能な共重合単量体としては次のようなものがある。
6). Addition of comonomer The polyester copolymer is often the third comonomer in order to provide various functions. The flame-retardant polyester targeted in the present invention can also be charged with a third comonomer for imparting functionality. Examples of the comonomer that can be used in the present invention include the following.

ジカルボン酸またはそのエステル形成誘導体としては、例えばイソフタル酸、ビフェニルジカルボン酸、2,6−ナフタレンジカルボン酸、1,5−ナフタレンジカルボン酸などの芳香族ジカルボン酸、またはこれらのエステル形成誘導体、例えば1,4−シクロヘキサンジカルボン酸などの脂環族ジカルボン酸および炭素数2〜6のアルキルジカルボン酸、またはこれらのエステル形成誘導体もしくはこれらのアシルクロライドなどを使用することができる。   Examples of the dicarboxylic acid or its ester-forming derivative include aromatic dicarboxylic acids such as isophthalic acid, biphenyldicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, and ester-forming derivatives thereof such as 1, Alicyclic dicarboxylic acids such as 4-cyclohexanedicarboxylic acid and alkyl dicarboxylic acids having 2 to 6 carbon atoms, or ester-forming derivatives thereof, acyl chlorides thereof, and the like can be used.

経済性と難燃性ポリエステルの物性を大幅低下させないためには、全体ジカルボン酸に対するテレフタル酸のモル比は70%以上であることが好ましい。70モル%未満であると、溶融点やガラス転移温度などが低くなって成形性の問題が生じ、一部の高価共重合モノマーを使用する場合、その製造コストが高くなる。   In order not to significantly reduce the economic properties and the physical properties of the flame-retardant polyester, the molar ratio of terephthalic acid to the total dicarboxylic acid is preferably 70% or more. If it is less than 70 mol%, the melting point, the glass transition temperature, etc. are lowered, causing the problem of moldability, and when some expensive copolymerization monomers are used, the production cost is increased.

また、グリコール成分としては、例えば1,2−プロパンジオール、1,3−プロパンジオール、1,3−ブタンジオール、1,4−ブタンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオールなどのアルカンジオール、例えば1,4−シクロヘキサンジオール、1,4−シクロヘキサンジメタノールなどの脂環族グリコール、例えばビスフェノールA、ビスフェノールSなどの芳香族グリコール、および芳香族ジオールのエチレンオキシドまたはプロピレンオキシド付加物などである。特に適正なポリマーの物性を発現させるためには、全体ポリマーグリコール成分中のエチレングリコールのモル比は70%以上であることが良い。   Examples of the glycol component include 1,2-propanediol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, and the like. Alkanediols such as 1,4-cyclohexanediol, alicyclic glycols such as 1,4-cyclohexanedimethanol, aromatic glycols such as bisphenol A and bisphenol S, and ethylene oxide or propylene oxide adducts of aromatic diols, etc. It is. In particular, in order to develop proper polymer properties, the molar ratio of ethylene glycol in the total polymer glycol component is preferably 70% or more.

7.反応槽内の反応性のためのTPAを含むジカルボン酸とEGを含むグリコールとのモル比
ジカルボン酸とグリコールとのモル比(グリコール/ジカルボン酸のモル比)は1.01〜2.0が良い。モル比が1.01より低い場合には、エステル化反応が行われ難くて反応率が低く、反応されずに残存するジカルボン酸の量が多くて重合工程中のフィルター取替周期などが短くなるうえ、重合物内に異物として残存して製品の透明性、ヘイズなどの光学特性が低下し、紡糸工程中のパック圧が急上昇するという問題点などを示し易い。一方、モル比が2.0より高いと、重合工程中の還流塔の容量を超過する場合が発生して工程が不安定であり、重合物および製品の耐熱性低下の要因となるDEGの生成が多くなって重合物の後工程に不利になる。
7). Molar ratio of dicarboxylic acid containing TPA and glycol containing EG for reactivity in the reaction vessel The molar ratio of dicarboxylic acid to glycol (mole ratio of glycol / dicarboxylic acid) is preferably 1.01 to 2.0. . When the molar ratio is lower than 1.01, the esterification reaction is difficult to perform and the reaction rate is low, the amount of dicarboxylic acid remaining without being reacted is large, and the filter replacement period in the polymerization process is shortened. In addition, it is easy to show the problem that the product remains as a foreign substance in the polymer, the optical properties such as transparency and haze of the product are lowered, and the pack pressure rapidly increases during the spinning process. On the other hand, when the molar ratio is higher than 2.0, the capacity of the reflux tower in the polymerization process may be exceeded, the process becomes unstable, and the formation of DEG which causes a decrease in the heat resistance of the polymer and the product. This is disadvantageous for the subsequent process of the polymer.

8.重縮合触媒
重合触媒としては、一般的なポリエステル重合に用いられる触媒を使用することができ、例えば三酸化アンチモン(antimony trioxide)、三酢酸アンチモンなどのアンチモン化合物、および例えばテトラブチルチタン、テトライソプロピルチタンなどのチタン化合物などを用いることができる。
8). Polycondensation catalyst As the polymerization catalyst, a catalyst used in general polyester polymerization can be used, for example, antimony trioxide, antimony compounds such as antimony triacetate, and, for example, tetrabutyl titanium, tetraisopropyl titanium. Titanium compounds such as can be used.

これら触媒の含量は、ポリマー重量に対する金属含量換算で10〜1,000ppmが適する。触媒の含量が10ppm未満であると、触媒の活性があまり低く、触媒の含量が1,000ppm超過であると、これらの触媒が異物を形成するうえ、製造コストが上昇するという問題点などが生ずる。   The content of these catalysts is suitably 10 to 1,000 ppm in terms of metal content relative to the polymer weight. If the catalyst content is less than 10 ppm, the activity of the catalyst is too low, and if the catalyst content is more than 1,000 ppm, these catalysts form foreign matter and the production cost increases. .

9.添加剤
製造される難燃性ポリエステル重合物としては、用途に合わせて様々な添加剤を投入することも可能である。重合物の色相を改善するために、コバルトアセテートなどの無機金属塩または有機顔料を調色剤として使用することができる。繊維として使用するために、二酸化チタンを100〜30,000ppm投入することも可能であり、シリカまたは硫酸バリウムを100〜30,000ppm投入することも可能である。これら無機添加剤の投入量および投入方法は、一般ポリエステルを繊維用に利用するときの通常の投入量と投入方法に従って適用可能である。
9. Additives As the flame-retardant polyester polymer to be produced, various additives can be added depending on the application. In order to improve the hue of the polymer, an inorganic metal salt such as cobalt acetate or an organic pigment can be used as a toning agent. In order to use as a fiber, it is also possible to introduce 100 to 30,000 ppm of titanium dioxide and 100 to 30,000 ppm of silica or barium sulfate. The input amount and the input method of these inorganic additives can be applied in accordance with the normal input amount and input method when a general polyester is used for fibers.

以下、実施例を挙げて本発明を具体的に説明する。本発明はこれらの実施例に限定されるものではない。   Hereinafter, the present invention will be specifically described with reference to examples. The present invention is not limited to these examples.

実施例の説明に先立ち、繊維の性能評価方法などについて述べる。   Prior to the description of the examples, a fiber performance evaluation method and the like will be described.

極限粘度(IV):フェノールと1,1,2,2−テトラクロロエタンの6:4重量比の溶液に溶解させて20℃でウベローデ管を用いて測定する。   Intrinsic viscosity (IV): It is dissolved in a 6: 4 weight ratio solution of phenol and 1,1,2,2-tetrachloroethane and measured at 20 ° C. using an Ubbelohde tube.

融点(T):示差走査熱量計(Differential Scanning Calorimetry、Perkin Elmer DSC7)で測定する。 Melting point (T m ): Measured with a differential scanning calorimeter (Perkin Elmer DSC7).

DEG:トリエタノールアミンによって重合物を分解してガスクロマトグラフィーで分析する。   DEG: The polymer is decomposed with triethanolamine and analyzed by gas chromatography.

UV安定性:製造された重合物をガラス板に延ばしておき、Q−Panel社のQUVで48時間UVに曝露して極限粘度を測定し、極限粘度維持率で評価する。   UV stability: The produced polymer is stretched on a glass plate, exposed to UV for 48 hours with Q-Panel QUV, the intrinsic viscosity is measured, and the intrinsic viscosity maintenance rate is evaluated.

(初期の極限粘度−処理後の極限粘度)/初期の極限粘度×100
難燃性:繊維を編織して限界酸素指数(Limited Oxygen Index、LOI)で評価する。
(Initial intrinsic viscosity-intrinsic viscosity after treatment) / initial intrinsic viscosity x 100
Flame retardancy: The fiber is knitted and evaluated by the Limited Oxygen Index (LOI).

実施例1
TPA1300kg、EG560kgからスラリーを調製した。調製されたスラリーを、ビスヒドロキシエチルテレフタレート(Bishydroxyethyl terephthalate)およびその低分子量オリゴマー1.5トンが260℃で攪拌されているDE−1反応槽3に260℃を保ちながら3時間投入した。30分間還流しながら攪拌を行い続けたところ、エステル化反応率が97%に到達した。製造されたオリゴマー中の1.5トンをDE−1反応槽に残留させ、残りをDE−2反応槽へ移送した。DE−2反応槽5に、化学式1で表される物質のうちRがH、Rがフェニル基、Rが水素の難燃剤68kg(ポリエステル重合物に対するリン原子換算で6500ppm、実施例2〜4でも同じく)をEG68kgと常温で混合して投入し、UV安定剤調製用のマンガン塩とリン系化合物として、酢酸マンガンとリン酸とをそれぞれマンガン原子換算とリン原子換算とで22ppm、100ppm投入し、消光剤としてのチタニウムジオキシドをポリマーに対して0.3重量%添加して260℃で攪拌した後、DE−2反応槽5にあるオリゴマー全体を重縮合反応槽へ移送し、しかる後、EGに2重量%で溶けている三酸化アンチモン溶液を200g投入して通常のPET重縮合と同様に重縮合することにより、重合物を製造した。5回を同一に行って分子重合物分析結果の平均と範囲を表1に示した。
Example 1
A slurry was prepared from 1300 kg of TPA and 560 kg of EG. The prepared slurry was charged into DE-1 reaction vessel 3 in which 1.5 tons of bishydroxyethyl terephthalate and its low molecular weight oligomer were stirred at 260 ° C. for 3 hours while maintaining 260 ° C. When stirring was continued while refluxing for 30 minutes, the esterification reaction rate reached 97%. 1.5 tons in the produced oligomer was left in the DE-1 reactor, and the rest was transferred to the DE-2 reactor. In the DE-2 reaction tank 5, 68 kg of a flame retardant in which R 1 is H, R 2 is a phenyl group, and R 3 is hydrogen among the substances represented by Chemical Formula 1 (6500 ppm in terms of phosphorus atom relative to the polyester polymer, Example 2) EG 68 kg mixed with EG 68 kg at room temperature, and manganese salt and phosphorous compound for preparing UV stabilizer, manganese acetate and phosphoric acid are 22 ppm and 100 ppm in terms of manganese atom and phosphorus atom, respectively. After adding 0.3% by weight of titanium dioxide as a quencher to the polymer and stirring at 260 ° C., the entire oligomer in the DE-2 reaction tank 5 is transferred to the polycondensation reaction tank. Thereafter, 200 g of an antimony trioxide solution dissolved in EG at 2% by weight was added and polycondensed in the same manner as ordinary PET polycondensation to produce a polymer. The average and the range of the molecular polymer analysis results are shown in Table 1.

実施例1では、下記数式1において、FN難燃剤は1であり、MW難燃剤は214であり、αは1である。また、EGの量は約7.88〜188kgであるので、下記数式1を満たす。 In Example 1, in Formula 1 below, the FN flame retardant is 1, the MW flame retardant is 214, and α is 1. Moreover, since the quantity of EG is about 7.88-188 kg, the following numerical formula 1 is satisfy | filled.

[数式1]
0.2×難燃剤(g)×(FN難燃剤 ×62)/(MW難燃剤×(1+α)≦EG(g)≦3×難燃剤(g)×(FN難燃剤 ×62)/(MW- 燃剤×(1+α)
(式中、FN難燃剤は難燃剤1モル当りカルボン酸基の数であり、MW難燃剤は難燃剤の分子量(g/モル)であり、αは難燃剤が固相であれば1、液相であれば0の定数である。)
また、実施例1では、ジカルボン酸とEGとのモル比は約1.15である。
[Formula 1]
0.2 x flame retardant (g) x (FN flame retardant x 62) / (MW flame retardant ) x (1 + α) ≤ EG (g) ≤ 3 x flame retardant (g) x (FN flame retardant x 62) / ( MW- flame retardant ) × (1 + α)
( Where FN flame retardant is the number of carboxylic acid groups per mole of flame retardant, MW flame retardant is the molecular weight of the flame retardant (g / mol), α is 1 if the flame retardant is a solid phase, 1 liquid If it is a phase, it is a constant of 0.)
In Example 1, the molar ratio of dicarboxylic acid to EG is about 1.15.

比較例1
化学式1で表される物質のうちRがH、Rがフェニル基、Rが水素の難燃剤68kg、TPA1300kgおよびEG560kgからスラリーを調製した。調製されたスラリーを、重合物と同一の組成で製造されたオリゴマーが260℃で攪拌されているDE−1反応槽3に260℃に保ちながら3時間投入した。30分間還流しながら攪拌を行い続けたところ、エステル化反応率が96.7%に到達した。製造されたオリゴマー中の1.5トンをDE−1反応槽3に残留させ、残りをDE−2反応槽へ移送した。DE−2槽に、UV安定剤調製用のマンガン塩とリン系化合物として酢酸マンガンとリン酸とをそれぞれ理論的な重合物に対するマンガン原子換算とリン原子換算とで22ppm、30ppm投入し、消光剤としてのチタニウムジオキシドをポリマーに対して0.3重量%添加して260℃で攪拌した後、DE−2反応槽5にあるオリゴマー全体を重縮合反応槽へ移送し、しかる後、EGに2重量%で溶けている三酸化アンチモン溶液を200g投入して通常のPET重縮合と同様に重縮合することにより、重合物を製造した。5回を同一に行って重合物分析結果の平均と範囲を表1に示した。
Comparative Example 1
A slurry was prepared from a flame retardant 68 kg, TPA 1300 kg and EG 560 kg in which R 1 is H, R 2 is a phenyl group, and R 3 is hydrogen among the substances represented by Chemical Formula 1. The prepared slurry was charged for 3 hours while keeping the temperature at 260 ° C. in the DE-1 reactor 3 in which the oligomer produced with the same composition as the polymer was stirred at 260 ° C. When stirring was continued while refluxing for 30 minutes, the esterification reaction rate reached 96.7%. 1.5 tons in the produced oligomer was left in the DE-1 reactor 3, and the rest was transferred to the DE-2 reactor. The DE-2 tank was charged with 22 ppm and 30 ppm of manganese salt and phosphoric acid as manganese compounds for preparation of UV stabilizers and phosphorous compounds in terms of manganese atom and phosphorus atom, respectively, with respect to the theoretical polymer. After adding 0.3% by weight of titanium dioxide to the polymer and stirring at 260 ° C., the entire oligomer in the DE-2 reaction tank 5 is transferred to the polycondensation reaction tank, and then added to the EG. A polymer was produced by adding 200 g of an antimony trioxide solution dissolved in% by weight and performing polycondensation in the same manner as ordinary PET polycondensation. The average and the range of the polymer analysis results are shown in Table 1.

表1に記載の通り、DEG含量の変化が大きく、これにより融点の変化も大きい。   As shown in Table 1, the change in DEG content is large, and the change in melting point is also large.

なお、比較例1では、ジカルボン酸とEGとのモル比は約1.07である。   In Comparative Example 1, the molar ratio of dicarboxylic acid to EG is about 1.07.

実施例2
リン系難燃剤とEGとを190℃で4時間反応させた後、DE−2反応槽に投入した以外は、実施例1と同様にして重合物を製造した。
Example 2
A polymer was produced in the same manner as in Example 1 except that the phosphorus-based flame retardant and EG were reacted at 190 ° C. for 4 hours and then charged into the DE-2 reaction tank.

参考例
リン系難燃剤とEGとを190℃で4時間反応させた後、重縮合反応槽に投入した以外は、実施例1と同様にして重合物を製造した。
Reference example 3
A polymer was produced in the same manner as in Example 1 except that the phosphorus-based flame retardant and EG were reacted at 190 ° C. for 4 hours and then charged into a polycondensation reaction tank.

比較例2
第2エステル化反応槽に、化学式1で表される物質のうちRがH、Rがフェニル基、Rが水素の難燃剤68kgをEGと混合せず、単独で投入した以外は、実施例1と同様にして重合物を製造した。
Comparative Example 2
In the second esterification reaction tank, except that 68 kg of a flame retardant in which R 1 is H, R 2 is a phenyl group, and R 3 is hydrogen among the substances represented by Chemical Formula 1 is not mixed with EG, A polymer was produced in the same manner as in Example 1.

実施例4
化学式1で表される物質をRがH、Rがフェニル基、Rがヒドロキシエチル基(−CHCHOH)の難燃剤として82kg投入した以外は、実施例1と同様にして重合物を製造した。
Example 4
Except for adding 82 kg of the substance represented by Chemical Formula 1 as a flame retardant having R 1 as H, R 2 as phenyl group, and R 3 as hydroxyethyl group (—CH 2 CH 2 OH), the same procedure as in Example 1 was performed. A polymer was produced.

比較例3
マンガン塩とリン化合物とを使用しない以外は、実施例1と同様にして重合物を製造した。
Comparative Example 3
A polymer was produced in the same manner as in Example 1 except that a manganese salt and a phosphorus compound were not used.

実施例5
実施例2によって製造された重合物を真空乾燥機で24時間乾燥させた。乾燥した重合物を用いて内径95mmの押出機を用いて紡糸温度280℃で押し出し、80℃で加熱された第1ゴデットローラ(Godet roller)速度を1350m/分とし、120℃で加熱された第2ゴデットローラの速度を4100m/分として75デニール/72フィラメントの繊維を直接紡糸延伸法で製造した。製造された原糸を用いてホース編み(Hose Knitting)して編織した後、限界酸素指数(LOI)を評価した。LOI指数は32であって、優れた難燃性を発揮した。
Example 5
The polymer prepared in Example 2 was dried in a vacuum dryer for 24 hours. The dried polymer was extruded at a spinning temperature of 280 ° C. using an extruder having an inner diameter of 95 mm, the first Godet roller heated at 80 ° C. was 1350 m / min, and the second heated at 120 ° C. A 75 denier / 72 filament fiber was produced by a direct spinning drawing method with a godet roller speed of 4100 m / min. The produced oxygen yarn was knitted by hose knitting, and then the limiting oxygen index (LOI) was evaluated. The LOI index was 32 and exhibited excellent flame retardancy.

Figure 0005132271
(平均/範囲で表記、範囲=最大値−最小値)
*1.時間:重縮合反応時間であって、触媒投入後から反応終了時までの時間(分)である。
Figure 0005132271
(Expressed as average / range, range = maximum value-minimum value)
* 1. Time: polycondensation reaction time, which is the time (minutes) from the introduction of the catalyst to the end of the reaction.

*2.IV:極限粘度であって、単位はdl/gである。   * 2. IV: Intrinsic viscosity, unit is dl / g.

*3.DEG:単位はwt%である。   * 3. DEG: The unit is wt%.

表1から分かるように、実施例らはいずれもDEGが3.0wt%以下であり、比較例3は、DEGが3.0wt%以下である。ところが、UV安定剤としてのマンガン塩およびリン系化合物を投入しないため、IV維持率が著しく低下した。   As can be seen from Table 1, all the Examples have a DEG of 3.0 wt% or less, and Comparative Example 3 has a DEG of 3.0 wt% or less. However, since the manganese salt and phosphorus compound as UV stabilizers were not added, the IV maintenance rate was significantly reduced.

本発明の一例を示す工程流れ図である。It is a process flowchart which shows an example of this invention.

符号の説明Explanation of symbols

1 調製槽
2 スラリー保管槽
3 第1エステル化反応槽(DE−1)
4 移送ラインフィルター
5 第2エステル化反応槽(DE−2)
6 移送ラインフィルター
7 重縮合反応槽
8 ペレタイザー(pelletizer)
DESCRIPTION OF SYMBOLS 1 Preparation tank 2 Slurry storage tank 3 1st esterification reaction tank (DE-1)
4 Transfer line filter 5 Second esterification reactor (DE-2)
6 Transfer line filter 7 Polycondensation reaction tank 8 Pelletizer

Claims (5)

テレフタル酸工法を用いる難燃性ポリエステル重合物の製造方法において、
反応原料であるテレフタル酸(TPA)とエチレングリコール(EG)のスラリーを調製する段階と、
前記スラリーを第1エステル化反応槽に投入してオリゴマーを生成する第1エステル化反応段階と、
前記第1エステル化反応段階で生成されたオリゴマーを第2エステル化反応槽へ移送し、下記化学式1で表されるリン系の難燃剤をポリエステル重合物に対するリン原子換算で500〜50,000ppm、エチレングリコール(EG)と混合して投入するとともに、UV安定剤としてのマンガン塩とリン酸とをそれぞれマンガン原子換算とリン原子換算とで0.1〜500ppm投入して難燃性オリゴマーを生成する第2エステル化反応段階と、
前記第2エステル化反応段階で生成されたオリゴマーを移送して重縮合する段階と、を含むことを特徴とする難燃性ポリエステル重合物の製造方法。
[化学式1]
Figure 0005132271

(式中、Rは水素または炭素数1〜10のヒドロキシアルキル基であり、Rは水素、炭素数1〜10のアルキル基、または炭素数6〜24のアリール基であり、Rは水素、炭素数1〜10のアルキル基またはヒドロキシアルキル基である。)
In the method for producing a flame-retardant polyester polymer using the terephthalic acid method,
Preparing a slurry of terephthalic acid (TPA) and ethylene glycol (EG) as reaction raw materials;
A first esterification reaction stage in which the slurry is charged into a first esterification reaction tank to produce an oligomer;
The oligomer produced in the first esterification reaction stage is transferred to a second esterification reaction tank, and a phosphorus-based flame retardant represented by the following chemical formula 1 is converted to a phosphorus atom in terms of phosphorus atom of 500 to 50,000 ppm, While mixing with ethylene glycol (EG) and adding it, manganese salt and phosphoric acid as UV stabilizers are added in an amount of 0.1 to 500 ppm in terms of manganese atom and phosphorus atom, respectively, to produce a flame-retardant oligomer. A second esterification reaction stage;
And a step of transferring and polycondensing the oligomer produced in the second esterification reaction step.
[Chemical Formula 1]
Figure 0005132271

(Wherein R 1 is hydrogen or a hydroxyalkyl group having 1 to 10 carbon atoms, R 2 is hydrogen, an alkyl group having 1 to 10 carbon atoms, or an aryl group having 6 to 24 carbon atoms, and R 3 is Hydrogen, an alkyl group having 1 to 10 carbon atoms, or a hydroxyalkyl group.)
請求項1記載の難燃性ポリエステル重合物の製造方法において、
DEG(ジエチレングリコール)の含量を前記第2エステル化反応槽中のポリエステル重合物に対して3.0重量%以下とすることを特徴とする難燃性ポリエステル重合物の製造方法。
In the manufacturing method of the flame-retardant polyester polymer of Claim 1,
A method for producing a flame-retardant polyester polymer, wherein the content of DEG (diethylene glycol) is 3.0% by weight or less based on the polyester polymer in the second esterification reaction tank.
請求項1記載の難燃性ポリエステル重合物の製造方法において、
イソフタル酸、ビフェニルジカルボン酸、2,6−ナフタレンジカルボン酸、1,5−ナフタレンジカルボン酸、またはこれらのエステル形成誘導体、および脂環族ジカルボン酸、炭素数2〜6のアルキルジカルボン酸、またはこれらのエステル形成誘導体中から選択される少なくとも一つのジカルボン酸またはそのエステル形成誘導体を共重合単量体としてさらに投入することを特徴とする難燃性ポリエステル重合物の製造方法。
In the manufacturing method of the flame-retardant polyester polymer of Claim 1,
Isophthalic acid, biphenyl dicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, or ester-forming derivatives thereof, and alicyclic dicarboxylic acids, alkyl dicarboxylic acids having 2 to 6 carbon atoms, or these the method of producing a flame-resistant polyester polymer further characterized by introducing at least one dicarboxylic acid or ester-forming derivative thereof as comonomer chosen from ester-forming derivatives.
請求項1記載の難燃性ポリエステル重合物の製造方法において、
アルカンジオール、脂環族グリコール、芳香族グリコール、芳香族ジオール、およびプロピレンオキシド付加物の中から選択される少なくとも一つのグリコール成分を共重合単量体としてさらに投入することを特徴とする難燃性ポリエステル重合物の製造方法。
In the manufacturing method of the flame-retardant polyester polymer of Claim 1,
Flame retardancy characterized in that at least one glycol component selected from alkanediol, alicyclic glycol, aromatic glycol, aromatic diol, and propylene oxide adduct is further added as a comonomer. A method for producing a polyester polymer.
請求項1記載の難燃性ポリエステル重合物の製造方法において、
前記TPAを含むジカルボン酸とエチレングリコール(EG)とのモル比(グリコール/ジカルボン酸のモル比)が1.01〜2.0を満足することを特徴とする難燃性ポリエステル重合物の製造方法。
In the manufacturing method of the flame-retardant polyester polymer of Claim 1,
The method for producing a flame-retardant polyester polymer, wherein a molar ratio of the dicarboxylic acid containing TPA and ethylene glycol (EG) (glycol / dicarboxylic acid molar ratio) satisfies 1.01 to 2.0. .
JP2007297651A 2006-11-22 2007-11-16 Method for producing flame retardant polyester polymer Active JP5132271B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020060115769A KR100764378B1 (en) 2006-11-22 2006-11-22 Manufacturing method of flame retardant polyester polymer, polyester polymer and fiber therefrom
KR10-2006-0115769 2006-11-22

Publications (2)

Publication Number Publication Date
JP2008127570A JP2008127570A (en) 2008-06-05
JP5132271B2 true JP5132271B2 (en) 2013-01-30

Family

ID=39419389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007297651A Active JP5132271B2 (en) 2006-11-22 2007-11-16 Method for producing flame retardant polyester polymer

Country Status (5)

Country Link
JP (1) JP5132271B2 (en)
KR (1) KR100764378B1 (en)
CN (1) CN101186689B (en)
DE (1) DE102007056179B4 (en)
TW (1) TWI368625B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101735578B (en) * 2008-11-24 2011-08-03 中国石油天然气股份有限公司 Flame-retardant uvioresistant polyester composite material and preparation method thereof
CN102691131A (en) * 2012-06-19 2012-09-26 福建经纬新纤科技实业有限公司 Manufacturing equipment system of flame-retardant polyester fiber
CN102691130B (en) * 2012-06-19 2014-10-29 福建经纬新纤科技实业有限公司 Process for manufacturing fire-retardant polyester fiber
CN104178838B (en) * 2013-05-23 2018-01-02 东丽纤维研究所(中国)有限公司 Flame retardant polyester false twist fibers and its manufacture method
CN105985514B (en) * 2015-03-03 2018-11-30 东丽纤维研究所(中国)有限公司 A kind of preparation method of flame-retardant polyester composition
CN105177754B (en) * 2015-10-21 2017-08-01 东华大学 A kind of preparation method of high-strength fire-retarding polyester filament
CN116515094B (en) * 2023-07-04 2023-09-29 中国天辰工程有限公司 Preparation method of flame-retardant degradable polyester and degradable copolymerized flame retardant

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2346787C3 (en) 1973-09-17 1980-05-08 Hoechst Ag, 6000 Frankfurt Flame retardant linear polyesters, processes for their manufacture and their use
JPS5128894A (en) 1974-09-06 1976-03-11 Teijin Ltd NANNENSEI HORIESUTERU NO SEIZOHO
JPS5247891A (en) 1975-10-14 1977-04-16 Toyobo Co Ltd Phosphorus-containing flame retarders
JPS5346398A (en) 1976-10-07 1978-04-25 Teijin Ltd Flame retardant copolyester and its preparation
JPS60124648A (en) * 1983-12-09 1985-07-03 Nippon Ester Co Ltd Flame-resistant polyester composition
JPS626912A (en) 1985-07-02 1987-01-13 Nippon Ester Co Ltd Flameproofing polyester fiber structure
JPH0813877B2 (en) * 1986-06-17 1996-02-14 東レ株式会社 Manufacturing method of flame retardant polyester
US5180793A (en) 1991-12-31 1993-01-19 Hoechst Celanese Corporation Flame resistant, low pilling polyester fiber
JP3169104B2 (en) * 1993-09-30 2001-05-21 東洋紡績株式会社 Flame retardant polyester fiber
US5399428A (en) 1994-03-11 1995-03-21 Monsanto Company Flame retardant polyester copolymers
JP3313019B2 (en) * 1996-03-14 2002-08-12 ポリプラスチックス株式会社 Flame retardant polyester resin composition
JP3300613B2 (en) * 1996-09-12 2002-07-08 三井化学株式会社 Method for producing polyethylene terephthalate
KR100449383B1 (en) * 1997-06-26 2004-11-26 주식회사 휴비스 Manufacturing method of fire retardant polyester fiber having excellent mechanical properties
JPH1135667A (en) * 1997-07-18 1999-02-09 Nippon Ester Co Ltd Production of flame-retardant polyester
KR100370274B1 (en) * 1999-06-26 2003-01-29 주식회사 효성 Manufacturing process of nonflammable polyester
JP2002161131A (en) * 2000-11-29 2002-06-04 Mitsubishi Chemicals Corp Flame retardant polyester resin
JP4595309B2 (en) * 2003-10-17 2010-12-08 東レ株式会社 Production method of flame retardant polyester
KR20050037854A (en) * 2003-10-20 2005-04-25 에스케이씨 주식회사 Flame-retardant polyester film
KR101083773B1 (en) * 2004-04-27 2011-11-18 코오롱인더스트리 주식회사 A flame retardant polyester with excellent color tone, and a process of preparing the same
KR100561083B1 (en) * 2004-05-10 2006-03-15 주식회사 효성 Cation Dyeable flame retardant polyester polymer and manufacturing method thereof, and copolyester fiber prepared from said copolyester copolymer
KR20050116537A (en) * 2004-06-08 2005-12-13 주식회사 코오롱 A conjugated fiber with excellent flame retardant composed two component

Also Published As

Publication number Publication date
DE102007056179A1 (en) 2008-12-04
CN101186689A (en) 2008-05-28
TWI368625B (en) 2012-07-21
CN101186689B (en) 2012-10-03
JP2008127570A (en) 2008-06-05
DE102007056179B4 (en) 2017-11-09
KR100764378B1 (en) 2007-10-08
TW200833734A (en) 2008-08-16

Similar Documents

Publication Publication Date Title
JP5132271B2 (en) Method for producing flame retardant polyester polymer
JP4098787B2 (en) Cationic dye-dyeable and flame-retardant polyester polymer and process for producing the same
TW200521152A (en) Phosphorus-containing co-polyesters modified to be flame-retarding, their use and method of preparing them
JPH05230345A (en) Flame-resistant polyester
JP2009074088A (en) Flame-retardant cationically dyeable copolyester polymer, and method for manufacturing the same, and fiber thereof
KR100841175B1 (en) Atmospheric cationic dye dyeable copolyester polymer, manufacturing method thereof, and atmospheric cationic dye dyeable copolyester fiber using the same
JP4342211B2 (en) Polyester and method for producing the same
JP2001172823A (en) Flame-retardant polyester fiber and method for producing the same
JP2009161694A (en) Ordinary-pressure cation-dyeable polyester
CN114989406A (en) Application of non-metallic organic compound in synthesis of polyester by DMT method, DMT method functional copolyester and preparation method thereof
JPH1180340A (en) Production of flame-retardant polyester
KR100308541B1 (en) Manufacturing of Nonflammable Polyester Fiber
JP2005200520A (en) Polyester composition, method of manufacturing polyester bottle, and polyester bottle
KR101911385B1 (en) A method for manufacturing polycyclohexylene dimethylene terephthalate resin with an enhanced flexibility
KR0175691B1 (en) Process for preparing flame retardant polyester
JP5216971B2 (en) Method for producing cationic dyeable polyester fiber
JP2011144317A (en) Flame-retardant cation dyeable polyester composition
KR100370274B1 (en) Manufacturing process of nonflammable polyester
KR100341940B1 (en) Manufacturing process of nonflammable polyester
JP2001163962A (en) Fire retarding polyester resin composition and its manufacturing method
KR100236755B1 (en) Process for preparing flame-retardant polyester
JP2007119571A (en) Polyether ester elastomer and elastic fiber
JP2004323632A (en) Polyester and method for producing the same
KR980009312A (en) Manufacturing method of flame retardant polyester
JP2009024088A (en) Polyester resin for rubber reinforcing fiber, and method for producing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121023

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121106

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151116

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5132271

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250