JP5124690B2 - SiC epitaxial wafer - Google Patents

SiC epitaxial wafer Download PDF

Info

Publication number
JP5124690B2
JP5124690B2 JP2012062627A JP2012062627A JP5124690B2 JP 5124690 B2 JP5124690 B2 JP 5124690B2 JP 2012062627 A JP2012062627 A JP 2012062627A JP 2012062627 A JP2012062627 A JP 2012062627A JP 5124690 B2 JP5124690 B2 JP 5124690B2
Authority
JP
Japan
Prior art keywords
gas
sic
step bunching
substrate
sic epitaxial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012062627A
Other languages
Japanese (ja)
Other versions
JP2012142597A (en
Inventor
賢治 百瀬
裕 田島
泰之 坂口
道哉 小田原
佳彦 宮坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2012062627A priority Critical patent/JP5124690B2/en
Publication of JP2012142597A publication Critical patent/JP2012142597A/en
Application granted granted Critical
Publication of JP5124690B2 publication Critical patent/JP5124690B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明はSiCエピタキシャルウェハ、特に短いステップバンチングフリーのSiCエピタキシャルウェハに関するものである。 The present invention relates to a SiC epitaxial web Ha SiC epitaxial web Ha, particularly short step bunching free.

地球温暖化問題への対応として、省エネルギー技術の向上が求められている。多くの技術項目が取り上げられている中、電力変換時のエネルギーロスを低減するパワーエレクトロニクス技術は、基幹技術として位置づけられている。パワーエレクトロニクスは、従来シリコン(Si)半導体を用いて技術改良がなされ性能を向上させてきたが、シリコンの材料物性の限界からその性能向上も限界に近づきつつあると言われている。そのため、シリコンよりも物性限界を大きくとれる炭化珪素(SiC)に期待が集まっている。炭化珪素はシリコンに対して、例えば、バンドギャップは約3倍、絶縁破壊電界強度は約10倍、熱伝導度は約3倍という優れた物性を有しており、パワーデバイス、高周波デバイス、高温動作デバイス等への応用が期待されている。   Improvement of energy-saving technology is required as a response to the global warming problem. While many technical items are taken up, power electronics technology that reduces energy loss during power conversion is positioned as a core technology. Conventionally, power electronics have been improved by using silicon (Si) semiconductors to improve the performance. However, it is said that the performance improvement is approaching the limit due to the limitations of the physical properties of silicon. For this reason, there is an expectation for silicon carbide (SiC) that can take a physical property limit larger than that of silicon. Silicon carbide, for example, has excellent physical properties such as a band gap of about 3 times, a breakdown electric field strength of about 10 times, and a thermal conductivity of about 3 times that of silicon. Application to operating devices is expected.

SiCデバイスの実用化の促進には、高品質の結晶成長技術、高品質のエピタキシャル成長技術の確立が不可欠である。   In order to promote the practical application of SiC devices, it is essential to establish high-quality crystal growth technology and high-quality epitaxial growth technology.

SiCは多くのポリタイプを有するが、実用的なSiCデバイスを作製する為に主に使用されているのは4H−SiCである。SiCデバイスの基板としては昇華法等で作製したバルク結晶から加工したSiC単結晶ウェハを用い、通常、この上にSiCデバイスの活性領域となるSiCエピタキシャル膜を化学的気相成長法(CVD)によって形成する。エピタキシャル膜中には基板に用いているポリタイプと異なるポリタイプが混入しやすく、例えば、基板に4H−SiCを使った場合には3C−SiCや8H−SiCが混入する。エピタキシャル成長は、これらの混入を抑制するため、SiC単結晶基板を微傾斜させてステップフロー成長(原子ステップからの横方向成長)させて行うのが一般的である。   SiC has many polytypes, but 4H-SiC is mainly used to fabricate practical SiC devices. A SiC single crystal wafer processed from a bulk crystal produced by a sublimation method or the like is used as the substrate of the SiC device, and an SiC epitaxial film that becomes an active region of the SiC device is usually formed thereon by chemical vapor deposition (CVD). Form. A polytype different from the polytype used for the substrate is likely to be mixed in the epitaxial film. For example, when 4H—SiC is used for the substrate, 3C—SiC or 8H—SiC is mixed. Epitaxial growth is generally performed by performing a step flow growth (a lateral growth from an atomic step) with a slight inclination of the SiC single crystal substrate in order to suppress these contaminations.

<ステップバンチング及びその観察・評価>
SiC基板が2インチ程度までのサイズの場合、この微傾斜角度(オフ角)は主に8°が用いられてきた。このオフ角においてはウェハ表面のテラス幅が小さく、容易にステップフロー成長が得られる。しかし、オフ角が大きいほど、SiCインゴットから得られるウェハ枚数が少なくなる。そのため、3インチ以上のSiC基板においてはコスト削減の観点から、主に4°程度のオフ角のものが用いられている。4°程度のオフ角では、ウェハ表面のテラス幅が8°のオフ角の場合に比べて2倍になるため、ステップ端に取り込まれるマイグレーション原子の取り込まれ速度、すなわちステップ端の成長速度にバラツキが生じやすくなる。その結果、遅い成長速度を持つステップに速い成長速度を持つステップが追いついて合体し、ステップバンチングが発生する。特にエピタキシャル表面がSi面の場合、C面よりも表面原子のマイグレーションが抑えられるため、容易にステップバンチングを生じる。ここで、ステップバンチングとは、表面において原子ステップ(通常2〜10原子層程度)が集まって合体する現象をいい、この表面の段差自体を指すこともある。非特許文献1に典型的なステップバンチングが示されている。
<Step bunching and its observation and evaluation>
When the SiC substrate has a size of up to about 2 inches, the fine tilt angle (off angle) has been mainly 8 °. At this off angle, the terrace width on the wafer surface is small, and step flow growth can be easily obtained. However, the larger the off angle, the smaller the number of wafers that can be obtained from the SiC ingot. For this reason, an SiC substrate having an off angle of about 4 ° is mainly used for a SiC substrate of 3 inches or more from the viewpoint of cost reduction. At an off angle of about 4 °, the terrace width of the wafer surface is twice as large as that at an off angle of 8 °. Therefore, the migration rate of migration atoms incorporated at the step end, that is, the growth rate at the step end varies. Is likely to occur. As a result, a step with a fast growth rate catches up with a step with a slow growth rate and coalesces, and step bunching occurs. In particular, when the epitaxial surface is a Si surface, the migration of surface atoms is suppressed as compared with the C surface, so that step bunching occurs easily. Here, step bunching refers to a phenomenon in which atomic steps (usually about 2 to 10 atomic layers) gather on the surface and coalesce, and may also refer to the surface step itself. Non-Patent Document 1 shows a typical step bunching.

従来、ステップバンチングの観察・評価は、微分干渉顕微鏡等の光学顕微鏡と原子分解能を有する原子間力顕微鏡(AFM)との組み合わせで行われることが多かった(例えば、非特許文献1、2)。   Conventionally, observation / evaluation of step bunching has often been performed by a combination of an optical microscope such as a differential interference microscope and an atomic force microscope (AFM) having atomic resolution (for example, Non-Patent Documents 1 and 2).

<ガスエッチング及び原料ガスの供給>
SiC単結晶基板上にSiCエピタキシャル膜を成膜する際には従来、機械研磨を行った後、化学的機械研磨(CMP)及びガスエッチングを順に行ってSiC単結晶基板の表面処理を行った後、化学的気相成長法によりSiCエピタキシャル膜を成膜していた。ガスエッチングは、研磨工程に起因するダメージや研磨痕(スクラッチ)の除去や表面平坦化のために、前処理として1500℃程度の高温で主に水素ガスを用いてエッチングを行うものである。
<Gas etching and supply of source gas>
Conventionally, when a SiC epitaxial film is formed on a SiC single crystal substrate, after mechanical polishing, chemical mechanical polishing (CMP) and gas etching are sequentially performed to perform surface treatment of the SiC single crystal substrate. An SiC epitaxial film was formed by chemical vapor deposition. In the gas etching, etching is mainly performed using hydrogen gas at a high temperature of about 1500 ° C. as a pretreatment in order to remove damage caused by the polishing process, polishing marks (scratches), and planarize the surface.

ガスエッチングに際しては、SiCエピタキシャル膜の原料ガスであるプロパン(C)ガスを水素雰囲気に添加しながら行われていた(特許文献1、特許文献2の段落[0002]、および非特許文献3)。非特許文献3に示されているように、水素ガスエッチングは良好なエピタキシャル表面を得るためには必須とされているが、水素のみではSiドロップレットが発生してしまうことが示されており、Cを添加することで、その発生を抑制できる効果があるとされている。
しかしながら、研磨によるダメージや研磨痕(スクラッチ)が、ガスエッチング後の基板表面にも残留していると、その後、その基板表面に形成されたエピタキシャル膜中に異種ポリタイプや転位、積層欠陥などが導入されてしまうという問題があった。そこでこれを回避するために、ガスエッチング時間を延長してエッチング量を増加させすぎてしまうと、今度は基板表面で表面再構成が生じて、エピタキシャル成長開始前に基板表面にステップバンチングを生じさせてしまうという問題があった。
Gas etching was performed while adding propane (C 3 H 8 ) gas, which is a raw material gas for the SiC epitaxial film, to a hydrogen atmosphere (Patent Document 1, Paragraph [0002] of Patent Document 2, and Non-Patent Document). 3). As shown in Non-Patent Document 3, hydrogen gas etching is essential to obtain a good epitaxial surface, but it is shown that Si droplets are generated only by hydrogen, It is said that the addition of C 3 H 8 has an effect of suppressing the generation.
However, if damage or scratches (scratches) due to polishing remain on the substrate surface after the gas etching, then there are different polytypes, dislocations, stacking faults, etc. in the epitaxial film formed on the substrate surface. There was a problem of being introduced. Therefore, in order to avoid this, if the gas etching time is extended to increase the etching amount too much, this time, surface reconstruction occurs on the substrate surface, and step bunching occurs on the substrate surface before the start of epitaxial growth. There was a problem that.

そこで、このステップバンチングの発生を抑制するために、エッチング量を減少させる方法として、ガスエッチングに際して原料ガスであるシラン(SiH)ガスを水素ガスに添加しながら行う方法が提案された(特許文献2)。 Therefore, in order to suppress the occurrence of this step bunching, as a method for reducing the etching amount, there has been proposed a method in which silane (SiH 4 ) gas, which is a raw material gas, is added to hydrogen gas during gas etching (Patent Document). 2).

特許文献1及び2のいずれの方法においても、SiCエピタキシャル膜の原料ガスであるCガス、又は、SiHガスを添加してガスエッチングを行うが、ガスエッチング後にその添加ガスを排気することなく、そのまま続けて他方のガスを導入してSiCエピタキシャル膜の成膜工程に入る(特許文献1の図2、特許文献2の図4)。すなわち、SiCエピタキシャル膜の成長を開始する前に、SiC基板の表面に、プロパン(C)ガス、又は、シラン(SiH)ガスが既に存在する状態となっている。 In both methods of Patent Documents 1 and 2, gas etching is performed by adding C 3 H 8 gas or SiH 4 gas, which is a raw material gas of the SiC epitaxial film, and after the gas etching, the added gas is exhausted. Without continuing, the other gas is introduced and the SiC epitaxial film is formed (FIG. 2 of Patent Document 1 and FIG. 4 of Patent Document 2). That is, propane (C 3 H 8 ) gas or silane (SiH 4 ) gas already exists on the surface of the SiC substrate before starting the growth of the SiC epitaxial film.

このように特許文献1及び2に代表されるような現在一般に行われている方法では、SiCエピタキシャル膜の成長を開始するに際して、原料ガスであるCガス及びSiHガスの供給は同時には行なっていなかった。 As described above, in the currently generally performed methods represented by Patent Documents 1 and 2, when starting the growth of the SiC epitaxial film, the supply of the C 3 H 8 gas and the SiH 4 gas as the source gases are simultaneously performed. Did not do.

特許第4238357号公報Japanese Patent No. 4238357 特開2005−277229号公報JP 2005-277229 A

Mater. Sci. Forum 527-529, (2006) pp. 239-242Mater. Sci. Forum 527-529, (2006) pp. 239-242 Journal Cryst. Growth 291, (2006) pp. 370-374Journal Cryst. Growth 291, (2006) pp. 370-374 Journal Cryst. Growth 291, (2002) pp. 1213-1218Journal Cryst. Growth 291, (2002) pp. 1213-1218

原子分解能を有するAFM(以下「通常のAFM」という)は表面の原子配列を直接観察できるものの、最大観察範囲は10〜20μm□程度であり、それ以上の広範囲の測定は機構上困難である。しかしながら、SiCエピタキシャル膜表面のステップバンチングはウェハの端から端まで連続しているものと認識されていたため、光学顕微鏡と組み合わせることによって、そのAFMの機構上の欠点も特に不都合とされてはいなかった。   Although AFM having atomic resolution (hereinafter referred to as “normal AFM”) can directly observe the atomic arrangement on the surface, the maximum observation range is about 10 to 20 μm □, and measurement over a wide range beyond that is difficult due to the mechanism. However, since step bunching on the surface of the SiC epitaxial film was recognized as being continuous from end to end of the wafer, the mechanical defects of the AFM were not particularly inconvenient when combined with an optical microscope. .

また、非特許文献2においては、AFMよりも広範囲の200μm〜1mm□程度の範囲を観察するのに微分干渉顕微鏡が用いられている。しかし、この微分干渉顕微鏡では、ステップの高さを定量化することができず、また、特に倍率が大きいときに数nmの高さのステップを検出することができないという不都合があった。   In Non-Patent Document 2, a differential interference microscope is used to observe a range of about 200 μm to 1 mm □, which is wider than AFM. However, with this differential interference microscope, the step height cannot be quantified, and there is a disadvantage that a step having a height of several nm cannot be detected particularly when the magnification is large.

ステップバンチングはSiCエピタキシャル膜表面の平坦化を妨げるものであるから、SiCデバイスの高性能化のためにはその発生を抑制する必要がある。ステップバンチングは表面の段差であるため、特に、SiCエピタキシャル膜表面に酸化膜を形成し、その界面に通電させるMOSFETにおいて、その存在は動作性能および信頼性に致命的な影響を与える場合がある。そのため、従来からこのステップバンチングの抑制の研究は精力的に行われてきた。   Since step bunching hinders flattening of the surface of the SiC epitaxial film, it is necessary to suppress its generation in order to improve the performance of the SiC device. Since step bunching is a step in the surface, the presence of an oxide film on the surface of the SiC epitaxial film and the current flowing through the interface may have a fatal effect on the operating performance and reliability. Therefore, research on the suppression of step bunching has been energetically performed.

このMOSFETを含めたSiCパワーデバイスの活性領域は通常のAFMの測定範囲よりも大きい。そのため、優れた特性を有するデバイスを作製可能とするエピタキシャル成長表面を得るためには、通常のAFMあるいは微分干渉顕微鏡による評価では十分とは言えない。   The active region of the SiC power device including this MOSFET is larger than the normal AFM measurement range. For this reason, in order to obtain an epitaxially grown surface capable of producing a device having excellent characteristics, evaluation with a normal AFM or differential interference microscope is not sufficient.

また、上述の通り、ガスエッチングの際に原料ガスであるCガス、又は、SiHガスを添加して行うのが一般的であり、その後にその添加ガスを排気することなくそのまま続けて他方のガスを導入してSiCエピタキシャル膜の成膜工程を行っていた。この場合、これらの原料ガスの基板表面への供給は同時になされていなかった。水素ガスだけでエッチングを行う場合もあったが、原料ガスの基板表面への同時供給の重要性は認識されていなかった。 Further, as described above, it is common to add C 3 H 6 gas or SiH 4 gas, which is a raw material gas, during gas etching, and then continue without adding the added gas. Then, the other gas was introduced to perform the SiC epitaxial film forming process. In this case, these source gases have not been supplied to the substrate surface at the same time. Although etching may be performed using only hydrogen gas, the importance of simultaneous supply of source gas to the substrate surface has not been recognized.

<短いステップバンチング>
本発明者らは、高さ方向の感度がAFMと同程度であって、かつ、レーザー光を用い、微分干渉顕微鏡よりも広範囲を観察することができる光学式表面検査装置と、広範囲観察型のAFM(以下「広範囲観察型AFM」という)とを組み合わせて用いて、従来の方法でステップバンチングを抑制したとされたSiCエピタキシャルウェハの観察・評価を行い、通常のAFMや微分干渉顕微鏡では捉えることが困難なステップバンチングが表面の標準的な状態として存在することを見出した。
<Short step bunching>
The present inventors have developed an optical surface inspection apparatus capable of observing a wider range than a differential interference microscope, using a laser beam and having a sensitivity in the height direction similar to that of an AFM, and a wide-range observation type. In combination with AFM (hereinafter referred to as "wide-range observation type AFM"), SiC epitaxial wafers that have been considered to suppress step bunching by conventional methods are observed and evaluated, and captured by ordinary AFMs and differential interference microscopes. It was found that difficult step bunching exists as a standard state of the surface.

新たに存在を明らかにしたステップバンチングは、平均100μm程度の間隔で存在し、[1−100]方向に100〜500μmの長さを有していた。また、後述するが、このステップバンチングは、らせん転位が成長表面に現れて形成されるシャローピットが表面に段差を形成し、それが原因で発生するものであり、らせん転位は元々、エピタキシャル成長膜の基板として用いるSiC単結晶基板中に含まれるものなので、基板起因と言えるものである。   The step bunchings that have been newly clarified existed at an average interval of about 100 μm and had a length of 100 to 500 μm in the [1-100] direction. As will be described later, this step bunching is caused by shallow pits formed by screw dislocations appearing on the growth surface and forming steps on the surface, and screw dislocations are originally formed in the epitaxially grown film. Since it is contained in the SiC single crystal substrate used as a substrate, it can be said that it originates in the substrate.

他方、従来既知のステップバンチング(以下、「従来のステップバンチング」という)は平均1.5μm程度の間隔で存在し、[1−100]方向に5mm以上の長さを有するものである(なお、本明細書では、ミラー指数の表記において、“−”はその直後の指数につくバーを意味する)。また、その発生は元々、SiC単結晶基板の表面はオフ角度があるため、表面にはそれに対応した原子ステップがあり、この原子ステップはエピタキシャル成長、あるいはガスエッチングの過程で移動するが、ステップ間でこの移動速度にばらつきが生じるとこれらのステップ同士がお互い合体して生ずるものであり、基板中の転位には関係なく発生するものである。   On the other hand, conventionally known step bunching (hereinafter referred to as “conventional step bunching”) is present at an average interval of about 1.5 μm and has a length of 5 mm or more in the [1-100] direction (note that In this specification, in the notation of Miller index, “-” means a bar attached to the index immediately after that). Moreover, since the surface of the SiC single crystal substrate originally has an off angle, there is an atomic step corresponding to the surface, and this atomic step moves during the process of epitaxial growth or gas etching. When the movement speed varies, these steps are combined with each other, and occur regardless of dislocations in the substrate.

そこで、本明細書では、新たにその存在を明らかにしたステップバンチングを従来のステップバンチングと区別して、「短いステップバンチング」と記載する。   Therefore, in the present specification, step bunching whose presence has been newly clarified is described as “short step bunching” in distinction from conventional step bunching.

図1に、通常のAFM(Veeco Instrument社製Dimension V)によって観察したSiCエピタキシャルウェハ表面の10μm□のAFM像(立体表示の表面斜視像)を示す。図1(a)は従来のステップバンチングを示すAFM像であり、図1(b)は短いステップバンチングを示すAFM像である。   FIG. 1 shows a 10 μm square AFM image (stereoscopic surface perspective image) of the surface of an SiC epitaxial wafer observed by a normal AFM (Dimension V manufactured by Veeco Instrument). FIG. 1A is an AFM image showing conventional step bunching, and FIG. 1B is an AFM image showing short step bunching.

図1(b)に矢印Aで示したようなAFM像が得られた場合、又は、一画面の走査ではなくカンチレバーの数回の往復走査でこのようなAFM像の一部が得られた場合は、ノイズと判断されたり、又は、表面の標準的な状態を示すものではなく、たまたま特異な状態を有する領域を観察したものと判断されて、他の領域に移動して観察をするのが通常であった。そのため、短いステップバンチングは従来、通常のAFMや微分干渉顕微鏡においても観察されていたはずとも言えるが、少なくともSiCエピタキシャル膜表面の標準的な状態を示すものと認識されていなかったものである。   When an AFM image as indicated by an arrow A in FIG. 1B is obtained, or when a part of such an AFM image is obtained by several reciprocating scans of the cantilever instead of a single screen scan Is judged as noise, or does not indicate the standard state of the surface, it is determined that it has happened to observe an area that has a peculiar state, and it moves to another area for observation. It was normal. Therefore, although it can be said that short step bunching has been observed in conventional AFM and differential interference microscope, it has not been recognized as showing at least the standard state of the SiC epitaxial film surface.

図2に、本発明で用いた広範囲観察型AFM(キーエンス社製ナノスケールハイブリッド顕微鏡VN−8000)によって観察したSiCエピタキシャル膜表面の200μm□のAFM像を示す。
図2(a)は従来のステップバンチングを示すAFM像であり、図2(b)は短いステップバンチングを示すAFM像である。
FIG. 2 shows an AFM image of 200 μm □ on the surface of the SiC epitaxial film observed by the wide-area observation type AFM (Nanoscale Hybrid Microscope VN-8000 manufactured by Keyence Co., Ltd.) used in the present invention.
2A is an AFM image showing conventional step bunching, and FIG. 2B is an AFM image showing short step bunching.

従来のステップバンチングについては図2(a)に示すように、通常のAFM像と同様、平均1.5μm程度の間隔で存在することが観察できる。これに対して、図2(b)には2本のライン(矢印B、C)が等しい間隔で安定に観察されていることがわかる。200μm□という広範囲でこのようにステップが安定に観察できることは単なるノイズや特異な表面領域を示すものではないこと、そして、従来のステップバンチングとは性質の異なるステップバンチングの存在を裏付けるものである。   As shown in FIG. 2A, it can be observed that conventional step bunching exists at an average interval of about 1.5 μm, as in a normal AFM image. In contrast, FIG. 2B shows that two lines (arrows B and C) are observed stably at equal intervals. The fact that steps can be observed stably in a wide range of 200 μm □ does not indicate mere noise or a peculiar surface area, and confirms the existence of step bunching that is different from conventional step bunching.

短いステップバンチングの存在を他の表面検査装置でも確認するため、レーザー光を用いる光学式表面検査装置(KLA−Tencor社製Candela CS20)による観察を行った。この光学式表面検査装置は測定範囲が数μm□〜4インチ以上のウェハ全面と広範囲観察型AFMよりも大きいため、短いステップバンチングの密度を測定するのにも適している。   In order to confirm the presence of short step bunching with another surface inspection apparatus, observation was performed with an optical surface inspection apparatus using a laser beam (Candela CS20 manufactured by KLA-Tencor). This optical surface inspection apparatus is suitable for measuring the density of short step bunching because the measurement range is larger than the entire surface of the wafer having a measuring range of several μm □ to 4 inches or more and the wide-area observation type AFM.

本発明で用いる光学式表面検査装置(KLA−Tencor社製Candela CS20と同じ原理で表面検査をする装置)とは、レーザー光をウェハに対して斜めに入射して、ウェハ表面からの散乱光の強度、および反射光の強度と反射位置を検出するシステムを有することを特徴とするものである。ウェハの表面はスパイラルスキャンされる。反射位置は、ウェハ表面の凸凹をなぞるように変化するため、この位置情報からラフネス(表面粗さ)を算出することができる。ステップバンチングに対応した周期の表面ラフネス情報を抽出するため、100μmのフィルターを計算時に使用し、ウェハ表面の長周期のうねり情報を除去する。   The optical surface inspection apparatus used in the present invention (apparatus that performs surface inspection based on the same principle as CANDELA CS20 manufactured by KLA-Tencor) is a method in which laser light is incident on a wafer obliquely and scattered light from the wafer surface It has the system which detects intensity | strength, the intensity | strength of reflected light, and a reflective position, It is characterized by the above-mentioned. The surface of the wafer is spiral scanned. Since the reflection position changes so as to trace the unevenness of the wafer surface, roughness (surface roughness) can be calculated from this position information. In order to extract surface roughness information having a period corresponding to step bunching, a 100 μm filter is used in the calculation, and long-period waviness information on the wafer surface is removed.

ただし、ステップバンチングは[1−100]方向に並行であるため、スパイラルスキャン中、レーザー光とスキャン方向が並行になってしまう領域では、ステップが検出されない。そのため、ラフネス情報の算出には、一般的な極座標における55°〜125°と235°〜305°のそれぞれ70°の範囲を選択する。また、スパイラルスキャンの中心はほとんどレーザー光が動かない特異点になってしまうため、その付近における反射光の位置情報は、ラフネスを反映しなくなる。そのため、中心のφ10mmの範囲は算出領域から除外した。このようにして設定される計算範囲はウェハ全面の約35%であるが、ステップバンチングについて、この範囲のモフォロジーは、ウェハ全面をほぼ反映している。このようにして計算されたラフネスは、AFMを用いて測定されたラフネスと相関があることから、実際の表面モフォロジーに即したものであることがわかる。   However, since step bunching is parallel to the [1-100] direction, a step is not detected in a region where the laser beam and the scanning direction are parallel during spiral scanning. Therefore, for the calculation of roughness information, a range of 70 ° between 55 ° to 125 ° and 235 ° to 305 ° in general polar coordinates is selected. Further, since the center of the spiral scan is a singular point where the laser beam hardly moves, the position information of the reflected light in the vicinity does not reflect the roughness. Therefore, the central φ10 mm range was excluded from the calculation area. The calculation range set in this way is about 35% of the entire wafer surface. However, with respect to step bunching, the morphology in this range almost reflects the entire wafer surface. Since the roughness calculated in this way has a correlation with the roughness measured using the AFM, it can be seen that the roughness is in accordance with the actual surface morphology.

<短いステップバンチングの発生起源>
図3に、光学式表面検査装置で短いステップバンチングが観察されたSiCエピタキシャルウェハの微分干渉顕微鏡による観察結果を示す。矢印で示すように、顕著なシャローピットとそれに付随した短いステップバンチングを確認することができる。エピ層表面におけるシャローピットの深さは6.3nmであった。
<Origin of short step bunching>
FIG. 3 shows the observation result of the SiC epitaxial wafer in which short step bunching is observed with the optical surface inspection apparatus, using a differential interference microscope. As shown by the arrows, a noticeable shallow pit and accompanying short step bunching can be confirmed. The depth of the shallow pits on the epilayer surface was 6.3 nm.

さらに、図4に、このシャローピットの起源を確認するためにKOHエッチングを行った後の微分干渉顕微鏡による観察結果を示す。矢印でその一部を示すように、らせん転位の存在と付随する短いステップバンチングを確認できる。このことから、短いステップバンチングは、表面に発生したシャローピットの段差によってステップフォロー成長が阻害された結果、生じたものと推察できる。こうして、短いステップバンチングの発生の起源が基板から引き継がれたエピ層中のらせん転位に起因したシャローピットであることが理解できる。   Further, FIG. 4 shows an observation result by a differential interference microscope after performing KOH etching in order to confirm the origin of the shallow pit. As indicated by the arrows, the presence of screw dislocations and the accompanying short step bunching can be confirmed. From this, it can be inferred that the short step bunching occurred as a result of step follow growth being hindered by the step of the shallow pit generated on the surface. Thus, it can be understood that the origin of the short step bunching is the shallow pit caused by the screw dislocation in the epi layer inherited from the substrate.

以上の通り、本発明者らは、光学式表面検査装置と広範囲観察型AFMという従来とは異なる表面検査装置を組み合わせてSiCエピタキシャル膜表面を観察・評価することにより、この短いステップバンチングが表面の特異な状態ではなく、標準的な状態として存在することを見出した。そして、本発明者らは、鋭意研究を重ねた結果、短いステップバンチングの起源を明らかにすると共に、その発生を抑制して、ステップバンチングフリーのSiCエピタキシャルウェハを製造する方法に到達したのである。   As described above, the present inventors have observed this short step bunching on the surface by observing and evaluating the surface of the SiC epitaxial film by combining an optical surface inspection device and a surface inspection device different from the conventional one called a wide-range observation type AFM. It was found that it exists as a standard state, not a unique state. As a result of intensive studies, the present inventors have clarified the origin of short step bunching and suppressed the occurrence of the step bunching, thereby reaching a method for manufacturing a step bunching-free SiC epitaxial wafer.

この短いステップバンチングの存在が品質バラツキの主原因の一つであったものと考えられる。   The presence of this short step bunching is considered to be one of the main causes of quality variation.

また、本発明者は、SiCエピタキシャル膜の成膜において、SiC単結晶基板表面に炭化珪素のエピタキシャル成長に必要とされる量のSiHガスとCガスを同時に供給することの重要性を見出したのである。 In addition, the present inventor considers the importance of simultaneously supplying SiH 4 gas and C 3 H 8 gas in amounts necessary for epitaxial growth of silicon carbide on the surface of the SiC single crystal substrate in the formation of the SiC epitaxial film. I found it.

本発明は、上記事情を鑑みてなされたもので、ウェハの全面にステップバンチングがない、ステップバンチングフリーのSiCエピタキシャルウェハ及びその製造方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object thereof is to provide a step bunching-free SiC epitaxial wafer having no step bunching on the entire surface of the wafer and a method for manufacturing the same.

本発明者らは、従来のステップバンチングとその発生起源が異なり、SiC基板に起因するステップバンチングを発見することに始まって、まず、その基板起因のステップバンチングを発生させないために基板の研磨工程において必要な条件を見出した。そして、かかる条件で研磨したSiC単結晶基板にガスエッチングを施してSiC単結晶基板を準備し、このSiC単結晶基板を用いれば、炭化珪素のエピタキシャル成長に必要とされる量のSiHガス及びCガスを所定の濃度比で基板表面に同時に供給して成膜を行い、さらに供給を同時に停止してガスを除くまで基板温度を保持し、その後に降温することによって、ステップバンチングフリーのSiCエピタキシャルウェハが得られることを見出したのである。 The inventors of the present invention differed from the origin of conventional step bunching and started by discovering step bunching caused by the SiC substrate. First, in order to prevent generation of step bunching caused by the substrate, in the polishing process of the substrate I found the necessary conditions. Then, the SiC single crystal substrate polished under such conditions is subjected to gas etching to prepare a SiC single crystal substrate. If this SiC single crystal substrate is used, the amount of SiH 4 gas and C required for epitaxial growth of silicon carbide can be obtained. 3 H 8 gas is simultaneously supplied to the substrate surface at a predetermined concentration ratio to form a film. Further, the supply is stopped at the same time, the substrate temperature is maintained until the gas is removed, and then the temperature is lowered. It has been found that a SiC epitaxial wafer can be obtained.

エピタキシャル成長は、基板に用いているポリタイプと異なるポリタイプが混入することを抑制するために、SiC単結晶基板を微傾斜させてステップフロー成長(原子ステップからの横方向成長)させて行う。一般に、傾斜角度を0.4°以上とすることで、ステップ端を成長表面に出して、ステップフロー成長させている。本発明でも0.4°以上の傾斜角とすることが望ましい。
本発明は、ステップバンチングが生じやすい低オフ角度の基板である5°以下の場合に有効である。本発明の効果は、傾斜角度0.4°〜5°の範囲で有効であるが、傾斜角度2°以上の場合には基板上のテラス幅が狭く、ステップフロー成長が促進されて鏡面が得られやすいため、特に有効である。
さらに一般に販売されている4°オフの基板は、傾斜角度の規格範囲は3.5°〜4.5°であるが、この傾斜角範囲を持つ4°オフ基板に対して特に有効である。4°オフ基板は、鏡面が得られやすいということで従来用いられていた規格品である8°オフ基板に比べて単結晶から切り出す場合のロスが少ないため低価格である。そのため、4°オフ基板に本出願の技術を適用することにより、品質が良好でコストの低いエピタキシャルウエハを得ることができる。
Epitaxial growth is performed by performing a step flow growth (a lateral growth from an atomic step) with a slight inclination of the SiC single crystal substrate in order to suppress mixing of a polytype different from the polytype used for the substrate. In general, by setting the inclination angle to 0.4 ° or more, the step end is brought out on the growth surface and the step flow growth is performed. In the present invention, it is desirable that the inclination angle is 0.4 ° or more.
The present invention is effective in the case of 5 ° or less, which is a low off-angle substrate where step bunching easily occurs. The effect of the present invention is effective in the range of an inclination angle of 0.4 ° to 5 °. However, when the inclination angle is 2 ° or more, the terrace width on the substrate is narrow, and step flow growth is promoted to obtain a mirror surface. It is particularly effective because it is easily handled.
Furthermore, a 4 ° off substrate that is generally sold has a tilt angle specification range of 3.5 ° to 4.5 °, and is particularly effective for a 4 ° off substrate having this tilt angle range. The 4 ° off substrate is inexpensive because it has less loss when it is cut out from a single crystal than the 8 ° off substrate, which is a standard product that has been used in the past, because a mirror surface is easily obtained. Therefore, by applying the technique of the present application to a 4 ° off substrate, an epitaxial wafer with good quality and low cost can be obtained.

本発明は、以下の手段を提供する。
(1)0.4°〜5°のオフ角で傾斜させた4H−SiC単結晶基板上にSiCのエピタキシャル層を形成したSiCエピタキシャルウェハであって、短いステップバンチングがないことを特徴とするSiCエピタキシャルウェハ
炭化珪素のエピタキシャル成長に必要とされる量」とは、温度を上げた基板の表面では、基板からのSiとCの脱離(昇華)と、吸着(成長)とが同時に生じており、脱離>吸着の場合にはガスエッチング、脱離<吸着の場合には成長という形になるが、ガスエッチング(清浄化工程)の際にSiH及び/又はCを添加する場合にこれら原料ガスの量は少ないので、仮に原料ガスを添加していても優勢なガスエッチングが生じるだけであるので、ガスエッチング時のSiHガス及び/又はCの供給量との差異を明確にする意である。
また、SiHガスとCガスとを同時に供給することができるが、この場合において、「同時に供給」とは、完全に同一時刻であることまでは要しないが、数秒以内であることを意味する。後述する実施例で示した装置ではSiHガス及びCガス供給の時間差を5秒以内にすると、ステップバンチングの発生を抑制できた。同時供給がステップバンチングの発生にどのように関わるのかそのメカニズムは不明ではあるが、成膜開始初期における2種類の原料ガスの空間濃度分布に関係するものと推測される。この原料ガスの空間濃度分布は装置の形状・構成にも依存するので、許容される供給時間差を具体的な数値を述べることはできないが、当業者であれば、数秒単位の時間差でステップバンチングの発生を調べることで、同時供給が許容する時間差を見つけることができる。
また、この場合において、前記清浄化する工程を、前記水素雰囲気に、SiHガス及び/又はCガスを添加して行い、前記エピタキシャル成長させる工程は、前記添加したガスを排気した後に開始してもよい。
The present invention provides the following means.
(1) SiC epitaxial wafer in which an epitaxial layer of SiC is formed on a 4H—SiC single crystal substrate inclined at an off angle of 0.4 ° to 5 °, and has no short step bunching. Epitaxial wafer .
Amount required for epitaxial growth of silicon carbide” means that desorption (sublimation) and adsorption (growth) of Si and C from the substrate occur simultaneously on the surface of the substrate at an elevated temperature. away> adsorption when the gas etching, becomes the form of growth in the case of desorption <adsorption, the case of adding SiH 4 and / or C 3 H 8 in the gas etching (cleaning step) Since the amount of these source gases is small, only preferential gas etching occurs even if the source gas is added. Therefore, the difference from the supply amount of SiH 4 gas and / or C 3 H 8 at the time of gas etching is different. It is a will to clarify.
SiH 4 gas and C 3 H 8 gas can be supplied at the same time. In this case, “simultaneous supply” does not need to be completely the same time, but is within a few seconds. Means. In the apparatus shown in the examples described later, when the time difference between the SiH 4 gas supply and the C 3 H 6 gas supply was within 5 seconds, the occurrence of step bunching could be suppressed. The mechanism of how simultaneous supply relates to the occurrence of step bunching is unknown, but it is presumed to be related to the spatial concentration distribution of two types of source gases at the beginning of film formation. Since the spatial concentration distribution of this raw material gas also depends on the shape and configuration of the apparatus, it is not possible to describe a specific numerical value for the allowable supply time difference. However, those skilled in the art will recognize step bunching with a time difference of several seconds. By examining the occurrence, the time difference allowed by the simultaneous supply can be found.
Further, in this case, the cleaning step is performed by adding SiH 4 gas and / or C 3 H 8 gas to the hydrogen atmosphere, and the epitaxial growth step is started after exhausting the added gas. May be.

上記の構成によれば、ステップバンチングフリーのSiCエピタキシャルウェハを提供することができる。   According to said structure, a step bunching free SiC epitaxial wafer can be provided.

通常のAFMでSiCエピタキシャルウェハ表面のステップバンチングを観察した像であり、(a)従来のステップバンチング、(b)短いステップバンチング、を示す像である。It is the image which observed the step bunching of the SiC epitaxial wafer surface by normal AFM, and is an image which shows (a) conventional step bunching and (b) short step bunching. 広範囲観察型AFMでSiCエピタキシャルウェハ表面のステップバンチングを観察した像であり、(a)従来のステップバンチング、(b)短いステップバンチング、を示す像である。It is the image which observed the step bunching of the SiC epitaxial wafer surface with the wide observation type AFM, and is an image which shows (a) conventional step bunching and (b) short step bunching. 短いステップバンチングを含むSiCエピタキシャルウェハを微分干渉顕微鏡で観察した像である。It is the image which observed the SiC epitaxial wafer containing a short step bunching with the differential interference microscope. KOHエッチング後に図3で用いたウェハを微分干渉顕微鏡で観察した像である。It is the image which observed the wafer used in FIG. 3 after the KOH etching with the differential interference microscope. 広範囲観察型AFMでSiCエピタキシャルウェハ表面を観察した像であり、(a)本発明のSiCエピタキシャルウェハ、(b)従来のSiCエピタキシャルウェハ、を示す像である。It is the image which observed the SiC epitaxial wafer surface by wide observation type AFM, and is an image which shows (a) SiC epitaxial wafer of the present invention, and (b) conventional SiC epitaxial wafer. レーザー光を用いる光学式表面検査装置でSiCエピタキシャルウェハ表面を観察した像であり、(a)本発明のSiCエピタキシャルウェハ、(b)従来のSiCエピタキシャルウェハ、を示す像である。It is the image which observed the SiC epitaxial wafer surface with the optical surface inspection apparatus using a laser beam, (a) SiC epitaxial wafer of this invention, (b) The image which shows the conventional SiC epitaxial wafer. (a)本発明のSiC単結晶基板表面の断面を透過型電子顕微鏡で観察した像であり、(b)は(a)の拡大像である。(A) It is the image which observed the cross section of the SiC single crystal substrate surface of this invention with the transmission electron microscope, (b) is an enlarged image of (a). (a)従来のSiC単結晶基板表面の断面を透過型電子顕微鏡で観察した像であり、(b)は(a)の拡大像である。(A) It is the image which observed the cross section of the conventional SiC single crystal substrate surface with the transmission electron microscope, (b) is an enlarged image of (a). 比較例2のSiCエピタキシャルウェハ表面を(a)レーザー光を用いる光学式表面検査装置で観察した像であり、(b)広範囲観察型AFMで観察した像である。It is the image which observed the SiC epitaxial wafer surface of the comparative example 2 with the optical surface test | inspection apparatus which uses a laser beam (a), (b) It is the image observed with wide observation type AFM.

以下、本発明を適用した一実施形態であるSiCエピタキシャルウェハ及びその製造方法について、図面を用いて詳細に説明する。   Hereinafter, an SiC epitaxial wafer which is an embodiment to which the present invention is applied and a manufacturing method thereof will be described in detail with reference to the drawings.

[SiCエピタキシャルウェハ]
図5及び図6に、4°のオフ角で傾斜させた4H−SiC単結晶基板上にSiCのエピタキシャル層を成膜した、本発明の実施形態であるSiCエピタキシャルウェハを、広範囲観察型AFM及びレーザー光を用いる光学式表面検査装置(KLA−Tencor社製Candela CS20)で観察した結果を示す。
[SiC epitaxial wafer]
FIGS. 5 and 6 show a SiC epitaxial wafer according to an embodiment of the present invention in which a SiC epitaxial layer is formed on a 4H—SiC single crystal substrate tilted at an off angle of 4 °. The result observed with the optical surface inspection apparatus (Kandela CS20 by KLA-Tencor) using a laser beam is shown.

図5(a)は、本発明のSiCエピタキシャルウェハの表面の200μm□の広範囲観察型AFM像である。また、図5(b)に従来のSiCエピタキシャルウェハ表面の200μm□の広範囲観察型AFM像を示す。   FIG. 5A is a wide-range observation type AFM image of 200 μm □ on the surface of the SiC epitaxial wafer of the present invention. FIG. 5 (b) shows a 200 μm □ wide-range observation type AFM image of the surface of a conventional SiC epitaxial wafer.

本発明のSiCエピタキシャルウェハでは、全くステップが観察されなかった(ステップの線密度0本/mm−1)。このサンプルの他の領域についてもほとんどステップが観察されなかった。従って、短いステップバンチングを含めてステップバンチングフリーが実現されており、ステップの線密度は5mm−1以下であることがわかる。また、表面の二乗平均粗さRqは0.4nmであり、最大高低差Ryは0.7nmであった。同じサンプルでランダムに選んだ3個の領域の平均のRqは0.52nmであり、また、平均のRyは0.75nmであった。従って、観察した表面の二乗平均粗さRqが1.0nm以下であり、かつ、最大高低差Ryが3.0nm以下であることがわかる。 In the SiC epitaxial wafer of the present invention, no steps were observed (step linear density 0 / mm −1 ). Few steps were observed for other areas of this sample. Therefore, step bunching free including short step bunching is realized, and it can be seen that the step linear density is 5 mm −1 or less. Further, the root mean square roughness Rq was 0.4 nm, and the maximum height difference Ry was 0.7 nm. The average Rq of three regions randomly selected from the same sample was 0.52 nm, and the average Ry was 0.75 nm. Therefore, it can be seen that the observed root mean square roughness Rq is 1.0 nm or less and the maximum height difference Ry is 3.0 nm or less.

これに対して、従来のSiCエピタキシャルウェハでは、線密度340本/mm−1で多数のステップが合体したステップバンチングが観察された。このサンプルの他の3個の領域の平均のステップ線密度は362本/mm−1であった。また、ステップは観察範囲を超えて延びていることがわかる。
また、表面の二乗平均粗さRqは2.4nmであり、最大高低差Ryは3.6nmであった。同じサンプルでランダムに選んだ3個の領域の平均のRqは3.2nmであり、また、平均のRyは4.5nmであった。
On the other hand, in the conventional SiC epitaxial wafer, step bunching in which many steps were combined at a linear density of 340 lines / mm −1 was observed. The average step line density of the other three regions of this sample was 362 lines / mm −1 . It can also be seen that the steps extend beyond the observation range.
Further, the root mean square roughness Rq was 2.4 nm, and the maximum height difference Ry was 3.6 nm. The average Rq of three regions randomly selected from the same sample was 3.2 nm, and the average Ry was 4.5 nm.

図6(a)及び(b)にそれぞれ、図5(a)及び(b)の同一サンプルの1mm□範囲について、レーザー光を用いる光学式表面検査装置によって観察した像(以下「カンデラ像」という)を示す。
観察した表面の二乗平均粗さRqは、本発明のSiCエピタキシャルウェハでは1.2nmであった。従って、1.3nm以下であることがわかる。
これに対して、従来のSiCエピタキシャルウェハでは1.7nmであり、本発明と従来のSiCエピタキシャルウェハの表面平坦性に明らかな差異を有することがわかる。
FIGS. 6 (a) and 6 (b) are images observed by an optical surface inspection apparatus using laser light (hereinafter referred to as “candela image”) for the 1 mm □ range of the same sample in FIGS. 5 (a) and 5 (b), respectively. ).
The observed surface root mean square roughness Rq was 1.2 nm in the SiC epitaxial wafer of the present invention. Therefore, it can be seen that the thickness is 1.3 nm or less.
On the other hand, it is 1.7 nm in the conventional SiC epitaxial wafer, and it can be seen that there is a clear difference in surface flatness between the present invention and the conventional SiC epitaxial wafer.

[SiCエピタキシャルウェハの製造方法]
以下、本発明を適用した一実施形態であるSiCエピタキシャルウェハの製造方法について詳細に説明する。
[Manufacturing method of SiC epitaxial wafer]
Hereinafter, a manufacturing method of a SiC epitaxial wafer which is one embodiment to which the present invention is applied will be described in detail.

<研磨工程>
研磨工程では、4H−SiC単結晶基板をその表面の格子乱れ層が3nm以下となるまで研磨する。
本明細書中で、「格子乱れ層」とは、TEMの格子像(格子が確認できる像)において、SiC単結晶の原子層(格子)に対応する縞状構造又はその縞の一部が明瞭になっていない層をいう。
<Polishing process>
In the polishing step, the 4H—SiC single crystal substrate is polished until the lattice disorder layer on the surface becomes 3 nm or less.
In this specification, the “lattice disordered layer” is a TEM lattice image (image in which the lattice can be confirmed), and a striped structure corresponding to the atomic layer (lattice) of the SiC single crystal or a part of the stripe is clear. A layer that is not.

まず、「格子乱れ層」の存在及び特徴を説明するために、図7及び図8に、研磨工程後のSiC単結晶基板の表面近傍の透過型電子顕微鏡(TEM)像を示す。   First, in order to explain the existence and characteristics of the “lattice disordered layer”, FIGS. 7 and 8 show transmission electron microscope (TEM) images near the surface of the SiC single crystal substrate after the polishing step.

図7(a)、(b)は、本発明のSiC単結晶基板の例を示すTEM像である。
図7(a)で示したTEM像において表面の平坦性の乱れは観察できない。また、その拡大像である格子像(図7(b))において、最上層の原子層(格子)だけに乱れが観察され、その下の原子層(格子)からは明瞭な縞状構造が観察できる。矢印で挟まれた層が「格子乱れ層」である。
このTEM像から、表面の「格子乱れ層」が3nm以下であることが確認できる。
7A and 7B are TEM images showing examples of the SiC single crystal substrate of the present invention.
In the TEM image shown in FIG. 7A, the surface flatness disorder cannot be observed. In the lattice image (FIG. 7B), which is an enlarged image, disorder is observed only in the uppermost atomic layer (lattice), and a clear striped structure is observed from the lower atomic layer (lattice). it can. A layer sandwiched by arrows is a “lattice disorder layer”.
From this TEM image, it can be confirmed that the “lattice disordered layer” on the surface is 3 nm or less.

図8(a)、(b)は、3nm以上の格子乱れ層が表面に存在するSiC単結晶基板の例を示すTEM像である。
図8(a)で示したTEM像において明らかな表面平坦性の乱れが観察され、また、図8(a)で平坦に見える部分でも、その拡大像である格子像(図8(b))において、表面から6nm以上にわたって縞状構造の乱れが観察できる。
このTEM像において7nm程度の「格子乱れ層」(像中の右側の矢印で挟まれた層)が観察でき、このサンプルでは表面の「格子乱れ層」が3nm以下を達成できていないことがわかる。
FIGS. 8A and 8B are TEM images showing an example of a SiC single crystal substrate having a lattice disorder layer of 3 nm or more on the surface.
In the TEM image shown in FIG. 8A, a clear disturbance of surface flatness is observed, and a lattice image (FIG. 8B) which is an enlarged image of a portion which appears flat in FIG. 8A. In FIG. 5, the disturbance of the stripe structure can be observed over 6 nm from the surface.
In this TEM image, a “lattice disorder layer” of about 7 nm (a layer sandwiched between arrows on the right side in the image) can be observed, and it can be seen that the surface “lattice disorder layer” cannot achieve 3 nm or less in this sample. .

以下に、本工程の実施形態について説明する。
研磨工程は、通常ラップと呼ばれる粗研磨、ポリッシュとよばれる精密研磨、さらに超精密研磨である化学的機械研磨(以下、CMPという)など複数の研磨工程が含まれる。研磨工程は湿式で行われることが多いが、この工程で共通するのは、研磨布を貼付した回転する定盤に、研磨スラリーを供給しつつ、炭化珪素基板を接着した研磨ヘッドを押しあてて行われることである。本発明で用いる研磨スラリーは、基本的にはそれらの形態で用いられるが、研磨スラリーを用いる湿式研磨であれば形態は問わない。
Below, the embodiment of this process is described.
The polishing process includes a plurality of polishing processes such as rough polishing usually called lapping, precision polishing called polishing, and chemical mechanical polishing (hereinafter referred to as CMP) which is ultra-precision polishing. The polishing process is often performed in a wet manner, but the common process in this process is to apply a polishing head to which a silicon carbide substrate is bonded while supplying polishing slurry to a rotating surface plate to which a polishing cloth is attached. Is to be done. The polishing slurry used in the present invention is basically used in such a form, but the form is not limited as long as it is wet polishing using the polishing slurry.

砥粒として用いられる粒子はこのpH領域において溶解せず分散する粒子であればよい。本発明においては研磨液のpHが2未満であるのが好ましく、この場合、研磨粒子としてはダイヤモンド、炭化珪素、酸化アルミニウム、酸化チタン、酸化ケイ素などが使用できる。本発明において砥粒として用いられるのは平均径1〜400nm、望ましくは10〜200nm、さらに望ましくは10〜150nmの研磨粒子である。良好な最終仕上げ面を得るためには、粒子径の小さなものが安価に市販されている点でシリカが好適である。さらに好ましくはコロイダルシリカである。コロイダルシリカ等の研磨剤の粒径は、加工速度、面粗さ等の加工特性によって適宜選択することができる。より高い研磨速度を要求する場合は粒子径の大きな研磨材を使用することができる。面粗さが小さい、すなわち高度に平滑な面を必要とするときは小さな粒子径の研磨材を使用することができる。平均粒子径が400nmを超えるものは高価である割には研磨速度が高くなく、不経済である。粒子径が1nm未満のような極端に小さいものは研磨速度が著しく低下する。   The particles used as the abrasive grains may be particles that do not dissolve and disperse in this pH range. In the present invention, the pH of the polishing liquid is preferably less than 2. In this case, diamond, silicon carbide, aluminum oxide, titanium oxide, silicon oxide, or the like can be used as the abrasive particles. In the present invention, abrasive particles having an average diameter of 1 to 400 nm, preferably 10 to 200 nm, more preferably 10 to 150 nm are used as abrasive grains. In order to obtain a good final finished surface, silica is preferred in that small particles are commercially available at low cost. More preferred is colloidal silica. The particle size of an abrasive such as colloidal silica can be appropriately selected depending on processing characteristics such as processing speed and surface roughness. When a higher polishing rate is required, an abrasive having a large particle size can be used. When the surface roughness is small, that is, when a highly smooth surface is required, an abrasive having a small particle diameter can be used. Those having an average particle diameter exceeding 400 nm are expensive because they are expensive and the polishing rate is not high. When the particle diameter is extremely small such as less than 1 nm, the polishing rate is remarkably reduced.

研磨材粒子の添加量としては1質量%〜30質量%、望ましくは1.5質量%〜15質量%である。30質量%を超えると研磨材粒子の乾燥速度が速くなり、スクラッチの原因となる恐れが高くなり、また、不経済である。また、研磨材粒子が1質量%未満では加工速度が低くなりすぎるため好ましくない。   The addition amount of the abrasive particles is 1% by mass to 30% by mass, desirably 1.5% by mass to 15% by mass. If it exceeds 30% by mass, the drying speed of the abrasive particles becomes high, which increases the risk of causing scratches, and is uneconomical. Further, if the abrasive particles are less than 1% by mass, the processing speed becomes too low, which is not preferable.

本発明における研磨スラリーは水系研磨スラリーであり、20℃におけるpHは2.0未満、望ましくは1.5未満、さらに望ましくは1.2未満である。pHが2.0以上の領域では十分な研磨速度が得られない。一方で、スラリーをpH2未満とすることによって、通常の室内環境下においても炭化珪素に対する化学的反応性が著しく増加し、超精密研磨が可能になる。炭化珪素は研磨スラリー中にある酸化物粒子の機械的作用によって直接除去されるのではなく、研磨液が炭化珪素単結晶表面を酸化ケイ素に化学反応させ、その酸化ケイ素を砥粒が機械作用的に取り除いていくという機構であると考えられる。したがって研磨液組成を炭化珪素が反応しやすくなるような液性にすること、すなわちpHを2未満にすることと、砥粒として適度な硬度をもつ酸化物粒子を選定することはスクラッチ傷や加工変質層のない、平滑な面を得るために非常に重要である。   The polishing slurry in the present invention is a water-based polishing slurry, and the pH at 20 ° C. is less than 2.0, desirably less than 1.5, and more desirably less than 1.2. In the region where the pH is 2.0 or more, a sufficient polishing rate cannot be obtained. On the other hand, by making the slurry less than pH 2, the chemical reactivity with respect to silicon carbide is remarkably increased even under a normal indoor environment, and ultraprecision polishing becomes possible. The silicon carbide is not directly removed by the mechanical action of the oxide particles in the polishing slurry, but the polishing liquid causes the silicon carbide single crystal surface to chemically react with the silicon oxide, and the silicon oxide is mechanically treated by the abrasive grains. It is thought that it is a mechanism that removes it. Therefore, making the polishing composition liquid so that silicon carbide can easily react, that is, setting the pH to less than 2, and selecting oxide particles having an appropriate hardness as abrasive grains can cause scratches and scratches. It is very important to obtain a smooth surface without an altered layer.

研磨スラリーは、塩酸、硝酸、燐酸、硫酸からなる酸のうち、少なくとも1種類以上、望ましくは2種類以上を用いてpHを2未満になるよう調整する。複数の酸を用いることが有効であることの原因は不明であるが、実験で確かめられており、複数の酸が相互に作用し、効果を高めている可能性がある。酸の添加量としては、たとえば、硫酸0.5〜5質量%、燐酸0.5〜5質量%、硝酸0.5〜5質量%、塩酸0.5〜5質量%の範囲で、適宜、種類と量を選定し、pHが2未満となるようにするとよい。   The polishing slurry is adjusted to have a pH of less than 2 using at least one or more, preferably two or more, acids of hydrochloric acid, nitric acid, phosphoric acid, and sulfuric acid. The reason why it is effective to use a plurality of acids is unknown, but it has been confirmed by experiments, and there is a possibility that a plurality of acids interact with each other and enhance the effect. As the addition amount of the acid, for example, in a range of 0.5 to 5% by mass of sulfuric acid, 0.5 to 5% by mass of phosphoric acid, 0.5 to 5% by mass of nitric acid, and 0.5 to 5% by mass of hydrochloric acid, The type and amount are selected so that the pH is less than 2.

無機酸が有効であるのは有機酸に比べ強酸であり、所定の強酸性研磨液に調整するには極めて好都合であるためである。有機酸を使用したのでは強酸性研磨液の調整に困難が伴う。
炭化珪素の研磨は、強酸性研磨液によって炭化珪素の表面に生成した酸化膜に対する反応性により、酸化層を酸化物粒子により除去することで行われるが、この表面酸化を加速するために、研磨スラリーに酸化剤を添加すると更に優れた効果が認められる。酸化剤としては過酸化水素、過塩素酸、重クロム酸カリウム、過硫酸アンモニウムサルフェートなどが挙げられる。たとえば、過酸化水素水であれば0.5〜5質量%、望ましくは1.5〜4質量%加えることにより研磨速度が向上するが、酸化剤は過酸化水素水に限定されるものではない。
The inorganic acid is effective because it is a stronger acid than the organic acid and is extremely convenient for adjusting to a predetermined strongly acidic polishing liquid. If an organic acid is used, it is difficult to adjust the strongly acidic polishing liquid.
The polishing of silicon carbide is performed by removing the oxide layer with oxide particles due to the reactivity to the oxide film generated on the surface of silicon carbide by the strongly acidic polishing liquid. In order to accelerate this surface oxidation, polishing is performed. When an oxidizing agent is added to the slurry, a further excellent effect is recognized. Examples of the oxidizing agent include hydrogen peroxide, perchloric acid, potassium dichromate, ammonium persulfate sulfate, and the like. For example, in the case of hydrogen peroxide solution, the polishing rate is improved by adding 0.5 to 5% by mass, preferably 1.5 to 4% by mass, but the oxidizing agent is not limited to hydrogen peroxide solution. .

研磨スラリーは研磨材のゲル化を抑制するためにゲル化防止剤を添加することが出来る。ゲル化防止剤の種類としては、1−ヒドロキシエチリデン−1,1−ジホスホン酸、アミノトリエチレンホスホン酸等のリン酸エステル系のキレート剤が好適に用いられる。ゲル化防止剤は0.01〜6質量%の範囲、好ましくは0.05〜2質量%で添加するのがよい。   An anti-gelling agent can be added to the polishing slurry in order to suppress gelation of the abrasive. As the type of the gelation inhibitor, phosphate ester-type chelating agents such as 1-hydroxyethylidene-1,1-diphosphonic acid and aminotriethylenephosphonic acid are preferably used. The anti-gelling agent is added in the range of 0.01 to 6% by mass, preferably 0.05 to 2% by mass.

本発明の研磨工程において表面の格子乱れ層を3nm以下にするには、CMP前の機械研磨において加工圧力を350g/cm以下にし、直径5μm以下の砥粒を用いることによって、ダメージ層を50nmに抑えておくのが好ましく、さらにCMPにおいては、研磨スラリーとして平均粒子径が10nm〜150nmの研磨材粒子及び無機酸を含み、20℃におけるpHが2未満であるのが好ましく、研磨材粒子がシリカであって、1質量%から30質量%含むのがさらに好ましく、無機酸が塩酸、硝酸、燐酸、硫酸のうちの少なくとも1種類であるのがより好ましい。 In order to make the surface disordered layer of 3 nm or less in the polishing process of the present invention, the damage pressure is reduced to 50 nm by using a polishing pressure of 350 g / cm 2 or less and using abrasive grains having a diameter of 5 μm or less in mechanical polishing before CMP. Further, in CMP, the polishing slurry contains abrasive particles having an average particle size of 10 nm to 150 nm and an inorganic acid, and preferably has a pH of less than 2 at 20 ° C. Silica, more preferably 1 to 30% by mass, and more preferably at least one of inorganic acid, hydrochloric acid, nitric acid, phosphoric acid and sulfuric acid.

<清浄化(ガスエッチング)工程>
清浄化工程では、水素雰囲気下で、前記研磨後の基板を1400〜1600℃にしてその表面を清浄化(ガスエッチング)する。
<Cleaning (gas etching) process>
In the cleaning step, the polished substrate is cleaned (gas etching) at 1400 to 1600 ° C. in a hydrogen atmosphere.

以下、本工程の実施形態について説明する。
ガスエッチングは、SiC単結晶基板を1400〜1600℃に保持し、水素ガスの流量を40〜120slm、圧力を100〜250mbarとして、5〜30分間行う。
Hereinafter, an embodiment of this process will be described.
The gas etching is performed for 5 to 30 minutes by holding the SiC single crystal substrate at 1400 to 1600 ° C., setting the flow rate of hydrogen gas to 40 to 120 slm, and the pressure to 100 to 250 mbar.

研磨後のSiC単結晶基板を洗浄した後、基板をエピタキシャル成長装置例えば、量産型の複数枚プラネタリー型CVD装置内にセットする。装置内に水素ガスを導入後、圧力を100〜250mbarに調整する。その後、装置の温度を上げ、基板温度を1400〜1600℃、好ましくは1480℃以上にして、1〜30分間、水素ガスによって基板表面のガスエッチングを行う。かかる条件で水素ガスによるガスエッチングを行った場合、エッチング量は0.05〜0.4μm程度になる。   After the polished SiC single crystal substrate is cleaned, the substrate is set in an epitaxial growth apparatus, for example, a mass production type multiple planetary CVD apparatus. After introducing hydrogen gas into the apparatus, the pressure is adjusted to 100 to 250 mbar. Thereafter, the temperature of the apparatus is raised, the substrate temperature is set to 1400 to 1600 ° C., preferably 1480 ° C. or higher, and gas etching of the substrate surface is performed with hydrogen gas for 1 to 30 minutes. When gas etching with hydrogen gas is performed under such conditions, the etching amount is about 0.05 to 0.4 μm.

基板表面は研磨工程によりダメージを受けており、TEMにおいて「格子乱れ層」として検出できるダメージだけでなく、TEMによって検出できない格子の歪み等がさらに深くまで存在していると考えられる。ガスエッチングはこのようにダメージを受けた層(以下「ダメージ層」という)を除去することを目的としているが、ガスエッチングが十分ではなく、ダメージ層が残留すると、エピタキシャル成長層中に異種ポリタイプや転位、積層欠陥などが導入されてしまうし、また、エッチングを施しすぎると、基板表面で表面再構成が生じ、エピタキシャル成長開始前にステップバンチングを生じさせてしまう。そのため、ダメージ層とガスエッチング量とを最適化することが重要であるが、本発明者らは、鋭意研究の結果、ステップバンチングフリーのSiCエピタキシャルウェハの製造における十分条件として、基板表面の格子乱れ層を3nm以下にまで薄くした時のダメージ層と、上述のガスエッチング条件との組み合わせを見出したのである。   The surface of the substrate is damaged by the polishing process, and it is considered that not only damage that can be detected as a “lattice disorder layer” in the TEM but also distortion of the lattice that cannot be detected by the TEM exists. The purpose of gas etching is to remove the damaged layer (hereinafter referred to as “damage layer”). However, when the gas etching is not sufficient and the damaged layer remains, different types of polytypes and Dislocations, stacking faults, and the like are introduced, and if etching is performed too much, surface reconstruction occurs on the substrate surface, and step bunching occurs before the start of epitaxial growth. For this reason, it is important to optimize the damaged layer and the amount of gas etching. However, as a result of intensive studies, the present inventors have found that the substrate surface has a lattice disorder as a sufficient condition in the production of a step bunching-free SiC epitaxial wafer. They found a combination of the damage layer when the layer was thinned to 3 nm or less and the gas etching conditions described above.

清浄化(ガスエッチング)工程後の基板の表面について、光学式表面検査装置を用いてウェハ全面の35%以上の領域を解析したエピタキシャル層最表面の二乗平均粗さRqが1.3nm以下であることが確認できる。また、原子間力顕微鏡を用いて測定した場合、10μm□では1.0nm以下であり、また、200μm□では1.0nm以下であり、かつ200μm□に観察される長さ100〜500μmのステップバンチング(短いステップバンチング)における最大高低差Ryが3.0nm以下であることが確認できる。また、このステップの線密度が5mm−1以下であることが確認できる。
この後の成膜工程及び降温工程において、この基板表面の平坦性を維持することが重要となる。
About the surface of the substrate after the cleaning (gas etching) step, the root mean square roughness Rq of the outermost surface of the epitaxial layer obtained by analyzing an area of 35% or more of the entire wafer surface using an optical surface inspection apparatus is 1.3 nm or less. I can confirm that. In addition, when measured using an atomic force microscope, the step bunching is 1.0 nm or less at 10 μm □, 1.0 nm or less at 200 μm □, and 100 to 500 μm in length observed at 200 μm □. It can be confirmed that the maximum height difference Ry in (short step bunching) is 3.0 nm or less. Moreover, it can confirm that the linear density of this step is 5 mm <-1> or less.
It is important to maintain the flatness of the substrate surface in the subsequent film forming process and temperature lowering process.

水素ガスにSiHガス及び/又はCガスを添加することもできる。らせん転位に起因したシャローピットに短いステップバンチングが付随して発生する場合があるが、リアクタ内の環境をSiリッチにするため、0.009mol%未満の濃度のSiHガスを水素ガスに添加してガスエッチングを行うことにより、シャローピットの深さを浅くすることができ、シャローピットに付随する短いステップバンチングの発生を抑制できる。 SiH 4 gas and / or C 3 H 8 gas may be added to the hydrogen gas. Although short step bunching may occur along with shallow pits caused by screw dislocation, SiH 4 gas having a concentration of less than 0.009 mol% is added to hydrogen gas to make the environment in the reactor Si-rich. By performing gas etching, the depth of the shallow pit can be reduced, and the occurrence of short step bunching associated with the shallow pit can be suppressed.

<成膜(エピタキシャル成長)工程>
成膜(エピタキシャル成長)工程では、前記清浄化後の基板の表面に、炭化珪素のエピタキシャル成長に必要とされる量のSiHガスとCガスとを濃度比C/Siが0.7〜1.2で同時に供給して炭化珪素をエピタキシャル成長させる。
<Film formation (epitaxial growth) process>
In the film formation (epitaxial growth) step, SiH 4 gas and C 3 H 8 gas in an amount required for epitaxial growth of silicon carbide are added to the surface of the cleaned substrate at a concentration ratio C / Si of 0.7 to 0.7. At the same time in 1.2, silicon carbide is epitaxially grown.

また、上述したように、「同時に供給」とは、完全に同一時刻であることまでは要しないが、数秒以内であることを意味する。後述する実施例で示したアイクストロン社製Hot Wall SiC CVDを用いた場合、SiHガスとCガスの供給時間差が5秒以内であれば、ステップバンチングフリーのSiCエピタキシャルウェハが製造できた。 Further, as described above, “simultaneous supply” means that it is not necessary to be completely at the same time, but is within several seconds. In the case of using Hot Wall SiC CVD manufactured by Ixtron shown in the examples described later, if the difference in supply time between SiH 4 gas and C 3 H 8 gas is within 5 seconds, a step-bunching-free SiC epitaxial wafer can be manufactured. It was.

SiHガス及びCガスの各流量、圧力、基板温度はそれぞれ、15〜150sccm、3.5〜60sccm、80〜250mbar、1400〜1600℃の範囲で、膜厚とキャリア濃度の均一性、成長速度を制御しながら決定する。成膜開始と同時にドーピングガスとして窒素ガスを導入することで、エピタキシャル層中のキャリア濃度を制御することができる。成長中のステップバンチングを抑制する方法として成長表面におけるSi原子のマイグレーションを増やすために、供給する原料ガスの濃度比C/Siを低くすることが知られているが、本発明ではC/Siは0.7〜1.2である。また、成長速度は毎時3〜20μm程度である。成長させるエピタキシャル層は通常、膜厚については5〜20μm程度であり、キャリア濃度については2〜15×10−15cm−3程度である。 Each flow rate, pressure, and substrate temperature of SiH 4 gas and C 3 H 8 gas are 15 to 150 sccm, 3.5 to 60 sccm, 80 to 250 mbar, and 1400 to 1600 ° C., respectively, and the film thickness and carrier concentration are uniform. Determine while controlling the growth rate. By introducing nitrogen gas as a doping gas simultaneously with the start of film formation, the carrier concentration in the epitaxial layer can be controlled. As a method for suppressing step bunching during growth, in order to increase the migration of Si atoms on the growth surface, it is known to lower the concentration ratio C / Si of the source gas to be supplied. 0.7-1.2. The growth rate is about 3 to 20 μm per hour. The epitaxial layer to be grown is usually about 5 to 20 μm in thickness and about 2 to 15 × 10 −15 cm −3 in terms of carrier concentration.

<降温工程>
降温工程では、SiHガスとCガスの供給を同時に停止し、SiHガスとCガスとを排気するまで基板温度を保持し、その後降温する。
<Cooling process>
The cooling step, to stop the supply of the SiH 4 gas and a C 3 H 8 gas is simultaneously holds the substrate temperature until the exhaust and SiH 4 gas and a C 3 H 8 gas is, then cooled.

成膜後、SiHガスとCガスの供給、並びにドーピングガスとして導入窒素ガスを止めて降温するが、このときにもSiCエピタキシャル膜表面ではガスエッチングが生じて表面のモフォロジーを悪化させ得る。この表面モフォロジーの悪化を抑制するため、SiHガスおよびCガスの供給を停止するタイミングと、降温のタイミングとが重要である。SiHガスとCガスの供給を同時に停止した後、供給したこれらのガスが基板表面から無くなるまで成長温度を保持し、その後平均毎分50℃程度の速度で室温まで降温することにより、モフォロジーの悪化が抑制されることがわかった。 After film formation, the supply of SiH 4 gas and C 3 H 8 gas and the introduction of nitrogen gas as a doping gas are stopped and the temperature is lowered. At this time as well, gas etching occurs on the surface of the SiC epitaxial film, deteriorating the surface morphology. obtain. In order to suppress the deterioration of the surface morphology, the timing of stopping the supply of the SiH 4 gas and the C 3 H 8 gas and the timing of temperature decrease are important. By simultaneously stopping the supply of SiH 4 gas and C 3 H 8 gas, holding the growth temperature until these supplied gases disappear from the substrate surface, and then lowering the temperature to room temperature at an average rate of about 50 ° C. It was found that deterioration of morphology was suppressed.

以下、実施例によって本発明をより詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
本実施例では、原料ガスとしてSiHガスおよびCガス、ドーピングガスとしてNガス、キャリアガスおよびエッチングガスとしてHガスあるいはHClガスを使用し、量産型の複数枚プラネタリー型CVD装置であるアイクストロン社製Hot Wall SiC CVDによって、4H−SiC単結晶の(0001)面に対して<11−20>軸方向へ4°傾けたSi面にSiCエピタキシャル膜を成長させた。得られたエピタキシャルウェハ表面のラフネスについて、光学式表面検査装置(KLA−Tencor社製Candela CS20)と、通常のAFM及び広範囲観察型AFMを用いて調べた。広範囲観察型AFMとは、通常のAFMに比べて縦方向の分解能が低下している代わりに、200μm□程度の観察領域を持つAFMのことである。
EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited to these Examples.
In this embodiment, SiH 4 gas and C 3 H 8 gas are used as source gases, N 2 gas is used as a doping gas, H 2 gas or HCl gas is used as a carrier gas and an etching gas, and mass production type multiple planetary CVD is used. A SiC epitaxial film was grown on a Si surface inclined by 4 ° in the <11-20> axial direction with respect to the (0001) plane of 4H—SiC single crystal by Hot Wall SiC CVD manufactured by Ixtron, which is an apparatus. The roughness of the obtained epitaxial wafer surface was examined using an optical surface inspection apparatus (Candela CS20 manufactured by KLA-Tencor), a normal AFM, and a wide-area observation type AFM. The wide-area observation type AFM is an AFM having an observation area of about 200 μm □, instead of having a lower vertical resolution than a normal AFM.

(実施例1)
研磨工程において、CMP前の機械研磨は直径5μm以下の砥粒を用いて、加工圧力を350g/cmで行った。また、CMPは、研磨材粒子として平均粒子径が10〜150nmのシリカ粒子を用い、無機酸として硫酸を含み、20℃におけるpHが1.9の研磨スラリーを用いて、30分間行った。
研磨後の基板をRCA洗浄後、成長装置内に導入した。尚、RCA洗浄とは、Siウェハに対して一般的に用いられている湿式洗浄方法であり、硫酸・アンモニア・塩酸と過酸化水素水を混合した溶液ならびにフッ化水素酸水溶液を用いて、基板表面の有機物や重金属、パーティクルを除去することができる。
清浄化(ガスエッチング)工程は、水素ガスの流量90slm、リアクタ内圧力を200mbar、基板温度を1550℃で、10分間行った。
SiCエピタキシャル成長工程は、SiHガス及びCガスの流量を48sccm、17.6sccmで基板面に同時に供給されるようにCガスを供給後、3秒後、SiHガスを供給した。C/Siは1.1を選択した。リアクタ内圧力を200mbar、基板温度を1550℃として2時間成長工程を実施して、厚さ10μmのSiCエピタキシャル層を成膜した。
Example 1
In the polishing step, mechanical polishing before CMP was performed at a processing pressure of 350 g / cm 2 using abrasive grains having a diameter of 5 μm or less. Further, CMP was performed for 30 minutes using silica particles having an average particle diameter of 10 to 150 nm as abrasive particles, and using a polishing slurry containing sulfuric acid as an inorganic acid and having a pH of 1.9 at 20 ° C.
The polished substrate was introduced into the growth apparatus after RCA cleaning. The RCA cleaning is a wet cleaning method generally used for Si wafers, and a substrate is prepared by using a mixed solution of sulfuric acid / ammonia / hydrochloric acid and hydrogen peroxide solution and a hydrofluoric acid aqueous solution. Organic substances, heavy metals and particles on the surface can be removed.
The cleaning (gas etching) step was carried out at a hydrogen gas flow rate of 90 slm, a reactor pressure of 200 mbar, and a substrate temperature of 1550 ° C. for 10 minutes.
In the SiC epitaxial growth process, after supplying C 3 H 8 gas so that the flow rates of SiH 4 gas and C 3 H 8 gas are simultaneously supplied to the substrate surface at 48 sccm and 17.6 sccm, SiH 4 gas is supplied after 3 seconds. did. C / Si selected 1.1. A growth process was carried out for 2 hours at a reactor internal pressure of 200 mbar and a substrate temperature of 1550 ° C. to form a SiC epitaxial layer having a thickness of 10 μm.

こうして作製したSiCエピタキシャルウェハについて、広範囲観察型AFM及び光学式表面検査装置で測定した結果はそれぞれ、図5(a)、図6(a)に示した通りであり、光学式表面検査装置で測定したRqは1.2nmであり、広範囲観察型AFMで測定したRqは0.4nmであり、最大高低差Ryは0.7nmであり、ステップバンチングは観察されなかった。   The SiC epitaxial wafer thus fabricated was measured with a wide-area observation type AFM and an optical surface inspection apparatus, as shown in FIGS. 5A and 6A, and measured with an optical surface inspection apparatus. The Rq measured was 1.2 nm, the Rq measured by the wide-range observation type AFM was 0.4 nm, the maximum height difference Ry was 0.7 nm, and no step bunching was observed.

(実施例2)
実施例1とガスエッチングの条件を除いて同じ条件でSiCエピタキシャルウェハを製造した。ガスエッチング工程において、水素ガスに0.008mol%の濃度のSiHガスを添加して行った点が実施例1と異なる。
(Example 2)
A SiC epitaxial wafer was manufactured under the same conditions as in Example 1 except for the gas etching conditions. The gas etching process is different from that in Example 1 in that SiH 4 gas having a concentration of 0.008 mol% is added to hydrogen gas.

こうして作製したSiCエピタキシャルウェハについて、光学式表面検査装置及び広範囲観察型AFMで測定した。実施例1と同様のイメージが観察され、光学式表面検査装置で測定したRqは1.1nmであり、広範囲観察型AFMで測定したRqは0.4nm、最大高低差Ryは0.7nmであった。   The SiC epitaxial wafer thus produced was measured with an optical surface inspection apparatus and a wide-range observation type AFM. An image similar to that in Example 1 was observed, Rq measured by the optical surface inspection apparatus was 1.1 nm, Rq measured by the wide-range observation type AFM was 0.4 nm, and the maximum height difference Ry was 0.7 nm. It was.

(比較例1)
SiCエピタキシャル成長工程において、SiHガスとCガスとを濃度比C/Siを1.9として導入したこと、及び、Cガスを導入して30秒後にSiHガスを導入したことを除いて、実施例1と同じ条件でSiCエピタキシャルウェハを作製した。
(Comparative Example 1)
In the SiC epitaxial growth process, SiH 4 gas and C 3 H 8 gas were introduced at a concentration ratio C / Si of 1.9, and SiH 4 gas was introduced 30 seconds after the introduction of C 3 H 8 gas. The SiC epitaxial wafer was produced on the same conditions as Example 1 except the above.

作製したSiCエピタキシャルウェハの光学式表面検査装置、広範囲観察型AFMで測定した像はそれぞれ、図6(b)、図5(b)に示した通りである。
カンデラ像及びAFM像において、ウェハ表面全体に従来のステップバンチングが観察された。光学式表面検査装置で測定した二乗平均粗さRqは1.7nmであり、広範囲観察型AFMで測定した二乗平均粗さRqは2.4nmであり、最大高低差Ryは3.6nmであった。
Images of the manufactured SiC epitaxial wafer measured by an optical surface inspection apparatus and a wide-area observation type AFM are as shown in FIGS. 6B and 5B, respectively.
In the candela image and the AFM image, conventional step bunching was observed over the entire wafer surface. The root mean square roughness Rq measured by the optical surface inspection apparatus was 1.7 nm, the root mean square roughness Rq measured by the wide-range observation type AFM was 2.4 nm, and the maximum height difference Ry was 3.6 nm. .

(比較例2)
SiCエピタキシャル成長工程において、Cガスを導入して30秒後にSiHガスを導入したことを除いて、実施例1と同じ条件でSiCエピタキシャルウェハを作製した。従って、比較例1との比較では、SiHガスとCガスとを濃度比C/Siを1.1として導入した点が異なる。
(Comparative Example 2)
In the SiC epitaxial growth step, a SiC epitaxial wafer was produced under the same conditions as in Example 1 except that the C 3 H 8 gas was introduced and the SiH 4 gas was introduced 30 seconds later. Therefore, the comparison with Comparative Example 1 is that SiH 4 gas and C 3 H 8 gas are introduced at a concentration ratio C / Si of 1.1.

図9(a)、(b)に、作製したSiCエピタキシャルウェハについて、カンデラ像、広範囲観察型AFM像を示す。
光学式表面検査装置で測定した二乗平均粗さRqは1.4nmであり、広範囲観察型AFMで測定した二乗平均粗さRqは1.4nmであり、最大高低差Ryは2.8nmであった。ステップの線密度は10本/mm−1であった。
9A and 9B show a candela image and a wide-range observation type AFM image of the manufactured SiC epitaxial wafer.
The root mean square roughness Rq measured by the optical surface inspection apparatus was 1.4 nm, the root mean square roughness Rq measured by the wide range observation type AFM was 1.4 nm, and the maximum height difference Ry was 2.8 nm. . The linear density of the step was 10 / mm −1 .

カンデラ像及びAFM像のいずれにおいても、従来のステップバンチングは観察されなかった。この結果は、SiHガスとCガスとを濃度比C/Siが従来のステップバンチングの発生を抑制するのに重要であることを示している。そして、濃度比C/Siを0.7〜1.2の範囲にすることで従来のステップバンチングの発生を抑制できることを確認した。 Conventional step bunching was not observed in either the candela image or the AFM image. This result shows that the concentration ratio C / Si between SiH 4 gas and C 3 H 8 gas is important for suppressing the occurrence of conventional step bunching. And it confirmed that generation | occurrence | production of the conventional step bunching can be suppressed by making density | concentration ratio C / Si into the range of 0.7-1.2.

他方、図9(a)のカンデラ像で、矢印でその一部を示すように、1mm□に複数の短いステップバンチングが観察された。この短いステップバンチングは本発明者らが発見したものであるが、この短いステップバンチングの発生を抑制することがステップバンチングフリーのSiCエピタキシャルウェハの作製には不可欠である。そして、本発明者らは鋭意研究の結果、「格子乱れ層」を3nm以下にしたSiC単結晶基板のガスエッチング後の表面に、炭化珪素のエピタキシャル成長に必要とされる量のSiHガスとCガスとを濃度比C/Siが0.7〜1.2で同時に供給することによって、短いステップバンチングの発生をも抑制できることを見出したのである。 On the other hand, in the candela image of FIG. 9A, a plurality of short step bunchings of 1 mm □ were observed as indicated by a part of the arrows. This short step bunching was discovered by the present inventors, but it is indispensable for the production of a step bunching free SiC epitaxial wafer to suppress the occurrence of this short step bunching. As a result of intensive studies, the present inventors have found that an amount of SiH 4 gas and C required for epitaxial growth of silicon carbide are formed on the surface after gas etching of an SiC single crystal substrate having a “lattice disordered layer” of 3 nm or less. It has been found that the occurrence of short step bunching can be suppressed by simultaneously supplying 3 H 8 gas with a concentration ratio C / Si of 0.7 to 1.2.

本発明のSiCエピタキシャルウェハは、ステップバンチングフリーのSiCエピタキシャルウェハであり、パワーデバイス、高周波デバイス、高温動作デバイス等種々の炭化珪素半導体装置の製造に利用することができる。   The SiC epitaxial wafer of the present invention is a step bunching-free SiC epitaxial wafer, and can be used for manufacturing various silicon carbide semiconductor devices such as power devices, high-frequency devices, and high-temperature operation devices.

Claims (1)

0.4°〜5°のオフ角で傾斜させた4H−SiC単結晶基板上にSiCのエピタキシャル層を形成したSiCエピタキシャルウェハであって、短いステップバンチングがないことを特徴とするSiCエピタキシャルウェハ。   A SiC epitaxial wafer, wherein an SiC epitaxial layer is formed on a 4H-SiC single crystal substrate tilted at an off angle of 0.4 ° to 5 °, and has no short step bunching.
JP2012062627A 2012-03-19 2012-03-19 SiC epitaxial wafer Active JP5124690B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012062627A JP5124690B2 (en) 2012-03-19 2012-03-19 SiC epitaxial wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012062627A JP5124690B2 (en) 2012-03-19 2012-03-19 SiC epitaxial wafer

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009198872A Division JP4959763B2 (en) 2009-08-28 2009-08-28 SiC epitaxial wafer and manufacturing method thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012240956A Division JP5384714B2 (en) 2012-10-31 2012-10-31 SiC epitaxial wafer and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2012142597A JP2012142597A (en) 2012-07-26
JP5124690B2 true JP5124690B2 (en) 2013-01-23

Family

ID=46678497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012062627A Active JP5124690B2 (en) 2012-03-19 2012-03-19 SiC epitaxial wafer

Country Status (1)

Country Link
JP (1) JP5124690B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016203324A1 (en) * 2016-03-01 2017-09-07 Evonik Degussa Gmbh Process for producing a silicon-carbon composite
JP2021141199A (en) 2020-03-05 2021-09-16 日立金属株式会社 Silicon carbide wafer and production method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4238357B2 (en) * 2003-08-19 2009-03-18 独立行政法人産業技術総合研究所 Silicon carbide epitaxial wafer, method of manufacturing the same, and semiconductor device manufactured on the wafer
JP5285202B2 (en) * 2004-03-26 2013-09-11 一般財団法人電力中央研究所 Bipolar semiconductor device and manufacturing method thereof
EP1619276B1 (en) * 2004-07-19 2017-01-11 Norstel AB Homoepitaxial growth of SiC on low off-axis SiC wafers
JP4839646B2 (en) * 2005-03-18 2011-12-21 住友電気工業株式会社 Silicon carbide semiconductor manufacturing method and silicon carbide semiconductor manufacturing apparatus
JP4946202B2 (en) * 2006-06-26 2012-06-06 日立金属株式会社 A method for manufacturing a silicon carbide semiconductor epitaxial substrate.

Also Published As

Publication number Publication date
JP2012142597A (en) 2012-07-26

Similar Documents

Publication Publication Date Title
JP4959763B2 (en) SiC epitaxial wafer and manufacturing method thereof
JP5384714B2 (en) SiC epitaxial wafer and manufacturing method thereof
JP4887418B2 (en) Method for manufacturing SiC epitaxial wafer
JP5076020B2 (en) SiC epitaxial wafer
JP6122704B2 (en) SiC epitaxial wafer and manufacturing method thereof
JP5961357B2 (en) SiC epitaxial wafer and manufacturing method thereof
Shi et al. Characterization of colloidal silica abrasives with different sizes and their chemical–mechanical polishing performance on 4H-SiC (0 0 0 1)
JP2004530306A (en) High surface quality GaN wafer and method for manufacturing the same
JP4581081B2 (en) Method for producing silicon carbide smoothed substrate used for producing epitaxial wafer, apparatus for smoothing silicon carbide substrate surface and SiC epitaxial growth
WO2014125550A1 (en) Sic epitaxial wafer production method
JP2001322899A (en) Gallium nitride-based compound semiconductor substrate and method of producing the same
JP5604577B2 (en) SiC epitaxial wafer
JP2006520096A (en) Semiconductor structure with structural uniformity
JP2006032655A (en) Manufacturing method of silicon carbide substrate
JP2008211040A (en) Single crystal sapphire substrate, its manufacturing method, and semiconductor light emitting element using them
JP5124690B2 (en) SiC epitaxial wafer
TW202130863A (en) Group iii nitride single crystal substrate and method for manufacture thereof
JP2005260218A (en) Sic single crystal base material and manufacturing method of the same, semiconductor film formation base material
JP5353037B2 (en) Silicon carbide wafer

Legal Events

Date Code Title Description
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20120607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120619

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121002

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121029

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151102

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5124690

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350