JP5119219B2 - Method for producing carbon fine particles - Google Patents

Method for producing carbon fine particles Download PDF

Info

Publication number
JP5119219B2
JP5119219B2 JP2009193439A JP2009193439A JP5119219B2 JP 5119219 B2 JP5119219 B2 JP 5119219B2 JP 2009193439 A JP2009193439 A JP 2009193439A JP 2009193439 A JP2009193439 A JP 2009193439A JP 5119219 B2 JP5119219 B2 JP 5119219B2
Authority
JP
Japan
Prior art keywords
fine particles
gas
carbon fine
reaction
hydrocarbon compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009193439A
Other languages
Japanese (ja)
Other versions
JP2009274952A (en
Inventor
邦夫 宮澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Chemical Corp
Original Assignee
JFE Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Chemical Corp filed Critical JFE Chemical Corp
Priority to JP2009193439A priority Critical patent/JP5119219B2/en
Publication of JP2009274952A publication Critical patent/JP2009274952A/en
Application granted granted Critical
Publication of JP5119219B2 publication Critical patent/JP5119219B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、炭素微粒子、特に高収率のフラーレン類を含有する炭素微粒子の製造方法に関する。  The present invention relates to a method for producing carbon fine particles, particularly carbon fine particles containing a high yield of fullerenes.

炭素微粒子、特にフラーレン類を製造する従来の方法としては、例えば特許文献1に、炭素含有物(炭化水素化合物)を火炎中で燃焼させ集物を収集することによりフラーレン類を製造できる旨が記載されている。すなわち、フラーレン類は燃焼過程で生成するすす状物質中に含有している。Carbon particles, particularly as a conventional method for producing fullerenes, for example, in Patent Document 1, is that the carbon-containing material (hydrocarbon compound) can be produced fullerenes by collecting agglutination was burned in a flame Are listed. That is, fullerenes are contained in soot-like substances generated in the combustion process.

すす状物質中に含有するフラーレン類の収率を向上させるためには、火炎温度を上昇させること、燃焼を減圧状態で行うこと、および、雰囲気をアルゴンなどの不活性ガスで希釈することが有効であることが知られている。  In order to improve the yield of fullerenes contained in soot-like substances, it is effective to raise the flame temperature, perform combustion under reduced pressure, and dilute the atmosphere with an inert gas such as argon. It is known that

また、特許文献2には、アセチレン、エチレンなどの不飽和炭化水素ガスを分解爆発させてフラーレン類を高生産性で製造する方法が開示されているが、かかる方法は、フラーレン類の収率が3%と低い。この理由は、アセチレンおよびエチレンの分解反応を主反応とすると、下記に示すように、反応圧(ガス圧)が殆ど変わらないか(アセチレンの場合)、逆に上昇する(エチレンの場合)ので、減圧状態で反応させることができないためであると考えられる。
C2H2(g)→ 2C(s)+ H2(g)
C2H4(g)→ 2C(s)+ 2H2(g)
Patent document 2 discloses a method for producing fullerenes with high productivity by decomposing and exploding unsaturated hydrocarbon gases such as acetylene and ethylene. However, such a method has a yield of fullerenes. As low as 3%. The reason for this is that when the decomposition reaction of acetylene and ethylene is the main reaction, as shown below, the reaction pressure (gas pressure) is almost unchanged (in the case of acetylene) or conversely (in the case of ethylene). This is probably because the reaction cannot be performed in a reduced pressure state.
C 2 H 2 (g) → 2C (s) + H 2 (g)
C 2 H 4 (g) → 2C (s) + 2H 2 (g)

加えて、アセチレン、エチレンなどの不飽和炭化水素ガスに酸素を加えて下記に示すような燃焼反応を上記分解反応と同時に生じさせた場合であっても、特許文献2に開示される技術では発生水蒸気の凝縮機構がないため、消失化合物(ガス)のモル数と固体を除く生成化合物(ガス)のモル数の差分だけ変化するだけで、反応圧(ガス圧)が殆ど変わらないか(エチレンの場合)、反応圧が若干低下する(アセチレンの場合)程度であり、いずれの場合も、減圧状態、特に90kPa以下の減圧状態を維持することは難しい。
C2H2(g)+ 2.5O2(g)→ 2CO2(g)+ H2O(g)
C2H4(g)+ 3O2(g)→ 2CO2(g)+ 2H2O(g)
In addition, even when oxygen is added to an unsaturated hydrocarbon gas such as acetylene or ethylene to cause the combustion reaction shown below to occur simultaneously with the above decomposition reaction, it occurs in the technique disclosed in Patent Document 2. Since there is no water vapor condensation mechanism, the reaction pressure (gas pressure) is almost unchanged by changing only the difference between the number of moles of the disappearing compound (gas) and the number of moles of the generated compound (gas) excluding the solid (the ethylene pressure). In the case of acetylene), it is difficult to maintain a reduced pressure state, particularly a reduced pressure state of 90 kPa or less.
C 2 H 2 (g) + 2.5O 2 (g) → 2CO 2 (g) + H 2 O (g)
C 2 H 4 (g) + 3O 2 (g) → 2CO 2 (g) + 2H 2 O (g)

一方、カーボンブラックもまたすす状の物質であり、かかるカーボンブラックは、一般に耐火煉瓦で内張りされた反応炉内に、空気と、ガス、重油、クレオソート油などの原料とを吹き込み、1200〜2000℃程度の高温とし、略常圧付近で不完全燃焼あるいは熱分解することによって製造されている。  On the other hand, carbon black is also a soot-like substance, and such carbon black is generally blown into a reaction furnace lined with refractory bricks with air and raw materials such as gas, heavy oil, creosote oil, etc. Manufactured by incomplete combustion or thermal decomposition at about normal pressure and a high temperature of about ℃.

したがって、ガスや油類などの炭化水素化合物を高温で部分燃焼させて生成するすす状物質は、その含有割合は異なるが、通常は、フラーレン類と、カーボンブラック、あるいはカーボンブラック類似物質の混合物であると推察される。すなわち、極く僅かであるが、フラーレン類も存在していると推察される。  Therefore, soot-like substances produced by partial combustion of hydrocarbon compounds such as gases and oils at different temperatures are usually different, but are usually fullerenes and a mixture of carbon black or carbon black-like substances. It is assumed that there is. That is, although it is very few, it is guessed that fullerenes also exist.

ここでいう「フラーレン類」は、ダイヤモンド、グラファイトに次ぐ第3の炭素形態の総称であり、その具体的な構造としては、例えばC60、C70などに代表されるように5員環と6員環のネットワークで閉じた中空殻状の炭素分子であり、近年、超硬材料、超伝導材料、半導体材料、あるいは医薬品類などへの応用が期待され、非常に注目を集めており、安価な大量製造技術を開発することが望まれている。“Fullerenes” as used herein is a generic name for the third carbon form after diamond and graphite, and specific structures thereof include, for example, a 5-membered ring and a 6-membered ring as represented by C 60 , C 70 and the like. It is a hollow shell-like carbon molecule closed by a network of member rings. In recent years, it is expected to be applied to superhard materials, superconducting materials, semiconductor materials, pharmaceuticals, etc. It is desired to develop mass production technology.

特表平6−507879号公報Japanese National Publication No. 6-507879 特開平5−70115号公報JP-A-5-70115

フラーレン類のような炭素微粒子の収率を向上させるための手段としては、上述の如く、高火炎温度、高真空(減圧)および希釈ガス添加の3つの要件を満足させることが有用であるが、従来の製造方法で、これら全ての要件を満足させることは困難であった。  As a means for improving the yield of carbon fine particles such as fullerenes, as described above, it is useful to satisfy the three requirements of high flame temperature, high vacuum (reduced pressure), and dilution gas addition. It has been difficult to satisfy all these requirements by the conventional manufacturing method.

すなわち、高火炎温度を得るためには原料および燃料である炭化水素化合物(炭素含有物)の反応炉内への導入量を増加させて、発生する燃焼熱を増大する必要があるが、炭化水素化合物の導入量を増加させると、燃焼によって生成する排ガス量も増加させる結果となり、高真空という条件を阻害するという問題があった。加えて、希釈ガスの添加もまた、高真空を阻害することになる。この場合、高真空を達成するには大型の減圧装置を設ける必要があり、製造コストの高騰を招くという問題があった。  That is, in order to obtain a high flame temperature, it is necessary to increase the amount of combustion heat generated by increasing the amount of introduction of hydrocarbon compounds (carbon-containing materials) as raw materials and fuel into the reactor. Increasing the amount of compound introduced results in an increase in the amount of exhaust gas generated by combustion, which hinders the condition of high vacuum. In addition, the addition of dilution gas will also inhibit high vacuum. In this case, in order to achieve a high vacuum, it is necessary to provide a large pressure reducing device, which causes a problem that the manufacturing cost increases.

本発明の目的は、かかる点に鑑みてなされたものであり、設備のコンパクト化が図れ、炭素微粒子、特に高収率のフラーレン類を含有する炭素微粒子の製造方法を提供する。  The object of the present invention has been made in view of the above points, and provides a method for producing carbon fine particles, particularly carbon fine particles containing high yield fullerenes, which can be made compact.

上記課題を解決するために、本発明に従う炭素微粒子の製造方法は、炭化水素化合物および水素を含有する混合物と、酸素含有ガスとを反応炉内に導入し、水素、一部の炭化水素化合物および酸素で燃焼反応を生じさせて二酸化炭素と水蒸気からなる1200〜2000℃の高温ガスを生成させるとともに、この高温ガスの熱を利用して前記反応炉内に導入した残りの炭化水素化合物を90kPa以下の減圧雰囲気下で熱分解反応を生じさせて炭素微粒子を 製造するに際し、前記反応炉と連通する熱交換器を設け、前記反応炉から排出される排ガ スを前記熱交換器で冷却し、排ガス中の水蒸気を水に凝縮させ、前記熱交換器内の排ガス 量を前記反応炉から排出される排ガス量よりも減少させて前記反応炉内を減圧雰囲気にす ることにある。In order to solve the above-described problem, a method for producing carbon fine particles according to the present invention introduces a mixture containing a hydrocarbon compound and hydrogen, and an oxygen-containing gas into a reaction furnace, so that hydrogen, some hydrocarbon compounds, and A combustion reaction is caused with oxygen to generate a high-temperature gas of 1200 to 2000 ° C. composed of carbon dioxide and water vapor, and the remaining hydrocarbon compound introduced into the reactor using the heat of this high-temperature gas is 90 kPa or less. of upon by causing thermal decomposition reaction under a reduced pressure atmosphere to produce a carbon fine particles, a heat exchanger in communication with the reactor provided to cool the flue gas discharged from the reactor in the heat exchanger, the water vapor in the exhaust gas is condensed into water, the reaction furnace is reduced than the amount of exhaust gas discharged to the exhaust gas amount in the heat exchanger from the reactor to be Rukoto reduced pressure atmosphere.

また、本発明では、前記熱交換器と連通する減圧手段を設けることがより好適である。
さらに、本発明では、前記炭化水素化合物が、少なくとも5質量%の油分を含むことが好ましい。
さらにまた、本発明では、前記炭化水素化合物および/または前記水素は、前記反応炉内に導入するに先立って500〜1000℃に予熱することがより好適である。
加えて、本発明では、酸素含有ガスは、不活性ガスを含有することが好ましい。
In the present invention, it is more preferable to provide a pressure reducing means communicating with the heat exchanger .
Furthermore, in the present invention, the hydrocarbon compound preferably contains at least 5% by mass of oil.
Furthermore, in the present invention, it is more preferable that the hydrocarbon compound and / or the hydrogen is preheated to 500 to 1000 ° C. before being introduced into the reaction furnace.
In addition, in the present invention, the oxygen-containing gas preferably contains an inert gas.

本発明の製造方法によって、製造設備のコンパクト化が図れ、炭素微粒子、特に高収率のフラーレン類を含有する炭素微粒子を、大量かつ簡単に製造することができる。また、高収率のため、フラーレンの分離・精製が容易になるという利点もある。  By the production method of the present invention, the production facility can be made compact, and carbon fine particles, in particular, carbon fine particles containing a high yield of fullerenes can be produced in large quantities and easily. In addition, because of the high yield, there is an advantage that separation and purification of fullerene becomes easy.

本発明に基づく基本的な炭素微粒子の製造工程を示すフローチャートである。It is a flowchart which shows the manufacturing process of the basic carbon particle based on this invention . 本発明に基づく基本的な他の炭素微粒子の製造工程を示すフローチャートである。It is a flowchart which shows the manufacturing process of the other basic carbon particle based on this invention . 本発明に基づく基本的な他の炭素微粒子の製造工程を示すフローチャートである。It is a flowchart which shows the manufacturing process of the other basic carbon particle based on this invention . 本発明に従う炭素微粒子の製造工程を示すフローチャートである。It is a flowchart which shows the manufacturing process of the carbon fine particle according to this invention.

以下、本発明の実施の形態について図面を参照して説明する。
図1は、本発明に基づく、炭素微粒子の基本的な製造工程を示すフローチャートである。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a flowchart showing a basic manufacturing process of carbon fine particles based on the present invention .

図1に示す炭素微粒子の製造工程は、主に、原料混合工程1、炭素微粒子生成工程(反応炉)2、冷却工程3および捕集工程4で構成されている。The carbon microparticle production process shown in FIG. 1 mainly includes a raw material mixing process 1, a carbon microparticle production process (reactor) 2, a cooling process 3, and a collection process 4.

原料混合工程1は、炭化水素化合物および水素を含有する混合物と、酸素含有ガスとを混合する工程である。  The raw material mixing step 1 is a step of mixing a mixture containing a hydrocarbon compound and hydrogen and an oxygen-containing gas.

炭化水素化合物は、アセチレン、エチレンのような不飽和炭化水素ガスや、メタンなどの飽和炭化水素ガスであることが好ましい。さらに、軽油、ナフタレン、タールなどの液体である油分を含んでいてもよい。特に、炭化水素化合物が、少なくとも5質量%の油分を含むことが、炭素微粒子中に含有するフラーレン類の収率をより一層高める上で好ましい。
本発明において「油分」とは、沸点が常温(20℃)超えの炭化水素化合物を意味する。
The hydrocarbon compound is preferably an unsaturated hydrocarbon gas such as acetylene or ethylene, or a saturated hydrocarbon gas such as methane. Further, it may contain an oil component that is a liquid such as light oil, naphthalene, and tar. In particular, it is preferable that the hydrocarbon compound contains at least 5% by mass of oil in order to further increase the yield of fullerenes contained in the carbon fine particles.
In the present invention, “oil” means a hydrocarbon compound having a boiling point exceeding normal temperature (20 ° C.).

水素を含有するとは、水素を1質量%以上含有することを意味する。前記混合物中に、純水素ガスの他、コークス炉で生成したガスや廃プラスチックなどの有機物の熱分解、あるいはガス化により発生したガスを含有していることが好ましい。  Containing hydrogen means containing 1% by mass or more of hydrogen. In addition to pure hydrogen gas, the mixture preferably contains a gas generated in a coke oven or a gas generated by pyrolysis or gasification of organic matter such as waste plastic.

酸素含有ガスは、具体的には、空気が挙げられるが、反応とは無関係な窒素ガスの導入量を減らして反応炉で生成される排ガス量全体を低減し、反応炉内の減圧雰囲気を簡便に達成できるようにする点で、純酸素や酸素濃度を高めた酸素富化空気であることが好ましい。  The oxygen-containing gas is specifically air, but the amount of nitrogen gas unrelated to the reaction is reduced to reduce the total amount of exhaust gas generated in the reactor, and the reduced-pressure atmosphere in the reactor is simplified. It is preferable that the oxygen-enriched air in which pure oxygen or oxygen concentration is increased is used.

原料混合工程1は、一箇所で行っても不都合はないが、特に、熱分解プロセス、ガス化プロセス、あるいは製鉄用のコークス炉で生成した水素と炭化水素化合物を含有する混合物を炭素微粒子生成工程2(反応炉)まで直接導入する場合には、温度が降下して炭化水素化合物中に含有する油分が内壁に付着しないようにするため、あるいは酸素含有ガスの吹込み量が多過ぎて過熱して反応が開始しないようにするため、温度を維持する形で適宜複数箇所に分けて導入するのが好ましい。加えて、炭素微粒子生成工程2(反応炉)またはその直前で反応温度に加熱するのに必要な酸素含有ガスを導入することがより好適である。尚、この原料混合工程1は、炭素微粒子生成工程2(反応炉)で一緒に行なってもよい。  The raw material mixing step 1 is not inconvenient even if it is performed in one place, but in particular, the carbon fine particle generation step is a mixture containing hydrogen and hydrocarbon compounds generated in a pyrolysis process, gasification process, or iron coke oven. In the case of direct introduction up to 2 (reactor), the temperature drops and the oil contained in the hydrocarbon compound does not adhere to the inner wall, or the oxygen-containing gas is blown in too much to overheat. In order to prevent the reaction from starting, it is preferable to introduce it at a plurality of appropriate locations while maintaining the temperature. In addition, it is more preferable to introduce an oxygen-containing gas necessary for heating to the reaction temperature immediately before or after the carbon fine particle production step 2 (reaction furnace). The raw material mixing step 1 may be performed together in the carbon fine particle generation step 2 (reactor).

炭素微粒子生成工程2は、減圧に耐え得る密閉構造と高アルミナ系材料等の耐火煉瓦で内張りされているなど、耐火(耐熱)構造を有する反応炉内で行なわれる。  The carbon fine particle production step 2 is performed in a reaction furnace having a fireproof (heat-resistant) structure, such as a sealed structure that can withstand pressure reduction and a lining made of refractory bricks such as a high alumina material.

炭素微粒子生成工程2は、燃焼反応と熱分解反応とを同時に生じさせる工程であり、具体的には、炭化水素化合物および水素を含有する混合物と、酸素含有ガスとを反応炉に導入し、水素、一部の炭化水素化合物および酸素とで燃焼反応を生じさせて二酸化炭素と水蒸気からなる1200〜2000℃の高温ガスを生成させるとともに、この高温ガスの熱を利用して反応炉内に導入した残りの炭化水素化合物を90kPa以下の減圧雰囲気下で熱分解反応を生じさせる。  The carbon fine particle generation step 2 is a step in which a combustion reaction and a thermal decomposition reaction are simultaneously generated. Specifically, a mixture containing a hydrocarbon compound and hydrogen and an oxygen-containing gas are introduced into a reaction furnace, and hydrogen is generated. In addition, a combustion reaction is caused with some hydrocarbon compounds and oxygen to generate a high-temperature gas of 1200 to 2000 ° C. composed of carbon dioxide and water vapor, and introduced into the reactor using the heat of this high-temperature gas. The remaining hydrocarbon compound undergoes a pyrolysis reaction under a reduced pressure atmosphere of 90 kPa or less.

ここで、燃焼反応によって生成する高温ガスの温度を1200〜2000℃としたのは、1200℃未満だと、熱分解反応速度が遅くなって炭素微粒子の生産性が悪化するからであり、2000℃を超えると、高温維持に大量の燃料を燃やすので、排ガス発生量増加を惹き起こし、減圧雰囲気の形成を難しくするためである。  Here, the reason why the temperature of the high-temperature gas generated by the combustion reaction was set to 1200 to 2000 ° C. is that if it is less than 1200 ° C., the pyrolysis reaction rate becomes slow and the productivity of the carbon fine particles deteriorates. This is because a large amount of fuel is burned in order to maintain a high temperature, causing an increase in the amount of exhaust gas generated and making it difficult to form a reduced-pressure atmosphere.

また、熱分解反応を90kPa以下の減圧雰囲気下で行なう理由は、90kPa超えだと、製造される炭素微粒子中に占めるカーボンブラック類の割合が高くなってフラーレン類の収率が低下するからである。  The reason why the thermal decomposition reaction is performed in a reduced-pressure atmosphere of 90 kPa or less is that if it exceeds 90 kPa, the proportion of carbon blacks in the produced carbon fine particles increases and the yield of fullerenes decreases. .

加えて、反応炉内を減圧雰囲気にするための手段としては、例えば、図1に示すように、炭素微粒子生成工程2(反応炉)と連通する冷却工程3(冷却室)を設け、反応炉から排出される排ガスを冷却工程で冷却して、排ガス中の水蒸気を水に凝縮させ、冷却室内の排ガス量を、反応炉から排出される排ガス量よりも減少させて、反応炉内を減圧雰囲気にすることが好ましい。さらに、図2に示すように捕集工程4を介して冷却工程3(冷却室)と連通する減圧手段5を設けてもよい。また、反応炉内を減圧雰囲気にするための手段としては、例えば図3に示すように捕集工程4を介して炭素微粒子生成工程2(反応炉)と連通する減圧手段5を設けて、反応炉内を減圧雰囲気にすることが好ましい。減圧手段5としては、例えば真空ポンプのような公知の技術を活用すればよく、如何なる方法を用いてもよい。  In addition, as a means for creating a reduced pressure atmosphere in the reaction furnace, for example, as shown in FIG. 1, a cooling process 3 (cooling chamber) communicating with the carbon fine particle generation process 2 (reaction furnace) is provided. The exhaust gas discharged from the reactor is cooled in a cooling process, water vapor in the exhaust gas is condensed into water, the amount of exhaust gas in the cooling chamber is reduced from the amount of exhaust gas discharged from the reactor, and the reaction furnace is decompressed atmosphere It is preferable to make it. Furthermore, as shown in FIG. 2, a decompression means 5 that communicates with the cooling step 3 (cooling chamber) via the collecting step 4 may be provided. Further, as a means for making the inside of the reaction furnace a reduced pressure atmosphere, for example, as shown in FIG. 3, there is provided a decompression means 5 that communicates with the carbon fine particle generation process 2 (reaction furnace) through a collection process 4 to react. It is preferable to make the inside of a furnace into a reduced pressure atmosphere. As the decompression means 5, a known technique such as a vacuum pump may be used, and any method may be used.

酸素含有ガスは、アルゴン、ヘリウム、ネオンなどの不活性ガスを含有することがフラーレン類の収率向上という点で好ましい。すなわち、酸素含有ガスを不活性ガスで希釈することによって、燃焼反応や熱分解反応の速度が遅くなり、規則的にCが配列されやすくなる結果、フラーレン類が生成されやすくなるからである。  The oxygen-containing gas preferably contains an inert gas such as argon, helium, or neon in terms of improving the yield of fullerenes. That is, by diluting the oxygen-containing gas with an inert gas, the speed of the combustion reaction and the thermal decomposition reaction is slowed, and as a result of regular arrangement of C, fullerenes are likely to be generated.

不活性ガスの含有率は、酸素に対してモル比で10倍以下の範囲が好ましく、より好適には3〜6倍の範囲である。  The content of the inert gas is preferably in the range of 10 times or less, more preferably in the range of 3 to 6 times the molar ratio with respect to oxygen.

酸素含有ガスの予熱については、とくに拘らないが、火炎温度が上がる等の理由により予熱することが望ましい場合もある。The preheating of the oxygen-containing gas is not particularly limited, but it may be desirable to preheat for reasons such as an increase in flame temperature.

冷却工程3は、内部に冷却水などを通水してある金属表面に、反応炉で生成した炭素微粒子を含む高温ガスを接触させて冷却するのが好ましいが、水を直接噴霧して冷却してもよい。この冷却によって、下記に示すように、反応炉内で生成した高温排ガスに含まれている水蒸気(気体)が水(液体)に凝縮する結果、メタン、アセチレン及びエチレンのいずれの場合とも、導入したガスのモル数が大幅に減少して冷却室内にガス量が少なくなる結果、反応炉内の減圧雰囲気を生み出すことができる。  In the cooling step 3, it is preferable to cool the metal surface that has been passed through with cooling water or the like by bringing a high-temperature gas containing carbon fine particles generated in the reactor into contact with the metal surface. May be. As a result of this cooling, as shown below, water vapor (gas) contained in the high-temperature exhaust gas generated in the reactor is condensed into water (liquid). As a result, it was introduced in any case of methane, acetylene and ethylene. As a result of greatly reducing the number of moles of gas and reducing the amount of gas in the cooling chamber, a reduced pressure atmosphere in the reactor can be created.

特に、本発明では、反応炉内での燃焼反応を、炭化水素化合物と酸素だけでなく、積極的に燃料としての水素を添加することによって、生成される水蒸気のモル数を大きくして、その後、水への凝縮による減圧効果を高める。すなわち、炭化水素化合物のガスとしてメタン、アセチレンおよびエチレンを用いた場合のガス圧は、下記に示す反応式からも明らかなように、それぞれ4.5モルから1モル、5モルから2モルおよび5.5モルから2モルになる。これらの炭化水素化合物のガスのうち、特に、炭化水素化合物のガスとしては、水蒸気(気体)が水(液体)への凝縮によるガス圧の低下割合が大きいメタンを用いることが好ましい。
CH4(g)+ 2.5O2(g)+ H2(g)→ CO2(g)+ 3H2O(l)
C2H2(g)+ 3O2(g)+ H2(g)→ 2CO2(g)+2H2O(l)
C2H4(g)+ 3.5O2(g)+ H2(g)→ 2CO2(g)+ 3H2O(l)
In particular, in the present invention, the combustion reaction in the reactor is performed not only by adding hydrocarbon compounds and oxygen, but also by actively adding hydrogen as a fuel, thereby increasing the number of moles of water vapor generated. , Increase the pressure reduction effect due to condensation in water. That is, the gas pressure when methane, acetylene and ethylene are used as the hydrocarbon compound gas is 4.5 mol to 1 mol, 5 mol to 2 mol and 5.5 mol, respectively, as is apparent from the reaction formula shown below. 2 moles. Of these hydrocarbon compound gases, it is particularly preferable to use methane, which has a large reduction rate of gas pressure due to condensation of water vapor (gas) into water (liquid) as the hydrocarbon compound gas.
CH 4 (g) + 2.5O 2 (g) + H 2 (g) → CO 2 (g) + 3H 2 O (l)
C 2 H 2 (g) + 3O 2 (g) + H 2 (g) → 2CO 2 (g) + 2H 2 O (l)
C 2 H 4 (g) + 3.5O 2 (g) + H 2 (g) → 2CO 2 (g) + 3H 2 O (l)

尚、炭化水素化合物のガスとしてメタン、アセチレンおよびエチレンを用いた場合の熱分解反応は下記に示すように水素ガスが発生するが、かかる水素ガスは上記燃焼反応に使用される。
CH4(g)→ C(s)+ 2H2(g)
C2H2(g)→ 2C(s)+ H2(g)
C2H4(g)→ 2C(s)+ 2H2(g)
In the thermal decomposition reaction when methane, acetylene and ethylene are used as the hydrocarbon compound gas, hydrogen gas is generated as shown below, and such hydrogen gas is used for the combustion reaction.
CH 4 (g) → C (s) + 2H 2 (g)
C 2 H 2 (g) → 2C (s) + H 2 (g)
C 2 H 4 (g) → 2C (s) + 2H 2 (g)

捕集工程4は、例えばバグフィルター、サイクロンなどの公知の装置を用いることができる。  For the collection step 4, a known device such as a bag filter or a cyclone can be used.

また、本発明では、前記混合物中に含有される炭化水素化合物および/または水素を反応炉内に導入する前に500〜1000℃に予熱することが好ましい。予熱することによって、反応炉内での反応が促進されて炭素微粒子の生成量が増加するため、炭化水素化合物および水素を含有する混合物の導入量を減少させることができる点で好ましい。また、減圧手 として真空ポンプを用いる場合、真空ポンプへの負荷がさらに小さくなり、真空ポンプの小型化に繋がる。さらに、予熱するのは、炭化水素化合物のみ、水素のみ、又は炭化水素化合物と水素の双方のいずれでもよいが、特に、炭化水素化合物と水素の双方、つまりこれら双方を含有する混合物を予熱することが、前述の効果を最大に得られるため最も好ましい。Moreover, in this invention, it is preferable to preheat to 500-1000 degreeC before introduce | transducing the hydrocarbon compound and / or hydrogen which are contained in the said mixture in a reaction furnace. Preheating is preferable in that the reaction in the reactor is promoted and the amount of carbon fine particles generated is increased, so that the amount of the mixture containing the hydrocarbon compound and hydrogen can be reduced. In the case of using a vacuum pump as a vacuum hand stage, the load on the vacuum pump is further reduced, leading to miniaturization of the vacuum pump. Furthermore, preheating may be either a hydrocarbon compound alone, hydrogen alone, or both a hydrocarbon compound and hydrogen, but in particular preheat both a hydrocarbon compound and hydrogen, ie a mixture containing both. Is most preferable because the above-described effects can be obtained to the maximum.

本発明は、上述した冷却室として、熱交換器を用いるところに特徴がある。
図4、本発明に従う炭素微粒子の製造工程の一実施形態をフローチャートで示す。
図4に示すように、本発明の炭素微粒子の製造工程は、冷却工程3(冷却室)の代わりに熱交換工程6(熱交換器)を設けたことを除いては図2に示す構成とほぼ同様であり、反応炉内で生成した高温排ガスは、熱交換工程で冷却されて減圧雰囲気の生成に寄与すると共に熱交換工程で得られた高温の排熱を利用して、水素や炭化水素化合物を含有する混合物を予熱する構成を採用しており、これによって、熱効率が向上し、省エネルギーを図ることができる。尚、図4では、高温燃焼排ガスとの熱交換を行っているが、別途熱交換器を設けて予熱してもよい。
The present invention is characterized in that a heat exchanger is used as the above-described cooling chamber.
FIG. 4 is a flowchart showing an embodiment of a process for producing carbon fine particles according to the present invention .
As shown in FIG. 4, the carbon fine particle manufacturing process of the present invention has the configuration shown in FIG. 2 except that a heat exchange process 6 (heat exchanger) is provided instead of the cooling process 3 (cooling chamber). is substantially similar, high temperature exhaust gas generated in the reaction furnace, together with contributing is cooled in a heat exchange step for the generation of reduced pressure atmosphere, using a high temperature waste heat obtained in the heat exchange process, hydrogen and hydrocarbons The structure which preheats the mixture containing a hydrogen compound is employ | adopted, and, thereby, thermal efficiency improves and it can aim at energy saving. In FIG. 4, heat exchange with the high-temperature combustion exhaust gas is performed, but preheating may be performed by providing a separate heat exchanger.

前記混合物中に含有される水素および/または炭化水素化合物の予熱温度は数100℃以上であればよいが、火炎温度の上昇と安定燃焼を得るためには、500℃以上が好ましく、また、1000℃を超えると熱分解反応が生じやすくなって炭素粒子が生成し始めるので、500〜1000℃が好ましい。  The preheating temperature of the hydrogen and / or hydrocarbon compound contained in the mixture may be several hundred degrees Celsius or higher, but in order to increase the flame temperature and obtain stable combustion, it is preferably 500 degrees Celsius or higher, and 1000 If it exceeds ℃, a thermal decomposition reaction is likely to occur and carbon particles start to be generated.

本発明は、有機物質の熱分解プロセス、ガス化プロセス、あるいは製鉄用のコークス炉から排出される水素および油分を含む炭化水素化合物を燃料や原料として使用することが好ましく、これによって、フラーレン類を高収率で含有する炭素微粒子をより安価に製造することができる。さらに、燃料や原料として有機物を含有する廃棄物を用いれば、より一層安価に製造できるので有利である。  In the present invention, it is preferable to use a hydrocarbon compound containing hydrogen and oil discharged from a pyrolysis process, gasification process, or iron-making coke oven as a fuel or a raw material. The carbon fine particles contained in a high yield can be produced at a lower cost. Furthermore, the use of waste containing organic substances as fuel or raw material is advantageous because it can be manufactured at a lower cost.

尚、上述したところは、この発明の実施形態の一例を示したにすぎず、請求の範囲において種々の変更を加えることができる。  The above description only shows an example of the embodiment of the present invention, and various modifications can be made within the scope of the claims.

(実施例1)
図4に示す製造工程に従って、表1に示す水素と、メタン、軽油およびナフタレンの炭化水素化合物を含有する粗コークス炉ガスを600℃に予熱した後、アルゴンガスで5倍に希釈した酸素を反応炉内に導入し、粗コークス炉ガス中の水素およびメタンなどを燃焼させて反応炉内を1800℃とし熱分解反応を生じさせて炭素微粒子を製造した。反応炉の下流側では、炭素微粒子を含む高温ガスを熱交換により冷却して燃焼により生じた水蒸気を凝縮させるとともに、真空ポンプで吸引して、反応炉内雰囲気を30kPaに保持した。捕集工程で回収した炭素微粒子100g中のフラーレン類の量を分析した結果、12gであった(フラーレン類の収率:12%)。
(Example 1)
According to the manufacturing process shown in FIG. 4, and hydrogen indicated in Table 1, methane, crude coke oven gas containing a hydrocarbon compound gas oil and naphthalene, was preheated to 600 ° C., oxygen diluted 5-fold with argon gas It was introduced into a reaction furnace, and hydrogen, methane, and the like in the crude coke oven gas were burned to bring the inside of the reaction furnace to 1800 ° C. to cause a pyrolysis reaction, thereby producing carbon fine particles. The reactor downstream of, together with the condensing steam produced by the combustion is cooled by the heat exchanger hot gas containing carbon fine particles and sucked by a vacuum pump, maintaining the reaction furnace atmosphere 30 kPa. As a result of analyzing the amount of fullerenes in 100 g of the carbon fine particles collected in the collecting step, it was 12 g (yield of fullerenes: 12%).

Figure 0005119219
Figure 0005119219

(実施例2)
図4に示す製造工程に従って、炭化水素化合物としてメタンを含有する主要成分組成を、水素8.6質量%、メタン38.6質量%、一酸化炭素13.5質量%、二酸化炭素7.0質量%、窒素4.5質量%に調整したガスを原料とした以外は、実施例1と同一の条件で炭素微粒子を製造した。捕集工程で回収した炭素微粒子100g中のフラーレン類の量を分析した結果、8gであった(フラーレン類の収率:8%)。
(Example 2)
According to the production process shown in FIG. 4, the main component composition containing methane as a hydrocarbon compound is adjusted to 8.6% by mass of hydrogen, 38.6% by mass of methane, 13.5% by mass of carbon monoxide, 7.0% by mass of carbon dioxide, and 4.5% by mass of nitrogen. Carbon fine particles were produced under the same conditions as in Example 1 except that the gas used was a raw material. As a result of analyzing the amount of fullerenes in 100 g of the carbon fine particles recovered in the collecting step, it was 8 g (yield of fullerenes: 8%).

(比較例1)(Comparative Example 1)
図2に示す製造工程に従って、コークス炉上昇管に分岐配管を設けて得た表2に示す水The water shown in Table 2 obtained by providing a branch pipe on the coke oven riser pipe in accordance with the manufacturing process shown in FIG. 素と、メタン、軽油およびタールの炭化水素化合物を含有する920℃のコークス炉ガスにAnd coke oven gas at 920 ° C containing methane, light oil and tar hydrocarbon compounds アルゴンガスで10倍に希釈した酸素を反応炉内に導入し、コークス炉ガス中の水素およびOxygen diluted 10-fold with argon gas was introduced into the reactor, and hydrogen in the coke oven gas and メタンなどを燃焼させて反応炉内を1600℃とし熱分解反応を生じさせて炭素微粒子を製造Combustion of methane, etc. to bring the inside of the reactor to 1600 ° C, causing a pyrolysis reaction to produce carbon particles した。反応炉の下流側では、炭素微粒子を含む高温ガスを冷却工程により冷却して燃焼にdid. On the downstream side of the reactor, high-temperature gas containing carbon particles is cooled by a cooling process for combustion. より生じた水蒸気を凝縮させるとともに、真空ポンプで吸引して、反応炉内雰囲気を常圧The resulting water vapor is condensed and sucked with a vacuum pump, so that the atmosphere in the reactor is normal pressure. (約100kPa)に保持した。捕集工程で回収した炭素微粒子100g中のフラーレン類の量を(About 100 kPa). The amount of fullerenes in 100 g of carbon fine particles collected in the collection process 分析した結果、0.1g以下であった(フラーレン類の収率:0.1%以下)。As a result of analysis, it was 0.1 g or less (yield of fullerenes: 0.1% or less).

Figure 0005119219
Figure 0005119219

本発明の製造方法によって、製造設備のコンパクト化が図れ、炭素微粒子、特に高収率のフラーレンを含有する炭素微粒子を、大量かつ簡単に製造することができる。  By the production method of the present invention, the production facility can be made compact, and carbon fine particles, particularly carbon fine particles containing a high yield of fullerene can be produced in large quantities and easily.

1 混合工程
2 炭素微粒子生成工程(又は反応炉)
3 冷却工程(又は冷却室)
4 捕集工程
5 減圧工程(又は減圧手段)
6 熱交換工程(又は熱交換器)
1 Mixing process
2 Carbon fine particle production process (or reactor)
3 Cooling process (or cooling room)
4 Collection process
5 Pressure reduction process (or pressure reduction means)
6 Heat exchange process (or heat exchanger)

Claims (5)

炭化水素化合物および水素を含有する混合物と、酸素含有ガスとを反応炉内に導入し、水素、一部の炭化水素化合物および酸素で燃焼反応を生じさせて二酸化炭素と水蒸気からなる1200〜2000℃の高温ガスを生成させるとともに、この高温ガスの熱を利用して前記反応炉内に導入した残りの炭化水素化合物を90kPa以下の減圧雰囲気下で熱分解反応を生じさせて炭素微粒子を製造するに際し、
前記反応炉と連通する熱交換器を設け、前記反応炉から排出される排ガスを前記熱交換器で冷却し、排ガス中の水蒸気を水に凝縮させ、前記熱交換器内の排ガス量を前記反応炉から排出される排ガス量よりも減少させて、前記反応炉内を減圧雰囲気にすることを特徴とする炭素微粒子の製造方法。
A hydrocarbon compound and a mixture containing hydrogen and an oxygen-containing gas are introduced into a reaction furnace, and a combustion reaction is caused by hydrogen, a part of the hydrocarbon compound and oxygen, and the temperature is 1200 to 2000 ° C. composed of carbon dioxide and water vapor. When producing carbon fine particles by generating a pyrolysis reaction of the remaining hydrocarbon compound introduced into the reactor using the heat of the high-temperature gas in a reduced-pressure atmosphere of 90 kPa or less. ,
A heat exchanger communicating with the reaction furnace is provided, exhaust gas discharged from the reaction furnace is cooled by the heat exchanger, water vapor in the exhaust gas is condensed into water, and the amount of exhaust gas in the heat exchanger is converted to the reaction A method for producing carbon fine particles, characterized by reducing the amount of exhaust gas discharged from the furnace to a reduced pressure atmosphere in the reaction furnace.
前記熱交換器と連通する減圧手段を設けることを特徴とする請求項1記載の炭素微粒子の製造方法。   2. The method for producing carbon fine particles according to claim 1, further comprising a decompression unit communicating with the heat exchanger. 前記炭化水素化合物が、少なくとも5質量%の油分を含むことを特徴とする請求項1または2記載の炭素微粒子の製造方法。   The method for producing carbon fine particles according to claim 1 or 2, wherein the hydrocarbon compound contains at least 5 mass% of oil. 前記炭化水素化合物および/または前記水素は、前記反応炉内に導入するに先立って500〜1000℃に予熱することを特徴とする請求項1〜3のいずれか1項記載の炭素微粒子の製造方法。   The method for producing carbon fine particles according to any one of claims 1 to 3, wherein the hydrocarbon compound and / or the hydrogen is preheated to 500 to 1000 ° C prior to introduction into the reactor. . 前記酸素含有ガスは、不活性ガスを含有することを特徴とする請求項1〜4のいずれか1項記載の炭素微粒子の製造方法。   The method for producing carbon fine particles according to any one of claims 1 to 4, wherein the oxygen-containing gas contains an inert gas.
JP2009193439A 2009-08-24 2009-08-24 Method for producing carbon fine particles Expired - Fee Related JP5119219B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009193439A JP5119219B2 (en) 2009-08-24 2009-08-24 Method for producing carbon fine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009193439A JP5119219B2 (en) 2009-08-24 2009-08-24 Method for producing carbon fine particles

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003293154A Division JP4450580B2 (en) 2003-08-13 2003-08-13 Method for producing carbon fine particles

Publications (2)

Publication Number Publication Date
JP2009274952A JP2009274952A (en) 2009-11-26
JP5119219B2 true JP5119219B2 (en) 2013-01-16

Family

ID=41440709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009193439A Expired - Fee Related JP5119219B2 (en) 2009-08-24 2009-08-24 Method for producing carbon fine particles

Country Status (1)

Country Link
JP (1) JP5119219B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023168220A1 (en) * 2022-03-04 2023-09-07 Nabors Energy Transition Solutions Llc Bromine doped carbon-based nanomaterial and methods of forming the same
WO2023168229A1 (en) * 2022-03-04 2023-09-07 Nabors Energy Transition Solutions Llc Silicon dioxide doped carbon-based nanomaterial and methods of forming the same
WO2023168228A1 (en) * 2022-03-04 2023-09-07 Nabors Energy Transition Solutions Llc Phosphorus doped carbon-based nanomaterial and methods of forming the same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5273729A (en) * 1991-05-24 1993-12-28 Massachusetts Institute Of Technology Combustion method for producing fullerenes
JP3782118B2 (en) * 1991-09-10 2006-06-07 高圧ガス工業株式会社 Method for producing fullerenes
US7279137B2 (en) * 2001-08-30 2007-10-09 Tda Research, Inc. Burners and combustion apparatus for carbon nanomaterial production
JP3892371B2 (en) * 2001-09-10 2007-03-14 三菱化学株式会社 Fullerene production method
JP2003160316A (en) * 2001-11-22 2003-06-03 Mitsubishi Chemicals Corp Method and apparatus for producing fullerenes
JP2003171106A (en) * 2001-12-05 2003-06-17 Mitsubishi Chemicals Corp Method for manufacturing fullerenes and apparatus for manufacturing fullerenes
JP2003192318A (en) * 2001-12-21 2003-07-09 Mitsubishi Chemicals Corp Manufacturing apparatus for fullerene and method of manufacturing the same
JP2003192319A (en) * 2001-12-25 2003-07-09 Mitsubishi Chemicals Corp Apparatus for manufacturing fullerene

Also Published As

Publication number Publication date
JP2009274952A (en) 2009-11-26

Similar Documents

Publication Publication Date Title
JP6395516B2 (en) Method and apparatus for producing hydrogen gas supplied to blast furnace shaft
KR20080105344A (en) Apparatus for manufacturing hydrogen and carbon black using plasma
JP5933072B2 (en) Method and apparatus for producing synthesis gas
WO2017134829A1 (en) Method for supplying hydrogen-containing reducing gas to shaft part of blast furnace
JP2016530187A (en) Direct combustion heating method and equipment for its implementation
JP5119219B2 (en) Method for producing carbon fine particles
JPS6274993A (en) Production of gas containing carbon monoxide and hydrogen
JP2008069017A (en) Method for producing hydrogen
JP4450580B2 (en) Method for producing carbon fine particles
JPWO2020008622A1 (en) Hydrogen production method using biomass as a raw material
RU2597612C2 (en) Method and device for producing coke during indirectly heated gasification
JP4072612B2 (en) Pressurized spouted bed gasification method of coal using biomass
JPS6142760B2 (en)
JP2000239672A (en) Production of hydrogen gas and the like and apparatus therefor
JP4601576B2 (en) Method and apparatus for producing hydrogen gas and carbon monoxide gas from combustible waste
WO2014101370A1 (en) Coal gasification method and device, and power generation system and power generation method
JP4659294B2 (en) Method for supplying pyrolyzate to gas conversion furnace
CN110923011A (en) Coal grading conversion gasification method and device
SU878774A1 (en) Method of gasifisation of solid carbon-containing fueld
CN109233910A (en) A kind of system and method for the coal hydrogen based on chemical chain technology
US4702902A (en) Handling of by-product gases from a silicon furnace
CN115322813B (en) Integrated coal conversion device and conversion method thereof
JP2003171106A (en) Method for manufacturing fullerenes and apparatus for manufacturing fullerenes
KR102162293B1 (en) Method for manufacturing lithiumchlorid and device of the same
CN109401787B (en) Preparation method of coal synthesis gas by coupling chemical chain oxygen generation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120925

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121022

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151026

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees