JP5110656B2 - 接触角測定システム及び接触角測定方法 - Google Patents

接触角測定システム及び接触角測定方法 Download PDF

Info

Publication number
JP5110656B2
JP5110656B2 JP2008224980A JP2008224980A JP5110656B2 JP 5110656 B2 JP5110656 B2 JP 5110656B2 JP 2008224980 A JP2008224980 A JP 2008224980A JP 2008224980 A JP2008224980 A JP 2008224980A JP 5110656 B2 JP5110656 B2 JP 5110656B2
Authority
JP
Japan
Prior art keywords
substrate
boundary
droplet
contact angle
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008224980A
Other languages
English (en)
Other versions
JP2010060379A (ja
Inventor
浩幹 内山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2008224980A priority Critical patent/JP5110656B2/ja
Publication of JP2010060379A publication Critical patent/JP2010060379A/ja
Application granted granted Critical
Publication of JP5110656B2 publication Critical patent/JP5110656B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Description

本発明は接触角測定システム及び接触角測定方法に係り、特に固体表面の濡れ性などの評価に用いられる接触角の測定技術に関する。
固体表面の濡れ性制御は、医療、食品、印刷、自動車、半導体等の多くの産業分野において非常に重要な課題である。例えば、インクジェット記録装置用のインクと、記録媒体であるフィルムや紙などのメディアや部材とのぬれ性評価、導電性インク、絶縁性インクと回路基板や部材とのぬれ性評価、RGBインクとカラーフィルタ基板とのぬれ性評価などがある。
図17に示すように、固体表面200における濡れ性は、一般に液滴202の接触角θにより表され、その測定には試料表面(固体表面)200上に液滴202を滴下し、水平方向から顕微鏡等の拡大光学系で観察し、液滴202が試料表面200と接する角度を測定する方法がある。「接触角」とは、固体204、液滴202及び気体206の3相の接触点208において液滴202に引いた接線210と固体表面200のなす角度のうち、液体を含む側の角度θをいう。以前からの接触角の測定方式である固体上の液滴を写真撮影する方式から、近年ではCCDカメラで固体上の液滴の画像を取得し、コンピュータでデータを処理する方式等がある。
固体上の液滴を写真撮影する方式は、接触角θの測定に際して平板状の固体204の表面200上に液滴202を滴下した試料を、顕微鏡等の拡大光学系によって固体表面200と平行な方向である横方向から観察し、液滴202が固体表面200と接する角度、つまり接触角θを測定する。しかしながら、このような方法は使用する試料の組合せや屈折率の関係から、固体204、液滴202及び空気(気体)206の3相の接触点(以下、単に「接触点」記載することがある。)208を判別することが困難であるという問題を有していた。この問題に対して、画像解析プログラムを使用して接触点を自動認識する方法や光源位置や光量調整等を行うことで接触点を判別する方法などが採られてきた。
一方、近年では、試料上の液滴を上部から観察する方法が提案されている(特許文献1,2)。また、レーザー顕微鏡を用いて試料上の液滴の高さを上方から測定し、さらに任意の手段により前記液滴の径を測定し、この液滴の高さと径の値から液滴の接触角を算出する方法が提案されている(特許文献3)。
特開平1−126523号公報 特開平5−232009号公報 特開平8−50088号公報
しかしながら、上述した画像解析プログラムによる接触点の自動認識おいて、図18に図示するような場合に接触点208の判別を誤る場合がある。同図には、ディスペンサー211から基板(固体)204の表面200に液滴202を滴下した状態を基板204に対して水平方向からCCDカメラで撮影し、撮影された画像をモニタに表示したものである。図18において一点破線で図示した位置が現実の基板204の表面200であるにもかかわらず、光の反射や屈折の影響で見かけ上の表面(撮影画像のみに見られる表面)212を基板204の表面200として誤って認識し、符号214を付した位置を基板204と液滴202と気体206の接触点として認識してしまうことがある。
このような場合には、接触点の判別のために任意でスレッシホールド(画像上の黒い部分と白い部分の境界の値)を設定する等の画像解析パラメータを調整する必要があり、測定者によって測定値がばらつくのに加え、一回の測定及び解析に時間がかかるという問題が発生する。さらに、このような調整をより自動化、迅速化する場合は、より高機能の画像処理プログラムが必要となる。一方、光量調整による対策は反射の高い試料表面等の接触点を明確化することは困難であり、また、光量が低すぎると、液滴の形状自体が判別しづらくなる問題が発生する。
図19には、スレッシホールドを手動で設定した場合における、基板204と液滴202と気体206の接触点の判別結果を図示する。スレッシホールドを手動設定した場合には、同図に示すような測定バラつきが発生する。図19には、判別された接触点220から求められた基板204の見かけ上の表面を符号222で図示し、判別された接触点224から求められる基板204の見かけ上の表面を符号226で図示する。
接触点220における接触角は112.9°であり、接触点224における接触角は105.0°であり、この値は基板204の現実の表面200における接触角86.3°に対して、20°から30°程度の誤差を含んでいる。
図20には、画像解析プログラムによる自動認識において、接触点208の判別を誤った場合を図示する。判別された測定点230による基板204の見かけ上の表面は符号232で図示した面であり、その接触角は99.1°である。この値は、基板204の現実の表面200における接触角86.3°に対して10°以上の誤差を有している。
特許文献1,2に記載された方法は、既知の体積もしくは質量の液滴を試料に付着させ、この液滴の径を上部から測定し、この体積もしくは質量と測定した径の2つのパラメータを用いて接触角を算出するものである。かかる方法において、液滴はシリンジもしくは霧吹きによって試料上に定量吐出されるため、均一な体積もしくは質量の液滴を試料上に一様に付着させることが困難であり、個々の液滴にばらつきが生ずる。さらに、液滴の径を測定する間に蒸発等によって液滴の物理量が既知の値から変化してしまう。その結果、接触角の測定において誤差が大きくなり、精度の点で問題があった。
また、特許文献3に記載された測定方法では、接触角測定装置自体が大きくなるとい問題があり、かつ、レーザー顕微鏡という極めて高価な機器が必要とである。
本発明はこのような事情に鑑みてなされたもので、必要な最小の装置構成で、簡易かつ迅速により正確な接触点を判別して好ましい接触角の測定を実現する接触角測定システム及び接触角測定方法を提供することを目的とする。
上記目的を達成するために、本発明に係る接触角測定システムは、基板の表面に測定対象の液滴を滴下する滴下手段と、前記基板の表面に前記基板と前記液滴の境界を判別するための境界判別部材を配置する配置手段と、前記液滴及び前記境界判別部材が同一画面内に収まるように前記基板に対して水平方向又は斜め方向から前記液滴及び前記境界判別部材を撮影する撮影手段と、前記撮影手段により得られた前記境界判別部材の画像から、前記基板と前記液滴の境界を判断する境界判断手段と、前記境界判断手段において判断された前記境界における前記基板に対する前記液滴の接触角を求める接触角導出手段と、を備えたことを特徴とする。
本発明によれば、簡便かつ迅速に基板の表面を認識することができ、当該基板における接触角を正確に求めることが可能となる。また、高機能の画像解析プログラムや測定者の手作業による調整などを不要とすることで、より簡素化された接触角測定システムを構成することができる。
以下、添付図面に従って本発明の好ましい実施の形態について詳説する。
〔接触角測定システムの構成〕
図1は、上述した接触角測定システムの全体構成図である。同図に示す接触角測定システム10は、測定対象の液滴(不図示)が滴下される基板12を、該液滴が滴下される表面12Aと反対の裏側から支持する基板支持部14Aを有するとともに、基板12をX方向及びY方向に水平移動させるXYステージ14と、測定対象の液滴を基板12に滴下する吐出針16を含むディスペンサー18と、基板12の表面12Aに光を照射する光源ユニット20と、基板12の表面12Aを水平方向から撮影するカメラユニット22と、ディスペンサー18とカメラユニット22を一体に水平方向に移動させるとともに、カメラユニット22の高さ調整を行う上下移動機構24と、カメラユニット22によって得られた画像データに所定の画像処理を施す画像処理装置(PC)26と、画像処理後の画像を表示するモニタ28と、画像処理装置26のユーザインターフェース(キーボード30及びマウス32)を含んで構成されている。
本例の基板12はフッ素樹脂膜をコーティングしたシリコン基板であり、本例では基板12に対する純水及びインク(インクジェット記録装置に一般的に用いられるインク)の接触角を測定する場合について説明する。なお、本例に示す接触角測定システムは、金属基板、樹脂基板、ガラス基板、液晶ポリマーなど多種多様な基板を使用することができ、基板12の表面処理(撥水膜)はフッ素樹脂膜の他にフッ素膜を含んだ共析メッキでもよく、さらに、酸化チタンコーティング膜のような親水性材料の評価も可能である。フッ素膜にはPTFE(ポリテトラフルオロエチレン(4フッ化))や、PFA(テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体)などが含まれる。
また、測定対象の液体は、純水の他に一般的な産業分野で用いられる液体や、医療分野で用いられる生体物質(細胞、薬品)を使用することができる。
XYステージ14は、基板12上における液滴の滴下点を変更するために、ディスペンサー18と基板12とを相対移動させる手段である。
ディスペンサー18は、ガラス製であり注射筒の容量が1ミリリットルであって、基板12の被測定面に滴下される液滴量を調整可能に構成されている。なお、基板12の被測定面に滴下される液滴量は、測定対象物(基板)、液滴の種類によって適宜選択可能であり、JIS規格のJIS R 3257(1999)『基板ガラス表面のぬれ性試験方法』によれば、1マイクロリットル以上4マイクロリットル以下が適している。
また、ディスペンサー18はカメラユニット22と一体に支持され、ガイド部材に沿って移動可能に構成されている。
光源ユニット20は、基板12の液滴に対してカメラユニット22による撮影に必要な光を照射する手段であり、光量を多段階に可変可能に構成されている。光源ユニット20の光量調節は、カメラユニット22や画像処理装置26から送られる指令信号にしたがって自動調節する態様が好ましい。また、光源種は白色光などの可視光が適用される。
カメラユニット22の構成についての詳細な図示は省略するが、カメラユニット22は、撮影レンズを含む光学系と、被写体像を撮影信号に変換するCCD撮像素子と、CCD撮像素子から得られた撮影信号に所定の信号処理を施す信号処理部と、所定の信号処理が施された画像データを記憶するメモリと、画像処理装置26(外部装置)と接続するための外部インターフェースと、を含んで構成されている。
カメラユニット22は外部の制御装置から送られる指令信号に応じて、基板12に滴下された液滴の静止画像を撮影し、当該静止画像のデータを画像処理装置26に送出する手段として機能している。外部の制御装置として画像処理装置26を適用し、モニタ28に表示されたスルー画を見ながら撮影を行うように構成してもよいし、上述した信号処理部及びメモリを画像処理装置26に備え、カメラユニット22に撮像系及び外部インターフェースを含む構成としてもよい。
また、カメラユニット22に電子ファインダーなどの表示装置を備え、撮影者が表示装置に表示された画像を確認しながら手動で撮影を行うことができるように構成してもよい。
カメラユニット22はディスペンサー18との相対的な位置関係が固定され、吐出針16の先端部と吐出針16から滴下された液滴の基板12上の着弾位置とを含む撮影エリアに合焦するように光学系が調整される。例えば、基板12の端部に液滴を滴下する場合には、XYステージ14を動作させて基板12の端部(滴下点)をディスペンサー18の直下に移動させて、ディスペンサー18から基板12の端部に液滴を滴下する。
上下移動機構24は、カメラユニット22とディスペンサー18を支持する支持部材と、該支持部材を上下方向に移動させる上下スライド機構とを含んで構成され、基板12の表面12Aとディスペンサー18の高さ合わせを行う手段として機能する。
図1に示す上下移動機構24は、基板12の厚みに応じて、ディスペンサー18とカメラユニット22との相対的な位置関係を固定したままでカメラユニット22(及びディスペンサー18)の高さ調整を行うように構成されている。
図1に示す接触角測定システムでは、上述したXYステージ14と、ディスペンサー18と、光源ユニット20と、カメラユニット22が固定台25に固定されている。
画像処理装置26は、カメラユニット22によって得られた基板12上の液滴の撮影データに画像解析処理を施すとともに、モニタ28に該液滴の撮影画像を映し出すための映像信号を送出する。また、画像処理装置26は撮影データに基づき基板12に対する液滴の接触角を算出する手段として機能する。
すなわち、画像処理装置26は接触角測定に必要な画像処理(画像解析)を行うプログラム(ソフトウエア)を実行することができ、撮影画像から基板12と測定対象液滴の境界面(基板12と測定対象液滴と空気の接触点)を自動認識する機能や、該境界面を補正する機能、該境界面に基づき接触角を算出する機能などを有している。
図1には、USB(Universal Serial Bus)やイーサネット(登録商標)などの汎用インターフェースを用いて画像処理装置26とカメラユニット22をケーブルにより接続する形態を図示したが、無線LANなどの無線接続形態を適用してもよい。画像処理装置26やモニタ28をカメラユニット22と一体に構成することも可能である。
図1のモニタ28に映し出された吐出針16の先端部から液滴40が滴下される直前の静止画像を図2に示す。図2に示すように、モニタ28に映し出された画像には、反射及び屈折により現実の表面12Aとは異なる位置に見かけ上の表面42が存在している。本例に示す接触角測定システム及び接触角測定方法は、見かけ上の表面42が存在する場合にも正確に接触点を認識することができ、正確な接触角測定が実現されるように構成されている。
〔接触角の測定方法の説明〕
次に、接触角の測定方法について詳細に説明する。本例に示す接触角測定方法は、測定対象の液滴と同一平面内における測定対象の液滴の近傍に、基板12、測定対象液滴、空気の接触点を判別するための基準となる接触点判別部材(境界判別部材)を配置し、接触点判別部材の撮影画像に基づき接触点、すなわち、基板と液滴の境界面(基板12の現実の表面)を判断し、当該境界面を基準として測定対象の液滴の接触角を算出するものである。
以下に、測定対象の液滴と同一種類であり、測定対象の液滴に対して十分に少ない液滴量を有する液体を接触点判別部材として適用した場合について説明する。具体的には、測定対象の液滴の滴下量は2μl(マイクロリットル)であり、接触点判別部材の滴下量は測定対象の液滴の滴下量の1/40である0.05μl(マイクロリットル)である。
図3は、モニタ28(図1参照)に映し出された画像であり、基板12の表面12A(一点破線で図示)上の測定対象の液滴の画像50及び接触点判別部材の画像52が映し出されている。図3に示すように、測定対象液滴の画像50には、現実の液滴の画像50Aと反射による液滴の鏡像50Bが含まれている。また、接触点判別部材の画像52にも、現実の接触点判別部材の画像52Aと反射による接触点判別部材の鏡像52Bが含まれている。
図3に示す接触点判別部材の画像52は、水平方向について線対称の横長だ円形状であり、長軸を基板12の現実の表面12Aとみなすことができる。接触点判別部材は測定対象の液滴よりも十分に少ない液量であり、その画像52の下側の輪郭線が見かけ上の表面42に達していないので全体の輪郭を把握することができる。したがって、接触点判別部材の画像52における短軸の中点(最大高さの中点)を求め、該中点を通る水平方向に平行な線が長軸である線対称軸となる。
すなわち、本例に示す接触角測定方法では、接触点判別部材の画像52における線対称軸を基板12の表面12A(基板12と測定対象液滴の境界面)とみなし、該線対称軸を測定対象液滴の画像50に適用して、測定対象液滴と基板12と気体54の接触点における接触角が算出される。また、接触点判別部材の画像52の全体が撮影画像として認識できる大きさとなるように接触点判別部材の大きさ(滴下量)が決められている。
具体的には、モニタ28に映し出された画面において、マウス32(図1参照)を操作して接触点判別部材の画像52の線対称軸を引き、この線対称軸を基板12の表面12Aとして画像解析プログラム上で設定し、接触角が自動計算される。また、画面に映し出された画像や印刷された画像から直接測定することも可能である。
図4には、モニタ28に映し出された画面上で、対称軸線60を引いた状態を図示する。図4に示す対称軸線60に基づいて求められた接触角は86.3°である。また、図4には、画像解析プログラムにより自動認識された基板12の表面(撮影画像に現れる見かけ上の基板12の表面)62,64を図示する。画像解析プログラムによる自動認識においてしきい値等の設定を変えることで、符号62で示す位置や符号64で示す位置を見かけ上の基板の表面と認識される。しかし、いずれの場合にも基板12の表面を正確に認識していない。
なお、符号62で示す位置を基板12の表面と認識した場合の接触角算出値αは112.9°であり、符号64で示す位置を基板12の表面と認識した場合の接触角算出値は105.0°である。
図3及び図4に示す測定対象液滴の画像50の形状は、基板12上の位置(基板12の表面12Aにおける反射光の分布)にも影響を受け変化する。特に、反射の大きい基板(反射の大きい表面処理を施した基板)は、目視による接触点の判別が困難な画像となってしまう。したがって、基板12上の位置の違いによる測定対象液滴の画像50の形状の違いを把握しておく必要がある。
図5(a)には、図1に示す接触角測定システム10を用いて、基板12の端面からの距離の違いによる測定対象液滴の画像50の形状の違いを測定したときの測定条件を図示する。符号70Aで示す測定点(0cm)は基板12のカメラユニット22側の端面であり、符号70Bで示す測定点は基板12の端面(0cm)から基板12の内側へ3cmの位置であり、符号70Cで示す測定点は基板12の端面(0cm)から基板12の内側へ5cmの位置である。
なお、図5(b)に示すように、図1に図示した接触角測定システム10は、ディスペンサー18とカメラユニット22の距離が固定されているので、上述した測定ではカメラユニット22と測定点70A〜70Cの距離は固定されている。
図6は、図5(a)の測定点70Aの撮影画像80Aを示す。測定点70Aでは測定対象の液滴の後ろ側からの反射のみであり、現実の液滴の形状と類似する形状となっている。図6に示す撮影画像80Aを画像解析プログラムにより自動判別した境界面は符号82Aを付した位置である。一方、境界位置判別部材の画像52を用いて判別した境界面は符号84Aを付した位置である。画像解析プログラムにより求められた接触角は87.3°であり、本例の接触角測定方法により求められた接触角の値は86.1°である。
図7には、図5(a)の測定点70Bの画像80Bを示す。また、図8には図5(a)の測定点70Cの画像80Cを示す。図7に示す画像80Bや図8に示す画像80Cは即定点70B,70Cの後方だけでなく前方からの反射の影響を受け、現実の液滴の形状とは異なりほぼ球形状として認識されてしまい、自動認識により自動判別した境界点がいずれの位置になるかはパラメータの設定等により大きなバラつきが生じてしまう。
これに対して境界位置判別部材の画像52を用いて判別した境界面は、図7の符号84B、図8の符号84Cを付した位置であり、バラつきを生じることなく許容されうる一定の位置として認識される。すなわち、本例に示す接触角測定方法によれば、基板12内のいずれの位置においても、基板12と測定対象液滴との境界面を確実にかつ、再現性よく認識することができる。
上述した基板12の表面による反射は、光源ユニット(図1参照)から放射される光量を絞ることで小さくすることができる。すなわち、光源ユニットの光量を小さくすることで、図3に示す見かけ上の表面42が上方向に移動して現実の表面12Aに近づき、現実の表面12Aを確認できる可能性があるが、接触点判別部材がない場合にはその移動する基板表面(光量で調整した基板表面)をどこまで移動させるか判断ができない。
一方、光量を絞り過ぎると撮影に必要な光量を得ることができず、測定対象液滴の認識が困難になる。したがって、ディスペンサー18の吐出針16の先端部にピントを合わせるため、及び接触点判別部材のエッジ部が確認できる画像を得るために光量を調整する必要がある。
図1に示す構成において、撮影に適した光量範囲を測定する方法(構成)を図9に示す。同図に示すように、光源ユニット20の中心点とカメラユニット22の中心点が一致するように(光源ユニット20の光軸上にカメラユニット22の撮像系の光軸が位置するように)、光源ユニット20とカメラユニット22の位置を調整し、図9に破線で図示した2点を結ぶ直線Y上の測定点P〜Pのそれぞれで測定を行う。
測定点Pはカメラユニット22のレンズ位置であり、測定点PはXYステージ14の中心位置であり、測定点Pは光源ユニットの照射面位置である。光源ユニット20の出力値を可変させながら撮影画像を確認し、反射による影響がある程度抑制されるとともに輪郭を視認し得る程度に鮮明な画像を得ることができる光量の範囲を実測する。
光量の条件の一例を挙げると、測定点P1における光量範囲は100ルクス以上700ルクス以下であり、測定点P2における光量範囲は200ルクス以上1500ルクス以下である。また、測定点P3における光量範囲は900ルクス以上20000ルクス以下である。
上述した3点の測定結果から、基板12上の任意の位置における好ましい光量範囲を求めることができる。なお、基板12の種類や基板12の表面12Aの表面により補正が必要な場合があるが、使用する基板12(表面処理)を用いて実測することで、あらゆる基板、表面処理に適用することができる。
〔境界点判別部材の説明〕
次に、境界点判別部材の形状、大きさ等の条件について詳述する。図10〜14には、本例の接触角測定方法に適用可能な境界点判別部材を例示する。
図10(a)には、水平方向の投影形状(カメラユニットによる撮像面の平面形状)が台形形状(上底>下底)を有する固体の境界点判別部材90を図示し、図10(b)には水平方向の投影形状が、図10(a)の台形を上下反転させた台形形状(上底<下底)有する固体の境界点判別部材92を図示する。図10(a)及び図10(b)に示す境界点判別部材90,92には、ハンドリングのためのハンドリング部91,93が設けられている。
図11(a)には、図10(a)に示す境界点判別部材90が基板12上に置かれた画像を模式的に図示する。図11(a)に示すように、基板12の反射部分(図11(a)にドットハッチを付して図示した部分)に鏡像90Bが見えることで、基板12の現実の表面12Aを認識することが可能である。図11(b)に示す境界点判別部材92についても同様であり、基板12の反射部分に鏡像92Bが見えることで、基板12の現実の表面12Aを認識することが可能である。
また、図12(a)に示すような水平方向の投影形状が横長だ円形状の境界点判別部材94や、図12(b)に示すような水平方向の投影形状が縦長だ円形状の境界点判別部材96も同様の効果をえることが可能である。
すなわち、境界点判別部材の水平方向の投影形状は、正方形及び長方形を除く四角形(例えば、台形、平行四辺形)、三角形、五角形以上の多角形、円、半円、長だ円などが適用される。言い換えると、境界点判別部材の水平方向の投影形状は、基板12の表面12Aに対して90°未満又は90°を超える角度で接する辺(又は接線)を有する形状であればよい。
また、境界点判別部材に液体を用いる場合には、測定対象の液滴と異なる種類の(異なる物性を有する)液体を用いてもよい。図13には、測定対象の液滴よりも基板12に対する接触角が大きい液体を用いた場合の撮影画像を示す。
図13には、インクジェット記録装置用のインクを用いた測定対象の液滴の撮影画像100と、純水を用いた境界点判別部材の撮影画像102を図示する。同図に示すように測定対象の液体よりも基板12に対する接触角が大きい液体を用いることで、境界面104(境界点)を確実に認識することができる。また、このような条件では、境界点判別部材の液滴量は測定対象の液滴量よりも十分に小さいといった制限もない。
図13に示す例では、インクの滴下量は2μl(マイクロリットル)であり、境界点判別部材(純水)の滴下量もインクの滴下量と同じく2μl(マイクロリットル)である。また、境界点判別部材の基板12に対する接触角は90°以上であれば、基板12の現実の表面12Aを判別することが可能である。
図14〜図16には、境界点判別部材に異なる種類の液体を用いる場合のディスペンサーの構成例を示す。図14に示すディスペンサー118は、測定対象の液滴110を滴下する測定対象液滴用吐出針116Aと、境界点判別部材の液滴110を滴下する境界点判別部材用吐出針116Bを備え、測定対象液滴用吐出針116Aと境界点判別部材用吐出針116Bが連結部117によって連結されている。なお、図14はカメラユニット(図1参照)側から見た図である。
かかる構造によれば、測定対象の液滴110と境界点判別部材112との距離を固定することができ、1画面内に測定対象の液滴110の撮像画像と境界点判別部材112の撮像画像を1画面内に収めることができる。
図15(a)に示すディスペンサー118’は、境界点判別部材用吐出針116Bに代わり、境界点判別部材92(図10(b)に図示した円柱形状の固体)を備えた構成である。かかる態様では、測定対象液滴用吐出針116Aと境界点判別部材92が別々に駆動(又は手動)で上下に移動可能に構成され、測定対象液滴用吐出針116Aを単独で基板12に近接させて測定対象の液滴110を滴下し、その後(又は、その前)に、境界点判別部材用部材92を単独で基板12に近接させて境界点判別部材を配置することが可能である。
なお、図15(b)に示すように、境界点判別部材92の先端部の形状を先端に向かって広がるような形状(逆テーパ形状)とするとよい。
図16(a)には、さらに他の態様に係るディスペンサー118”を示す。同図に示す態様では、測定対象液滴用吐出針116Aの先端部の位置(高さ)と、境界点判別部材用92の先端部の位置がずれている。すなわち、基板12と測定対象液滴用吐出針116Aの先端部との距離は、基板12と境界点判別部材92の先端部との距離よりも大きくなっている。
測定対象液滴用吐出針116Aの先端部の位置と境界点判別部材92の先端部の位置とのずれは、カメラユニットによる撮影画面内に、基板12、測定対象の液滴110、測定対象液滴用吐出針116Aの先端部、境界点判別部材が収められるように決められている(図16(b)参照)。なお、図16(c)に示すように、図15(b)に図示した境界点判別部材用吐出針116Bの先端部の形状を適用するとよい。
次に、上述した接触角測定方法を工程順に説明する。なお、特に断らない場合は、以下の説明に使用する符号は図1に使用した符号である。
(工程1:光量調整)
ディスペンサー18の吐出針16の先端部にカメラユニット22の焦点を合わせ、光源ユニット20の光量調整を行う。
(工程2:接触点判別部材の配置)
XYステージ14に基板12を配置し、接触点認識部材となる測定対象液滴と同じ種類の液滴を微量に滴下する。微量液滴(接触点判別部材)の滴下量は、少なくとも見かけ上の基板表面に接することがない程度の量にすることが好ましい。ただし、微量液滴の画像の両端エッジ部が判別できる場合は、微量液滴が見かけ上の基板表面に接してもよい。
(工程3:測定対象液滴の滴下)
液滴滴下用のディスペンサー18に溶液を充填し、滴下する液滴量を決定する。
接触点認識部材を滴下した後に、その滴下位置から基板12を平行移動させて、同一撮影画面内に収まるようにして測定対象液滴を滴下する。なお、工程2と工程3を入れ替えることも可能である。
(工程4:撮影)
カメラユニット22を用いて、測定対象液滴と接触点判別部材を撮影する。
(工程5:接触点設定→接触角算出)
カメラユニット22の画像から接触点(基板12と測定対象液滴の境界面)を設定し、接触角を算出する。
カメラユニット22による撮影は、基板12に測定対象液滴が着滴してから1秒後(着滴後の液滴の形状が安定した後)に測定した。この測定時間は測定対象液滴の種類、基板12の表面性によって適宜設定するとよい。例えば、着滴した液滴の経時変化を測定するには、0.1秒ごとに撮影することや1秒ごとに撮影することもでき、測定目的や液滴と基板の組合せに合わせて変更可能である。
上記の如く構成された接触角測定システム及び方法は、基板表面と測定対象液滴の境界を判別するための接触点判別部材を測定対象の液滴と同一面内に設置し、測定対象の液滴と接触点判別部材が同一画面内に収まるように撮影し、撮影画像に基づき基板と測定対象の液滴の境界を判断するので、正確にかつ簡易に接触角を測定することが可能となる。
本例では、手動で接触点判別部材の端点に直線を引く態様を例示したが、現実の基板表面を自動で認識させる(見かけ上の基板表面を現実の基板表面に自動補正する)プログラムを組むことで自動化も可能である。すなわち、上記方法発明の各工程を含むプログラムを作成し、当該接触角測定プログラムを画像処理装置26により実行すればよい。
本例では、主に静的接触角について記載しているが、その他の動的接触角における接触点の識別にも適用できる。また、本例に記載したインク、純水、撥水膜は、本発明の内容を限定するものではない。
本発明は、インクジェット記録装置からインクが打滴された記録媒体の評価や、インクジェットヘッドのインク吐出面における撥液膜の評価及び検査、液晶ディスプレイ等に用いられるカラーフィルタの評価及び検査などに適している。
以上、本発明の接触角測定方法、接触角測定システムを詳細に説明したが、本発明は、以上の例には限定されず、本発明の要旨を逸脱しない範囲において、各種の改良や変形を行ってもよいのはもちろんである。
<付記>
上記に詳述した発明の実施形態についての記載から把握されるとおり、本明細書は少なくとも以下に示す発明を含む多様な技術思想の開示を含んでいる。
(発明1):基板の表面に測定対象の液滴を滴下する滴下手段と、前記基板の表面に前記基板と前記液滴の境界を判別するための境界判別部材を配置する配置手段と、前記液滴及び前記境界判別部材が同一画面内に収まるように前記基板に対して水平方向又は斜め方向から前記液滴及び前記境界判別部材を撮影する撮影手段と、前記撮影手段により得られた前記境界判別部材の画像から、前記基板と前記液滴の境界を判断する境界判断手段と、前記境界判断手段において判断された前記境界における前記基板に対する前記液滴の接触角を求める接触角導出手段と、を備えたことを特徴とする接触角測定システム。
本発明によれば、測定対象の液滴と同一面内に境界判別部材を配置し、測定対象の液滴と境界判別部材が同一画面内に収まるように両者を撮影し、撮影画像に基づき基板と測定対象の液滴との境界面を把握するので、該境界面を誤って認識することがない。したがって、高機能の画像解析プログラムを使用することなく、かつ、測定試料や液滴の種類に応じて細かな光源の調整を行うことなく、正確に接触角を測定することが可能となる。
(発明2):発明1に記載の接触角測定システムにおいて、前記境界判断手段は、前記撮影手段により得られた前記液滴の画像から前記基板の表面を自動的に認識する自動認識手段と、前記撮影手段により得られた前記境界判別部材の画像から前記基板と前記液滴の境界を判別し、判別結果に基づき前記自動認識手段によって認識された前記基板の表面を補正する補正手段と、を含むことを特徴する接触角測定システム。
かかる態様によれば、測定対象の液滴の撮影画像から基板の表面(基板と撮影対象の液滴の境界面)を自動認識する場合にも、自動認識された基板の表面を境界判別部材の画像から把握される基板と測定対象の液滴との境界面に補正することで、正確に接触角を測定することができる。
(発明3):発明1又は2に記載の接触角測定システムにおいて、前記境界判別部材は、前記撮影手段により撮影される面の平面形状が前記基板の表面に対して90°未満、あるいは90°を超える角度をなす斜辺を有することを特徴とする接触角測定システム。
かかる態様によれば、境界判別部材を水平方向に凸形状又は凹形状の対称形とすることで、境界判別部材の撮影画像から基板と測定対象の液滴との境界面を容易に把握することができる。
(発明4):発明1乃至3のいずれか1項に記載の接触角測定システムにおいて、前記境界判別部材は、前記測定対象の液滴と同一種類の液体であることを特徴とする接触角測定システム。
かかる態様によれば、基板に対するダメージがなく、境界判別部材のための滴下手段を別途設ける必要がない。
(発明5):発明1乃至4のいずれか1項に記載の接触角測定システムにおいて、前記境界判別部材は液体であるとともに、前記測定対象の液滴よりも少ない液量を有することを特徴とする接触角測定システム。
かかる態様によれば、境界判別部材の撮影画像の全体形状を把握することができ、より正確に基板と測定対象の液滴との境界面を把握することができる。
(発明6):発明1乃至5のいずれか1項に記載の接触角測定システムにおいて、前記境界判別部材は液体であるとともに、前記基板に対する接触角が90°以上であることを特徴とする接触角測定システム。
かかる態様において、配置手段は境界判別部材である液体を基板に滴下する境界判別部材手段を含んでいる。
(発明7):発明1乃至5のいずれか1項に記載の接触角測定システムにおいて、前記境界判別部材は液体であるとともに、前記基板に対する接触角が90°以上であり、前記測定対象の液滴と同一の液量を有することを特徴とする接触角測定システム。
かかる態様によれば、境界判別部材として接触角が既知の液体を用いることで、境界判別部材の滴下量を測定対象の液滴と同一量にすることができる。
(発明8):発明1乃至3の何れか1項に記載の接触角測定システムにおいて、前記境界判別部材は固体であるとともに、前記撮影手段により撮影される面の平面形状が半円、半だ円、三角形、台形、平行四辺形、五角形以上の多角形を含むことを特徴とする接触角測定システム。
かかる態様によれば、境界判別部材を固体としてもよい。
(発明9):基板の表面に測定対象の液滴を滴下する滴下工程と、前記基板の表面に前記基板と前記液滴の境界を判別するための境界判別部材を配置する配置工程と、前記液滴及び前記境界判別部材が同一画面内に収まるように前記基板に対して水平方向又は斜め方向から前記液滴及び前記境界判別部材を撮影する撮影工程と、前記撮影工程により得られた前記境界判別部材の画像から、前記基板と前記液滴の境界を判断する境界判断工程と、前記境界判断工程において判断された前記境界における前記基板に対する前記液滴の接触角を求める接触角導出工程と、を含むことを特徴とする接触角測定方法。
境界判断工程は、前記境界判断手段は、前記撮影工程により得られた前記液滴の画像から前記基板の表面を自動的に認識する自動認識手段と、前記撮影手段により得られた前記境界判別部材の画像から前記基板と前記液滴の境界を判別し、判別結果に基づき前記自動認識工程によって認識された前記基板の表面を補正する補正工程と、含む態様が好ましい。
本発明の実施形態に係る接触角測定システムの全体構成図 撮影画像における見かけ上の表面を説明する図 接触点判別部材の機能を説明する図 接触点(境界面)の設定を説明する図 光源ユニットの光量を説明する図 図5における測定点Pの撮影画像を示す図 図5における測定点Pの撮影画像を示す図 図5における測定点Pの撮影画像を示す図 光量測定方法を説明する図 図3に示す接触点判別部材の一態様を説明する図 図10に示す接触点判別部材の撮影画像を説明する図 図3に示す接触点判別部材の他の態様を説明する図 図3に示す接触点判別部材のさらに他の態様を説明する図 図13に示す接触点判別部材を用いるときのディスペンサーの構成例 図14に示すディスペンサーの構成例の他の態様の構成例 図15に示すディスペンサーの構成例の他の態様の構成例 接触角を説明する図 従来技術に係る接触角測定方法を説明する図 図18に示す接触角測定方法における測定結果を説明する図 図18に示す接触角測定方法における測定結果を説明する図
符号の説明
10…接触角測定システム、12…基板、12A…表面、18…ディスペンサー、20…光源ユニット、22…カメラユニット、26…画像処理装置、52,90,92,94,96,102…接触点判別部材

Claims (9)

  1. 基板の表面に測定対象の液滴を滴下する滴下手段と、
    前記基板の表面に前記基板と前記液滴の境界を判別するための境界判別部材を配置する配置手段と、
    前記液滴及び前記境界判別部材が同一画面内に収まるように前記基板に対して水平方向又は斜め方向から前記液滴及び前記境界判別部材を撮影する撮影手段と、
    前記撮影手段により得られた前記境界判別部材の画像から、前記基板と前記液滴の境界を判断する境界判断手段と、
    前記境界判断手段において判断された前記境界における前記基板に対する前記液滴の接触角を求める接触角導出手段と、
    を備えたことを特徴とする接触角測定システム。
  2. 請求項1に記載の接触角測定システムにおいて、
    前記境界判断手段は、前記撮影手段により得られた前記液滴の画像から前記基板の表面を自動的に認識する自動認識手段と、
    前記撮影手段により得られた前記境界判別部材の画像から前記基板と前記液滴の境界を判別し、判別結果に基づき前記自動認識手段によって認識された前記基板の表面を補正する補正手段と、
    を含むことを特徴する接触角測定システム。
  3. 請求項1又は2に記載の接触角測定システムにおいて、
    前記境界判別部材は、前記撮影手段により撮影される面の平面形状が前記基板の表面に対して90°未満、あるいは90°を超える角度をなす斜辺を有することを特徴とする接触角測定システム。
  4. 請求項1乃至3のいずれか1項に記載の接触角測定システムにおいて、
    前記境界判別部材は、前記測定対象の液滴と同一種類の液体であることを特徴とする接触角測定システム。
  5. 請求項1乃至4のいずれか1項に記載の接触角測定システムにおいて、
    前記境界判別部材は液体であるとともに、前記測定対象の液滴よりも少ない液量を有することを特徴とする接触角測定システム。
  6. 請求項1乃至5のいずれか1項に記載の接触角測定システムにおいて、
    前記境界判別部材は液体であるとともに、前記基板に対する接触角が90°以上であることを特徴とする接触角測定システム。
  7. 請求項1乃至5のいずれか1項に記載の接触角測定システムにおいて、
    前記境界判別部材は液体であるとともに、前記基板に対する接触角が90°以上であり、前記測定対象の液滴と同一の液量を有することを特徴とする接触角測定システム。
  8. 請求項1乃至3の何れか1項に記載の接触角測定システムにおいて、
    前記境界判別部材は固体であるとともに、前記撮影手段により撮影される面の平面形状が半円、半だ円、三角形、台形、平行四辺形、五角形以上の多角形を含むことを特徴とする接触角測定システム。
  9. 基板の表面に測定対象の液滴を滴下する滴下工程と、
    前記基板の表面に前記基板と前記液滴の境界を判別するための境界判別部材を配置する配置工程と、
    前記液滴及び前記境界判別部材が同一画面内に収まるように前記基板に対して水平方向又は斜め方向から前記液滴及び前記境界判別部材を撮影する撮影工程と、
    前記撮影工程により得られた前記境界判別部材の画像から、前記基板と前記液滴の境界を判断する境界判断工程と、
    前記境界判断工程において判断された前記境界における前記基板に対する前記液滴の接触角を求める接触角導出工程と、
    を含むことを特徴とする接触角測定方法。
JP2008224980A 2008-09-02 2008-09-02 接触角測定システム及び接触角測定方法 Expired - Fee Related JP5110656B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008224980A JP5110656B2 (ja) 2008-09-02 2008-09-02 接触角測定システム及び接触角測定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008224980A JP5110656B2 (ja) 2008-09-02 2008-09-02 接触角測定システム及び接触角測定方法

Publications (2)

Publication Number Publication Date
JP2010060379A JP2010060379A (ja) 2010-03-18
JP5110656B2 true JP5110656B2 (ja) 2012-12-26

Family

ID=42187334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008224980A Expired - Fee Related JP5110656B2 (ja) 2008-09-02 2008-09-02 接触角測定システム及び接触角測定方法

Country Status (1)

Country Link
JP (1) JP5110656B2 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102564905B (zh) * 2011-12-06 2013-11-06 西北工业大学 超导磁体模拟微重力环境下接触角测量装置及其方法
US10094816B2 (en) * 2012-05-25 2018-10-09 Tokyo Women's Medical University Method of evaluating wetting characteristic of object
CN103439225A (zh) * 2013-08-29 2013-12-11 华南理工大学 一种用于测量静态接触角的滴液装置
JP6792246B2 (ja) * 2017-07-14 2020-11-25 国立研究開発法人理化学研究所 物質の濡れ性評価方法及び評価装置
KR102339560B1 (ko) * 2020-09-05 2021-12-16 (주)화인솔루션 피처리물 표면 액체방울 접촉각 측정 시스템
CN112129673B (zh) * 2020-10-10 2024-07-05 广西科学院 一种用于超疏水材料生产用检验装置
CN113049453B (zh) * 2021-03-15 2022-06-14 中国石油大学(北京) 原位润湿角测定装置和基于深度学习的润湿角确定方法
TWI834108B (zh) * 2022-01-13 2024-03-01 友威科技股份有限公司 水滴角量測機

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01126523A (ja) * 1987-11-11 1989-05-18 Hitachi Ltd 接触角測定装置
JPH05232009A (ja) * 1992-02-18 1993-09-07 Nagoyashi コンピュータ画像解析システムによる接触角測定法と接触角測定装置
JPH0850088A (ja) * 1994-08-09 1996-02-20 Toyota Motor Corp 接触角測定方法
JP2005147829A (ja) * 2003-11-14 2005-06-09 Seiko Epson Corp 蒸発率の測定方法、蒸発特性の測定方法、蒸発特性測定装置
JP4563890B2 (ja) * 2004-08-10 2010-10-13 財団法人神奈川科学技術アカデミー 液滴移動挙動の測定方法および装置
JP2007108007A (ja) * 2005-10-13 2007-04-26 Canon Inc 接触角測定方法および接触角測定装置

Also Published As

Publication number Publication date
JP2010060379A (ja) 2010-03-18

Similar Documents

Publication Publication Date Title
JP5110656B2 (ja) 接触角測定システム及び接触角測定方法
JP6830406B2 (ja) 分注装置
US7404861B2 (en) Imaging and inspection system for a dispenser and method for same
CN106500965B (zh) 基于ccd探测器的龙虾眼x射线光学元件聚焦性能测试装置与方法
US11899007B2 (en) Specimen verification in automated testing apparatus
TWI797296B (zh) 檢測浸於溶液中眼用鏡片屈光度及厚度之系統及方法
KR20100037914A (ko) 잉크 드롭 체적 측정장치 및 방법
JP2010512545A (ja) 画像焦点の質を評価するための方法
JP2013503351A (ja) 小型自動セルカウンター
WO2020107586A1 (zh) 光学模组参数的检测系统及方法
US10831009B2 (en) Phase contrast microscope and imaging method
JP2019519757A (ja) リアルタイム体積制御するためのシステムおよび方法
TW201013172A (en) Lens testing device with variable testing patterns
WO2019196113A1 (zh) 一种控制探头的方法、检测设备及控制探头的装置
CN112858106A (zh) 一种液滴接触角的测量系统及方法
KR20140100756A (ko) 종이의 액체 표면 거동 및 사이즈도 측정방법, 그리고 이의 측정장치
TWI808435B (zh) 複數視角分析的自動測試裝置
JP2019219357A (ja) 撮影装置、撮影方法および撮影プログラム
JP5200813B2 (ja) 測定用マークと基板エッジの距離測定方法
TWI699532B (zh) 用於測試生物樣本的裝置
JP7034280B2 (ja) 観察装置
KR100942236B1 (ko) 판유리 두께의 측정오차 보정방법
JP2010071867A (ja) 偏心測定装置および方法
CN110907470A (zh) 滤光片检测设备及滤光片检测方法
JP2020063925A (ja) 画像解析式粒子分析装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121003

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121004

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151019

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5110656

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees