JP5080489B2 - ガスの計量 - Google Patents

ガスの計量 Download PDF

Info

Publication number
JP5080489B2
JP5080489B2 JP2008545070A JP2008545070A JP5080489B2 JP 5080489 B2 JP5080489 B2 JP 5080489B2 JP 2008545070 A JP2008545070 A JP 2008545070A JP 2008545070 A JP2008545070 A JP 2008545070A JP 5080489 B2 JP5080489 B2 JP 5080489B2
Authority
JP
Japan
Prior art keywords
gas meter
electrode structure
gas
modulation
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008545070A
Other languages
English (en)
Other versions
JP2009519456A (ja
Inventor
コルビー,エドワード,グレラー
シュタイナー,ハンス,ジョアキム
ラウスソポウロス,キモン
ストーキー,マシュー,エマニュエル,ミルトン
シェイクスピア,サイモン,アダム
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sentec Ltd
Original Assignee
Sentec Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GB0525307A external-priority patent/GB0525307D0/en
Priority claimed from GB0525305A external-priority patent/GB0525305D0/en
Application filed by Sentec Ltd filed Critical Sentec Ltd
Publication of JP2009519456A publication Critical patent/JP2009519456A/ja
Application granted granted Critical
Publication of JP5080489B2 publication Critical patent/JP5080489B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/06Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects using rotating vanes with tangential admission
    • G01F1/08Adjusting, correcting or compensating means therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/704Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow using marked regions or existing inhomogeneities within the fluid stream, e.g. statistically occurring variations in a fluid parameter
    • G01F1/7046Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow using marked regions or existing inhomogeneities within the fluid stream, e.g. statistically occurring variations in a fluid parameter using electrical loaded particles as tracer, e.g. ions or electrons
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/704Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow using marked regions or existing inhomogeneities within the fluid stream, e.g. statistically occurring variations in a fluid parameter
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/704Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow using marked regions or existing inhomogeneities within the fluid stream, e.g. statistically occurring variations in a fluid parameter
    • G01F1/708Measuring the time taken to traverse a fixed distance
    • G01F1/7088Measuring the time taken to traverse a fixed distance using electrically charged particles as tracers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/124Sampling or signal conditioning arrangements specially adapted for A/D converters

Description

【技術分野】
【0001】
本発明は、容積式ガス計量の分野に関する。本願明細書に記載のガス計量技術は、住宅用都市ガスメータでの使用に特に適している。
【背景技術】
【0002】
住宅用の容積式ガスメータの殆どはダイアフラムガスメータである。これは、完全サイクルごとに固定容量のガスを通過させる容積移送原理で動作する機械式装置である。機械式メータは、平常動作中に摩耗するため、時間と共に精度が下がり、遂には完全に故障する可能性もある。自動計測(AMR)の加速的普及は、消費量情報の自動読み取りを可能にするために、極めて多くの場合、何らかの形の符号化器を機械的な読みにインタフェースさせる必要があることを意味する。
【0003】
ガス消費量の測定値を電子形態で直接入手できる、可動部を含まないガスメータ、すなわち静的ガスメータを提供することが望ましい。このような実装から得られる他の利点としては、使用時間、ピーク需要、またはガス価格設定の地理的格差に基づくより複雑な料金表を設定できること、あるいは他の住宅用エネルギー源、たとえば電気、石油、または再生可能エネルギー資源など、と情報を共有できることが挙げられる。
【0004】
3種類の静的容積式ガスメータが開発されている。第1は、超音波による飛行時間型メータである。これは、この種のメータの高コストを負担できる隙間市場向けに市販されている。第2の公知技術は、熱式質量流量メータである。これは、当該分野に比較的最近加わったものであり、バイパス方式と微細加工されたセンサとを使用する。第3の種類は、1950年代に開発された流体振動子式メータである。これらの計量技術はどれも、機械式メータより高価であるという欠点があり、さらにかなりの電池電力を必要とし、このためコストがさらに増加する。
【0005】
米国特許第3,688,106号(ブレイン(Brain))明細書には、ダクト内のガスの速度を測定するためのメータが記載されている。このメータは、イオン発生源と2つのイオンコレクタとを有し、ダクト内のガスは最初にイオン化され、次にコレクタを通過する。電圧パルスを第1のコレクタに印加し、このパルスと第2のコレクタで収集されるイオン数に及ぼされた影響との間の隔たりを測定することによってガス速度を求める。第2のコレクタにおいてパルス間に収集されたイオン数を求めることによってガス密度を測定し、速度と密度の積から質量流量を求める。このシステムにおいては、第1のコレクタに印加される電圧パルスは100Hzの方形波であり、120ボルトの電圧が第2のコレクタの両端に印加される。高電圧および高変調周波数であるため、この設計は、家庭用ガスメータに必要な低電圧の電池式運転には適さない。米国特許第3,842,670号および米国特許第2,632,326号の明細書には、イオン化速度式ガスメータの他の構成が記載されている。
【0006】
米国特許第3,688,106号(ブレイン)明細書に記載されている一般型ガスメータであって、標準の電池によって経済的に給電できるように数ボルトの動作電圧で機能できるガスメータを提供することが望ましいであろう。ただし、ブレインが説明している計量構造では、各コレクタからガス流へのインピーダンスを皆無にするか、または殆ど無くすために、各コレクタの電極間を十分に離す必要がある。したがって、このメータを機能させるために十分大きな電界を各コレクタに与えるには、100ボルトを超える動作電圧を必要とする。この同じ電界を数ボルトの動作電圧で発生させるには、ブレイン式メータを取り付けるダクトの直径を100分の1にする必要があり、家庭用のガス供給の流れを著しく妨げることになろう。
【0007】
本発明は、少なくとも好適な複数の実施態様において、ガスの速度場とイオン化分布とが作用し合って被検出信号を変化させるという根本原理を用いた、イオン化ガス流の電気的操作および検出の原理に基づき動作する、改良された容積式ガスメータを提供しようとするものである。特定の実施態様において、本ガスメータは、全国または地域供給網からのガス使用量の計量に特に適している。
【発明の開示】
【発明が解決しようとする課題】
【0008】
本発明は、住宅用都市ガスメータとして特に適した、ガス消費量の測定値を電子形態で直接入手できる、可動部を含まないガスメータ、すなわち静的ガスメータを提供するのが目的である。
【課題を解決するための手段】
【0009】
上記目的を達成するため、請求項1に記載の発明においては、ガスメータであって、ガスの使用時にガス流を通過させる導管と、前記ガスの使用時に前記導管内の前記ガス流をイオン化するために配置されたイオナイザと、前記イオナイザによりイオン化されたガス流中のイオン分布を変調するために配置された変調電極構造と、前記イオン化ガス流において前記変調されたイオン分布を検出するために配置された、前記変調電極構造の下流の少なくとも第1の検出電極構造と、を備える前記ガスメータにおいて、前記変調電極構造は、前記イオナイザの下流に配置され、少なくとも実質的成分が前記イオン化ガス流の方向に平行な電界を発生させるように構成されていることを特徴とするものである。
【0010】
更に、請求項2に記載の発明においては、前記請求項1に記載のガスメータであって、前記検出電極構造は、少なくとも実質的成分が前記イオン化ガス流の方向に平行な電界を発生させるように構成されていることを特徴とするものである。
【0011】
更に、請求項3に記載の発明においては、前記請求項1または2に記載のガスメータであって、前記発生した電界は前記イオン化ガス流の方向にほぼ平行であることを特徴とするものである。
【0012】
更に、請求項4に記載の発明においては、前記請求項1から3の何れか1項に記載のガスメータであって、前記変調電極構造は、前記イオン化ガス流の方向に対してほぼ直角に配置されたほぼ平らな一対の電極を互いに向かい合わせた構成からなることを特徴とするものである。
【0013】
更に、請求項5に記載の発明においては、前記請求項1から4の何れか1項に記載のガスメータであって、前記検出電極構造は、前記イオン化ガス流の方向に対してほぼ直角に配置されたほぼ平らな一対の電極を互いに向かい合わせた構成からなることを特徴とするものである。
【0014】
更に、請求項6に記載の発明においては、前記請求項4または5に記載のガスメータであって、前記電極は、前記イオン化ガス流の方向に間隔を置いて配置されていることを特徴とするものである。
【0015】
更に、請求項7に記載の発明においては、前記請求項4、5、または6に記載のガスメータであって、使用時に前記電極間に前記電界を発生させることを特徴とするものである。
【0016】
更に、請求項8に記載の発明においては、前記請求項4乃至7の何れか1項に記載のガスメータであって、前記イオン化ガス流を通過させる複数の開口が前記電極にそれぞれ画成されていることを特徴とするものである。
【0017】
更に、請求項9に記載の発明においては、前記請求項8に記載のガスメータであって、前記電極がメッシュ形態であることを特徴とするものである。
【0018】
更に、請求項10に記載の発明においては、前記請求項1から9の何れか1項に記載のガスメータであって、前記変調電極構造は上流の電極と下流の電極とを備え、前記イオン化ガス流における前記イオン分布を変調するために、使用時に各電極にそれぞれの変調用電位が印加され、
前記下流の電極に印加される前記変調用電位は、前記上流の電極に印加される前記変調用電位とは反対の極性であり、前記変調電極構造の下流において、前記上流の電極による前記電界が前記下流の電極による前記電界によって相殺されるように選択された大きさであることを特徴とするものである。
【0019】
更に、請求項11に記載の発明においては、前記請求項1から10の何れか1項に記載のガスメータであって、前記変調電極構造は、一方の極性のイオンを捕捉し、それによって反対極性のイオンの大部分を含むイオン化ガス流を発生させるように配置されることを特徴とするものである。
【0020】
更に、請求項12に記載の発明においては、前記請求項11に記載のガスメータであって、前記検出電極構造は、電荷発生源に接続された電極を少なくとも1つ備え、一方の極性のイオンの大部分を有する前記イオン化ガス流が前記電極に対して移動することによって前記電極に電荷の再分布を発生させ、イオン分布を示す電流を前記電極と前記電荷発生源との間に発生させることを特徴とするものである。
【0021】
更に、請求項13に記載の発明においては、前記請求項12に記載のガスメータであって、前記電荷発生源が地電位であることを特徴とするものである。
【0022】
更に、請求項14に記載の発明においては、前記請求項1から13の何れか1項に記載のガスメータであって、前記第1の検出電極構造の下流に第2の検出電極構造をさらに備え、各検出電極構造は、前記イオン化ガス流において前記変調されたイオン分布を検出するように配置されることを特徴とするものである。
【0023】
更に、請求項15に記載の発明においては、前記請求項14に記載のガスメータであって、前記第1の検出電極構造は一方の極性のイオンを優先的に捕捉するように配置され、前記第2の検出電極構造は反対極性のイオンを優先的に捕捉するように配置されることを特徴とするものである。
【0024】
更に、請求項16に記載の発明においては、前記請求項15に記載のガスメータであって、前記第1の検出電極構造は間隔を置いて配置された一対の電極を備え、前記イオン化ガス流からイオンを捕捉してイオン分布を示す電流を発生させるために、使用時に前記電極間に電界が印加されることを特徴とするものである。
【0025】
更に、請求項17に記載の発明においては、前記請求項15に記載のガスメータであって、前記第2の検出電極構造は間隔を置いて配置された一対の電極を備え、前記イオン化ガス流からイオンを捕捉してイオン分布を示す電流を発生させるために、使用時に前記電極間に電界が印加されることを特徴とするものである。
【0026】
更に、請求項18に記載の発明においては、前記請求項10に記載のガスメータであって、前記変調電極構造に印加される前記変調用電圧は、周波数が10Hz未満であることを特徴とするものである。
【0027】
更に、請求項19に記載の発明においては、前記請求項10に記載のガスメータであって、前記変調電極構造に印加される前記変調用電圧は、交流10ボルト未満であることを特徴とするものである。
【0028】
更に、請求項20に記載の発明においては、前記請求項1に記載のガスメータであって、前記イオナイザが放射線源を備えることを特徴とするものである。
【0029】
更に、請求項21に記載の発明においては、前記請求項1に記載のガスメータであって、前記メータが電池式であることを特徴とするものである。
【0030】
導管は、一般には管であり、断面は円形でもよい。本発明の複数の実施態様において、管の幅(直径)は30mm未満である。
【0031】
本発明をガスメータとして定義してきたが、本発明は、本願明細書に記載されているようなガス計量手段およびガス計量方法にも及ぶ。
【0032】
以下に、本発明の実施形態を単なる例示として添付図面を参照しながら説明する。
【0033】
本発明のさまざまな実施形態において、対応する部分には対応する参照数字が使用されている。
【発明の効果】
【0034】
本発明は以上のように、電界がガス流の方向に対して、従来技術のように直角ではなく、平行になるため、電極構造の電極間の間隔を変えることによって、導管内のガス流に影響を及ぼすことなく、電界強度を調整することができる。このため、流体力学要件を電気的要件から独立させることができるため、家庭用ガスメータ用として十分な低電圧で動作できるガスメータを作成することができる。
【図面の簡単な説明】
【0035】
【図1】本発明の第1の実施形態によるガスメータの概略図である。
【図2】本発明によるガスメータで使用されるメッシュ電極を示す図である。
【図3】本発明の第2の実施形態によるガスメータの概略図である。
【図4】図3のガスメータの変調電極構造に印加される変調用電圧の概略表現である。
【発明を実施するための最良の形態】
【0036】
図1は、本発明の第1の実施形態によるガスメータを模式的に示す。ガスメータは、矢印Aで示すガス流を通過させる導管1を備える。この実施形態において、導管は、内径23mmの円筒状の管である。導管内のガス流をイオン化するために、管1の側面にイオナイザ2が配置されている。この実施形態において、イオナイザ2は、家庭用煙探知機に使用される種類の、銀フォイルまたは金フォイル内に閉じ込められた1μCiアメリシウム241放射線源である。線源2の放出率は、一般に秒当たり37,000アルファ粒子であり、空気中での範囲は3cmである。イオン化効率は、アルファ粒子当たり200,000イオン対であり、100ms以内での再結合は50%である。放射線源2は、その直近のガスをイオン化してイオン化雲3を形成する。イオン化雲3は、ガス流によって管1内を運ばれる。
【0037】
変調電極構造4は、放射線源2の下流の管1内に設けられる。変調電極構造4は、イオン化雲が変調電極構造4の下流において識別可能であるように、イオン化ガス流におけるイオン分布を変調する。この実施形態において、変調電極構造4は、上流の電極5と下流の電極6とを備える。図2に示すように、各電極5、6は、金属板から適切な方法で切り取られたメッシュ(または格子)である。電極5、6の直径は、管1の内径に対応する。電極5、6は、管1の軸、ひいてはガス流の方向、に直角に配置されている。電極5、6の厚みは0.2mm、ピッチpは1mm以下である。電極の充填率(メッシュ材料の面積率)は、20%以下である。
【0038】
この実施形態において、上流の変調電極5と下流の変調電極6との間の間隔は、0.125mmである。図1に示すように、変調電極5、6の間に印加される変調用電圧は可変である。変調用電圧は、振幅が最大10ボルト、周波数が1ヘルツから4ヘルツの方形波である。印加された変調用電圧によって、変調電極5、6間に電界が発生する。図1に示すように、上流の変調電極5および下流の変調電極6のメッシュは、一方の電極の隙間の間の導体7が他方の電極の隙間に位置合わせされるように、またこの逆の関係でも位置合わせされるように、メッシュのピッチの半分に等しい量だけ相対的にずれている。このため、変調電極5、6間の電界の最大成分は、ガス流の方向(管1の軸)に対して直角である。2つの電極5、6間の電界がガス流の方向に完全に直角になるように、各電極5、6の各導体7がガス流の方向に直角な同一面において交互に配置されて他方の電極の導体間に挟まれると理想的である。ただし、このような配置は、変調電極構造4が極めて複雑になるため、製造が困難かつ高コストになる。電極5、6をガス流の方向に間隔を置いて配置し、メッシュをずらすことによって、製造の容易さと動作効率との間の妥協点に達する。
【0039】
変調電極5、6間に印加される変調用電圧がゼロ以外であると、発生した電界によってイオン雲3内の陽および陰のイオンがそれぞれ変調電極5、6に向かって導かれ、変調電極5、6で捕捉される。電界の高成分がガス流の方向に直角であると、変調電極5、6にそれぞれ向かうイオンの逸脱が最大になる。周期的な変調用電圧の作用により、高イオン密度および低イオン密度の領域が変調電極構造4の下流のガス流に順次発生する。これらの領域を検出することによって、以下に説明するように、各領域の飛行時間、ひいてはガスの流速、を求めることができる。
【0040】
図1のガスメータは、イオン化ガス流において変調されたイオン分布を検出するために、変調電極構造4の下流の管1内に第1の検出電極構造8と第2の検出電極構造9とを備える。第2の電極構造9は、第1の検出電極構造8の下流に位置付けられている。この実施形態において、第1および第2の検出電極構造8、9は、上流の電極10と下流の電極11とをそれぞれ備える。各電極10、11は、図2に示すように、金属板から適切な方法で切り取られたメッシュ(または格子)を一般的な形態として有する。電極10、11の直径は管1の内径に対応する。電極10、11は、管1の軸、ひいてはガス流の方向、に直角に配置されている。電極10、11の厚みは0.2mm、ピッチpは2mmである。電極の充填率(メッシュ材料の面積率)は、10%以下である。
【0041】
この実施形態において、上流の検出電極10と下流の検出電極11との間の間隔は、0.125mmである。図1に示すように、上流の検出電極10および下流の検出電極11のメッシュは位置合わせされている。このため、検出電極10、11間の電界の最大の成分は、ガス流(管1の軸)の方向に平行である。このため、電極10、11の間隔を変えることによって、導管1内の流体の流れに影響を及ぼさずに、検出電極10、11間の電界強度を変えることができる。
【0042】
図1に示すように、検出用電圧が検出電極10、11の間に印加される。この実施形態において、検出用電圧は直流+3ボルトの定電圧であり、電界を検出電極10、11間に発生させる。第1の検出電極構造8の場合、上流の検出電極10は地電位に接続され、下流の検出電極11は直流+3ボルトに接続される。第2の検出電極構造9の場合、下流の検出電極11は地電位に接続され、上流の検出電極10は直流+3ボルトに接続される。したがって、第2の検出電極構造9の検出電極10、11間の電界の方向は、第1の検出電極構造8の電界の方向の逆になる。
【0043】
第1の検出電極構造8の下流の電極11と第2の検出電極構造9の上流の電極10とは、同一電位であることが分かるであろう。この結果、これらの2つの電極間には電界が存在しないので、これらの電極間のイオン輸送は、ガス流によるものに限られ、電気的効果によるものはないため、高精度のガス流測定に役立つ。さらに、変調電極構造4の下流の電極6および第1の検出電極構造9の上流の電極10をどちらも同一(地)電位にすることによって、これらの2つの電極間に電界を一切発生させないことも可能である。
【0044】
第1の検出電極構造8は、陽イオンを優先的に捕捉する。この陽イオンは、下流の陽電極11と上流の接地電極10との間の電界によって減速される。この同じ電界は、第1の検出電極構造8を通過する陰イオンを加速するために働く。減速される陽イオンは、上流の接地電極10に到達すると、接地から電流として引き込まれた電子によって中和される。この電流を電流計12または他の電流測定装置で測定できる。
【0045】
第2の電極構造9は、陰イオンを捕捉する。この陰イオンは、上流の陽電極10と下流の接地電極11との間の電界によって減速される。減速される陰イオンは上流の陽電極10によって捕捉され、電流を発生させる。この電流を電流計12または他の電流測定装置によって測定できる。このため、本ガスメータは、実質上、2つの独立した測定チャネルを有する。すなわち、第1の検出電極構造8における陽イオン、および第2の検出電極構造9における陰イオンである。
【0046】
変調電極構造4の下流の電極6と第1の検出電極構造8の上流の電極10との間の距離は、8mmである。変調電極構造4の下流の電極6と第2の検出電極構造9の上流の電極10との間の距離は、70mmである。2つの検出電極構造8、9を離して設けると、ガスメータのダイナミックレンジが大きくなる。家庭用の場合、所定の精度を必要とする一般的なガス流測定範囲は、1時間当たり40リットルと1時間当たり6,000リットルとの間であり、このダイナミックレンジは150:1である。本発明のこの実施形態によると、第1の検出電極構造8は、低流速を求めるために使用される。ここでは、変調されたイオン雲から再結合により多くのイオンが失われる前に、変調されたイオン雲を検出する必要がある。第2の検出電極構造9は、高流速を求めるために使用される。ここでは、変調されたイオン雲がメータ全体を通過する前に、変調されたイオン雲を検出する必要がある。両方の検出電極構造8、9からの信号を用いることによって、メータの精度を測定範囲全体にわたって最大化できる。
【0047】
図3は、本発明の第2の実施形態によるガスメータを模式的に示す。本ガスメータは、矢印Aで示すガス流を通過させる導管1を備える。この実施形態において、この導管は、内径23mmの円筒状の管である。この導管内のガス流をイオン化するために、管1の側面にイオナイザ2が配置されている。この実施形態において、イオナイザ2は、家庭用煙探知機に使用される種類の、銀フォイルまたは金フォイル内に閉じ込められた1μCiアメリシウム241放射性線源である。線源2の放出率は、一般に、秒当たり37、000アルファ粒子であり、空気中での範囲は3cmである。イオン化効率は、アルファ粒子当たり200,000イオン対であり、100ms以内での再結合は50%である。放射線源2は、その直近のガスをイオン化してイオン化雲3を形成する。イオン化雲3は、ガス流によって管1内を運ばれる。
【0048】
放射線源2の下流の管1内に変調電極構造4が設けられている。変調電極構造4は、イオン化雲が変調電極構造4の下流において識別可能であるように、イオン化ガス流におけるイオン分布を変調する。この実施形態において、変調電極構造4は、上流の電極5と下流の電極6とを備える。図2に示すように、各電極5、6は、金属板から適切な方法で切り取られたメッシュ(または格子)である。電極5、6の直径は、管1の内径に対応する。電極5、6は、管1の軸、ひいてはガス流の方向、に直角に配置されている。電極5、6の厚みは0.2mm、ピッチpは1mm以下である。電極の充填率(メッシュ材料の面積率)は、20%以下である。
【0049】
この実施形態において、上流の変調電極5と下流の変調電極6との間の間隔は0.125mmである。図3に示すように、上流の変調電極5および下流の変調電極6のメッシュは位置合わせされている。このため、変調電極5、6間の電界の最大成分は、ガス流の方向(管1の軸)に平行である。このため、変調電極5、6の間隔を変えることによって、導管1内の流体の流れに影響を及ぼさずに、検出電極5、6間の電界強度を変えることができる。
【0050】
図3に示すように、変調用交番電圧が変調電極5、6の間に印加される。この変調用電圧は、振幅が最大10ボルト、周波数が1ヘルツから4ヘルツの方形波である。印加された変調用電圧によって、変調電極5、6間に電界が発生する。上流の変調電極5が下流の変調電極6に対して陽であると、上流の変調電極5はイオン雲3から陰イオンを捕捉し、変調電極構造4を通る陽イオンを加速する。このため、変調電極構造4の下流のイオン雲は、主に陽イオンを含む。上流の変調電極5が下流の変調電極6に対して陰であると、上流の変調電極5はイオン雲3から陽イオンを捕捉し、変調電極構造4を通る陰イオンを加速する。このため、変調電極構造4の下流のイオン雲は、主に陰イオンを含む。変調用交番電圧の作用により、陽イオン密度の領域と陰イオン密度の領域とが変調電極構造4の下流のガス流に順次発生する。これらの領域を検出することによって、以下に説明するように、各領域の飛行時間、ひいてはガスの流速、を求めることができる。
【0051】
図3のガスメータは、イオン化ガス流において変調されたイオン分布を検出するために、変調電極構造4の下流の管1内に第1の検出電極構造8と第2の電極構造9とを備える。第2の電極構造9は、第1の検出電極構造8の下流に位置付けられている。この実施形態において、第1および第2の検出電極構造8、9は、上流の電極10と下流の電極11とをそれぞれ備える。各電極10、11は、図2に示すように、金属板から適切な方法で切り取られたメッシュ(または格子)を一般的な形態として有する。電極10、11の直径は、管1の内径に対応する。電極10、11は、管1の軸、ひいてはガス流の方向に直角に配置されている。電極10、11の厚みは0.2mm、ピッチpは2mmである。電極の充填率(メッシュ材料の面積率)は、10%以下である。
【0052】
この実施形態において、上流の検出電極10と下流の検出電極11との間の間隔は0.125mmである。図3に示すように、上流の検出電極10および下流の検出電極11のメッシュは位置合わせされている。このため、電極10、11の相対的電気特性を変えることによって、導管1内の流体の流れに影響を及ぼさずに、検出電極10、11間の電界強度を変えることができる。
【0053】
図3に示すように、検出電極10、11はそれぞれ地電位に接続される。陽イオン密度の領域と陰イオン密度の領域とが順次検出電極構造8、9に近づいて通り過ぎてゆくとき、上流の検出電極10内でゼロ電位を維持するために、電荷の再分布が電極10内で発生する。この電荷の再分布によって、電極10と地電位との間に電流が流れる。同様に、下流の検出電極11内でゼロ電位を維持するために、電荷の再分布が電極11内で発生する。この電荷の再分布によって、下流の検出電極11と地電位との間に電流が流れる。この電流を電流計12または他の電流測定装置で測定できる。この電流は交番信号の形態を取るので、変調用電圧との比較によってイオン雲の飛行時間を求めることができる。下流の検出電極11は、再分布電流の測定のために選択される。その理由は、上流の検出電極10が下流の検出電極11をイオン分布の接近から電磁的に遮蔽するため、陽イオン分布と陰イオン分布との間の遷移は、上流の検出電極10に比べ、下流の検出電極11においてより顕著であるからである。
【0054】
変調電極構造4の下流の電極6と第1の検出電極構造8の上流の電極10との間の距離は、8mmである。変調電極構造4の下流の電極6と第2の検出電極構造9の上流の電極10との間の距離は、70mmである。2つの検出電極構造8、9を離して設けると、ガスメータのダイナミックレンジが大きくなる。家庭用の場合、所定の精度を必要とする一般的なガス流測定範囲は、1時間当たり40リットルと1時間当たり6,000リットルとの間であり、このダイナミックレンジは150:1である。本発明のこの実施形態によると、第1の検出電極構造8は、低流速を求めるために使用される。ここでは、変調されたイオン雲から再結合により多くのイオンが失われる前に、変調されたイオン雲を検出する必要がある。第2の検出電極構造9は高流速を求めるために使用される。ここでは、変調されたイオン雲がメータ全体を通過する前に、変調されたイオン雲を検出する必要がある。両方の検出電極構造8、9からの信号を用いることによって、メータの精度を測定範囲全体にわたって最大化できる。
【0055】
上記の実施形態の改良版においては、上流の変調用電位Uおよび下流の変調用電位Dを変調電極構造の上流および下流の変調電極5、6にそれぞれ印加することによって、電極5、6間に変調用電圧を与えうる。図4に示すように、下流の変調用電位Dは、上流の変調用電位Uに対して逆位相になるように選択し、上流の変調電極5に対応する電界の遠方界効果を補償するように選択された振幅を有してもよい。言い換えると、上流および下流の変調電極5、6の組み合わされた電磁効果は、変調電極構造4の下流において下流の変調用電位Dによって相殺される。このため、変調電極構造4自体は、発生させたイオン分布とは対照的に、第1および第2の検出電極構造8、9によって生成された信号に影響しない。
【0056】
本ガスメータは、さらなる変調および検出電極構造をイオナイザのもう一方の側、つまり上記の変調電極構造および検出電極構造とは反対の側、に設けることによって、導管内の逆方向のガス流を測定することも可能である。追加する変調および検出電極構造は、上記の変調電極構造および検出電極構造の鏡像として配置してもよい。ただし、家庭用の計量の場合は、逆方向の流れは検出のみが必要とされ、測定は必要ないこともある。したがって、イオナイザの上流において(逆方向の流れに起因する)イオン化されたガスの存在を検出できる電極構造の提供のみが必要とされうる。たとえば、ガス流のインピーダンスを測定するために、この電極構造を配置してもよい。
【0057】
要約すると、本ガスメータは、ガス流Aを通過させる導管1と、導管1内のガス流をイオン化するように配置されたイオナイザ2とを備える。このイオナイザ2の下流の変調電極構造4は、イオン化ガス流におけるイオン分布を変調する。変調電極構造4の下流の第1の検出電極構造8および第2の電極構造9は、イオン化ガス流において変調されたイオン分布を検出する。変調電極構造4および検出電極構造8、9は、少なくとも実質的成分がガス流の方向に平行な電界を発生させるように構成できる。変調電極構造4および検出電極構造8、9は、ガス流を通過させる複数の開口がそれぞれ画成された一対の電極5、6、10、11を備えることができる。一方の極性のイオンを捕捉するように変調電極構造4を配置することによって、反対極性のイオンの大部分を含むイオン化ガス流を発生させることができる。この場合、検出電極構造は、電荷発生源に接続された電極11を少なくとも1つ備えることができる。イオン化ガス流が電極に対して移動することによって、電荷の再分布が電極に発生するため、イオン分布を示す電流が電極11と電荷発生源との間に発生する。
【0058】
これらのさまざまな配置により提供されるガスメータは、10ボルト未満の変調用電圧で動作できるため、家庭用ガスメータとして適切である。このガスメータは、既存の計量方式に比べ、重要な利点を多数有する。既存の計量方式は、自立型容積式ガスメータのコスト、電力消費、または性能要件を満たすためにはそのままでは使用できないからである。その代表的な理由を以下に示す。
【0059】
(a)電極にバイアスをかけるために高電圧を必要とするため、電力を使用し、潜在的に安全上の問題がある。
【0060】
(b)全国規格団体によって規定された計測要件を満たす十分なダイナミックレンジまたは直線性を有していない。
【0061】
(c)使用される放射線源の活量が住宅用に通常許容されるレベルより大きい。
【0062】
(d)容積式ガスメータに必要な一般的な測定帯域幅および信号対雑音比向けに最適化されていない。
【0063】
本発明の特定の実施形態は、これらの問題を克服するか、または少なくとも低減する。
【0064】
相異なる具体的な実施形態に関して本発明を説明してきたが、これは本開示の範囲の限定を意図するものではない。したがって、当業者は、明示的には言及されていなくても、1つの実施形態の特徴を別の実施形態の特徴と組み合わせて使用しうることを理解されるであろう。
【符号の説明】
【0065】
1 導管
2 イオナイザ
3 イオン雲
4 変調電極構造
5 変調電極
6 変調電極
8 第1の検出電極構造
9 第2の検出電極構造
10 電極
11 電極
12 電流計

Claims (21)

  1. ガスメータであって、
    ガスの使用時にガス流を通過させる導管と、
    前記ガスの使用時に前記導管内の前記ガス流をイオン化するために配置されたイオナイザと、
    前記イオナイザによりイオン化されたガス流中のイオン分布を変調するために配置された変調電極構造と、
    前記イオン化ガス流において前記変調されたイオン分布を検出するために配置された、前記変調電極構造の下流の少なくとも第1の検出電極構造と、を備える前記ガスメータにおいて、
    前記変調電極構造は、前記イオナイザの下流に配置され、少なくとも実質的成分が前記イオン化ガス流の方向に平行な電界を発生させるように構成されていることを特徴とするガスメータ。
  2. 前記請求項1に記載のガスメータであって、前記検出電極構造は、少なくとも実質的成分が前記イオン化ガス流の方向に平行な電界を発生させるように構成されていることを特徴とするガスメータ。
  3. 前記請求項1または2に記載のガスメータであって、前記発生した電界は前記イオン化ガス流の方向にほぼ平行であることを特徴とするガスメータ。
  4. 前記請求項1から3の何れか1項に記載のガスメータであって、前記変調電極構造は、前記イオン化ガス流の方向に対してほぼ直角に配置されたほぼ平らな一対の電極を互いに向かい合わせた構成からなることを特徴とするガスメータ。
  5. 前記請求項1から4の何れか1項に記載のガスメータであって、前記検出電極構造は、前記イオン化ガス流の方向に対してほぼ直角に配置されたほぼ平らな一対の電極を互いに向かい合わせた構成からなることを特徴とするガスメータ。
  6. 前記請求項4または5に記載のガスメータであって、前記電極は、前記イオン化ガス流の方向に間隔を置いて配置されていることを特徴とするガスメータ。
  7. 前記請求項4、5、または6に記載のガスメータであって、使用時に前記電極間に前記電界を発生させることを特徴とするガスメータ。
  8. 前記請求項4乃至7の何れか1項に記載のガスメータであって、前記イオン化ガス流を通過させる複数の開口が前記電極にそれぞれ画成されていることを特徴とするガスメータ。
  9. 前記請求項8に記載のガスメータであって、前記電極がメッシュ形態であることを特徴とするガスメータ。
  10. 前記請求項1から9の何れか1項に記載のガスメータであって、前記変調電極構造は上流の電極と下流の電極とを備え、前記イオン化ガス流における前記イオン分布を変調するために、使用時に各電極にそれぞれの変調用電位が印加され、
    前記下流の電極に印加される前記変調用電位は、前記上流の電極に印加される前記変調用電位とは反対の極性であり、前記変調電極構造の下流において、前記上流の電極による前記電界が前記下流の電極による前記電界によって相殺されるように選択された大きさであることを特徴とするガスメータ。
  11. 前記請求項1から10の何れか1項に記載のガスメータであって、前記変調電極構造は、一方の極性のイオンを捕捉し、それによって反対極性のイオンの大部分を含むイオン化ガス流を発生させるように配置されることを特徴とするガスメータ。
  12. 前記請求項11に記載のガスメータであって、前記検出電極構造は、電荷発生源に接続された電極を少なくとも1つ備え、一方の極性のイオンの大部分を有する前記イオン化ガス流が前記電極に対して移動することによって前記電極に電荷の再分布を発生させ、イオン分布を示す電流を前記電極と前記電荷発生源との間に発生させることを特徴とするガスメータ。
  13. 前記請求項12に記載のガスメータであって、前記電荷発生源が地電位であることを特徴とするガスメータ。
  14. 前記請求項1から13の何れか1項に記載のガスメータであって、前記第1の検出電極構造の下流に第2の検出電極構造をさらに備え、各検出電極構造は、前記イオン化ガス流において前記変調されたイオン分布を検出するように配置されることを特徴とするガスメータ。
  15. 前記請求項14に記載のガスメータであって、前記第1の検出電極構造は一方の極性のイオンを優先的に捕捉するように配置され、前記第2の検出電極構造は反対極性のイオンを優先的に捕捉するように配置されることを特徴とするガスメータ。
  16. 前記請求項15に記載のガスメータであって、前記第1の検出電極構造は間隔を置いて配置された一対の電極を備え、前記イオン化ガス流からイオンを捕捉してイオン分布を示す電流を発生させるために、使用時に前記電極間に電界が印加されることを特徴とするガスメータ。
  17. 前記請求項15に記載のガスメータであって、前記第2の検出電極構造は間隔を置いて配置された一対の電極を備え、前記イオン化ガス流からイオンを捕捉してイオン分布を示す電流を発生させるために、使用時に前記電極間に電界が印加されることを特徴とするガスメータ。
  18. 前記請求項10に記載のガスメータであって、前記変調電極構造に印加される前記変調用電圧は、周波数が10Hz未満であることを特徴とするガスメータ。
  19. 前記請求項10に記載のガスメータであって、前記変調電極構造に印加される前記変調用電圧は、交流10ボルト未満であることを特徴とするガスメータ。
  20. 前記請求項1に記載のガスメータであって、前記イオナイザが放射線源を備えることを特徴とするガスメータ。
  21. 前記請求項1に記載のガスメータであって、前記メータが電池式であることを特徴とするガスメータ。
JP2008545070A 2005-12-13 2006-10-05 ガスの計量 Active JP5080489B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
GB0525307A GB0525307D0 (en) 2005-12-13 2005-12-13 Time of flight ionisation gas meter
GB0525305A GB0525305D0 (en) 2005-12-13 2005-12-13 Gas meter with selective ion modulation
GB0525305.9 2005-12-13
GB0525307.5 2005-12-13
PCT/GB2006/003710 WO2007068869A1 (en) 2005-12-13 2006-10-05 Gas metering

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012187688A Division JP2012255805A (ja) 2005-12-13 2012-08-28 ガスの計量

Publications (2)

Publication Number Publication Date
JP2009519456A JP2009519456A (ja) 2009-05-14
JP5080489B2 true JP5080489B2 (ja) 2012-11-21

Family

ID=37458923

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2008545070A Active JP5080489B2 (ja) 2005-12-13 2006-10-05 ガスの計量
JP2012187688A Pending JP2012255805A (ja) 2005-12-13 2012-08-28 ガスの計量

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2012187688A Pending JP2012255805A (ja) 2005-12-13 2012-08-28 ガスの計量

Country Status (18)

Country Link
US (2) US8091433B2 (ja)
EP (2) EP2402723A3 (ja)
JP (2) JP5080489B2 (ja)
KR (1) KR101257478B1 (ja)
CN (1) CN101871802B (ja)
AU (1) AU2006324451B2 (ja)
BR (1) BRPI0619821A2 (ja)
CA (1) CA2633823A1 (ja)
CY (1) CY1118688T1 (ja)
DK (1) DK1960743T3 (ja)
ES (1) ES2617742T3 (ja)
HU (1) HUE033402T2 (ja)
LT (1) LT1960743T (ja)
PL (1) PL1960743T3 (ja)
PT (1) PT1960743T (ja)
RU (1) RU2451909C2 (ja)
SI (1) SI1960743T1 (ja)
WO (1) WO2007068869A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009204586A (ja) * 2008-02-29 2009-09-10 Mitsubishi Heavy Ind Ltd 流体計測装置、流体計測方法
US8549401B1 (en) * 2009-03-30 2013-10-01 Symantec Corporation Systems and methods for automatically generating computer-assistance videos
GB201010691D0 (en) 2010-06-25 2010-08-11 Sentec Ltd Non uniform sampling for sensor signal processing
DE102012224095A1 (de) * 2012-12-20 2014-06-26 Continental Automotive Gmbh Reduktionsmitteltank
GB2511312B (en) * 2013-02-27 2020-05-20 Cummins Ltd Sensor apparatus and turbocharger
GB201315145D0 (en) * 2013-08-23 2013-10-09 Smiths Detection Watford Ltd Ion Modification
CN104677438B (zh) * 2015-02-13 2018-03-16 浙江大学 一种离子迁移型气体流量计
JP6583103B2 (ja) * 2016-04-04 2019-10-02 株式会社デンソー 計測装置
JP6493283B2 (ja) * 2016-04-18 2019-04-03 株式会社デンソー 計測装置
CN106197589B (zh) * 2016-06-22 2017-08-25 北京华奥汽车服务股份有限公司 一种汽车机油消耗量快速检测方法
CN109084856B (zh) * 2018-07-19 2021-06-04 中国神华能源股份有限公司 开式循环水系统的流量测定方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE490923A (ja) 1948-08-31
GB772802A (en) * 1953-02-13 1957-04-17 Philips Electrical Ind Ltd Improvements in or relating to apparatus for mass spectrometry
SU115885A1 (ru) * 1958-01-02 1958-11-30 Р.А. Капитанов Ионизационный способ измерени скорости и расхода газа и устройство дл осуществлени этого способа
US3842670A (en) 1969-03-28 1974-10-22 Nat Res Dev Improvements in measuring the velocity of gases
GB1300555A (en) * 1969-03-28 1972-12-20 Nat Res Dev Improvements in measuring the density, velocity and mass flow of gases
US3706938A (en) * 1971-03-10 1972-12-19 Us Army Directional ion anemometer
US4019383A (en) * 1976-07-21 1977-04-26 United Technologies Corporation Four-collector flux sensor
JPS5368274A (en) * 1976-11-30 1978-06-17 Nissan Motor Measuring apparatus for flow rate
JPS5389465A (en) * 1977-01-17 1978-08-07 Nissan Motor Measuring apparatus for flow rate
US4186601A (en) * 1977-11-17 1980-02-05 Nissan Motor Company, Limited Mass flow measuring apparatus
US4248086A (en) * 1978-02-24 1981-02-03 S.C.I. Le Brin Device for measuring the mass flow or flow rate of an insulating liquid
NL7806827A (nl) * 1978-06-26 1979-12-28 Philips Nv Ionisatieflowmeter.
US4312180A (en) * 1979-09-28 1982-01-26 Battelle Development Corporation Detecting particles
US4393719A (en) * 1981-07-20 1983-07-19 United Technologies Corporation Ionization flowmeter
RU2262386C2 (ru) * 1999-11-11 2005-10-20 Индиго Текнолоджиз Груп Пти Лтд Способ и устройство для агломерации частиц

Also Published As

Publication number Publication date
US8091433B2 (en) 2012-01-10
AU2006324451A1 (en) 2007-06-21
EP2402723A3 (en) 2012-01-25
JP2012255805A (ja) 2012-12-27
CA2633823A1 (en) 2007-06-21
WO2007068869A1 (en) 2007-06-21
PL1960743T3 (pl) 2017-06-30
CN101871802B (zh) 2012-11-07
EP2402723A2 (en) 2012-01-04
JP2009519456A (ja) 2009-05-14
AU2006324451B2 (en) 2011-08-25
SI1960743T1 (sl) 2017-09-29
DK1960743T3 (en) 2017-03-06
RU2008128486A (ru) 2010-01-20
CN101871802A (zh) 2010-10-27
KR20080081252A (ko) 2008-09-09
CY1118688T1 (el) 2017-07-12
US20120266688A1 (en) 2012-10-25
BRPI0619821A2 (pt) 2011-10-18
HUE033402T2 (en) 2017-11-28
RU2451909C2 (ru) 2012-05-27
EP1960743A1 (en) 2008-08-27
KR101257478B1 (ko) 2013-04-24
PT1960743T (pt) 2017-03-10
EP1960743B1 (en) 2016-12-07
ES2617742T3 (es) 2017-06-19
LT1960743T (lt) 2017-03-27
US20100199781A1 (en) 2010-08-12

Similar Documents

Publication Publication Date Title
JP5080489B2 (ja) ガスの計量
CN108680764B (zh) 基于离子示踪的气流速度测量方法
CN101699226B (zh) 一种可用于非满管流量测量的电磁流量计
CN100545587C (zh) 磁感应流量计
US3688106A (en) Measuring the density, velocity and mass flow of gases
Dewulf et al. Test results of the streamer-tube system of the CHARM II neutrino detector
CN101331386B (zh) 气体流量计
US3820015A (en) Sensor for measuring the concentration of one gas in a multiple gas sample
CN206515476U (zh) 一种中子管
US4074572A (en) Method and apparatus for sensing the flux of a flowing fluid
US2795704A (en) Neutron ion chamber
AU2011239354A1 (en) Gas metering
CN106680863A (zh) 一种中子管
CN102841368B (zh) 气体核辐射探测器收集的电荷数与外加电压的关系曲线测量方法及系统
CA1067134A (en) Ion production means
Abe et al. Cosmic-ray test of the installed endcap RPC modules in BELLE detector
CN109765274A (zh) 基于ect的占空比可调的双阵列传感器系统
US20110215251A1 (en) Ionizing radiation detector
RU2397515C1 (ru) Устройство для измерения электрической проводимости атмосферы
CN1087715A (zh) 放射线电离电容及电磁式气体流量计
Murphy GLACIER for LBNO: physics motivation and R&D results
JP2007240467A (ja) 開放窓型電離箱
Asano Electrostatic Flow Measurement Techniques
JPS6259857B2 (ja)
JPH04194695A (ja) 積分吸収線量測定用フィルター及びこれを用いた放射線線量計

Legal Events

Date Code Title Description
A529 Written submission of copy of amendment under article 34 pct

Free format text: JAPANESE INTERMEDIATE CODE: A529

Effective date: 20080627

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120802

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120830

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5080489

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250