JP5054500B2 - Pressure-controlled flow standard - Google Patents

Pressure-controlled flow standard Download PDF

Info

Publication number
JP5054500B2
JP5054500B2 JP2007319977A JP2007319977A JP5054500B2 JP 5054500 B2 JP5054500 B2 JP 5054500B2 JP 2007319977 A JP2007319977 A JP 2007319977A JP 2007319977 A JP2007319977 A JP 2007319977A JP 5054500 B2 JP5054500 B2 JP 5054500B2
Authority
JP
Japan
Prior art keywords
flow rate
pressure
controller
type flow
orifice
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007319977A
Other languages
Japanese (ja)
Other versions
JP2009145986A (en
Inventor
修司 守谷
亘 大加瀬
努 篠原
信一 池田
道雄 山路
恭孝 林
俊英 吉田
康之 大亦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Fujikin Inc
Original Assignee
Tokyo Electron Ltd
Fujikin Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd, Fujikin Inc filed Critical Tokyo Electron Ltd
Priority to JP2007319977A priority Critical patent/JP5054500B2/en
Priority to US12/332,897 priority patent/US8210022B2/en
Publication of JP2009145986A publication Critical patent/JP2009145986A/en
Priority to US13/483,159 priority patent/US8381755B2/en
Application granted granted Critical
Publication of JP5054500B2 publication Critical patent/JP5054500B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/06Control of flow characterised by the use of electric means
    • G05D7/0617Control of flow characterised by the use of electric means specially adapted for fluid materials
    • G05D7/0629Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means
    • G05D7/0635Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/2496Self-proportioning or correlating systems
    • Y10T137/2708Plural sensors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/7722Line condition change responsive valves
    • Y10T137/7758Pilot or servo controlled
    • Y10T137/7759Responsive to change in rate of fluid flow
    • Y10T137/776Control by pressures across flow line valve
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/7722Line condition change responsive valves
    • Y10T137/7758Pilot or servo controlled
    • Y10T137/7761Electrically actuated valve
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/7722Line condition change responsive valves
    • Y10T137/7781With separate connected fluid reactor surface
    • Y10T137/7793With opening bias [e.g., pressure regulator]

Description

本発明は、半導体製造装置や薬品製造装置、化学品製造装置等で使用する各種流量制御器の校正に用いる圧力制御式流量基準器に関するものである。 The present invention relates to a pressure controlled flow datum used for calibration of the various flow controller for semiconductor manufacturing equipment and chemicals manufacturing apparatus used in chemical manufacturing apparatus or the like.

半導体製造装置等に於いては、各種プロセスガスの流量制御器として、所謂熱量式流量制御器(MFC)と圧力式流量制御器(FCS)とが多く利用されている。中でも後者の圧力式流量制御器は構造が簡単で応答性、測定精度、耐用年数、保守性等の点で優れた特性を備えており、広く利用に供されている。   In semiconductor manufacturing apparatuses and the like, so-called calorific flow rate controllers (MFC) and pressure flow rate controllers (FCS) are often used as flow rate controllers for various process gases. In particular, the latter pressure type flow rate controller has a simple structure and has excellent characteristics such as responsiveness, measurement accuracy, service life, and maintainability, and is widely used.

ところで、これ等の熱式流量制御器や圧力式流量制御器は、通常1台ずつ流量基準器を用いて流量校正を行ったあと、市場へ出荷されて行く。
一方、流量校正を行うために用いる流量基準器には、後述するように、イ.チャンバ内へガスを送り込み、チャンバ内に溜まったガスの圧力から送り込まれたガスの流量を演算する方法(ビルドアップ法やROR法)、ロ.チャンバ内に貯めたガスを放出して、チャンバ重量の変化から放出されたガスの流量を演算する方法(ガス流量減量法)及びハ.チャンバ内へガスを送り込み、チャンバの重量の変化から送り込まれたガスの流量を演算する法(重量法)等を用いた各種の基準器が開発されており、流量制御器の各メーカは、夫々のメーカが独自に選定した流量基準器を用いて自社の製造に係る流量制御器の流量校正を行ったあと、最終ユーザへ出荷するようにしている。
By the way, these thermal flow controllers and pressure flow controllers are usually shipped to the market after performing flow rate calibration one by one using a flow standard.
On the other hand, as will be described later, the flow rate standard used for flow rate calibration is a. A method (build-up method or ROR method) for calculating the flow rate of the gas fed from the pressure of the gas accumulated in the chamber and feeding the gas into the chamber; A method of discharging the gas stored in the chamber and calculating the flow rate of the released gas from the change in the chamber weight (gas flow reduction method); Various standards have been developed using a method (gravimetric method) that sends gas into the chamber and calculates the flow rate of the gas sent from the change in the weight of the chamber. After calibrating the flow rate of the flow controller related to its manufacture using a flow rate reference device independently selected by the manufacturer, the product is shipped to the end user.

そのため、流量制御器を用いた生産用設備等にあっては、設備の設置時に流量制御器のメーカが決まれば、設備の改修や一部更新においても同じメーカの流量制御器を使わざるを得なくなり、別の新たなメーカの流量制御器を簡単に適用することができない。そのため、設備費等の引下げを図れないと云う問題を生ずることになる。何故なら、メーカ毎に校正用に使用する流量基準器が異なるため、同一仕様であっても現実の流量値には若干ばらつきを生ずることになり、半導体製造装置等のように高精度な流量制御を必要とする設備にあっては、異なるメーカの流量制御器を混在せしめて使用することが困難だからである。   For this reason, in production facilities that use flow controllers, if the manufacturer of the flow controller is determined at the time of installation, the same flow controller from the same manufacturer must be used for refurbishing or partially updating the equipment. The flow controller of another new manufacturer cannot be easily applied. For this reason, there arises a problem that the facility cost cannot be reduced. This is because the flow rate standard used for calibration varies from manufacturer to manufacturer, so even if the specifications are the same, actual flow values will vary slightly, and high-precision flow control like semiconductor manufacturing equipment. This is because it is difficult to mix and use flow controllers from different manufacturers.

また、流量制御器の流量校正に関しては、使用されている流量基準器そのものに起因する様々な問題が存在する。
即ちこれ等の流量基準器は、前述の通り通常ビルドアップ法や重量法を用いて構成されている。例えば、前者のビルドアップ法は、図8に示すように、先ず、所定の内容積V(l)のチャンバC内へ、流量校正をする流量制御器MFCを通して設定流量のガスGを供給し、圧力計Pの読みから供給時間Tとチャンバ内圧Pとの関係を求める。
次に、当該供給時間Tと内圧Pとの図9に示す如き測定結果から、チャンバ内圧の圧力上昇率ΔP/Δtを求め、この圧力上昇率ΔP/Δtを用いて、次の(1)式から流量制御器MFCの流量Q(sccm)を演算し、この演算値を基準にして、流量制御器MFCの読取値を校正するようにしたものである。

Figure 0005054500
There are various problems associated with the flow rate calibration of the flow rate controller due to the flow rate reference device itself.
That is, these flow rate reference devices are configured using the normal build-up method or the weight method as described above. For example, in the former build-up method, as shown in FIG. 8, first, a gas G having a set flow rate is supplied into a chamber C having a predetermined internal volume V (l) through a flow rate controller MFC that performs flow rate calibration. From the reading of the pressure gauge P, the relationship between the supply time T and the chamber internal pressure P is obtained.
Next, from the measurement results of the supply time T and the internal pressure P as shown in FIG. 9, the pressure increase rate ΔP / Δt of the chamber internal pressure is obtained, and the following equation (1) is obtained using the pressure increase rate ΔP / Δt. The flow rate Q (sccm) of the flow rate controller MFC is calculated from the flow rate, and the read value of the flow rate controller MFC is calibrated based on this calculated value.
Figure 0005054500

しかし、このビルドアップ法にも多くの問題が残されており、その中でも、チャンバC内のガス温度Tを正確に計測することが、困難なことが第1の問題点である。
即ち、チャンバC内の中央部でガス温度Tを測定するのと、チャンバCの壁面近傍でガス温度Tを測定するのとでは、ガス温度Tの測定値が相当に異なることになり、且つガス温度Tが1℃変ると、流量Q(sccm)が約0.33%S.P.変化することになるからである。
However, many problems still remain in this build-up method, and among them, the first problem is that it is difficult to accurately measure the gas temperature T in the chamber C.
That is, when the gas temperature T is measured at the center in the chamber C and when the gas temperature T is measured in the vicinity of the wall surface of the chamber C, the measured value of the gas temperature T is considerably different. When the temperature T changes by 1 ° C., the flow rate Q (sccm) is about 0.33% S.V. P. It will change.

第2の問題は、圧力計(バラトロン)Pの測定精度が低く、測定毎に圧力上昇率ΔP/Δtが変動すると云う点である。即ち、圧力計(バラトロン)Pには夫々固有の温度特性や圧力上昇特性(直線性)が存在する。そのため、圧力上昇範囲(圧力上昇のスパン)や圧力測定条件が異なることにより、図9の測定結果を示す曲線の形態が異なったものになり、結果として、圧力上昇率ΔP/Δtが大きく変動することになる。また、流量測定器の流量が大きくなると大型のチャンバCが必要になり、また逆に、チャンバCを小さくすると、測定に長時間を必要とする等の問題が生ずることになる。   The second problem is that the measurement accuracy of the pressure gauge (baratron) P is low, and the pressure increase rate ΔP / Δt varies with each measurement. That is, the pressure gauge (Baratron) P has a unique temperature characteristic and pressure rise characteristic (linearity). For this reason, when the pressure increase range (pressure increase span) and the pressure measurement conditions are different, the form of the curve showing the measurement results in FIG. It will be. Further, when the flow rate of the flow rate measuring device is increased, a large chamber C is required. Conversely, when the chamber C is reduced, problems such as a long time required for measurement occur.

第3の問題は、現実に前記(1)式により算定した流量値(校正流量)が、測定毎に異なった値になると云う点である。即ち、実験系、流量、測定時間、測定圧力範囲等が全く同一である場合でも、現実には、圧力式流量制御器の流量レンジが変るだけで校正流量値が変動することになり、結果として高精度な流量校正が行えないと云う難点がある。   The third problem is that the flow rate value (calibration flow rate) actually calculated by the equation (1) is different for each measurement. That is, even if the experimental system, flow rate, measurement time, measurement pressure range, etc. are exactly the same, in reality, the calibration flow rate value will fluctuate only by changing the flow range of the pressure flow controller, and as a result There is a difficulty that high-precision flow rate calibration cannot be performed.

図10は、ビルドアップ法による流量制御器の流量校正試験結果の一例を示すものであり、流量設定100%に於いて流量誤差が零となるように校正流量を合わせたとしても、流量設定値SET(%)が変ると、誤差(%F.S.)が大きくなると云う結果が示されている。   FIG. 10 shows an example of the flow rate calibration test result of the flow rate controller by the build-up method. Even if the calibration flow rate is adjusted so that the flow rate error becomes zero at the flow rate setting of 100%, the flow rate setting value The results show that the error (% FS) increases as SET (%) changes.

一方、前記ビルドアップ法を基本とする流量基準器とは別に、ガス供給源(ガスボンベ)の重量を測定し、重量の減量値からガス流量Q(sccm)を求めるようにしたガス重量減量法を用いる方式や、逆にチャンバ内へガスを供給してチャンバ重量の増加値からガス流量Q(sccm)を求めるようにした重量法を用いる方式の流量基準器が開発されている。   On the other hand, separately from the flow rate standard based on the build-up method, a gas weight reduction method is used in which the weight of the gas supply source (gas cylinder) is measured and the gas flow rate Q (sccm) is obtained from the weight reduction value. On the contrary, a flow rate reference device using a weight method in which gas is supplied into a chamber and a gas flow rate Q (sccm) is obtained from an increase value of the chamber weight has been developed.

しかし、当該ガス重量減量法や重量法を用いた流量基準器は、高精度な秤量装置を必要とするうえ装置が大型となり、更に、測定に長時間を必要とする等の問題がある。   However, the flow rate reference device using the gas weight loss method or the weight method has a problem that a high-precision weighing device is required, the device is large, and a long time is required for measurement.

上述のように、流量制御器の流量校正に使用する流量基準器が、流量制御器のメーカ毎に夫々異なるうえ、使用されている流量基準器そのものの精度も比較的低いものである。その結果、使用する流量制御器の機種(メーカや型式)が変る毎に流量測定値が変動することになり、例えば半導体製造プロセス等のように、製造プロセスが微細化されている分野においては、これ等の僅かな流量制御器に対する流量校正上の差異(誤差)が、プロセス全体に対して大きな悪影響を及ぼすことになる。 As described above, the flow rate reference device used for the flow rate calibration of the flow rate controller is different for each manufacturer of the flow rate controller, and the accuracy of the used flow rate reference device itself is relatively low. As a result, each time the flow controller model (manufacturer or model) to be used changes, the flow measurement value fluctuates. For example, in the field where the manufacturing process is miniaturized, such as the semiconductor manufacturing process, it such differences in flow calibration for slight flow controller of (error), so that a strong negative influence on the entire process.

また、半導体製造設備等では、プロセスガスに腐食性ガスが多く利用されている。そのため、流量制御器にも腐食に起因する誤差が多発することになり、プロセスに悪影響が及ぶと云う問題がある。このことは、圧力制御式流量基準器で使用する基準流量制御器(マスター制御器)にも当てはまることであり、流量校正用ガスが腐食性ガスの場合には、前記マスター制御器のオリフィス孔の形態や内径寸法が腐食によって変化し、或いは、オリフィス孔が腐食生成物によって閉塞され、結果としてマスター制御器としての機能を喪失することになる。   Further, in semiconductor manufacturing facilities and the like, a lot of corrosive gas is used as a process gas. For this reason, the flow controller is also subject to many errors due to corrosion, and there is a problem that the process is adversely affected. This also applies to the reference flow rate controller (master controller) used in the pressure-controlled flow rate reference device. When the flow rate calibration gas is a corrosive gas, the orifice hole of the master controller The morphology and inner diameter may change due to corrosion, or the orifice hole may be blocked by corrosion products, resulting in loss of function as a master controller.

特許第3580645号Japanese Patent No. 3580645 特開平11−63265号JP-A-11-63265 特開2000−137528号JP 2000-137528 A

本願発明は、従前のビルドアップ法やガス重量減量法、重量法に基づく基準流量器に於ける上述の如き問題、即ち、イ.使用されている流量基準器の精度が低いうえ、各流量制御器のメーカ毎に使用する流量基準器の構造や種類が異なるため、各流量制御器間の誤差が半導体製造プロセスに悪影響を及ぼすこと、ロ.腐食性ガスが流通する流量制御器では、その制御精度が早期に低下することになる等の問題を解決せんとするものであり、流量制御精度が高く、しかも作動の安定性に優れた圧力制御式流量制御器を基準流量制御器(マスター流量制御器)として圧力制御式流量基準器を構成することにより、流量制御器の流量校正精度の統一を図ることを可能とした圧力制御式流量基準器提供せんとするものである。 The present invention relates to the above-described problems in the reference flow meter based on the conventional build-up method, gas weight loss method, and weight method. The accuracy of the flow standard used is low, and the structure and type of the flow standard used by each flow controller manufacturer differ, so errors between the flow controllers can adversely affect the semiconductor manufacturing process. , B. A flow controller with a corrosive gas is to solve the problem that the control accuracy of the flow rate decreases quickly, and the pressure control has high flow control accuracy and excellent operational stability. The pressure control type flow rate reference device that made it possible to unify the flow rate calibration accuracy of the flow rate controller by configuring the pressure control type flow rate reference device with the flow rate type control device as the reference flow rate controller (master flow rate controller) Is intended to provide.

請求項1の発明は、校正用ガス供給源からの校正ガスの圧力を調整する圧力制御器と,圧力制御器の下流側に設けた少なくとも1リットルの内容量を有するタンクと,当該タンクの下流側に設けた熱式質量流量計と,当該熱式質量流量計の下流側に設けられ、1基の被校正流量制御器の上流側が接続される接続口と,前記被校正流量制御器の下流側が接続される接続口と当該接続口に上流側が接続された基準圧力式流量制御器と,当該基準圧力式流量制御器の下流側に設けた少なくとも1リットルの内容量を有するタンクと,当該タンクの下流側に設けた真空引き装置とを発明の基本構成とするものである。 The invention of claim 1 includes a pressure controller for adjusting the pressure of a calibration gas from a calibration gas supply source , a tank having an internal capacity of at least 1 liter provided downstream of the pressure controller, and a downstream of the tank. A thermal mass flow meter provided on the side, a connection port provided on the downstream side of the thermal mass flow meter, to which the upstream side of one calibrated flow controller is connected, and downstream of the calibrated flow controller a tank having a connection port side is connected, a reference pressure type flow controller upstream side connected to the connecting port, the content of at least 1 liter provided on the downstream side of the reference pressure type flow controller, the A vacuum evacuation device provided on the downstream side of the tank is a basic configuration of the invention.

請求項2の発明は、請求項1の発明において基準圧力式流量制御器を、複数台の基準圧力式流量制御器を並列に接続して構成するようにしたものである。   According to a second aspect of the present invention, in the first aspect of the invention, the reference pressure type flow rate controller is configured by connecting a plurality of reference pressure type flow rate controllers in parallel.

請求項3の発明は、請求項1の発明において、基準圧力式流量制御器の流体入口側と出口側とをバイパス回路により直結する構成としたものである。   According to a third aspect of the present invention, in the first aspect of the invention, the fluid inlet side and the outlet side of the reference pressure type flow rate controller are directly connected by a bypass circuit.

請求項4の発明は、請求項1の発明において、基準圧力式流量制御器を、オリフィスと,オリフィスの上流側に設けたコントロール弁と,コントロール弁とオリフィス間に設けた圧力検出器と,圧力検出器の検出圧力P から流量QをQ=KP (但しKは定数)として演算すると共に、流量指令信号Q と前記演算した流量信号Qとの差を制御信号Qyとして前記コントロール弁の駆動部へ出力する演算制御装置とから構成され、オリフィスの上流側圧力P と下流側圧力P との比を被制御流体の臨界圧比以下に保持した状態で前記コントロール弁の開閉によりオリフィス上流側圧力P を調整し、オリフィス下流側の流体流量Qを制御する構成の基準圧力式流量制御器としたものである。 According to a fourth aspect of the present invention, in the first aspect of the present invention, the reference pressure type flow rate controller includes an orifice, a control valve provided upstream of the orifice, a pressure detector provided between the control valve and the orifice, from detected pressure P 1 of the detector flow Q as well as calculation as Q = KP 1 (where K is a constant), the difference between the flow rate signal Q obtained by the arithmetic and flow command signal Q S as a control signal Qy in the control valve is composed of a calculation control unit for outputting to the drive unit, the orifice upstream by opening and closing the upstream pressure P 1 and the ratio of the downstream pressure P 2 being maintained at below the critical pressure ratio of the controlled fluid said control valve orifice adjust the side pressure P 1, it is obtained by a reference pressure type flow controller arrangement for controlling the fluid flow rate Q of the orifice downstream side.

請求項5の発明は、請求項1の発明において、真空引き装置を、真空ポンプ又は真空チャンバとしたものである。   The invention of claim 5 is the invention of claim 1, wherein the vacuuming device is a vacuum pump or a vacuum chamber.

本発明においては、マスター用の基準流量制御器として、基準圧力式流量制御器を1台又は複数台並列状に接続して利用する構成としている。その結果、圧力式流量制御装置の優れた流量制御精度を十分に活用した、流量制御精度が±0.25%S.P.以下の流量校正用の流量基準器を極めて安価に製造することができる。   In the present invention, one or more reference pressure flow controllers are connected in parallel and used as a master reference flow controller. As a result, the flow rate control accuracy is ± 0.25% S.D., fully utilizing the excellent flow rate control accuracy of the pressure type flow rate control device. P. The following flow rate reference device for flow rate calibration can be manufactured at a very low cost.

また、流量制御精度の高い基準圧力式流量制御器をマスター用の基準流量制御器としているため、流体の温度や圧力が変動しても極めて安定した流量制御精度を得ることができ、従前のビルドアップ法やガス重量減量法、重量法に基づく流量基準器に比較して、高精度でしかも安定した流量制御器の流量校正を行うことが可能となる。   In addition, since the reference pressure flow controller with high flow control accuracy is used as the master reference flow controller, extremely stable flow control accuracy can be obtained even if the temperature or pressure of the fluid fluctuates. Compared with the flow rate standard based on the up method, the gas weight loss method, or the weight method, the flow rate controller can be calibrated with high accuracy and stability.

更に、マスター用の基準流量制御器を形成する基準圧力式流量制御器の内部の流体が接する内壁面に厚さ2〜5μmの金メッキ皮膜を形成して耐食性を高めているため、腐食性ガスの流量校正もより安全且つ高精度で行うことができ、例えば、半導体製造装置用の流量制御器の流量校正に使用した場合には、半導体製品の大幅な品質向上と製造コストの引き下げが可能となる。   Furthermore, the corrosion resistance is improved by forming a gold plating film with a thickness of 2-5 μm on the inner wall surface where the fluid inside the reference pressure flow controller that forms the master reference flow controller is in contact with. The flow rate calibration can also be performed safely and with high accuracy. For example, when used for flow rate calibration of a flow rate controller for semiconductor manufacturing equipment, it is possible to significantly improve the quality of semiconductor products and reduce manufacturing costs. .

以下、図面に基づいて本発明の実施形態を説明する。
図1は本発明に係る圧力制御式流量基準器の全体構成図であり、図1に於いて、1は校正用ガス供給口、2は圧力制御器、3はタンク、4はNガス供給口、5は熱式質量流量計、6はパージガス供給口、7はパージガス放出口、8は被校正流量制御器、9は基準圧力式流量制御器(マスター圧力式流量制御器)、10はタンク、11は真空引き装置の接続口、12はバイパス回路、13は被校正流量制御器の接続口、AV〜AV26は開閉弁、F、Fはフィルタ、PTは圧力検出器である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
1 is an overall configuration diagram of a pressure control type flow rate reference device according to the present invention. In FIG. 1, 1 is a calibration gas supply port, 2 is a pressure controller, 3 is a tank , 4 is N 2 gas supply 5 is a thermal mass flow meter, 6 is a purge gas supply port, 7 is a purge gas discharge port, 8 is a flow rate controller to be calibrated, 9 is a reference pressure type flow rate controller (master pressure type flow rate controller), and 10 is a tank , 11 is a connection port of a vacuuming device, 12 is a bypass circuit, 13 is a connection port of a flow rate controller to be calibrated, AV 1 to AV 26 are on-off valves, F 1 and F 2 are filters, and PT is a pressure detector. .

前記タンク3・10は、被校正流量制御器8の一次側供給圧力の不足や基準圧力式流量制御器(マスター圧力式流量制御器)9の2次側圧力の上昇を防止するために設けられており、本実施形態では容量1〜3lのタンクが使用されている。 The tanks 3 and 10 are provided to prevent a shortage of the primary supply pressure of the flow rate controller 8 to be calibrated and an increase in the secondary pressure of the reference pressure type flow rate controller (master pressure type flow rate controller) 9. In this embodiment, a tank having a capacity of 1 to 3 l is used.

前記熱式質量流量計5は基準圧力式流量制御器(マスター圧力式流量制御器)9に大幅なトラブルが存在しないか否かを確認するための予備流量制御器であり、本実施形態においては10SLMと200SCCMの熱式質量流量計を2台並列に使用している。   The thermal mass flow meter 5 is a preliminary flow rate controller for confirming whether or not there is a serious trouble in the reference pressure type flow rate controller (master pressure type flow rate controller) 9, and in this embodiment, Two thermal mass flowmeters of 10 SLM and 200 SCCM are used in parallel.

前記基準圧力式流量制御器(マスター圧力式流量制御器)9は複数台の圧力式流量制御器を並列状に組み合わせたものであり、10SLMまでの流量を12台の基準圧力式流量制御器9でもってカバーする構成とされている。   The reference pressure type flow rate controller (master pressure type flow rate controller) 9 is a combination of a plurality of pressure type flow rate controllers in parallel, and the flow rate up to 10 SLM is changed to 12 reference pressure type flow rate controllers 9. Therefore, it is configured to cover.

被校正流量制御器8の流量校正を行う場合には、先ず、真空引き装置例えば真空ポンプや真空チャンバ(図示省略)を真空引き装置接続口11へ接続し、基準圧力式流量制御器9の2次側を真空引きすると共に、被校正流量制御器8の定格流量に近い流量となるように基準圧力式流量制御器9の流量を選定し、その開閉弁AV11〜AV22を適宜に開放する。 When calibrating the flow rate of the flow rate controller 8 to be calibrated, first, a vacuuming device such as a vacuum pump or a vacuum chamber (not shown) is connected to the vacuuming device connection port 11, and 2 of the reference pressure type flow rate controller 9. While evacuating the next side, the flow rate of the reference pressure type flow rate controller 9 is selected so that the flow rate is close to the rated flow rate of the flow rate controller 8 to be calibrated, and the on-off valves AV 11 to AV 22 are appropriately opened. .

次に、校正用ガス供給源から校正用ガス供給口1、圧力制御器2、ボリューム3、熱式質量流量計5を介して、被校正流量制御器8の定格流量に略近い流量の校正用ガスを被校正流量制御器8へ流通させ、基準圧力式流量制御器9の読みと被校正流量制御器8の読みとを対比して、被校正流量制御器8の流量校正を行う。 Next, for calibration with a flow rate substantially close to the rated flow rate of the flow rate controller 8 to be calibrated from the calibration gas supply source through the calibration gas supply port 1 , the pressure controller 2, the volume 3, and the thermal mass flow meter 5. the gas is circulated to be calibrated flow controller 8, by comparing the reading and reading and Hiko forward flow quantity controller 8 of the reference pressure type flow controller 9, the flow rate calibration of the calibration flow controller 8.

上記100%F.Sに於ける流量校正が終われば、校正用ガス供給口1からの供給流量を調整し、所定の設定流量(%F.S)に於いて、夫々前記と同様に両制御器8、9の流量対比を行い、被校正流量制御器8の流量校正を行う。
尚、流量校正の間、基準圧力式流量制御器9の2次側圧力Pは、その上流側圧力Pの1/2以下に保持されており、基準圧力式流量制御器9のオリフィス(図示省略)を流通する校正用ガスは臨界状態下におかれている。
100% F. above. When the flow rate calibration in S is completed, the supply flow rate from the calibration gas supply port 1 is adjusted, and at the predetermined set flow rate (% FS), both controllers 8 and 9 are respectively the same as described above. perform flow contrast, the flow rate calibration of the school forward flow quantity controller 8.
During the flow rate calibration, the secondary pressure P 2 of the reference pressure type flow rate controller 9 is maintained at ½ or less of the upstream side pressure P 1 , and the orifice ( The calibration gas flowing through (not shown) is in a critical state.

図11及び図12は、前記基準圧力式流量制御器9の全体構成を示すものであり、圧力式流量制御器として特許3580645号や特開平11−63265号等で公知のものである。即ち、オリフィスOLの1次側圧力Pと1次側ガス温度Tから演算制御装置H内で流量Q=KP(KはオリフィスLにより定まる定数)を演算し、設定流量Qsと差Qy=Qs−Qcが零となるように流量制御弁CVの開度調整を行うように構成されている。尚、圧力式流量制御器としては、図12に示すように、各部材CV、H、P、T、OL等が一体的に組み付けられている。
また、当該圧力式流量制御器には、流量出力信号の出力やオリフィスOLの詰まりを自動的に検出して所謂流量の自己診断を行う機構等が付設されている(特開2000−137528号)。
尚、前述のとおり、圧力式流量制御器そのものは公知であるため、ここではその詳細な説明を省略する。
更に、圧力式流量制御器は、他の型式の流量制御器例えば熱式流量制御器に比較して温度及び圧力の変動に対する測定温度及び圧力の変動に対する測定誤差が相対的に小さいうえ、制御器自体が小型であり、しかも同一の制御器でもって各種のガスに対応することが可能なものであるため、流量制御基準器としての使用に最適のものである。
FIGS. 11 and 12 show the overall configuration of the reference pressure type flow rate controller 9, which is known as a pressure type flow rate controller such as Japanese Patent No. 3580645 and Japanese Patent Laid-Open No. 11-63265. That is, the flow rate Q C = KP 1 on the primary side pressure P 1 and the arithmetic control device H from the primary side gas temperature T 1 of the orifice OL (K is a constant determined by the orifice O L) is calculated and a set flow rate Qs The opening of the flow control valve CV is adjusted so that the difference Qy = Qs−Qc becomes zero. In addition, as a pressure type flow controller, as shown in FIG. 12, each member CV, H, P, T, OL, etc. are assembled | attached integrally.
Further, the pressure type flow rate controller is provided with a mechanism for automatically detecting the output value of the flow rate output signal and clogging of the orifice OL, and so-called self-diagnosis of the flow rate (Japanese Patent Laid-Open No. 2000-137528). ).
As described above, since the pressure type flow rate controller itself is known, its detailed description is omitted here.
Further, the pressure type flow controller has a relatively small measurement error with respect to temperature and pressure fluctuations compared to other types of flow controllers such as thermal flow controllers, and the Since it is small in size and can handle various gases with the same controller, it is optimal for use as a flow control reference device.

而して、本発明で使用する基準圧力式流量制御器9に於いては、その接ガス部の全表面に厚さ2〜5μmの金メッキ皮膜が形成されている。
当該金メッキ皮膜の形成方法は如何なる方法であってもよいが、本発明に於いては所謂化学メッキ法により厚さ1〜3μmの金メッキ皮膜が形成されている。
Thus, in the reference pressure type flow rate controller 9 used in the present invention, a gold plating film having a thickness of 2 to 5 μm is formed on the entire surface of the gas contact portion.
The gold plating film may be formed by any method. In the present invention, a gold plating film having a thickness of 1 to 3 μm is formed by a so-called chemical plating method.

ところで、金メッキ皮膜等が耐食性を保持するものであることは公知の事項である。そこで、本願発明者等は、この公知の事項をオリフィスを必須構成要素とする圧力式流量制御器へ適用し、その接ガス部分に金メッキを施すことによりあらゆる腐食性ガスに対する耐食性を高め、腐食によるオリフィス孔のつまりや口径寸法、形態等の変化を防止することにより、腐食性ガスが流通する場合に於いても流量制御精度を常に高い状態下に維持し得ることを着想した。   By the way, it is a well-known matter that a gold plating film etc. hold | maintain corrosion resistance. Therefore, the inventors of the present application apply this known matter to a pressure type flow rate controller having an orifice as an essential component, and enhances the corrosion resistance against all corrosive gases by applying gold plating to the gas contact part. It was conceived that the flow rate control accuracy can always be maintained at a high level even when corrosive gas is circulated by preventing changes in the orifice hole clogging, diameter size, form, and the like.

本願発明で使用する基準圧力式流量制御器(マスター圧力式流量制御器)9は、上記着想に基づいて開発されたものであり、接ガス部分の全てに厚さ2〜5μmの金メッキ皮膜を形成したことを特徴とするものである。   The reference pressure type flow rate controller (master pressure type flow rate controller) 9 used in the present invention was developed based on the above idea, and forms a gold plating film with a thickness of 2 to 5 μm on all the gas contact parts. It is characterized by that.

表1は、本発明に係る基準圧力式流量制御器(マスター圧力式流量制御器)9に対して実施した主な試験項目とその判定基準の一例を示すものである。
尚、供試品として4基の基準圧力式流量制御器9を製作した。
Table 1 shows an example of main test items performed on the reference pressure type flow rate controller (master pressure type flow rate controller) 9 according to the present invention and its judgment criteria.
In addition, four reference pressure type flow rate controllers 9 were manufactured as test samples.

Figure 0005054500
Figure 0005054500

表2〜表5は、前記試験の結果を示すものである。   Tables 2 to 5 show the results of the test.

Figure 0005054500
Figure 0005054500

Figure 0005054500
Figure 0005054500

Figure 0005054500
Figure 0005054500

Figure 0005054500
Figure 0005054500

次に、本発明に係る基準圧力式流量制御器9の耐腐食性試験方法とその試験結果について述べる。
図3を参照して、先ず、前記表2〜表4の各試験(精度確認試験)17を終えた基準圧力式流量制御器9をクリーンルーム内に24時間放置18し、その後Nガスによるサイクルパージ19を行い、更に、実ガスを24時間封入20したあと、再度Nガスによるサイクルパージ19を行い、再度精度確認試験17を行ったあと、供試基準圧力式流量制御器9に実ガスを流してその2次側より流出するガスをウエハーにより受け止め、ウエハー上に存在するメタルコンタミをメタルコンタミ検出装置により検査21する。
Next, the corrosion resistance test method of the reference pressure type flow rate controller 9 according to the present invention and the test results will be described.
Referring to FIG. 3, first, the reference pressure type flow rate controller 9 that has completed each test (accuracy confirmation test) 17 in Tables 2 to 4 is left in a clean room for 18 hours, and then cycled by N 2 gas. After purging 19 and further filling 20 with actual gas for 24 hours, cycle purge 19 with N 2 gas is performed again, and accuracy check test 17 is performed again. The gas flowing out from the secondary side is received by the wafer, and metal contamination existing on the wafer is inspected 21 by the metal contamination detection device.

尚、各前記サイクルパージ19は、圧力0.1MPaのNガスを1分間パージしたあと、0.1MPaのNガスを封入し、更にその後10sec間真空状態に保持することを10回連続して行い、最後に0.1MPaのNガスにより1分間パージすることを意味している。 Each of the cycle purges 19 is continuously purged with N 2 gas at a pressure of 0.1 MPa for 1 minute, then filled with 0.1 MPa of N 2 gas, and then kept in a vacuum state for 10 seconds 10 times continuously. And finally purging with 0.1 MPa of N 2 gas for 1 minute.

上記図3に示した腐食試験サイクルを、供給する実ガスをHCL、CL、HBr、HFの順に変化せしめて連続的に行い(4種類の実ガスを用いて4サイクル行うこと)、更に、これと同じ内容の処理操作を3回連続して行った。 The corrosion test cycle shown in FIG. 3 is continuously performed by changing the actual gas to be supplied in the order of HCL, CL 2 , HBr, and HF (4 cycles using four kinds of actual gases), and The processing operation with the same content was repeated three times.

図4は、金メッキ処理をしていない基準圧力式流量制御器9にHBrを24時間封入する腐食試験後の流量制御精度の変化状態を示すものであり、金メッキ皮膜を形成しない場合には、HBr24時間封入により約20(%S.P.)以上の誤差が、オリフィスへの腐食生成物の詰まり等により発生していることが判る。   FIG. 4 shows a change state of the flow rate control accuracy after the corrosion test in which HBr is sealed for 24 hours in the reference pressure type flow rate controller 9 which is not subjected to the gold plating process. It can be seen that an error of about 20 (% S.P.) or more is caused by the clogging of the corrosion product into the orifice due to the time sealing.

図5は、厚さ2μmの金メッキ皮膜を形成した場合のHBrガス24時間封入前・後の流量制御精度の変化状態を示すものであり、前記図4との対比からも明らかなように,厚さ2〜5μmの金メッキ皮膜を形成した場合には、20(%S.P.)以上の流量では、HBrガスによる腐食が流量制御精度に及ぼす影響を殆ど無視できることが判る。   FIG. 5 shows a change state of the flow rate control accuracy before and after enclosing the HBr gas for 24 hours when a gold plating film having a thickness of 2 μm is formed. As is clear from the comparison with FIG. In the case of forming a gold plating film with a thickness of 2 to 5 μm, it can be seen that the influence of corrosion by HBr gas on the flow rate control accuracy can be almost ignored at a flow rate of 20 (% SP) or more.

尚、金メッキは皮膜の厚さは2〜5μm程度で十分であり、5μm以上の厚さとしても、耐食性はあまり上昇せず、逆に経済性が悪化することになる。
従って、金メッキ皮膜の厚さは2〜5μmに選定するのが望ましい。
同様に、金メッキ皮膜の形成方法は如何なる方法であっても良いが、メッキ液を用いる化学メッキ方式が作業工程上好都合であり、圧力式流量制御器に広く適用できるものである。
In the case of gold plating, a film thickness of about 2 to 5 [mu] m is sufficient, and even if the thickness is 5 [mu] m or more, the corrosion resistance does not increase so much, and the economy is deteriorated.
Therefore, the thickness of the gold plating film is preferably selected to be 2 to 5 μm.
Similarly, the gold plating film may be formed by any method, but a chemical plating method using a plating solution is advantageous in terms of work process and can be widely applied to a pressure type flow rate controller.

また、参考のために、金メッキに代えてニッケルメッキ皮膜(厚さ2μm)を接ガス部に形成した基準圧力式流量制御器について、同じ耐食性試験を行った。図6は、その結果を示すものであり、ニッケルメッキ皮膜では流量誤差(%S.P.)が−5%程度下降し、実用に耐え得ないことが判明した。   For reference, the same corrosion resistance test was performed on a reference pressure type flow rate controller in which a nickel plating film (thickness: 2 μm) was formed on the gas contact portion instead of gold plating. FIG. 6 shows the result, and it was found that the flow rate error (% SP) decreased by about −5% in the nickel plating film and could not be put into practical use.

次に、基準圧力式流量制御器9の低流量域における流量精度と補正回数との関係について調査をした。
圧力式流量制御装置は、オリフィスを流れるガス流が臨界条件下にあり、且つオリフィスの形態(口径やガス入口側の形状)に変化が無ければ、オリフィス通過流量はオリフィス1次側の圧力Pのみに関係する値となり、基本的に比較的安定した流量制御精度を得ることが出来る。
しかし、基準圧力流量制御器9としての用途からすれば、より高い制御精度、例えば設定流量1%%S.P.位の低定流量域に於いても±0.25%S.P.以下の制御精度が望まれているため、その実現が補正を繰り返すことにより可能か否かを検討した。
Next, the relationship between the flow rate accuracy and the number of corrections in the low flow rate region of the reference pressure type flow rate controller 9 was investigated.
In the pressure type flow rate control device, if the gas flow through the orifice is under a critical condition and the shape of the orifice (diameter or shape on the gas inlet side) is not changed, the flow rate through the orifice is the pressure P 1 on the primary side of the orifice. Therefore, a relatively stable flow control accuracy can be basically obtained.
However, from the viewpoint of the use as the reference pressure flow rate controller 9, higher control accuracy, for example, a set flow rate of 1%% S.P. P. ± 0.25% S.E. even in the low constant flow region. P. Since the following control accuracy is desired, it was examined whether or not the realization was possible by repeating the correction.

表6は、基準圧力式流量制御器9に対する補正回数と設定流量1%S.P.の時の流量精度との試験結果を示すものであり、また、図7はこれを図示したものである。   Table 6 shows the number of corrections for the reference pressure type flow rate controller 9 and the set flow rate 1% S.E. P. FIG. 7 shows the test result with the flow rate accuracy at the time of FIG.

Figure 0005054500
Figure 0005054500

表6及び図7に於いて、σは標準偏差であり、誤差は%F.S.値である。図7からも明らかなように、補正を繰り返すことにより±1dgit=±0.065%F.S.以内の誤差に抑えることが可能であることが判った。その結果、試験に供した基準圧力式流量制御器9が±0.25%S.P.の流量制御精度を十分に具備し得ることが確認された。   In Table 6 and FIG. 7, σ is the standard deviation, and the error is% F. S. Value. As is apparent from FIG. 7, by repeating the correction, ± 1 dgit = ± 0.065% F.V. S. It was found that it was possible to suppress the error to within. As a result, the reference pressure type flow rate controller 9 used for the test was ± 0.25% S.P. P. It was confirmed that the flow rate control accuracy can be sufficiently provided.

本発明に係る圧力制御式流量基準器は、あらゆる種類の流量制御器の校正用基準器に適用できるものであり、また、本発明に用いる基準圧力式流量制御器は、腐食性ガスを用いる機器装置の流量制御器として広く適用出来るものである。 Pressure control wherein the flow rate datum according to the present invention are those applicable to calibration reference device of any type of flow controller, also the reference pressure type flow controller for use in the present invention, a corrosive gas It can be widely applied as a flow rate controller for the equipment used.

本発明に係る圧力制御式流量基準器の全体構成図である。1 is an overall configuration diagram of a pressure-controlled flow rate reference device according to the present invention. 本発明に用いる基準圧力式流量制御器の流量精度試験(%F.S.)の結果を示す線図である。It is a diagram which shows the result of the flow precision test (% FS) of the reference pressure type flow controller used for this invention. 本発明に用いる基準圧力式流量制御器の耐腐食性試験の説明図である。It is explanatory drawing of the corrosion resistance test of the reference | standard pressure type flow controller used for this invention. 金メッキ皮膜が無い場合のHBrガス24時間封入後の流量制御誤差の変化状態を示す線図である。It is a diagram which shows the change state of the flow control error after enclosing for 24 hours of HBr gas when there is no gold plating film. 金メッキ皮膜を形成した場合のHBrガス24時間封入後の流量制御精度の変化状態を示す線図である。It is a diagram which shows the change state of the flow control accuracy after enclosing HBr gas for 24 hours at the time of forming a gold plating film. ニッケルメッキ皮膜を形成した場合のHBrガス24時間封入後の流量制御精度の変化状態を示す線図である。It is a diagram which shows the change state of the flow control accuracy after enclosing HBr gas for 24 hours at the time of forming a nickel plating film. 基準圧力式流量制御器の補正回数と流量制御精度の関係を示す線図である。It is a diagram which shows the relationship between the frequency | count of correction | amendment of a reference | standard pressure type flow controller, and flow control accuracy. ビルドアップ法に基づく流量校正方法の説明図である。It is explanatory drawing of the flow volume calibration method based on the buildup method. ビルドアップ法に於けるチャンバ圧力上昇率の一例を示す線図である。It is a diagram which shows an example of the chamber pressure increase rate in the buildup method. ビルドアップ法に基づく流量測定精度の一例を示す線図である。It is a diagram which shows an example of the flow measurement accuracy based on the buildup method. 圧力式流量制御器の基本構成を示すものである。The basic composition of a pressure type flow controller is shown. 圧力式流量制御器の縦断面概要図である。It is a longitudinal cross-sectional schematic diagram of a pressure type flow controller.

符合の説明Explanation of sign

1 校正用ガス供給口
2 圧力制御器
タンク
4 フィルタ
5 熱式質量流量計
6 パージガス供給口
7 パージガス放出口
8 被校正流量制御器
9 基準圧力式流量制御器(マスター圧力式流量制御器)
10 タンク
11 真空引き装置の接続口
12 バイパス回路
13 被校正流量制御器の接続口
AV〜AV26 開閉弁
、F フィルタ
PT 圧力検出器
1 Calibration gas supply port 2 Pressure controller 3 Tank 4 Filter 5 Thermal mass flow meter 6 Purge gas supply port 7 Purge gas discharge port 8 Calibrated flow rate controller 9 Reference pressure type flow rate controller (master pressure type flow rate controller)
10 tank 11 connection port 12 of vacuum evacuation device bypass circuit 13 connection port AV 1 -AV 26 on- calibration flow rate controller on-off valve F 1 , F 2 filter PT pressure detector

Claims (5)

校正用ガス供給源からの校正ガスの圧力を調整する圧力制御器と,圧力制御器の下流側に設けた少なくとも1リットルの内容量を有するタンクと,当該タンクの下流側に設けた熱式質量流量計と,当該熱式質量流量計の下流側に設けられ、1基の被校正流量制御器の上流側が接続される接続口と,前記被校正流量制御器の下流側が接続される接続口と当該接続口に上流側が接続された基準圧力式流量制御器と,当該基準圧力式流量制御器の下流側に設けた少なくとも1リットルの内容量を有するタンクと,当該タンクの下流側に設けた真空引き装置とから構成した圧力制御式流量基準器 A pressure controller for adjusting the pressure of the calibration gas from the calibration gas supply source , a tank having an internal capacity of at least 1 liter provided downstream of the pressure controller, and a thermal mass provided downstream of the tank A flow meter, a connection port provided on the downstream side of the thermal mass flow meter and connected to the upstream side of one calibrated flow rate controller, and a connection port connected to the downstream side of the calibrated flow rate controller A reference pressure type flow controller whose upstream side is connected to the connection port, a tank having an internal capacity of at least 1 liter provided downstream of the reference pressure type flow controller, and provided downstream of the tank Pressure-controlled flow rate reference device composed of a vacuuming device 基準圧力式流量制御器を、複数台の基準圧力式流量制御器を並列に接続して構成するようにした請求項1に記載の圧力制御式流量基準器。   The pressure control type flow rate controller according to claim 1, wherein the reference pressure type flow rate controller is configured by connecting a plurality of reference pressure type flow rate controllers in parallel. 基準圧力式流量制御器の流体入口側と出口側とをバイパス回路により直結する構成とした請求項1に記載の圧力制御式流量基準器。   The pressure control type flow rate reference device according to claim 1, wherein the fluid inlet side and the outlet side of the reference pressure type flow rate controller are directly connected by a bypass circuit. 基準圧力式流量制御器を、オリフィスと,オリフィスの上流側に設けたコントロール弁と,コントロール弁とオリフィス間に設けた圧力検出器と,圧力検出器の検出圧力P  A reference pressure type flow rate controller includes an orifice, a control valve provided upstream of the orifice, a pressure detector provided between the control valve and the orifice, and a detected pressure P of the pressure detector. 1 から流量QをQ=KPTo flow rate Q from Q = KP 1 (但しKは定数)として演算すると共に、流量指令信号Q(Where K is a constant) and the flow rate command signal Q S と前記演算した流量信号Qとの差を制御信号Qyとして前記コントロール弁の駆動部へ出力する演算制御装置とから構成され、オリフィスの上流側圧力PAnd an arithmetic control device for outputting the difference between the calculated flow rate signal Q as the control signal Qy to the drive portion of the control valve, and the upstream pressure P of the orifice 1 と下流側圧力PAnd downstream pressure P 2 との比を被制御流体の臨界圧比以下に保持した状態で前記コントロール弁の開閉によりオリフィス上流側圧力PThe orifice upstream pressure P by opening and closing the control valve while maintaining the ratio to the critical pressure ratio of the controlled fluid. 1 を調整し、オリフィス下流側の流体流量Qを制御する構成の基準圧力式流量制御器とした請求項1に記載の圧力制御式流量基準器。The pressure control type flow rate reference device according to claim 1, wherein the reference pressure type flow rate control device is configured to control the fluid flow rate Q downstream of the orifice. 真空引き装置を真空ポンプ又は真空チャンバとするようにした請求項1に記載の圧力制御式流量基準器。   2. The pressure-controlled flow rate reference device according to claim 1, wherein the evacuation device is a vacuum pump or a vacuum chamber.
JP2007319977A 2007-12-11 2007-12-11 Pressure-controlled flow standard Expired - Fee Related JP5054500B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007319977A JP5054500B2 (en) 2007-12-11 2007-12-11 Pressure-controlled flow standard
US12/332,897 US8210022B2 (en) 2007-12-11 2008-12-11 Pressure type flow rate control reference and corrosion resistant pressure type flow rate controller used for the same
US13/483,159 US8381755B2 (en) 2007-12-11 2012-05-30 Pressure type flow rate control reference and corrosion resistant pressure type flow rate controller used for the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007319977A JP5054500B2 (en) 2007-12-11 2007-12-11 Pressure-controlled flow standard

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012055216A Division JP5286430B2 (en) 2012-03-13 2012-03-13 Corrosion-resistant pressure type flow rate controller for the reference pressure type flow rate controller constituting the pressure control type flow rate reference device.

Publications (2)

Publication Number Publication Date
JP2009145986A JP2009145986A (en) 2009-07-02
JP5054500B2 true JP5054500B2 (en) 2012-10-24

Family

ID=40720655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007319977A Expired - Fee Related JP5054500B2 (en) 2007-12-11 2007-12-11 Pressure-controlled flow standard

Country Status (2)

Country Link
US (2) US8210022B2 (en)
JP (1) JP5054500B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4718274B2 (en) * 2005-08-25 2011-07-06 東京エレクトロン株式会社 Semiconductor manufacturing apparatus, flow correction method for semiconductor manufacturing apparatus, program
JP5538119B2 (en) * 2010-07-30 2014-07-02 株式会社フジキン Calibration method and flow rate measuring method of flow controller for gas supply device
US9644796B2 (en) 2011-09-29 2017-05-09 Applied Materials, Inc. Methods for in-situ calibration of a flow controller
US9772629B2 (en) 2011-09-29 2017-09-26 Applied Materials, Inc. Methods for monitoring a flow controller coupled to a process chamber
DE102012104022A1 (en) * 2012-05-08 2013-11-14 Innomatec Test- Und Sonderanlagen Gmbh Method for checking tightness measurement of leakage of fluid used in e.g. automobile industry, involves controlling size of aperture formed in to-be-checked volume based on measured actual value
US9062993B2 (en) * 2012-05-22 2015-06-23 E I Du Pont De Nemours And Company Method and apparatus for liquid flow calibration check
US9454158B2 (en) 2013-03-15 2016-09-27 Bhushan Somani Real time diagnostics for flow controller systems and methods
CN103791962A (en) * 2013-12-24 2014-05-14 兰州空间技术物理研究所 Multi-working-mode gas flowmeter and gas flow measuring method
US10684159B2 (en) * 2016-06-27 2020-06-16 Applied Materials, Inc. Methods, systems, and apparatus for mass flow verification based on choked flow
JP6762218B2 (en) * 2016-12-13 2020-09-30 株式会社堀場エステック Flow rate calculation system and flow rate calculation method
US10983537B2 (en) 2017-02-27 2021-04-20 Flow Devices And Systems Inc. Systems and methods for flow sensor back pressure adjustment for mass flow controller
JP6913498B2 (en) * 2017-04-18 2021-08-04 東京エレクトロン株式会社 Method of obtaining the output flow rate of the flow rate controller and method of processing the object to be processed
CN111164341A (en) * 2017-09-25 2020-05-15 株式会社富士金 Valve device, adjustment information generation method, flow rate adjustment method, fluid control device, flow rate control method, semiconductor manufacturing device, and semiconductor manufacturing method
US11833557B1 (en) * 2018-03-16 2023-12-05 Derrick James Hoover Device cleaning system and method of use
CN108827407B (en) * 2018-04-08 2021-06-15 广州能源检测研究院 Adjusting device and adjusting method for back pressure ratio of automatic balancing system

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5421765A (en) * 1977-07-20 1979-02-19 Tokico Ltd Proving device for flowmeter
EP0370150A1 (en) * 1988-11-21 1990-05-30 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process for producing standard gas mixture and apparatus for producing the same
JPH0276966A (en) * 1989-05-01 1990-03-16 Toyota Motor Corp Oil pressure control device for belt type continuously variable speed change gear
JP3184885B2 (en) * 1992-09-10 2001-07-09 経済産業省産業技術総合研究所長 Gas meter calibration device
JPH07281759A (en) * 1994-04-06 1995-10-27 Hitachi Metals Ltd Mass flow controller
JPH0842652A (en) * 1994-07-29 1996-02-16 Fuji Heavy Ind Ltd Control device for continuously variable transmission
JP3291161B2 (en) * 1995-06-12 2002-06-10 株式会社フジキン Pressure type flow controller
JP3580645B2 (en) * 1996-08-12 2004-10-27 忠弘 大見 Pressure type flow controller
JP3586075B2 (en) * 1997-08-15 2004-11-10 忠弘 大見 Pressure type flow controller
DE69832956T2 (en) * 1997-08-15 2006-08-17 Fujikin Inc. NOZZLE OF A FLOW REGULATOR WITH A PRESSURE REGULATION AND METHOD OF MANUFACTURING THEREOF
JP3546153B2 (en) 1998-08-24 2004-07-21 忠弘 大見 Orifice clogging detection method and detection apparatus for pressure type flow control device
KR100348853B1 (en) * 1998-08-24 2002-08-17 가부시키가이샤 후지킨 Method for detecting plugging of pressure flow-rate controller and sensor used therefor
EP1096351A4 (en) * 1999-04-16 2004-12-15 Fujikin Kk Parallel bypass type fluid feeding device, and method and device for controlling fluid variable type pressure system flow rate used for the device
US6119710A (en) * 1999-05-26 2000-09-19 Cyber Instrument Technologies Llc Method for wide range gas flow system with real time flow measurement and correction
US6578435B2 (en) * 1999-11-23 2003-06-17 Nt International, Inc. Chemically inert flow control with non-contaminating body
WO2002065005A1 (en) * 2000-11-06 2002-08-22 California Institute Of Technology Electrostatic valves for microfluidic devices
JP4498661B2 (en) * 2001-07-11 2010-07-07 株式会社バックス・エスイーブイ Metal gasket for vacuum apparatus and method for manufacturing the same
JP4102564B2 (en) * 2001-12-28 2008-06-18 忠弘 大見 Improved pressure flow controller
JP3856730B2 (en) * 2002-06-03 2006-12-13 東京エレクトロン株式会社 A gas diversion supply method to a chamber from a gas supply facility provided with a flow rate control device.
JP4502590B2 (en) * 2002-11-15 2010-07-14 株式会社ルネサステクノロジ Semiconductor manufacturing equipment
JP4195819B2 (en) * 2003-01-17 2008-12-17 忠弘 大見 Method of controlling flow rate of hydrogen fluoride gas and flow control device for hydrogen fluoride gas used therefor
JP2004226077A (en) * 2003-01-20 2004-08-12 Shimadzu Corp Gas dilution system
JP2004279126A (en) * 2003-03-13 2004-10-07 Toshiba Meter Techno Kk Automatic parameter setting system for gas meter, and gas meter
JP4195837B2 (en) * 2003-06-20 2008-12-17 東京エレクトロン株式会社 Gas diversion supply apparatus and gas diversion supply method
JP3863505B2 (en) * 2003-06-20 2006-12-27 忠弘 大見 Pressure sensor, pressure control device, and automatic zero point correction device for pressure type flow rate control device
JP4331539B2 (en) * 2003-07-31 2009-09-16 株式会社フジキン Gas supply device to chamber and chamber internal pressure control method using the same
JP4399227B2 (en) * 2003-10-06 2010-01-13 株式会社フジキン Chamber internal pressure control device and internal pressure controlled chamber
JP2005241279A (en) * 2004-02-24 2005-09-08 Fujikin Inc Sensor made of anti-corrosion metal for fluid and fluid supply apparatus
JP4788920B2 (en) * 2006-03-20 2011-10-05 日立金属株式会社 Mass flow control device, verification method thereof, and semiconductor manufacturing device
US8104323B2 (en) * 2006-12-05 2012-01-31 Horiba Stec, Co., Ltd. Flow controller, flow measuring device testing method, flow controller testing system, and semiconductor manufacturing apparatus
CN101978132B (en) * 2008-01-18 2015-04-29 关键系统公司 Method and apparatus for in situ testing of gas flow controllers
US8707754B2 (en) * 2010-04-30 2014-04-29 Applied Materials, Inc. Methods and apparatus for calibrating flow controllers in substrate processing systems

Also Published As

Publication number Publication date
US20090146089A1 (en) 2009-06-11
US8210022B2 (en) 2012-07-03
JP2009145986A (en) 2009-07-02
US20120234406A1 (en) 2012-09-20
US8381755B2 (en) 2013-02-26

Similar Documents

Publication Publication Date Title
JP5054500B2 (en) Pressure-controlled flow standard
KR101425007B1 (en) Mass flow verifiers capable of providing different volumes, and related methods
JP5727596B2 (en) Memory method of initial value of actual gas monitor flow rate of pressure type flow control device with flow rate monitor and method of confirming output of actual gas monitor flow rate
EP2247819B1 (en) Method and apparatus for in situ testing of gas flow controllers
JP5433660B2 (en) Gas flow monitoring system
TWI642910B (en) Flow control device, flow correction method for flow control device, flow measurement device, and flow measurement method using flow measurement device
JP2012032983A (en) Calibration method of flow rate controller for gas supply device and flow rate measuring method
JP5286430B2 (en) Corrosion-resistant pressure type flow rate controller for the reference pressure type flow rate controller constituting the pressure control type flow rate reference device.
JP2007095042A (en) Method of detecting abnormality in fluid supply system using flow rate control device having pressure sensor
US11604089B2 (en) Mass flow verification based on rate of pressure decay
US10890475B2 (en) Diagnostic system, diagnostic method, diagnostic program, and flow rate controller
TWI766961B (en) Diagnostic system, diagnostic method, storage medium, and flow rate controller
JP7249030B2 (en) Volume measuring method in flow measuring device and flow measuring device
TWI780625B (en) Liquid supply system and an auxiliary judgment method of liquid amount

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120123

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120702

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120727

R150 Certificate of patent or registration of utility model

Ref document number: 5054500

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150803

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees